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Turbulent scalar mixing occurs within a wide variety of natural and engineering
flows. Predicting and controlling the scalar concentration(s) within these flows can yield
immediate benefits to numerous applications across many fields. To that end, a better un-
derstanding of the effects of scalar-field initial conditions on the evolution(s) of scalar fields
is required to either promote or delay the rate at which mixing occurs. Direct numerical
simulations are employed herein to simulate the evolution in time of the hydrodynamic
and (passive) scalar fields within a fully developed turbulent channel flow. The effects
of the scalar field initial conditions are studied by analyzing the evolution of the scalar
field subject to three different initial conditions with interfaces oriented normal to the
streamwise, wall-normal, and transverse directions. Particular emphasis is placed on the
scalar variance and dissipation rate budgets, including the evolutions of their constituent
terms. The fastest mixing occurs for the initial condition in which the interface is aligned
normal to the mean velocity vector. The rapid mixing in this case is associated with higher
rates of production and destruction of the scalar dissipation, as well as strong advection and
stretching of the interface by the mean flow. In addition to better mixing arising from the
stronger turbulence near the wall, enhanced mixing is correlated with having the edge of
an interface along a channel wall, such that a large distortion of the initial interface arises
from the combined effects of the no-slip condition at the channel walls with the advection
of the interface by the mean flow in the region between the walls. To maximize this effect,
it is recommended that scalar interfaces be aligned normal to the mean velocity vector to
promote mixing within internal flows.

DOI: 10.1103/PhysRevFluids.8.124605

I. INTRODUCTION

Scalar quantities, such as temperature, humidity, or chemical species concentration, are mixed
within a wide range of environmental and engineering flows. In the atmosphere, temperature and
humidity are mixed by the turbulence generated by both shear and buoyancy, whereas temperature
and salinity are mixed in the ocean within the oceanic mixed layer. In engineering devices and
processes, including chemical reactors, heat exchangers and combustion, the mixing of scalars
also plays a crucial role. Given that the vast majority of these flows are turbulent, a thorough
understanding of the turbulent scalar mixing process is necessary to accurately predict the evolution
of the concentration(s) of the scalar(s) and, ultimately, to optimize and control turbulent mixing in
engineering applications.

The present study focuses on the mixing of passive scalars, where the term “passive” denotes
that the evolution of the scalar does not influence the dynamics of the flow, allowing for inde-
pendent treatment of the hydrodynamic field and the scalar fields it mixes. Such an assumption is
reasonable and valid in many physical flows where the temperature or concentration fluctuations are
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sufficiently small. These flows are governed by the continuity, Navier-Stokes, and advection-
diffusion equations, where the first two equations are one-way coupled with the latter. Assuming
constant thermophysical properties, the three aforementioned equations can be written as follows:
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where ũ j ( j = 1, 2, 3) are the components of the instantaneous velocity vector field, ρ is the fluid
density, p̃ is the instantaneous pressure, gi represents external body forces, ν is the kinematic
viscosity, θ̃ represents the instantaneous scalar field, α is the scalar’s molecular diffusivity within
the fluid, and repeated indices imply Einstein’s summation convention. Since the overwhelming
majority of flows that are encountered in practice are both turbulent and inhomogeneous, the
transport of a scalar quantity in such flows is of particular interest. In this work, we therefore
simulate the mixing of a passive scalar in a fully developed, high-aspect-ratio, turbulent channel
flow (the simplest realization of an inhomogeneous flow) by solving the above equations.

Two important quantities in the description of turbulent scalar mixing are the scalar variance and
the scalar dissipation rate, respectively defined as

〈θ2〉 ≡ 〈(θ̃ − �)2〉, (2a)
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where 〈·〉 denotes an average and θ is the fluctuation of a scalar about its mean (� = 〈θ̃〉). The
time evolutions of the scalar variance and its destruction by the scalar dissipation rate can be better
understood by examining the physical processes that govern their production, transport, and de-
struction. These processes are described by the scalar variance and scalar dissipation rate evolution
equations (also known as “budgets”). The scalar variance budget describes the contributions of
various physical mechanisms to the evolution of the scalar variance:
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Similarly, the scalar dissipation rate budget describes the contributions of the various physical
mechanisms to the evolution of the scalar dissipation rate:
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The physical interpreation of each term in these budgets will be provided later.
An analysis of 〈θ2〉 and 〈εθ 〉 can provide insight into the evolution of a system from an unmixed

state to a mixed one and, more importantly, into the physical mechanisms that contribute to the
mixing process. The path that a system takes in approaching the mixed state can depend on a number
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of factors. One of these factors is the starting state of the system (i.e., the initial condition), which
can determine the rate at which mixing occurs [1–4]. Consequently, a better understanding of how to
organize or construct the initial scalar field to achieve the desired rate of mixing can be advantageous
in many fields. Immediate applications may include processes in which the rapid mixing of scalars
yields numerous benefits, such as the mixing of fuel and air in combustion engines, the mixing of
heat in heat exchangers, or the mixing of various chemical reactants and/or products in chemical
reactors. Given that the effects of scalar-field initial conditions on the mixing process are not yet
fully understood, the present work aims to study the evolutions of various scalar fields—subjected
to different initial conditions—as they are mixed by identical hydrodynamic fields, such that any
observed differences can only be attributed to the differences in the scalar fields’ initial conditions.

II. LITERATURE REVIEW

Scalar mixing has been a topic of extensive research over the years given its prominence in both
natural phenomena and engineering applications, spanning many fields. On the one hand, laminar
mixing is of interest in the pharmaceutical, food, polymer, biotechnological industries, and, more
recently, in micro- or nanofluidic applications. On the other hand, turbulent mixing is of interest in
atmospheric, oceanic and fluvial phenomena, combustion or propulsion, and chemical engineering
applications, to name a few.

Mixing in laminar regimes is generally poor because the fluid motion is dominated by viscous
forces. Therefore, satisfactory laminar mixing must be induced by appropriate stirring. The study
of laminar mixing began with the pioneering work by Aref (1984 and 2002), who introduced the
concept of chaotic advection. Aref’s work [5,6] stimulated numerous studies, mainly within the
dynamical system community, on laminar mixing (e.g., Hobbs and Muzzio [1], Ottino [7], Alvarez
et al. [8], Szalai and Muzzio [9], Gleeson [10], Gouillart et al. [11], Phelps and Tucker [12], Sturman
et al. [13], Vikhansky and Cox [14]). Mixing induced by turbulent flows is much more effective,
because a mixture is stirred efficiently by the vorticity field such that molecular mixing is accelerated
by the increasingly stretched interfaces between the scalar and the surrounding fluid [15,16]. Given
these beneficial features and the lack of a complete understanding of the turbulent mixing process,
work on optimization and control of turbulent scalar mixing has been investigated by the combustion
community, with a focus on jet mixing. However, efforts to understand the fundamental physical
mechanisms governing the mixing of turbulent scalars also continue actively.

The origins of the study of turbulent scalar mixing follow Kolmogorov’s seminal work on
turbulence [17,18], in which it was proposed that the advection of a scalar field by a turbulent flow
would result in a field that is universal and locally isotropic at small scales [19,20]. Kolmogorov-
Obukhov-Corrsin (KOC) theory [17–20] is the most prevalent theory of turbulent scalar mixing and
predicts that the smallest scales of the scalar field should be statistically isotropic and independent
of the largest scales of the scalar field, similarly to the predictions of Refs. [17,18] for the velocity
field.

The mixing of scalars within turbulent flows has been the subject of multiple investigations
over the years. Summaries of this work can be found in the reviews of Warhaft [15] and Shraiman
and Siggia [21], which have highlighted, among other aspects, anomalous scaling of passive scalar
fields, as well as their lack local isotropy. With regards to the latter, Sreenivasan [22] noted that the
asymptotic state of a scalar in turbulent shear flows was only reached very slowly as the Reynolds
number increased. And although he reported that local isotropy of scalars was not naturally present
in shear flows, its existence at extremely large Reynolds numbers was not dismissed. He did state,
however, that such large Reynolds numbers would be rare in terms of flows observed on Earth,
whether they be natural or man-made. However, such an anomalous behavior of passive scalars was
not limited to only shear flows. By studying the skewness of the probability density functions (PDFs)
of the scalar gradient in homogeneous, isotropic turbulence, Pumir [23] revealed the presence of
strong anisotropy of passive scalar fields. Furthermore, he observed sharp maxima of the scalar
gradient, suggesting strong mixing in large regions, and occurrences of small regions with strong
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scalar gradients. The existence of locally isotropic scalar fields in the limit of infinite Reynolds
numbers was challenged by Warhaft [15], who demonstrated that anisotropy existed within both
the inertial and dissipation ranges in the scalar field, in particular with strong intermittency in the
inertial subrange. Findings from his work suggested that the large-scale properties of the scalar field
were directly reflected onto its small scales.

Within the above context pertaining to scalar mixing in turbulent flows, large amounts of
research have been devoted to the optimization of jet mixing, including transverse jets, which
have widespread applications, particularly in energy and propulsion systems, due in part to their
superior near-field mixing characteristics when compared with free jets issuing into quiescent
surroundings. Applications to combustion systems include the injection of cooling air into hot
combustion products or the premixing of fuel and oxidizer. Many investigations have been devoted
to the optimization and control of mixing induced by transverse jets, including the work of Moussa
et al. [24], Bowman [25], Vermeulen et al. [26], Margason [27], Holdeman [28], Smith and Mungal
[29], Johari et al. [30], M’Closkey et al. [31], Shan and Dimotakis [32], Ekkad et al. [33], Sau and
Mahesh [34], Karagozian [35], Gevorkyan et al. [36], Harris et al. [37], among others.

The specific motivation for the present work stems from the observations of Gubanov and
Cortelezzi [3] and Germaine et al. [38], who noted that scalar fields are strongly affected by the
initial conditions of the scalar field, even when these scalar-field initial conditions were mixed by
identical hydrodynamic fields. In other words, it appears to be possible to optimize and passively
control the mixing performance of certain engineering applications by constructing appropriate
initial conditions. It is therefore of interest to study and investigate the nature of the physical
processes that lead to such different evolutions of the scalar field to determine the initial conditions
that optimize turbulent scalar mixing

Gubanov and Cortelezzi [3] addressed the problem of designing a mixing device capable of
maintaining a uniform mixing quality for different scalar-field initial conditions in laminar flow.
The authors compared the performance of the same mixing device, the sine flow or egg-beater flow
[39], by stirring the same initial mixture using periodic [40–42], recursive symmetry-breaking [43],
and short-horizon optimal [44] protocols. The periodic protocol, often used in the chemical and food
industries, is the worst performer. It is the slowest mixer and, under certain initial conditions, leaves
regions of unmixed fluid within the island of regular motion of the mixer. The recursive symmetry-
breaking protocol, as well as other, random protocols considered by Liu et al. [45], were found to
induce chaotic advection over the entire mixing domain and, therefore, mix faster and better than
a periodic protocol. The short-horizon optimal protocols are the best performers. They produce, in
the shortest time, a uniform mixing quality for all different scalar-field initial conditions considered.
Protocol optimization was obtained by minimizing the mixnorm [46] over a short-horizon of a few
stirring periods, where the mixnorm (μθ ) is defined as

μθ =
[ ∑

k∈Z3

1√
1 + 4π2||k2||

|�̂k(t )|2
]1/2

, (5)

where k is the wavenumber and �̂k are the spectral coefficients of the scalar fluctuations. Note that
μθ � 0 and the mixnorm is positive semi-definite. Even minimization over a single period worked
quite well. Gubanov and Cortelezzi [3] concluded that each initial condition of the scalar field was
mixed efficiently, both in space and time, by a different short-horizon optimal protocol.

Germaine et al. [38] undertook an investigation in a three-dimensional (3D), turbulent flow.
In this work, the dependence of the anisotropy of passive scalar fields on their initial conditions
was studied by analyzing the evolution of the scalar field for three different initial conditions with
interfaces oriented normal to the streamwise, wall-normal, and transverse directions. The authors
observed the persistence of anisotropy in the fractional components of the scalar dissipation rates for
the three initial conditions. Moreover, they also observed, at the final time, that the three scalar-fields
showed different degrees of mixing.
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The dependence of the turbulent scalar flux (〈ujθ〉) on scalar-field initial conditions in homoge-
neous turbulent shear flow was investigated by Rogers et al. [47]. In this work, the authors undertook
direct numerical simulations of passive scalar fields arising from mean scalar gradients in three
orthogonal directions to investigate the evolution of the scalar flux, with the objective of developing
a model for them. The result was a gradient transport model with a second-order diffusivity tensor
with one empirically determined coefficient. It was compared with the data from the authors’ direct
numerical simulations of homogeneous turbulent shear flow, as well as the homogeneous, isotropic,
grid turbulence data of Sirivat and Warhaft [48] and data from simulations of fully developed
turbulent channel flow. Given that the model was solely based on the hydrodynamic field, the scalar
gradient, and the Prandtl number, it was found to better reproduce data in which the differences in
the scalar-field initial conditions were “weakened” by the production of turbulence by mean shear.

The topic of optimal mixing conditions was studied by Foures et al. [49], who investigated
optimal initial perturbations to maximize mixing of a passive scalar in a two-dimensional plane
Poiseuille flow at finite Reynolds and Péclet numbers. Their work showed that energy optimization
led to very weak mixing of the scalar field, while optimal mixing initial perturbations homogenized
the scalar field effectively.

Vermach and Caulfield [50] built on the work of Foures et al. [49] in their study of optimal
mixing in three-dimensional plane Poiseuille flow at high Péclet numbers. The object of their study
was the identification of the optimal initial velocity-field perturbation that maximized mixing by a
given time horizon. They reported their findings at two different Reynolds numbers (i.e., Re = 500
and Re = 3000) and stated that the optimal perturbations that minimize the mixnorm for short time
horizons result in better scalar-field mixing than optimal perturbations that minimize the scalar
variance. Furthermore, the authors found that flows at higher Reynolds numbers mixed scalar fields
to a greater extent than those at lower Reynolds numbers.

Minimization of the mixnorm was further explored in the work of Eggl and Schmid [51,52],
who proposed the use of a gradient-based nonlinear optimization scheme to improve the mixing
efficiency of binary fluids by moving stirrers. Two cylindrical stirrers moving on concentric circular
paths were used with an iterative direct-adjoint algorithm to enhance mixing. In the work of Eggl
and Schmid [51], the stirrers’ shapes were held constant and not subjected to optimization for
enhanced mixing. To address this additional optimization parameter, the work of Eggl and Schmid
[52] investigated the optimal cross-sectional shape of the stirrers in addition to the mixing strategy to
further enhance scalar mixing. The authors studied four cases in their study: (i) a base configuration
that was used to compare all subsequent optimizations, (ii) optimization of the cross-sectional shape
of the stirrers, (iii) optimization of the velocities of the stirrers, and (iv) combined optimization of
the cross-sectional shape and velocities of the stirrers. The combined optimization of the shape and
the velocity of the stirrers led to the best mixing (i.e., lowest measured mix-norm) of the binary
fluids.

Optimal stirring by way of adaptive flow reorientation was studied by Lensvelt et al. [53], who
developed a flow-control strategy to heat rapidly and uniformly a cold fluid via a hot boundary.
Their research indicated that adaptive flow reorientation significantly accelerated the heating of the
fluid as compared to conventional periodic schemes in terms of consistency and effectiveness. The
accelerated heating was achieved by the controller via thermal plumes that extended from the heated
wall into the colder fluid interior. The plumes were produced by thermal convection between two
counter-rotating recirculation regions, also known as “thermals.”

It has been demonstrated that there exists a dependence of the scalar mixing process on
the initial scalar-field geometries. It has also been shown that by optimizing the mixing device
or the stirring protocol (or both), one may mix uniformly and rapidly a given initial condi-
tion. However, the latter is often impractical in turbulent flows of engineering interest. For
this reason, further investigation into the mechanisms that lead to different evolutions of the
scalar fields arising from different initial conditions is merited. Deepening our understanding of
these relationships will allow for better prediction and control of flows in which scalar mixing
occurs.
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TABLE I. Details of the numerical grids for the computation of the velocity and scalar fields. The super-
script “+” indicates the normalization by the viscous length (ν/uτ ) or time (ν/u2

τ ) scale, and the superscripts
“∗” and “•” are used for the normalization by the Kolmogorov (η) and Corrsin (ηθ ) length scales, respectively.

Velocity Scalar

Lx×Ly×Lz 2πh×2h×πh 2πh×2h×πh
L+

x ×L+
y ×L+

z 1187×378×594 1187×378×594
Nx×Ny×Nz 256×193×192 514×195×194
�x+, �y+, �z+ 4.64, 0.025 − 3.1, 3.1 2.32, 1.96, 3.1
�x∗, �y∗, �z∗ at y/h = 1.0 1.25, 0.83, 0.84 –
�x•,�y•, �z• at y/h = 1.0 – 0.50, 0.42, 0.66

III. NUMERICAL SIMULATIONS

The investigations herein employ numerical simulations of both the turbulent velocity and
passive scalar fields, in which the latter is advected by the former. The turbulent velocity field is com-
puted by way of direct numerical simulation (DNS) using a code entitled CHANNELFLOW [54,55]
which uses spectral discretization in space (Fourier × Chebyshev × Fourier), and a third-order
semi-implicit backwards differentiation scheme in time, with no-penetration or no-slip boundary
conditions imposed at the walls of the channel (y = 0 and y = 2h, where h is the half-height of
the channel), and periodic boundary conditions in the streamwise (x) and spanwise (z) directions.
Simulation of the hydrodynamic field is conducted at Reτ = 190 over a domain of size 2π×2×π ,
in the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively, with a resolution of
256×193×192. (Reτ ≡ uτ h/ν, uτ ≡ √

ν×∂U/∂y|y=0, h = 1, and ν is the kinematic viscosity of the
fluid.) The resulting turbulent velocity field is statistically steady and statistically one-dimensional,
such that 〈U 〉 = 〈U 〉(y) only.

The precomputed velocity field is used as an input to the advection-diffusion solver and is
interpolated from a spectral to a finite-volume representation via spectral (exact) interpolation. A
very small correction is applied to the streamwise component of the velocity field to ensure the
exact divergence-free condition. The advection-diffusion equation is solved using a fully three-
dimensional and cost-effective flux integral method entitled 3DFLUX [56]. The fully explicit and
multidimensional nature of the approach ensures that it is free of splitting errors and provides a
better convergence rate of the numerical errors when compared to commonly used one-dimensional
methods. A semi-Lagrangian approach is implemented in 3DFLUX by discretizing the spatial
domain on an Eulerian grid and using a Lagrangian frame of reference for temporal discretization.
Solutions for the advection-diffusion equation are obtained using nonoverlapping control volumes
to discretize the computational domain and estimate the flux exchanged between adjacent cells.
DNS of the scalar field is undertaken on the same domain of 2π×2×π , with a resolution of
514×195×194 to resolve both the large and small scales of the scalar field. It is assumed that
the magnitudes of the scalar fluctuations are sufficiently small, such that the dynamics of the
velocity field are independent of the scalar field, such that the scalar is deemed passive. Details
of the numerical grids for the computation of the velocity and scalar fields are given in Table I,
and the justification of these selections is given in Germaine et al. [57] (see Sec. 4 therein).
To summarize their arguments, the computational domains were selected to be large enough to
capture the integral scales, and the spatial resolution was chosen to be small enough to resolve,
as accurately as possible, the dissipative scales. The domain size selected herein is the same as in
Kawamura et al. [58], Moser et al. [59], and Schwertfirm and Manhart [60]. Galantucci and Quadrio
[61] performed DNSs on a smaller domain [Lx = 4.19h, Ly = 2h, Lz = 2.09h, with Reτ = 160 and
Schmidt number (Sc ≡ ν/D) equal to 1.0] at three increasingly resolved scalar fields, which they
deemed low, medium, and high. The low resolution was comparable to that of most DNSs of
wall-bounded flows in which scalars were mixed, whereas the high resolution one employed cell
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(a) (b) (c)

FIG. 1. The three scalar-field initial conditions studied herein. (a) ICx; (b) ICy; (c) ICz. (Imagery generated
using VAPOR.)

sizes that were consistently smaller than the Kolmogorov length scale evaluated at the wall. The
spatial resolution denoted medium fell in between the other two. Leveraging their results, we chose a
grid consistent with their medium resolution for our simulations at Reτ = 190 and Pr (≡ν/α) = 0.7,
which also satisfactorily reproduced prior experimental results [57].

The evolution in time of the mixing will be studied for three different scalar-field initial condi-
tions, ICx, ICy, and ICz, as depicted in Fig. 1. These fields consist of two equal volumes of uniform
concentrations, θ̃ = +1 (black) and −1 (white), separated by two interfaces (due to the periodic
boundary conditions in x and z) of total area 4πh2 (=2×2h×πh) for ICx and 8πh2 (=2×2h×2πh)
for ICz and a single interface of area 2π2h2 (=2πh×πh) for ICy. The transition from one region
of uniform concentration to another (i.e., from θ̃ = +1 to θ̃ = −1) follows a smooth step function.
The scalar concentration across the interface(s) is defined by the function

θ̃ = sin

(
π

2
+ xi − xint

Lint
π

)
,

where xi is the coordinate normal to the interface, xint is the coordinate that marks the beginning of
the interface, and Lint is the width of the interface. The width of the interface was set to be equal
to approximately 10% of the channel height for all three scalar-field initial conditions, such that
Lint = 0.2h. All fields have zero mean concentration. Note that all three scalar fields are subjected
to identical turbulent velocity fields, and thus any differences in the evolutions of the three scalar
fields are the sole result of the orientations of the interfaces defining the initial scalar fields relative
to that of the mean velocity field.

The simulations conducted herein were run on the Digital Research Alliance of Canada’s
Graham cluster. CHANNELFLOW’s ability to utilize message passing interface allowed for the
hydrodynamic simulation to be run across multiple nodes using a total of 128 cores in parallel.
For 3DFLUX, Intel’s Thread Building Blocks library was used to take advantage of multithreading
across 32 CPU cores located on the same node for each of the three scalar-field initial conditions.
For both the velocity and scalar-field simulations, the computations were performed using Intel
E5-2683 v4 Broadwell CPUs running at 2.1 GHz.

The CPU time required for the hydrodynamic field simulation was 0.12 CPU years, correspond-
ing to a wall-clock time of 8 h. For each of the three scalar-field simulations, the CPU time required
was 1.84 CPU years, corresponding to a wall-clock time of three weeks. The scalar field was
saved every time step to provide a sufficient temporal resolution for the scalar-field simulations.
This resulted in a set of 40 000 files that were 240 MB in size, totalling 9.6 TB. For each of the
three scalar-field initial condition simulations, the output consisted of 40 000 files of 156 MB each,
resulting in a total of 18.7 TB across all three scalar-field initial conditions. In total, the storage
requirements were 28.3 TB for the velocity and scalar fields combined.
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IV. RESULTS

The simulation results are presented in this section. However, before discussing the main results
in Sec. IV. C, we first present the averaging schemes employed herein in Sec. IV. A, since the scalar
fields studied in this work are both statistically unsteady and multidimensional. Then, in Sec. IV. B,
we discuss the (statistically steady and one-dimensional) velocity field that advects the (statistically
unsteady and multidimensional) scalar field.

A. Averaging schemes

Given the complex nature of the velocity and scalar fields studied in this work, the ensuing
analysis of the statistics requires special care to treat the hydrodynamic and scalar fields meaning-
fully. Although the velocity field is statistically stationary, the scalar fields are all unsteady, as they
evolve from their initial states to the mixed state. The velocity field is also inhomogeneous in the
wall-normal (y) direction. Additionally, the homogeneity of the three scalar fields are different. The
scalar field resulting from the ICx initial condition is statistically homogeneous in the z direction
(only). That resulting from the ICy initial condition is statistically homogeneous in the x and z
directions. Last, the scalar field resulting from the ICz initial condition is statistically homogeneous
in the x direction (only).

The underlying symmetries and ensuing statistical (in-)homogeneities associated with the dif-
ferent initial conditions, as well as the statistical nonstationary nature of the scalar field, must
be considered when analyzing the results. A primary consequence of this fact is that one can
no longer simply volume-average the terms in Eqs. (3) and (4) if one wants to examine the
evolution(s) of all their constituent terms, because some of the various, relevant terms become
zero when volume averaged. Moreover, there is no “universal” approach to spatial averaging that
will not eliminate some of the pertinent terms in describing the evolutions of the scalar fields. For
example, were one to average scalar-field statistics in the z direction, certain terms in Eq. (4)—such
as production by the mean scalar gradient—will become zero for the ICz case only, because
∂〈·〉z/∂z = 0 due to the statistical homogeneity in the z direction. Because volume-averaging is
no longer feasible, averaging will be taken over (spatial) planes (at specific locations within the
channel) to investigate the terms in Eqs. (3) and (4). However, because the amount of data in
a plane is (much) less than in a volume, the statistical convergence of the data is reduced. To
address this, local time averages will also be employed (i.e., averaging statistics in time from
τ ′ = 0 to τ ′ = τ ), which will improve convergence of the data, while retaining its time depen-
dence. Moreover, certain analyses will also involve local spatial averages after having performed
the time-average, which, when calculated in this way, do not eliminate terms and further aid
convergence.

Having introduced the complexities and intricacies associated with the analysis of the results
in this 3D unsteady, inhomogeneous problem, the specific averaging conventions used herein will
now be discussed. The simplest averaging scheme that will be used in the following subsections is
volume averaging, which will be denoted by 〈·〉x,y,z = 〈·〉V . Volume-averaging is ideal for studying
the scalar dissipation rate, which in this context will capture the average rate at which the scalar
variance is destroyed in the channel as a function of time. However, when analyzing the scalar
variance and scalar dissipation rate budgets, planar averaging will be used. For each of the scalar-
field initial conditions, spatial averages will be taken over planes (at specific locations) that are
parallel to the interface(s) separating the two initial scalar concentrations.

In the case of ICx, averages will be taken over y-z planes, such that the averaging used is denoted
as 〈·〉 = 〈·〉y,z. This approach ensures that the terms analyzed in Eqs. (3) and (4) for ICx are functions
of both time and space in the inhomogeneous direction (x) only. A similar approach is taken for the
other two scalar fields, such that the averaging used for the ICy initial condition is denoted by 〈·〉 =
〈·〉x,z and that for the ICz initial condition is given by 〈·〉 = 〈·〉x,y. Thus, for all three scalar fields, the
terms in the scalar variance and scalar dissipation rate budgets will be functions of both time and

124605-8



DEPENDENCE OF SCALAR MIXING ON INITIAL …

a single spatial direction, corresponding to the direction of inhomogeneity for the respective scalar
field.

As previously noted, local time averaging (i.e., a running time average) is used to increase the
convergence of the terms in the aforementioned equations. To this end, the temporal average defined
at the time τ is taken over the time interval 0 � τ ′ � τ . This approach is denoted in the appropriate
figures using the notation

1

τ

∫ τ ′=τ

τ ′=0
Term dτ ′,

where Term represents a term in the budget that has already been spatially averaged over its respec-
tive plane. Last, a final approach taken to improve the convergence and capture the evolution(s) of
the various terms over the entire channel is to average the terms over all planes along the direction
of inhomogeneity. For example, in the case of ICx, the terms are averaged over y-z planes which are
normal to the x axis and will change in that direction. For optimal convergence, the averages of the
terms (in the ICx case) are calculated using all y-z planes normal to the x axis along the entire length
of the channel. When used, this scheme is denoted as follows:

1

L

∫ l=L

l=0
Term dl,

where L represents the distance along the direction of inhomogeneity (the channel length in this
case). In certain instances, both approaches are combined, such that the final averaging scheme is
given via a combination of the two aforementioned schemes, and is denoted by

1

L

1

τ

∫ l=L

l=0

∫ τ ′=τ

τ ′=0
Term dτ ′dl.

B. Velocity field

In this section, the hydrodynamic (velocity) field generated via CHANNELFLOW is (i) pre-
sented and (ii) validated against published data generated via DNS for similar simulations.
Validation is performed by comparing profiles of the mean longitudinal velocity and the root-mean-
square (rms) value of the three velocity components as functions of the wall-normal distance with
the works of Refs. [57,62] in Fig. 2.

As observed in Fig. 2(a), the mean longitudinal velocity follows a linear profile in the viscous
sublayer (y+ < 5) and a logarithmic profile in the log-law region (30 � y+ � 100). The present
data agrees with established analytic profiles as well as the results of Refs. [57,62]. The rms
profiles of the three velocity components are also validated against the works of Refs. [57,62] in
Fig. 2(b). Validation against the work of Ref. [57] is provided to confirm that the CHANNELFLOW
2.0 simulation for the present work was configured correctly and consistent with results obtained
using the prior version (CHANNELFLOW 1.0). The peak observed in the near-wall region for the
u+

rms profile corresponds to peak turbulent activity in the near-wall region. Excellent agreement is
observed once again between the present work and the prior published data for the rms profiles.

C. Scalar field

Before proceeding to a presentation of the main results of this work, which pertain to the
evolution of the scalar fields within identical inhomogeneous (channel) flows, but subjected to
different scalar-field initial conditions, we briefly discuss the validation of 3DFLUX—the code
used herein to solve the advection-diffusion equation. 3DFLUX has been extensively validated
in prior works, so the present discussion will only provide a summary of this validation. To
validate and verify the code, Germaine et al. [56] employed five numerical tests to assess the
convergence rate and accuracy of 3DFLUX. These tests included (i) four 2D and 3D numerical
tests, in which the simulations were compared with analytical solutions to the test cases, as well as
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FIG. 2. Mean streamwise component of the velocity field (a) and the rms values of the three velocity field
components (b) and comparisons with the work of Refs. [57,62].

(ii) a three-dimensional direct numerical simulation of a real experiment in which a thermal plume
was released in a fully developed, high-aspect-ratio turbulent channel flow facility [63]. Further
validation of 3DFLUX was undertaken in Germaine et al. [57], in which 3DFLUX simulations
were compared with experimental measurements of the scalar dissipation rate and related statistics
in the flow downstream of a thermal line source located within a turbulent channel flow.

1. Scalar variance and dissipation rate

The three scalar-field initial conditions visualized in Fig. 1 were subjected to the action of
identical hydrodynamic fields over the time interval 0 � τ (≡uτ t/h) � 7. The use of identical
velocity fields for advecting and diffusing all three scalar-field initial conditions ensures that any
differences observed in the evolutions of these fields will be a sole result of the orientation of the
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(a) (b) (c)

FIG. 3. Concentration distributions generated at τ = 7 by the action of the same turbulent channel flow on
the three scalar-field initial conditions. (a) ICx; (b) ICy; (c) ICz (Imagery generated using VAPOR.)

initial scalar field. Figure 3 plots the scalar field distributions that result from the action of the
turbulent channel flow on the scalar-field initial conditions at τ = 7.

From Fig. 3, it is readily observed that the scalar field resulting from the ICx initial condition
[Fig. 3(a)] is the best mixed, whereas that resulting from the ICy initial condition [Fig. 3(b)] is the
least mixed. This is already an intriguing result and indicates that the initial conditions can strongly
influence the subsequent mixing. Moreover, it is worth reiterating that all three scalar-field initial
conditions were composed of equal parts “black fluid” (i.e., scalar with an initial concentration
θ̃ = +1) and “white fluid” (i.e., scalar with an initial concentration θ̃ = −1). Thus, one can already
conclude that the rate at which mixing will occur in such an inhomogeneous flow (as is the flow in
all real devices) is highly dependent on the initial configuration of the two quantities being mixed.

To further investigate the evolution of the scalar field, we plot the time evolutions of the
volume-averaged scalar variance and the volume-averaged scalar dissipation rate for the three
scalar-field initial conditions in Fig. 4. The time evolutions of the volume-averaged scalar variance,
〈θ2〉V , observed in Fig. 4(a) for the three initial conditions show that the fastest mixing occurs in
the ICx case (in which 〈θ2〉V decays most rapidly), whereas the slowest mixing occurs in the ICy

case. These quantitative observations are consistent with the qualitative ones depicted in Fig. 3.
Moreover, the observed decay of 〈θ2〉V is approximately exponential in time, with decay rates
dependent on the initial conditions of the scalar field. These trends can be compared with those of
the volume-averaged scalar dissipation rates in Fig. 4(b). These demonstrate that, at larger times, the
fastest decrease in 〈εθ 〉V occurs for ICx, corresponding to the most efficient mixing, and the slowest
corresponding to ICy. At these larger times, the decrease of 〈εθ 〉V also appears to be exponential.
However, at shorter times, 〈εθ 〉V increases, presumably due to the stretching and stirring of the
interface between the two (i.e., the “black” and “white”) scalar fields, which results in production
of 〈εθ 〉V . Note that the values of 〈εθ 〉V for the ICx and ICz cases peak around τ ≈ 1/3, whereas the
peak in 〈εθ 〉V for the ICy case occurs later, around τ ≈ 2/3. Furthermore, the highest peak of 〈εθ 〉V

occurs for ICx, indicating the largest production of the scalar dissipation rate, whereas the smallest
peak occurs the ICy initial condition.

The peak values for 〈εθ 〉V denote the time at which the rate of destruction of the scalar variance
is maximum. As 〈εθ 〉V tends to zero at larger values of τ , the rate at which the scalar variance is
destroyed begins to slow down, with the ICx case corresponding to the slowest rate of scalar variance
destruction. The larger values of 〈θ2〉V for case ICy depict how the scalar field resulting from that
initial condition is the furthest from the mixed state. Moreover, the larger values of 〈εθ 〉V for ICy

at later times are associated with the larger rates of destruction of the remaining 〈θ2〉V , resulting in
larger values of its dissipation.

Based on the evolution of 〈εθ 〉V over time, one can hypothesize that the rate at which the scalar
variance is destroyed increases initially as a result of the initial interface being stretched and stirred
by the flow for all three initial conditions. After a maximum rate of destruction of the scalar variance
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FIG. 4. Time evolutions of the volume-averaged scalar variance (a) and the volume-averaged scalar dissi-
pation rate (b) for the three scalar fields resulting from the three initial conditions.

has been achieved, there is a monotonic decay in the rate of scalar variance destruction for all three
initial conditions as the concentration distributions of the three scalar fields approach a mixed state
with increasing time. Ultimately, the value of the scalar dissipation rate will tend to zero because
there will be no scalar variance remaining that can be destroyed.

2. Scalar variance budget

To better understand the evolution of 〈εθ 〉 presented in Fig. 4(b), we start by studying the
scalar variance budget [Eq. (3)], which describes the contributions of different physical mechanisms
involved in the evolution of the scalar variance. These mechanisms involve the mean, turbulent, and
molecular transports of the scalar variance, in addition to its production and destruction. It should
be noted that 〈εθ 〉 appears explicitly as a term in the scalar variance budget, as it quantifies the rate
of destruction of the scalar variance. Thus, analysis of all the terms in the scalar variance budget
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FIG. 5. Evolution in time of the space and time averages of all six terms in the scalar variance budget
in which statistical moments (〈·〉) are assessed in planes parallel to the initial location of the interface in the
initial condition. (a) ICx with 1

Lx

1
τ

∫ Lx

0

∫ τ

0 Term dτ ′ dx, (b) ICy with 1
2h

1
τ

∫ 2h
0

∫ τ

0 Term dτ ′ dy, and (c) ICz with
1
Lz

1
τ

∫ Lz

0

∫ τ

0 Term dτ ′ dz. Note the different scales of the vertical axes.

will provide further insight into the physical processes that contribute to the evolution of the scalar
variance.

To this end, Fig. 5 plots the contributions of the terms in the budget of 〈 1
2θ2〉. To assist the reader,

a legend corresponding to the budget’s six terms is also provided in Table II. Statistical moments
(〈·〉) for this analysis are assessed in planes parallel to the initial location of the interface in the
initial condition. The first observation to be made from Fig. 5 is that the rate of change in time of the
scalar variance (i) is dominated by the production (v) and destruction (vi) of 〈 1

2θ2〉. The production
of the scalar variance results from the stretching of the interface, which creates or enhances mean
scalar gradients, thus increasing the scalar variance at early times, as indicated by the increase in
term (i) of the scalar variance budget.

A second set of observations from Fig. 5 is drawn by considering the relative magnitudes of the
terms for the different initial conditions. One observes that the largest peak for the production of the
scalar variance [i.e., term (v)] occurs for ICx, while the smallest peak occurs for ICy. Furthermore,
the largest peak in the destruction of the scalar variance (i.e., 〈εθ 〉) also occurs for ICx, with the
smallest peak again being associated with the ICy initial condition. The highest magnitude for
〈εθ 〉 observed for the ICx initial condition in Fig. 5 is consistent with the highest peak observed
in the volume-averaged scalar dissipation rate in Fig. 4(b). Similarly, the smallest magnitude of
〈εθ 〉 observed in the scalar variance budget is consistent with the smallest observed peak in the
volume-averaged plot of 〈εθ 〉, as seen in Fig. 4(b).

TABLE II. Legend for the various terms in the budget for the scalar variance.

Color Term no. Term Physical interpretation

(i) ∂

∂t 〈 1
2 θ 2〉 Time rate of change of 〈 1

2 θ 2〉
(ii) Uj

∂

∂x j
〈 1

2 θ 2〉 Mean flow advection of 〈 1
2 θ 2〉

(iii) ∂

∂x j
〈 1

2 ujθ
2〉 Turbulent advection of 〈 1

2 θ 2〉
(iv) −α ∂2

∂x2
j
〈 1

2 θ 2〉 Molecular transport of 〈 1
2 θ 2〉

(v) 〈ujθ〉 ∂�

∂x j
Production of 〈 1

2 θ 2〉
(vi) α〈 ∂θ

∂x j

∂θ

∂x j
〉 Destruction of 〈 1

2 θ 2〉 (i.e., 〈εθ 〉)
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Last, it becomes apparent from Fig. 5 that the production and destruction of the scalar variance is
most dominant at early times, when each of the three systems are the least mixed. Although scalar
variance increases at early times due to a larger production of 1

2 〈θ2〉 than its destruction, its rate of
change goes to zero once the production and destruction of 1

2 〈θ2〉 become balanced at later times.
When spatially averaged over the respective direction of inhomogeneity, the contributions from
mean, molecular, and turbulent transport are nonexistent for all three scalar-field initial conditions.
Consequently, a long-term equilibrium exists in Fig. 5 between the production and destruction of
1
2 〈θ2〉. The production and destruction terms become equal and opposite first for ICx, then for ICz,
and last for ICy. Note that at τ = 5, in the latter case, production is still larger than destruction.
As the systems approach a uniformly mixed state, the production and destruction curves begin to
asymptotically decay to zero.

3. Scalar dissipation rate budget

A more comprehensive understanding of the evolution of 〈εθ 〉 can be achieved by analyzing the
terms in the scalar dissipation rate budget [Eq. (4)]. Although the scalar variance budget describes
the phenomena impacting the evolution of the scalar variance, the scalar dissipation rate budget
describes the phenomena involved in the evolution of 〈εθ 〉. An analysis of the terms in the scalar
dissipation rate budget will therefore provide insight into the contributions of various physical
processes involved in the evolution of 〈εθ 〉.

To further investigate the evolutions of 〈εθ 〉 depicted in Fig. 4(b), Fig. 6 plots the contributions of
the terms in the budget of 〈εθ 〉. To once again assist the reader, a legend corresponding to the nine
terms of Eq. (4) is given in Table III. Particular attention should be given to the different averaging
schemes used in this subsection. Multiple observations can be made from the plots therein. For
τ > 1, 〈εθ 〉 is dominated by a balance between the production of 〈εθ 〉 arising from turbulent vortex
stretching and dissipation of 〈εθ 〉 by molecular processes, as first predicted in Ref. [64]. However,
further details also bear noting. First, when considering the relative magnitudes of the various terms
for the different initial conditions, it is clear that the magnitudes of the terms for the ICx condition
are the largest, followed by those corresponding to the ICz initial condition. Those corresponding to
the ICy initial condition are the smallest. Using the peak value of the molecular dissipation of 〈εθ 〉
[i.e., term (ix), light green line] as a reference, its value for ICx is 4×10−5, for ICz is 2×10−5, and
for ICy is 1×10−5. Thus the larger values of all terms in the scalar field arising from the ICx initial
condition lead to the largest peaks of 〈εθ 〉, as well as the fastest decay rates of 〈εθ 〉, consistent with
Fig. 4(b). Moreover, the converse holds for ICy, which experiences the lowest peak value of 〈εθ 〉
and slowest decay rates. Second, one can observe in Fig. 6 that the two dominant terms (production
of 〈εθ 〉 by turbulent vortex stretching and molecular dissipation of 〈εθ 〉) peak at later times for ICy

(at τ > 1) than they do for the ICx and ICz cases (which peak at τ < 1). This behavior is also
consistent with the evolutions of 〈εθ 〉 in Fig. 4(b), noted above. Another interesting observation is
that the production of 〈εθ 〉 by the mean scalar gradients goes to zero at τ ≈ 0.5 for ICx, while it
contributes to production over the entire time interval considered for ICy and ICz. This indicates
that in the case of ICx, the mean scalar gradients are quickly destroyed by the rapid mixing taking
place over the entire domain. In the case of ICy and ICz, large unmixed regions still survive at τ = 5.
The presence of these large regions of unmixed scalars is responsible for the persistence of mean
scalar gradients.

To further investigate the budget of the scalar dissipation rate for the three initial conditions, the
time evolution of terms when spatially averaged over a single y-z plane is plotted in Fig. 7. Note that
the plane over which the spatial averaging is performed in Fig. 7 is parallel to the initial interface
between the “black” and “white” fluids in the ICx case, and located at the midplane of the channel
in the x direction (x/Lx = 0.5), i.e., the location of one of the two interfaces between the “black”
and “white” fluids at τ = 0 for ICx. In Fig. 7, it is first worth noting the qualitative similarities
of the evolutions of the terms in the 〈εθ 〉 budget for the ICy and ICz initial conditions. These two
subfigures exhibit similar behaviours due to the absence of terms associated with spatial gradients
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FIG. 6. Evolution in time of the space and time averages of all nine terms in the scalar dissipation rate
budget in which statistical moments (〈·〉) are assessed in planes parallel to the initial location of the interface
in the initial condition. (a) ICx with 1

Lx

1
τ

∫ Lx

0

∫ τ

0 Term dτ ′ dx, (b) ICy with 1
2h

1
τ

∫ 2h
0

∫ τ

0 Term dτ ′ dy, and (c) ICz

with 1
Lz

1
τ

∫ Lz

0

∫ τ

0 Term dτ ′ dz. Note the different scales of the vertical axes.

of statistical moments in the directions of the averaging in the respective figures. We also note that
analogous similarities are observed when reproducing the equivalent of Fig. 7, but spatial averaging
in the other two (x-z and x-y) midplanes. To this end, Figs. 8 and 9 plot the temporal evolutions of
the scalar dissipation rate budget terms when averaged along x-z and x-y planes, respectively, at the
other two midplanes of the channel. The averaging schemes used ensure that the relevant budget
terms are conserved for ICy in the case of x-z averaging and for ICz in the case of x-y averaging.
In contrast to Figs. 7(b) and 7(c), Fig. 7(a) is dominated at early times by mean-flow advection of
〈εθ 〉 and turbulent advection of 〈εθ 〉. This will be further discussed with respect to Fig. 10, which
follows.

To investigate the evolution of the terms in the 〈εθ 〉 budget that are not subjected to such an
artifact as that discussed with respect to Figs. 7 and 10 plots the evolution in time of the scalar
dissipation rate budget terms assessed on the midplane corresponding to the initial location of the
interface for the three initial conditions. [To make this clear, we emphasize that Fig. 10(a) is a
reproduction of Figs. 7(a) and 10(b) is the same as Figs. 8(b) and 10(c) is the same as Fig. 9(c).]
Comparison of the subfigures in Fig. 10 reveals that Fig. 10(a), which corresponds to the ICx initial
condition, is significantly different from those corresponding to ICy [Fig. 10(b)] and ICz [Fig. 10(c)],
which are quite similar. Although the dominant terms in Figs. 10(b) and 10(c) are the molecular

TABLE III. Legend for the various terms in the budget of the scalar dissipation rate.

Color Term no. Term Physical interpretation

(i) ∂

∂t 〈εθ 〉 Time rate of change of 〈εθ 〉
(ii) 〈Uj〉 ∂

∂x j
〈εθ 〉 Mean flow advection of 〈εθ 〉

(iii) 2α
∂〈Uj 〉
∂xi

〈 ∂θ

∂xi

∂θ

∂x j
〉 Production of 〈εθ 〉 by mean velocity gradients

(iv) 2α ∂�

∂x j
〈 ∂u j

∂xi

∂θ

∂xi
〉 Production of 〈εθ 〉 by mean scalar gradients

(v) 2α ∂2�

∂xi∂x j
〈uj

∂θ

∂xi
〉 Mixed production of 〈εθ 〉

(vi) 2α〈 ∂u j

∂xi

∂θ

∂xi

∂θ

∂x j
〉 Production of 〈εθ 〉 by turbulent vortex stretching

(vii) −α ∂2

∂x j∂x j
〈εθ 〉 Molecular transport of 〈εθ 〉

(viii) ∂

∂x j
〈ujεθ 〉 Turbulent advection of 〈εθ 〉

(ix) 2α2〈 ∂2θ

∂xi∂x j

∂2θ

∂xi∂x j
〉 Molecular dissipation of 〈εθ 〉
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FIG. 7. Evolution in time of the time-averages of all nine terms in the scalar dissipation rate budget in
which statistical moments (〈·〉) are assessed on the y-z plane at x/Lx = 0.50, i.e., 1

τ

∫ τ

0 Term dτ ′, where all
averages (〈·〉) in Term are given by 〈·〉 = 〈·〉y,z.

FIG. 8. Evolution in time of the time averages of all nine terms in the scalar dissipation rate budget in
which statistical moments (〈·〉) are assessed on the x-z plane at y/h = 1, i.e., 1

τ

∫ τ

0 Term dτ ′, where all averages
(〈·〉) in Term are given by 〈·〉 = 〈·〉x,z.

FIG. 9. Evolution in time of the time averages of all nine terms in the scalar dissipation rate budget in which
statistical moments (〈·〉) are assessed on the x-y plane at z/Lz = 0.50, i.e., 1

τ

∫ τ

0 Term dτ ′, where all averages
(〈·〉) in Term are given by 〈·〉 = 〈·〉x,y.
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FIG. 10. Evolution in time of the time averages of all nine terms in the scalar dissipation rate budget
in which statistical moments (〈·〉) are assessed on the midplane corresponding to the initial location of the
interface in the initial condition: 1

τ

∫ τ

0 Term dτ ′. (a) ICx with statistical moments evaluated over the y-z plane
at x/Lx = 0.50, (b) ICy with statistical moments evaluated over the x-z plane at y/h = 1, and (c) ICz with
statistical moments evaluated over the x-y plane at z/Lz = 0.50.

dissipation of 〈εθ 〉, the production of 〈εθ 〉 by turbulent vortex stretching, production of 〈εθ 〉 by mean
scalar gradients, the rate of change of 〈εθ 〉 with time, and turbulent advection of 〈εθ 〉, Fig. 10(a)
is distinctly different. Of particular note is the importance played by mean-flow advection of 〈εθ 〉
at early times, which is dominant for τ < 0.2 and balanced by turbulent advection of 〈εθ 〉 for ICx.
Given that fully developed turbulent channel flow must be unidirectional, the absence of the mean-
flow advection term in the other directions is to be expected. However, the early dominance of this
term is noteworthy. In this respect, consideration of the evolution in time of the interface(s) between
the “black” and “white” fluids is beneficial. For the ICy case, the 〈�〉 = 0 plane will not change in
time and will be advected along the y/h = 1 plane as the flow evolves but remaining at the same
location as the initial interface. However, the evolution of the scalar field in time is quite different
for ICx. The interface remains “anchored” to the walls due to the no-slip condition and is strongly
stretched in the x direction by the mean flow, while being stirred by the turbulence. Thus as the
interface is advected downstream, it can “blow by” a given downstream location multiple times.
This effect can be observed by the oscillations in the unsteady term (dark blue line) and to a lesser
degree the mean flow advection terms (red line) in Fig. 10(a). It is worth noting that the period of
the observed oscillation is indeed equal to half of the channel’s “flow-through” time [i.e., 1

2τFT ≡

FIG. 11. Evolution in time of the time-averages of all nine terms in the scalar dissipation rate budget in
which statistical moments (〈·〉) are assessed in planes parallel to the initial location of the interface in the initial
condition but away from the midplane: 1

τ

∫ τ

0 Term dτ ′. (a) ICx with statistical moments evaluated over the y-z
plane at x/Lx = 0.25, (b) ICy with statistical moments evaluated over the x-z plane at y/h = 0.5, and (c) ICz

with statistical moments evaluated over the x-y plane at z/Lz = 0.25.
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1
2 (Lx/〈U 〉y/h=1)uτ /h = 0.17]. With respect to ICz, the � = 0 plane will be advected downstream
the midplane of the channel (z = 0.5Lz), although its top and bottom edges will remain at the walls
of the channel, thus emulating aspects of both ICx and ICy. The anchoring of the interfaces to the
walls also subjects them to strong turbulent activity that is encountered in the near-wall region. As
such, ICx and ICz experience enhanced scalar mixing due to the strong turbulent activity arising
from the anchoring of the interfaces to the walls.

Given that the results in Fig. 10 are all averages taken at the three midplanes of the channel, they
are somewhat anomalous. For example, when averaging in the x and z directions at y/h = 1 [as is the
case in Fig. 10(b)], there can be no contribution to 〈εθ 〉 arising from production by the mean velocity
gradient, because ∂〈U 〉/∂y = 0 at that one location (and no other). Thus it bears investigating the
budget of the scalar dissipation rate for the three initial conditions at non-mid-plane locations. To
this end, the evolutions of the terms in the budget of the scalar dissipation rate are plotted for ICx

spatially averaged over an y-z plane located at x/Lx = 0.25 in Fig. 11(a), for ICy spatially averaged
over an x-z plane located at y/h = 0.5 in Fig. 11(b), and for ICz spatially averaged over an x-y plane
located at z/Lz = 0.25 in Fig. 11(c). The aforementioned periodic passing of the interfaces over the
measurement plane for the ICx case is even more prominent in Fig. 11(a). However, Figs. 11(b)
and 11(c) also reveal another phenomenon that explains the slower evolutions of 〈εθ 〉 for the ICy

and ICz cases. In these two non-mid-plane cases, one observes an initial period of “inactivity.” The
initial period in which the terms in the budget of 〈εθ 〉 are effectively zero results from the interface
having not yet “reached” the measurement location. In these two cases, the interface can only travel
laterally by the action of the turbulence, given that there is no mean velocity in the y and z directions.
This phenomenon (i) is not observed for the ICx case, because the interface can be advected by the
nonzero mean flow, and (ii) further explains the slower evolutions of 〈εθ 〉 for the ICy and ICz cases,
given that regions located increasingly far away from the interface experience a delay before they
begin to mix. This latter effect therefore serves to retard the total mixing, because the interface
surface is not normal to the mean velocity vector.

V. CONCLUSIONS

The motivation behind the present work was a lack of understanding of the effects of scalar-field
initial conditions on the evolution of the scalar fields in inhomogeneous turbulent flows. Very often
in both natural and engineering applications, it is desirable to either promote or delay the mixing of
a scalar in a turbulent flow. To that end, it is beneficial to better understand the role of scalar-field
initial or injection conditions in the evolution of the field from an unmixed state to a mixed one.

Direct numerical simulations were conducted for three different scalar-field initial conditions to
study their effects on the evolutions of the scalar variance and scalar dissipation rate budgets. The
flow considered in this work was a fully developed turbulent channel flow to provide relevance with
the abundance of inhomogeneous flows encountered in the real world.

Results of the DNSs showed that there was a clear dependence of the mixing on the scalar-field
initial conditions. Evolution of the volume-averaged scalar dissipation rate in time showed that the
case with the initial scalar interface aligned normal to the direction of the mean velocity vector (ICx)
experienced the fastest mixing of the three initial conditions. The case where the initial interface was
aligned parallel to the mean velocity vector and was not restrained by the walls (ICy) experienced
the slowest mixing.

An increase in 〈εθ 〉V was observed at early times, and attributed to the stretching of the interface,
with a decay of the scalar dissipation rate following the peaks. The largest peak of 〈εθ 〉V for the
ICx case corresponded to the fastest rate of destruction of scalar variance observed across all three
cases. As the mixing progressed, the values of 〈εθ 〉V tended towards zero, with ICx approaching the
mixed state sooner than the other initial conditions.

Analysis of the scalar variance budget provided further insight into the mixing resulting from the
different initial conditions. It was found that the magnitudes of production and destruction of 〈 1

2θ2〉
were highest for ICx and lowest for ICy. Furthermore, the production and destruction terms were
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most dominant at early times (τ < 1) and asymptotically decayed to zero as the systems approached
a mixed state.

Analysis of the terms in the budget of the scalar dissipation rate showed that the magnitude of
the terms was consistent with both large values of 〈εθ 〉 and rapid decay rates of 〈εθ 〉. Once again,
the magnitudes of the production(s) and destruction of 〈εθ 〉 were the highest for the ICx case and
the lowest for ICy. The strong stretching of the initial interface by the mean velocity gradient was
a key factor in promoting the production of 〈εθ 〉 in ICx. Furthermore, a period of inactivity away
from the initial locations of the interfaces for ICy and ICz was observed and attributed to the lack
of mean-flow advection normal to the initial interface. Last, interfaces that intersected the channel
walls (ICx and ICz) were also subjected to strong near-wall turbulent activity, further enhancing the
mixing.

It bears emphasizing that the strong stretching of the initial interface (that is linked to accelerated
mixing) is tied to the inhomogeneity, and ensuing anisotropy, of the flow. Although scalar mixing
within homogeneous flows can also exhibit dependencies on the scalar-field initial conditions (e.g.
Rogers et al. [47], Sirivat and Warhaft [48]), the distortion of the interface by the mean flow
in the present case is directly related to the differences in mean velocity across the flow, which
are amplified by the (i) inhomogeneity of the flow (that arises from the no-slip condition at the
walls) and (ii) orientation of the initial scalar interface relative to the mean velocity vector. In
homogeneous, isotropic turbulence, initial scalar interfaces will not be distorted by the mean flow,
and only by the turbulent velocity fluctuations, akin to the ICy initial condition. In homogeneous (but
anisotropic) turbulent shear flow, the inhomogeneity of the flow can stretch the interface. However,
it cannot be subjected to as strong of a distortion as in an inhomgeneous flow.

These observations suggest that the orientation of the initial interface with respect to the mean
velocity vector plays a key role in the evolution of the scalar field. The mixing and stirring that
occurs therein is influenced by the stretching (or lack thereof) of the initial interface and also by the
action of the near-wall turbulent activity (which is absent in a homogeneous flow). The mechanisms
that contribute to the production and destruction of the scalar dissipation rate greatly benefit from
having the movement of the interface being restrained by the walls while being strongly stretched by
the mean flow. Thus, it is recommended that for a wall-bounded flow, the scalar interfaces should be
aligned normal to the direction of the mean velocity vector to enhance the stretching of the interface
and thus promote scalar mixing.
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