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The similarity of turbulent structures between compressible and incompressible wall
turbulence has been well recognized through mostly visualization of instantaneous fields.
However, some questions remain unclear, such as will Morkovin’s hypothesis and
semilocal scaling, with which many mean flow profiles collapse, also be applicable to
instantaneous features of turbulence structures and why. The present work dissects features
of vortical structures in compressible channel flows comprehensively to address these
questions by employing the direct numerical simulations database of turbulent channel
flows covering broad Mach and Reynolds numbers. Most features investigated show
satisfactory agreement quantitatively with the incompressible counterparts in semilocal
units, which indicates the validity of Morkovin’s hypothesis based on the semilocal scaling.
This observation extends Morkovin’s hypothesis from standard mean flow statistics to
instantaneous vortex features and suggests that the dominant mechanism governing vortex
evolution remains the same as incompressible flows. Specifically, the streamwise vortex
inclination angle approaches 45◦ as the wall-normal distance grows, which is supported
by a theoretical estimation extended from incompressible flows by claiming the compress-
ibility does not alter the vortex orientation. Regarding the size and strength of vortices, the
average radius of vortices grows with the wall-normal distance, while the average strength
becomes weaker. The vortex population increases with Reynolds number evidently, while it
decreases marginally with Mach numbers. It is impressive that the population percentage of
different types of vortices is similar to all the cases in the near-wall region. Last, a heuristic
model is developed as a potential candidate for describing the topology of instantaneous
vortices. In cooperation with the topological model, these statistical results could be crucial
input references to reconstruct flow fields using vortex methods.

DOI: 10.1103/PhysRevFluids.8.124603

I. INTRODUCTION

Vortices have been recognized as an essential flow structure responsible for the dynamics of
near-wall turbulence since the early 1950s. Theodorsen [1] first and Willmarth and Tu [2], Offen
and Kline [3], Perry and Chong [4], Robinson [5], and Smith et al. [6] subsequently propose
the symmetric hairpin vortex conceptual model including leg, neck, and head in incompressible
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turbulent boundary layers. Due to the random, chaotic, and complex nature of turbulence, as well
as the sheared background of wall-bounded turbulence, asymmetric and quasistreamwise hairpins
are expected and observed in the analysis of direct numerical simulations (DNS) of incompressible
turbulent boundary layers and channel flows with low Reynolds number [7–9]. This conceptual
model is considered. responsible for turbulence motions. The origin of many prominent features,
such as streaks, ejections, and sweeps, which remains controversial for years, can be illustrated by
it. Extensive studies [8–16] have been conducted. Smith et al. [6], and Green [17] review earlier
studies and claim that central features and the observed and measured behavior of the near-wall
turbulence can be elucidated by coupled interactions of hairpin vortices with each other, with the
background sheared flow, and with the near-wall flow.

The statistical investigation of vortices, such as the vortex orientation, strength, size, and
population, has been well explored in incompressible flows. Carlier and Stanislas [18] carry out
experiments in the wind tunnel in a range of Reynolds numbers 7500 � Reθ � 19 000. In the
logarithmic region, eddy structures have a cane shape, which elongates downstream at an angle of
45◦. Their mean radius r+ (superscript + denoting the wall unit) increases from around 20 to around
24 with increasing wall-normal distance. In contrast, the mean vorticity decreases, which leads to
an almost constant circulation �+ ≈ 235–250 [19]. Gao et al. [20] analyze the experimental and
DNS data in the range of the near-wall region and report that the most probable inclination angle
of vortex cores grows from 25◦ to 50◦ as the wall-normal distance increases. The radius of eddies
extends from 13.7 to 14.6 for the DNS data and 14.7 (y+ = 110) for the PIV data, but the mean
circulation shrinks from 175 to 115 with the increasing wall-normal distance. They also examine
the convection velocity of vortex cores, which is around 96%–98% of the local mean velocity. Wang
et al. [21] perform a tomographic particle image velocimetry (TPIV) measurement on turbulent
boundary layers and the DNS database at similar Reynolds numbers. Typical vortex structures are
found in the instantaneous velocity field obtained by TPIV and their inclination angle increases up
to 45◦ or −135◦ with the increase of the wall-normal distance. As for the vortex population, Wu
and Christensen [22] investigate the number density of prograde and retrograde spanwise vortices
in channel flows and boundary layers at various Reτ . They report that prograde vortices appear more
frequently near the inner edge of the logarithmic region, while retrograde vortices are predominant
at the outer edge. Both inner- and outer-scaled number densities display an obvious dependence on
the Reynolds number, which can be eliminated by a power law of Reτ .

As for the vortex in compressible flows, Pirozzoli et al. [19] perform the DNS of a canonical
supersonic turbulent boundary layer at Ma = 2, Reθ = 950 and characterize the vortex structures
by their size and orientation quantitatively for the first time. Their study shows that the most
probable inclination angle is around 33◦ in the buffer layer and 40◦ in the outer layer. The radius
of vortex structures grows with wall-normal distance and levels off in the outer layer, attaining five
to six local dissipative length scales and their circulation (�+ ≈ 180) does not vary significantly
with the distance from the wall. The number of both spanwise and streamwise vortices decays
with increasing wall-normal distance in the outer region (y+ > 40). Elsinga et al. [23] provide a
quantitative visualization of vortex structures in a supersonic turbulent boundary layer at Ma = 2.1
and support the existence of hairpin vortex in compressible flows. Wang and Lu [24] also conduct
DNSs of the compressible turbulent boundary layer at a similar Mach number and Reynolds number.
They show that both hairpinlike and canelike vortices exist. The streamwise and spanwise length
scales indicated by the two-point correlation of the fluctuating streamwise velocity increase with
the wall-normal distance from y+ = 50 to the boundary layer thickness δ, but the streamwise length
scale is almost unchanged for y+ < 50. The inclination angle defined as θxy = arctan(ωy/ωx ), where
ωi is the most probable vorticity component, grows from 31◦ in the viscous sublayer to 45◦ in
the buffer layer and then decreases to 39◦ in the wake region. In the studies by Pirozzoli et al.
[19], Elsinga et al. [23], and Wang and Lu [24], the vortical structures in the compressible flows
show some similarities with the incompressible case. The DNS databases of compressible turbulent
channel flow at Mab = 0.8, 2, and 3 with Reb = 3000 are considered by Yao and Hussain [25], and
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they observe that, with the increase of Mach number, the vortex structures become sparse and more
elongated due to the stronger shear.

While the vortex structure has been extensively explored in incompressible wall-bounded tur-
bulent flows, much less is understood as for its counterpart in compressible flows. Although the
similarity of turbulent structures between compressible and incompressible flows has been estab-
lished for decades by qualitative description and visualization, to what extent the similarity could
be is still obscure. A quantitative comparison of the statistical characteristics, such as the vortex
orientation, size, strength, and population, is necessary to demonstrate the Reynolds- and Mach-
number dependence. To achieve a satisfactory agreement on these features, Morkovin’s hypothesis
[26] and its derivative, the semilocal scaling, might be an effective tool. Morkovin’s hypothesis [26]
asserts that the compressibility effects can be accounted for by the variation of mean flow properties,
which has been verified for many mean statistics like mean profiles of thermodynamic properties,
correlation functions, and profiles of the Reynolds stress. Many works also adopt it to develop veloc-
ity transformations [27–30] to recover the logarithmic law in compressible wall-bounded turbulence.
However, the problem of whether it works for instantaneous features of vortex structures remains
unclear, since the existing studies still use the viscous scales to characterize them, as summarized in
the paragraph above. Furthermore, most proceeding works concentrate on a specific Mach number,
i.e., the works by Pirozzoli et al. [19], Elsinga et al. [23], and Wang and Lu [24] focus on the Mach
number around 2. Since these works apply various vortex identification criteria and approaches
to characterize these features, they can hardly clarify the detailed Mach number effects on the
statistical characteristics of the vortex structures in wall-bounded turbulence. Therefore, the present
study is motivated to expose the dependence of structure similarity on Mach and Reynolds numbers
and further identify the appropriate scaling for a decent agreement by systematically investigating
the statistical features of vortices. It could help enhance the understanding of the flow physics of
compressible wall-bounded turbulence and the future development of high-fidelity scale-resolving
prediction technologies, e.g., the wall-modeled large-eddy simulation [31,32]. Meanwhile, these
statistical results presenting vortex size, strength, and population, together with the topological
model, provide a reliable reference for the input parameters when one intends to reconstruct the
flow fields from a superposition of multiscale vortices.

The rest of this paper is organized as follows. Both the compressible and incompressible DNS
databases adopted are described in Sec. II. Section III introduces the method to identify vortex
structures and cores. The main results and discussions are presented in Sec. IV, including visualized
vortices, the vortex orientation, the size and strength of vortex cores, the number density of vortices,
and a heuristic model for the topology of vortices. Conclusion remarks are given in Sec. V.

II. DNS DATABASES AND TERMINOLOGY INTERPRETATIONS

This work employs DNS databases of compressible turbulent channel flows with different Mach
and Reynolds numbers. In the following work, x denotes the streamwise direction, y the wall-normal
direction, and z the spanwise direction. The computational domain is Lx × Ly × Lz, where domain
lengths in the x, y, and z directions are indicated by Lx, Ly, and Lz, respectively, and h is one-half
of the channel height. Parameters of the DNS setting are summarized in Table I. In order to explore
the consistency with incompressible flows, two DNS cases for incompressible channel flows with
Reτ = 547 (M00R10K, denoted by ) in Ref. [33] and Reτ = 934 (M00R19K, denoted by

) in Ref. [34] are also considered. These two cases are carefully chosen, as their friction
Reynolds numbers are close to those of present compressible flows. Detailed descriptions of the
computational setups and validations of the compressible database are given in Appendix A.

Throughout this paper, both the Reynolds (φ = φ + φ′) and Favre (φ = φ̃ + φ′′) decompositions
are utilized, where φ and φ′ denote the Reynolds-averaged quantity and the corresponding fluctua-
tion, respectively, and φ̃ = ρφ/ρ and φ′′ denote those of the Favre decomposition. The superscript +
indicates a nondimensionalization by the wall units, including the friction velocity uτ = √

τw/ρw,
the viscous length scale δτ = μw/(uτ ρw ), and the density ρw and viscosity μw evaluated at the
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TABLE I. The numerical parameter setting for DNS of channel flows adopted in this paper. Mab = ub/cw

is the bulk Mach number, where ub is the bulk velocity. Reb = ρbubh/μw is the bulk Reynolds number; Reτ the
friction Reynolds number; Re∗

τ the semilocal Reynolds number at y = h. �x+, �z+, and �y+
w (�y+

c ) denote
the grid spacing in the x, z, and y directions, and the subscript w and c denote the positions near the wall and at
the centerline of the channel, respectively. The color and line style shown in the last row are used to distinguish
different cases.

Case M08R3K M08R8K M08R17K M15R3K M15R9K M15R20K M40R5K

Reb 3000 7667 17000 3000 9400 20020 5000
Reτ 193 440 883 223 595 1152 574
Re∗

τ 168 381 778 148 392 770 121
Mab 0.8 0.8 0.8 1.5 1.5 1.5 4
Lx 4πh 4πh 4πh 4πh 4πh 4πh 6πh
Ly 2h 2h 2h 2h 2h 2h 2h
Lz 2πh 2πh 2πh 2πh 2πh 2πh 2πh
�x+ 9.0 10.8 10.8 11.0 7.3 9.3 5.3
�z+ 4.5 6.9 6.5 7.3 3.7 4.7 3.5
�y+

w 0.43 0.44 0.63 0.34 0.50 0.49 0.23
�y+

c 4.47 5.41 6.41 2.17 5.93 6.90 2.11
Label

wall, where τw = μw(∂ ũ/∂y)|w is the wall shear stress. For instance, ũ+ = ũ/uτ , y+ = y/δv ,
μ+ = μ/μw, and ρ+ = ρ/ρw. The friction Reynolds number is defined as Reτ = ρwuτ h/μw. The
superscript ∗ denotes a nondimensionalization by the semilocal scaling, e.g., u∗

τ = √
τw/ρ indicates

the semilocal velocity scale and δ∗
τ = μ/(u∗

τ ρ) the semilocal length scale. The semilocal Reynolds
number at y = h is given by Re∗

τc = ρc
√

τw/ρch/μc, where ρc is the density and μc is the dynamic
viscosity at the center line. To clarify the near-wall regions, we define the region of 5 < y∗ < 30 as
the buffer layer and of y∗ > 30 and y/h < 0.3 as the logarithmic region.

III. VORTEX CORE IDENTIFICATION AND STATISTICAL TECHNIQUE

A number of vortex extraction methods [35–39] have been developed, which are reviewed
comprehensively by Epps [40]. More recently, Wang et al. [41] propose an integrative algorithm
for visualizing and quantifying vortices. In this work, the λci criterion [39] is employed to visualize
vortex structures. To explain this technique, we define D as the velocity gradient tensor �u, and
D∗ as its traceless part (D∗ = D − 1

3� · uI). In incompressible flows, one has D∗ = D. When
the discriminant of the characteristic equation of D is positive, D has one real eigenvalue λr

with the corresponding real eigenvector vr and two complex conjugate ones λ±
c = λcr ± λcii with

corresponding complex eigenvectors vcr ± vcii. From this definition, λci is the imaginary part of the
complex eigenvalue λc of D. The isosurface of λ2

ci is able to visualize vortex structures, following
Zhou et al. [39].

The λci criterion [39] is able to distinguish the rotating and stretching motion of fluids. The local
stretching rate is implied by λr and the stretching direction by vr. The local swirling strength is
quantified by λci in the direction vcr × vci as shown by Zhou et al. [39] and Lay et al. [42]. Therefore,
this criterion is able to identify, to a large extent, the topological feature of vortices, which are
described by Robinson [43] asserting that “a vortex exists when instantaneous streamlines mapped
onto a plane normal to the vortex core exhibit a roughly circular or spiral pattern when viewed from
a reference moving with the center of the vortex core.”

For compressible flows, as suggested by Kolář [44], the volume change due to compression and
expansion should be deducted, and the traceless part D∗ should be used. The definition of λci then
becomes the imaginary part of the complex eigenvalue λc of D∗.
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FIG. 1. PDFs of λci in the buffer layer (y+ ≈ 15) are shown in (a), and those in the logarithmic region (y+ ≈
50 and 100) are shown in (c) for the compressible turbulent channel flows in Table I and the two incompressible
cases; the corresponding PDFs normalized by their own maximum (PDFmax) in the buffer layer are shown in
(b), and those in the logarithmic region are shown in (d).

A. Swirling strength and threshold

The imaginary part λci indicates the local swirl strength as shown by Zhou et al. [39] and a
suitable threshold is needed to extract vortices. A new feature of the probability density function
(PDF) of the swirl strength is observed by Wang et al. [21] and described as follows. While the PDF
of swirl strength varies with the wall-normal distance and the Reynolds number, PDFs normalized
by the corresponding maximum (PDFmax) are able to collapse onto a single curve. Thus, the product
of PDFmax and the corresponding swirling strength (λcorr

ci ), which is defined as η = PDFmax · λcorr
ci ,

remains constant for all the cases. This new observation allows a uniform threshold (λci,thre) to be
applied to PIV and DNS databases with different grid resolutions, which is the most probable swirl
strength estimated by λci,thre = η/PDFmax. Wang et al. [21] test a variety of thresholds, η ranging
from 0.2 to 0.6, and obtain similar results. The current paper examines η within the interval [0.2,0.4],
and presents its robustness in Appendix B.

The present work utilizes the same strategy as Wang et al. [21] to determine the threshold.
The PDFs of λci from different wall-normal distances scaled by both the wall unit and semilocal
scaling are examined. In Figs. 1(a) and 1(c) and Figs. 2(a) and 2(c), the PDF curves vary with
the wall-normal position, Mach number, and Reynolds number, while the normalized PDFs have
a better collapse as shown in Figs. 2(b) and 2(d) and Figs. 1(b) and 1(d), which is consistent
with incompressible flows as remarked by Wang et al. [21]. Figs. 1(b) and 1(d) show that for
relatively lower Mach numbers Mab = 0.8 and 1.5, the normalized PDFs in the buffer layer and the
logarithmic region have a satisfactory collapse separately, but this phenomenon disappears for the
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FIG. 2. PDFs of λci in the buffer layer (y∗ ≈ 15) are shown in (a), and those in the logarithmic region (y∗ ≈
50 and 100) are shown in (c) for the compressible turbulent channel flows in Table I and the two incompressible
cases; the corresponding PDFs normalized by their own maximum (PDFmax) in the buffer layer are shown in
(b), and those in the logarithmic region are shown in (d).

higher Mach number case Mab = 4. In the semilocal scaling [Figs. 2(b) and 2(d)], the normalized
PDFs of all Mach number cases considered are able to collapse well due to the effectiveness of the
semilocal scaling to account for the compressibility effect, especially for hypersonic flows. Huang
et al. [45], Coleman et al. [46], and Patel et al. [47] also report the better performance of the
semilocal scaling than the wall unit for compressible flows. Based on the argument above, the most
probable λci can still work as a uniform threshold in the semilocal scaling among different cases
for compressible flows, and the product η should be different for the buffer layer (y∗ = 15) and the
logarithmic region (y∗ > 50).

In order to determine the threshold explicitly, product η distributions with respect to the wall-
normal position in the wall unit and the semilocal scaling are plotted in Fig. 3. As shown in Fig. 3(a),
when the wall-normal distance is scaled by the wall unit, there is no uniform distribution among
cases. In Fig. 3(b), all the distributions of η decrease sharply beginning from y∗ ≈ 10–12 and level
off to 0.20–0.25 at y∗ ≈ 50. This similarity allows a uniform threshold applicable to different cases
and further implies the effectiveness of the semilocal scaling in compressible flows as well. By
averaging the products from all the data considered, the threshold (λci,thre) is determined to be the
most probable swirl strength corresponding to λci,thre = 0.39/PDFmax for y∗ ≈ 15 and λci,thre =
0.22/PDFmax for the logarithmic region with y∗ > 50. The robustness of this threshold has been
examined by varying it from 0.20/PDFmax to 0.40/PDFmax and a similar most probable vortex
orientation is obtained.
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FIG. 3. (a) The distribution of the product η with respect to the wall-normal position in the wall unit for the
compressible turbulent channel flows in Table I and the two incompressible cases; (b) the η distribution with
respect to the wall-normal position in the semilocal scaling.

B. Vortex orientation

The present study employs the eigenvector vr corresponding to the real eigenvalue λr to charac-
terize the orientation of the vortex following the work by Zhou [48] and Zhou et al. [39]. The real
eigenvector vr could be in two opposite directions in space by changing its sign. The one which
forms an acute angle with the vorticity ω is considered and vr is a unit vector that is normalized
by its own norm. For a three-dimensional (3D) vector, two angles θxy and θ−zx as defined in Fig. 4
would be sufficient to characterize the vortex orientation. The real eigenvector vr is projected on
the x-y plane and the x-z plane, which gives projection vectors vr,xy and vr,−zx separately. In the
x-y plane, the angle between the x axis and the projection vector vr,xy is defined as θxy. In the x-z
plane, the angle between the negative z axis and the projection vector vr,−zx is defined as θ−zx. These
definitions are consistent with Gao et al. [20] and Wang et al. [21].

FIG. 4. Sketch for defining characteristic projection angles of the vortex orientation.
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FIG. 5. Sketch for the identification and combination of vortex cores. Instantaneous contours of λci

extracted from Case M15R9K at y∗ ≈ 50 are in gray. (a) The local maximum is implied by a small square
and an index. The thick solid lines surround the region exceeding the λci threshold. The dashed line represents
the boundary between cores in the saddle region. Squares in the solid line around Peak 4 are shown to clarify
the vortex identification algorithm; (b) the identified vortex cores after the combination step are shown. The
local maximum is implied by a small square as well, and their indices denote the core number they belong to.

C. Identification technique for vortices

Besides the vortex orientation, the vortex size and strength are also of great significance. To
evaluate them, an individual vortex which is defined as a connected region consisting of grid points
with their swirling strength beyond the threshold has to be identified. Afterward, these vortices
are called vortex cores or cores. Gao et al. [20] develop a region-growing algorithm based on the
one from Ganapathisubramani et al. [49] to identify vortex cores. In this work, the identification
algorithm is improved from the one in Gao et al. [20] and consists of a series of steps described as
follows.

Step 1: All points whose swirl strength exceeds the threshold stand a chance of forming vortex
cores. In Fig. 5, the region enclosed by the solid line represents grid points with swirl strength
beyond the threshold mentioned in Sec. III A.

Step 2: Each point has eight neighbors. All the peaks whose swirl strength is larger than all their
neighbors are marked by a small square and indexed in order, as shown in Fig. 5(a).

Step 3: In order to determine the extent of vortex cores, a series of squares of different sizes is
set to surround a peak, e.g., Peak 4, as shown in Fig. 5(a). For each peak, this series of squares is
scanned from the innermost one to the outer one in sequence. A free point, which is not assigned
to any vortex cores, on the side of squares scanned is assigned to this core if the following two
conditions are satisfied: (i) Its swirl strength is smaller than that of the nearest one on its nearby
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inner scanned square and (ii) the corresponding neighbor point has been considered as belonging
to this core. Referring to vertex points, the conditions become the following: (i) its swirl strength
is smaller than that of any neighbors on either the same or its nearby inner scanned square and (ii)
the same as side points. The scanning procedure stops when there is no point detected on a single
square. This step provides a rough estimation of the extent and one more step is required to give the
precise edge.

Step 4: The sequential scanning from the innermost square to those outer ones described in Step
3 is repeated in this step, but different criteria are applied. A point on both sides and vertexes is
assigned if its swirl strength is smaller than that of any neighbors on the same or the nearby inner
scanned square, and the corresponding neighbor point has been considered to belong to this core.
To eliminate its dependence on the scanning direction, a square is scanned first counterclockwise
and later clockwise.

Step 5: A combination algorithm is implemented. Some vortex cores may connect to each
other and stand a chance to merge, such as Cores 1–5 in Fig. 5. The local vortex orientation is
characterized by the real eigenvector vr . If the angle difference between any pair of neighboring
points crossing the edge of two connected cores is smaller than a threshold αc, then these two cores
are merged into a single one. The current strategy follows the threshold by Gao et al. [20], where
αc = 10◦. Taking Cores 1–5 shown in Fig. 5(a) for example, Cores 1 and 2 merge into one core, and
Cores 3–5 merge into another one in Fig. 5(b).

Step 6: According to Gao et al. [20], in-plane cores with elevation angle αe less than 10◦ are
eliminated after the identification of vortex cores, where αe is the angle formed by the averaged
real eigenvector vr and the x-z plane. Weaker vortex cores whose radii in the semilocal scaling
are smaller than 8 are also eliminated, as suggested by Gao et al. [20]. Additionally, the vortex
cores truncated by sides of the statistical region applying the above steps (not necessarily the
computational domain) are ignored as well.

D. Vortex core radius and circulation

Now that, with the vortex cores extracted, the vortex size and strength can be quantified by
the radius and circulation of vortex cores, respectively. In incompressible flows, Gao et al. [20]
estimate the local circulation by the component of vorticity parallel to the vector vr . The vortex core
circulation is the integration of the local one over one core’s in-plane area

�+ =
∫∫

A+
(ω+ · vr )(vr · ny) dx+ dz+, (1)

where A+ is the in-plane area evaluated by multiplying the number of grid points of an individual
vortex core with the cell area (�x+ · �z+), ω+ indicates the vorticity in the wall unit, ny is the unit
normal vector of the x-z plane, and vr is the averaged unit real eigenvector throughout an individual
vortex core.

The vortex core radius is computed as

r+ = √
vr · ny · A+. (2)

Here the radius of a vortex is not calculated directly from the in-plane area but from its projection
area onto the plane orthogonal to the vector vr .

To estimate the minimum radius, Gao et al. [20] consider the vortex cores composed of at least
two grid points and the corresponding minimum radius is evaluated by Eq. (2) using the grid spacing
(12.4 wall units) and the most probable inclination angle 45◦ in the logarithmic region. Regarding
the compressible cases concerned in this work, the semilocal scaled circulation �∗ and radius r∗
are defined as �+(ρ/ρw )/(μ/μw ) and r+√

ρ/ρw/(μ/μw ), respectively, and the minimum radius
threshold of 8.0 is applied to the variable r∗.

124603-9



BAI, CHENG, GRIFFIN, LI, AND FU

IV. RESULTS AND DISCUSSIONS

In this section, statistical features including the inclination angle, convection velocity, radius,
circulation, and population of vortices are investigated. Instantaneous structures and streaks together
with their connections are shown and explained in Sec. IV A. The left subsections can be divided
into two main parts according to their statistical strategy. Instead of applying the improved region-
growing algorithm, a much simpler statistical method is employed in Secs. IV B and IV C, i.e., all
grid points with the swirling strength exceeding the threshold are taken into account. The reason
is that the vortex core identification algorithm only considers vortices crossing the x-z plane and
ignore the in-plane vortices as claimed by Wang et al. [21]. Since both the in-plane and cross-plane
vortices exist in the real flow field, this simpler method could provide more realistic results. On the
other hand, the improved region-growing algorithm described in Sec. III C is necessary to estimate
the size, strength, and population of vortices in Secs. IV D and IV E. Finally, a quantitative model
of vortices based on a set of ODEs can be found in Sec. IV G.

A. Instantaneous vortex structures

The instantaneous vortex and velocity fluctuation field from Case M15R9K are examined in
Fig. 6. The 3D view of vortex structures [see Fig. 6(a)] is extracted by the isosurface of the swirling
strength |λci| ≈ 0.06 (approximately 10% of its maximum in the visualized region), and the color
from yellow to red indicates their wall-normal distance from y∗ ≈ 15 to y/h ≈ 0.4. It is observed
that most vortices lean downstream. Vortex arches, quasistreamwise vortices, and symmetric and
asymmetric hairpin vortices can be found in Fig. 6(a). Figure 6(b) shows the alternating pattern of
elongated high-speed and low-speed streaks with a length of O(1000) wall units in the logarithmic
region using the streamwise velocity fluctuation u′+. Figure 6(c) shows the same fluctuation field
with Fig. 6(b), where vortex structures extracted using the method of Fig. 6(a) are also displayed.
Through the comparison of Figs. 6(b) and 6(c), most vortices populate around low-speed streaks
since low-speed streaks are recognized to be induced by the moving hairpin leg [50]. This close
connection is also reported by Jiménez and Pinelli [51] and Ringuette et al. [52] in incompressible
flows, and Pirozzoli et al. [19] in a compressible turbulent boundary layer at Ma = 2.

One can also see more instantaneous structures of interest in Fig. 7. Figure 7(a) highlights
a vortex that has a similar shape to the theoretical �-shaped model in Sec. IV G by the green
dotted line. There is one more �-shaped vortex in Fig. 6(a) centering at location (800,200). This
consistency illustrates that the theoretical �-shaped model proposed in Sec. IV G could potentially
serve as an appropriate estimation of the topology of vortex structures. Figure 7(b) exhibits a
hairpin vortex packet near the wall, which encompasses around three vortices. These vortices align
coherently in the streamwise direction and distribute with a distance of O(100) wall units to form
longer structures. The vortex packet is a typical feature well investigated in incompressible wall
turbulence [21,53]. Our finding here further verifies its existence in compressible channel flows at
moderate Reynolds and Mach numbers.

Figure 8 presents instantaneous vortex cores identified by the technique described in Sec. III C
and the corresponding λci field from Case M15R9K at y∗ ≈ 100. At all three specific wall-normal
distances, the identified connected region has a similar shape, with the contour of λci representing
positions with λci exceeding the corresponding threshold. The number of grid points with a swirling
strength larger than the threshold but not assigned to any vortex cores after applying the present
method is less than 0.1%. The other two wall-normal locations y∗ ≈ 15 and 50 are also examined,
although not shown here, and similar results can be obtained. Therefore, the current identification
technique is able to capture most vortex structures effectively.

B. Vortex orientation

To study the vortex orientation, its distributions and variations are illustrated. According to the
ideal hairpin vortex model, the statistic of the vortex orientation could be symmetric, and these
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(a)

(b)

(c)

FIG. 6. (a) Visualization of instantaneous vortex structures from Case M15R9K using the λci criterion with
a threshold |λci| ≈ 0.06 (the color indicates the wall-normal distance from y∗ ≈ 15 to y/h ≈ 0.4); (b) contours
of the streamwise velocity fluctuation u′+ at y∗ ≈ 50 from Case M15R9K; (c) contours of u′+ and extracted
vortex structures identified by the λci criterion with a threshold |λci| ≈ 0.06 at y∗ ≈ 50 from Case M15R9K.

patterns can be observed in PDF curves of inclination angle θxy and θ−zx using DNS of channel
flows in Table I and the incompressible reference in Figs. 9 and 10. There is an axisymmetric
property with respect to 0◦ for the PDF of θ−zx, i.e., P(θ−zx ) ≈ P(−θ−zx ), while regarding the
PDF of θxy, it becomes a periodic function with a period of 180◦, i.e., P(θxy) ≈ P(θxy ± 180◦).
To simplify the description, only the angle within 0◦–180◦ will be reported in the following
discussion.
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(a) (b)

FIG. 7. Some representative instantaneous structures from Case M15R20K using the λci criterion with a
threshold |λci| ≈ 0.06 (the color indicates the wall-normal distance from y∗ ≈ 15 to 150): (a) A vortex shares
a similar shape to the theoretical model in Sec. IV G; (b) a streamwise-aligned vortex packet in the near-wall
region.

1. Probability density for the vortex orientation angle

PDFs are computed with instantaneous data to characterize the relative frequency of instanta-
neous vortex orientation angles. Figure 9 plots PDF curves of inclination angle θxy and θ−zx in the
buffer layer (y+ ≈ 15) and the logarithmic region (y+ ≈ 50 and 100). At y+ ≈ 15 [see Figs. 9(a)
and 9(d)], the peak of PDF curves is around 1◦–6◦ for θxy, and 78◦–82◦ for θ−zx, indicating a relative
agreement of the most probable angle across all cases. However, in the logarithmic region, there is
a wider range of the most probable angle of each case, e.g., 6◦–28◦ for θxy and 64◦–82◦ for θ−zx at
y+ ≈ 100 [Figs. 9(c) and 9(f)]. It is worth mentioning that PDF curves of Case M40R5K have an
even different shape compared with those of lower Mab and incompressible cases.

Figure 10 contains similar curves as Fig. 9 but nondimensionalized with the semilocal scaling.
In the buffer layer, the most probable angle is 4◦–7◦ for θxy [Fig. 10(a)] and 80◦–83◦ for θ−zx

[Fig. 10(d)]. In the logarithmic region, at y∗ ≈ 50 [Figs. 10(b) and 10(e)], the peak occurs between
17◦ < θxy < 19◦ and 80◦ < θ−zx < 82◦; at y∗ ≈ 100 [Figs. 10(c) and 10(f)] the peak occurs between
31◦ < θxy < 33◦ and 63◦ < θ−zx < 65◦. At the position far away from the wall, the PDFs of θ−zx

[see Fig. 10(f)] plateau around its peak to 0◦, and the corresponding probability density varies by
less than 20%. Overall, Fig. 10 shows a better consistency of not only the most probable angles

(a) (b)

FIG. 8. (a) The instantaneous field of λci from Case M15R9K at y∗ ≈ 15, where regions with a swirling
strength exceeding the corresponding threshold are colored; (b) the vortex cores in the same region with (a) after
applying the identification technique described in Sec. III C, where an individual vortex core is a colored region
bounded by the black line, and different colors denote different cores.
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FIG. 9. PDFs of θxy and θ−zx based on vr using the DNS database in Table I and the two incompressible
cases. The PDFs of θxy are plotted in the first row; θ−zx in the second row. The first column presents the statistics
at y+ ≈ 15, the second one at y+ ≈ 50, and the third one at y+ ≈ 100. Cases are denoted using the consistent
color and line style as defined in Sec. II.

but their general shape as well, especially in the logarithmic region. Through this comprehensive
comparison, it is reasonable to draw the following conclusion: (i) the inconsistency of the most
probable angle and the shape of the PDF curve is due to the nondimensionalization by wall units
instead of semilocal units. The latter is able to provide a satisfactory collapse of the PDF curves
in the logarithmic region. The success of semilocal scaling further validates Morkovin’s hypothesis
[26] in vortical structures; (ii) the influence of Re∗

τ (145–934) and Mab (0, 0.8 and 1.5) on the
distribution of the vortex orientation is limited if the semilocal scaling is used.

2. Orientation variation with the wall-normal distance y∗

The previous subsection presented PDFs of orientation angles at select wall-normal distances. In
order to further investigate the wall-normal variation of the vortex orientation, contours of corre-
sponding PDFs from y∗ ≈ 15 to 150 utilizing the DNS database in Table I and two incompressible
cases are shown in Fig. 11 for θxy and in Fig. 12 for θ−zx. Results from cases with the same Mab are
shown in one row, and for each row, cases are arranged in order of Re∗

τ . The most probable θxy and
θ−zx are highlighted by the dotted line ( ), and their corresponding vertical asymptotic lines
are denoted by dashed lines ( ).

Foremost, in Figs. 11 and 12, all the considered cases from different Re∗
τ and Mab including

the incompressible cases share a similar variation tendency after applying the semilocal scaling as
discussed in Sec. IV B 1. With the increase of y∗, the most probable θxy increases monotonically
throughout both the buffer layer and the logarithmic region. At y∗ ≈ 150 and higher wall-normal
positions (not shown), the most probable θxy approaches 45◦ as reported by a number of studies
[1,54,55]. The increasing feature of θxy up to 45◦ in the logarithmic region could statistically
correspond to the right leg of the ideal hairpin vortex model, which is recognized to lean downstream
at an angle of 45◦, and the other most probable θxy approaching −135◦ could correspond to the left
leg. As regards θ−zx, in the buffer layer, the most probable θ−zx remains almost constant at about
80◦ indicating the dominant existence of quasistreamwise vortices [9]. In the logarithmic region, the
high probability at θ−zx ≈ 0◦ implies the hairpin neck (inward) and head. The variation tendency of
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FIG. 10. PDFs of θxy and θ−zx based on vr using the DNS database in Table I and the two incompressible
cases. The PDFs of θxy are plotted in the first row and θ−zx in the second row. The first column presents the
statistics at y∗ ≈ 15, the second one at y∗ ≈ 50, and the third one at y∗ ≈ 100. Cases are denoted using the
consistent color and line style as defined in Sec. II.

θxy and θ−zx is consistent with the report of Wang et al. [21] in incompressible flows. Moreover, the
findings that the quasistreamwise vortices dominate in the buffer layer, and archlike vortices become
more common in the logarithmic region, agree well with the DNS investigation of Robinson [9] in
incompressible flows.

3. Compressibility effects on the vortex orientation

In previous sections, it is concluded that vortices in compressible and incompressible flows
share the same orientation distribution, and θxy attains 45◦ as y∗ increases. In this section, we
discuss the impact of compressibility on vortex orientation through theoretical analysis to interpret
these findings. We will begin with the evolution of the vorticity vector and then show its intrinsic
connection with the real eigenvector vr .

We consider the most general form of the vorticity evolution equation [17], i.e.,

Dω

Dt
= −ω(∇ · u) + (ω · ∇)u + 1

ρ2
∇ρ × ∇p − 1

ρ2
∇ρ × (∇ · T ) + 1

ρ
∇ × (∇ · T ), (3)

where p is pressure, T is the stress tensor, and D/Dt is the substantial derivative. For incompressible
flows, this equation can be simplified into Dω/Dt = (ω · ∇)u + ν�2ω, where ν is the kinematic
viscosity. The first term of the right-hand side represents vortex stretching which produces vorticity,
and the second term is viscous diffusion of vorticity. Noting that ∇u = S + � and � · ω = 0, the
stretching term can be rewritten as (ω · ∇)u = (∇u) · ω = S · ω, where S is the rate-of-strain tensor
and � is the rotation tensor. Since vortex stretching is the dominant production term, root-mean-
square vorticity will follow the maximum stretching direction of the material line element [21,55],
i.e., the principal axis of the S. In a statistical sense, one can expect turbulent channel flows to
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FIG. 11. Contours for the PDFs of θxy based on vr varying with respect to y∗ in the range of 15 to 150 using
the DNS database in Table I and the two incompressible cases. The first row presents the statistics from cases
with Mab = 0.8: (a) Case M08R3K, (b) Case M08R8K, and (c) Case M08R17K; the second row Mab = 1.5:
(d) Case M15R3K, (e) Case M15R9K, and (f) Case M15R20K; the third row from incompressible cases:
(g) Case M00R10K and (h) Case M00R19K. The dashed lines ( ) denote θxy = 45◦ or −135◦; the dotted
lines ( ) denote the most probable θxy at different wall-normal positions. All figures share the same color
bar.
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FIG. 12. Contours for the PDFs of θ−zx based on vr varying with respect to y∗ in the range of 15 to 150 using
the DNS database in Table I and the two incompressible cases. The first row presents the statistics from cases
with Mab = 0.8: (a) Case M08R3K, (b) Case M08R8K, and (c) Case M08R17K; the second row Mab = 1.5:
(d) Case M15R3K, (e) Case M15R9K, and (f) Case M15R20K; the third row from incompressible cases:
(g) Case M00R10K and (h) Case M00R19K. The dashed lines ( ) denote θ−zx = 0◦; the dotted lines
( ) denote the most probable θxy at different wall-normal positions. All figures share the same color bar.
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regress to two-dimensional (2D) shear flows with the mean rate-of-strain tensor S,

S =
⎡
⎣ ∂u

∂x
1
2

∂u
∂y

1
2

∂u
∂y

∂v
∂y

⎤
⎦, (4)

and the corresponding principal axis is

θ = 1

2
arctan

(
∂u/∂y

∂u/∂x − ∂v/∂y

)
. (5)

It is conspicuous from Eq. (5) that θ = 45◦ for channel flows; θ = 45◦ corresponds to the condition
ω2

x = ω2
y . Such a rather isotropic result can be expected for regions away from the wall [55].

Regarding compressible channel flows, the first term on the right-hand side of Eq. (3) reveals the
compressibility effect. Clarifying its influence requires a more straightforward configuration. Let
us consider an element of a vortex tube with a uniform density in an inviscid and barotropic flow
and assume that the element is compressed in the direction perpendicular to the local vorticity
vector (no vortex stretching); Eq. (3) can be simplified into Dω/Dt = −ω(∇ · u) or in tensor
notation Dωi/Dt = −ωi∂u j/∂x j . The compression of fluid elements (∇ · u < 0) strengthens the
local vorticity. However, it does not alter the vorticity direction because ∇ · u works as a uniform
factor for all the vorticity components, and vorticity is intensified. The mean dilatation in this term
is much smaller than the main strain for the present data up to Ma = 1.5 (see Fig. 10 in Ref. [56]),
and its intensification of vorticity is negligible compared with the vortex stretching term, especially
for locations away from the wall. Other terms like the third (baroclinic torque) and fourth (torque
due to shear stress variation in a density-varying field) terms have no preferred direction in 2D shear
flows due to the cross product of 2D vectors being perpendicular to the 2D plane. It is reasonable
to conclude that the vorticity direction is still governed by the mean strain. The expression for its
principal axis in Eq. (5) still holds, and the vorticity direction also attains θ = 45◦ away from the
wall in compressible channel flows.

Now that the direction of the vorticity vector has been determined, the following discussions
will show its inherent connection with the real eigenvector vr [21]. One can manipulate the vortex
stretching term into

(∇u) · ω = D · ω = (
D∗ + 1

3∇ · uI
) · ω = D∗ · ω + (

1
3∇ · uI

) · ω, (6)

where D is ∇u and D∗ is the traceless part of D as defined in Sec. III. Noting that the term ( 1
3∇ · uI) ·

ω does not influence the vorticity direction for the same reason as the compressibility effect, when
ω and vr are collinear, then D∗ · ω = λrω. It means if ω aligns with vr , then it keeps its direction in
the following short time interval. If not, then its direction changes towards the stretching direction
indicated by the real eigenvector vr for the reason that the vorticity component collinear with the
stretching direction is intensified. At the same time, vortices are lifting away from the wall. Such
an elevation converts the substantial derivative (time derivative) to a variation in the wall-normal
direction [21]. It is worth mentioning that using either D or D∗ leads to the same conclusion. As this
work applies vr of D∗ to characterize the vortex orientation, D∗ is analyzed here.

Combining the direction of vorticity and its connection with vr , the direction of vr can be
illustrated. The wall-normal change of θxy,m (the most probable θxy) for vr and ω is apparent in
Fig. 13. In near-wall locations, the great difference between θxy,m obtained from ω and vr causes
the critical reduction and rising of those for ω. As y∗ grows beyond 150, θxy,m of ω approaches 45◦
as the theoretical estimation from the mean strain (this trend is more obvious for higher Reynolds
numbers). When the vorticity vector maintains its orientation, it aligns with the real eigenvector vr

based on their intrinsic relationship. We can conclude that vr will also attain 45◦, the same tendency
as noticed in Sec. IV B 2, which is still valid for higher Mach numbers.

The other remark, the orientation similarity, can also be deduced from the theoretical analysis
above. Similarly to the compressibility effect term, the baroclinic torque term could also be
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FIG. 13. The variation of the most probable θxy defined as θxy,m for the real eigenvector vr and vorticity ω

in the wall-normal direction (semilocal scaled) using cases M00R19K, M08R17K, and M15R20K. Those for
the real eigenvector vr are denoted by filled scatters.

negligible since the pressure gradient is zero in a statistical sense. If we neglect the fourth term
on the right-hand side of Eq. (3), then the vorticity evolution is governed by the vortex stretching
and viscous diffusion terms, similar to the incompressible flows [57]. The postulation that the
third and fourth terms of Eq. (3) have a slight effect makes sense, at least for the Mach-number
range in this work for the following reason: They mainly affect the spanwise component of the
vorticity vector because of the property of cross product in 2D plane discussed above, but there is
no apparent difference in θ−zx of the vorticity vector (not shown). Scaling the wall-normal distance
in the semilocal units leads to a much better collapse of mean streamwise velocity profiles to the
law of the wall [28,29] and the mean strain subsequently. Therefore, it is reasonable that the vortex
orientation dominated by vortex stretching remains similar. Considering the inherent connection
between the vorticity vector and eigenvector, the direction of eigenvectors is very likely to share
this performance.

C. Convection velocity of vortices

Another important aspect of vortices is the convection velocity. The convection velocity denoted
by U +

c is computed using the streamwise velocity component at the grid points recognized as
vortices. The PDF of cases in Table I and the considered incompressible cases are included in
Fig. 14, where U +

c is rescaled by the local Reynolds-averaged mean streamwise velocity U +
m . The

distribution of U +
c /U +

m at y∗ ≈ 15, 50, and 100 are presented in Figs. 14(a)–14(c), respectively.
The rescaled vortex convection velocity lies in a broad range of 0.4–1.6 in the near-wall location,

such as y∗ ≈ 15. As the wall-normal distance increases, the PDF peak magnitude grows, and the
distribution is more concentrated within a narrower and narrower range, which agrees with the
study by Gao et al. [20]. Meanwhile, the most probable U +

c becomes closer and closer to U +
m , from

the largest discrepancy approximately +5%–12% in the buffer layer, then around +2% at y∗ ≈ 50,
and finally less than ±1% at y∗ ≈ 100. On the other hand, the mean value lies within 0.98–1.0
times the local U +

m . In previous works, Wu and Christensen [22] report histograms of the convection
velocity of prograde and retrograde vortices, which turns out to be 0.7–1.3 times the local U +

m in
incompressible channel flows and boundary layers. The present statistics are consistent with their
results. Later, Gao et al. [20] provide PDFs for the convection velocity of vortex cores and show
that the most probable U +

c is 0.96–0.98 times the local U +
m , while the present work recognizes larger

ones than U +
m in most cases. A likely explanation could be the simple statistical strategy employed
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FIG. 14. PDFs of the vortex convection velocity, U +
c , rescaled by the local mean streamwise velocity, U +

m ,
using the DNS database in Table I and the two incompressible cases denoted by the consistent color and line
style as defined in Sec. II. The first subfigure presents the statistics at y∗ ≈ 15, the second one at y∗ ≈ 50, and
the third one at y∗ ≈ 100.

in this section instead of using the region-growing algorithm to extract vortex cores in Gao et al.
[20]. This difference may also be attributed to the compressibility effect for the reason that the most
probable U +

c of incompressible cases obtained from vortex cores are less than one as well, while this
observation disappears for compressible cases. In addition, the higher the Re∗

τ is, the closer the most
probable U +

c becomes to the local U +
m for the specific Mab and wall-normal location considered.

D. Size and strength of vortices

This subsection investigates the size, strength of vortex cores, and their connection by checking
statistics of the vortex core circulation, orientation, and joint PDFs. The evaluation of the vortex
radius and circulation has been introduced in Sec. III D. Four cases (Case M08R8K, M08R17K,
M15R9K, and M15R20K) in Table I and the two incompressible cases are considered since vortex
cores of other cases with lower Re∗

τ are too few to obtain a stable statistical result. The results in
Figs. 16 and 17 show perfect collapse among cases with different Re∗

τ and Mab. On the contrary, the
vortex core radius varies among different cases. Explanations and discussions are presented next.

1. Vortex core radius

The core radius indicates the size of the vortices. Although its PDF varies case by case in Fig. 15,
their average radii show a good consistency for all the six cases considered, which is 14–15 at
y∗ ≈ 15, 16–18 at y∗ ≈ 50, and 18–19 at y∗ ≈ 100. The mean core radius is increasing for locations
further away from the wall. In previous works, Gao et al. [20] report that the mean radius is 13.7
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FIG. 15. PDFs of the vortex core radius r∗, using the four DNS cases in Table I and the two incompressible
cases denoted by the color and line style as defined in Sec. II. The leftmost subfigure presents the statistics at
y∗ ≈ 15, the middle one at y∗ ≈ 50, and the rightmost one at y∗ ≈ 100.
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FIG. 16. PDFs of the vortex core circulation �∗ using the four DNS cases in Table I and the incompressible
references denoted by the color and line style as defined in Sec. II. The leftmost subfigure presents the statistics
at y∗ ≈ 15, the middle one at y∗ ≈ 50, and the rightmost one at y∗ ≈ 100.

at y+ ≈ 15, 14.3 at y+ ≈ 50, and 14.6 at y+ ≈ 100 in incompressible flows. Carlier and Stanislas
[18] observe a slow increase of the mean vortex radius away from the wall from 20 at y+ ≈ 40 to
24 in the experiments of incompressible turbulent boundary layers. Pirozzoli et al. [19] conclude a
comparable vortex size (12–15) in the outer layer. This increasing trend is consistent with previous
studies, even though the magnitude varies. The present result is larger than that of Gao et al. [20].
The possible reason could be the smaller threshold λci,thre in the vortex identification, which is
nearly half of that of Gao et al. [20] examined using the same incompressible data (M00R19K), and
different region-growing algorithms employed.

According to the study by Gao et al. [20] and the authors’ experience, except for the swirling-
strength threshold λci,thre, PDFs of the core radius are also sensitive to many factors, such as the
minimum radius, the angle threshold for the core combination and the threshold of the minimum
elevation angle. A factor worth mentioning is the minimum radius, since the vortex cores with
smaller radii are ignored, which truncates the PDFs directly. It could be the main reason why the
consistency observed in the PDFs of the vortex core circulation and core orientation degenerates for
radius.

2. Vortex core circulation

The strength of vortices could be characterized by their circulation �∗ following the work by Gao
et al. [20]. Figure 16 shows PDFs of �∗ at three wall-normal specific locations. A perfect collapse
is obtained among compressible and incompressible cases. The most probable circulation is 54–62
at y∗ ≈ 15, 26–34 at y∗ ≈ 50, and 18–22 at y∗ ≈ 100. The PDF moves left with the increasing
wall-normal distance, which implies that there are stronger vortices in the buffer layer. The average
circulation is 143–147 at y∗ ≈ 15, 124–135 at y∗ ≈ 50, and 111–122 at y∗ ≈ 100. Gao et al. [20]
report a consistent trend in incompressible flows. However, their results show that PDFs have lower
peaks corresponding to stronger circulations, which are 50, 40, and 30 at y+ ≈ 47, 110, and 198,
respectively. The possible reason might be the same as that discussed in Sec. IV D 1. For instance,
a smaller λci,thre could lead to a higher population of smaller vortices, which are more likely to be
weaker. Hence, the most probable circulation becomes smaller.

A variety of methods to compute the vortex core circulation have been employed in previous
studies, such that the magnitude of the vortex circulation differs. Pirozzoli et al. [19] determine
the core circulation the maximum tangential velocities and core radii at four directions, and then
estimate the total vortex circulation (�+

∞) based on the core circulation by the Lamb-Oseen vortex
template. In Pirozzoli et al. [19], the mean value of �+

∞ increases sharply before y+ ≈ 20 and
reaches a plateau around 180 in the outer region. Carlier and Stanislas [18] identify vortices based
on a detection function indicating the similarity between the selected eddy structure model and the
velocity map, and then fit the velocity field with the Oseen vortex model to attain vortex parameters,
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FIG. 17. Joint PDFs of the vortex core radius r∗ and circulation �∗. The first row presents the statistics
from Case M15R9K, the second one from Case M15R20K, the third one from M00R10K, and the last one
from Case M00R19K. Joint PDFs at the wall-normal distance y∗ ≈ 15 are shown in the first column, y∗ ≈ 50
in the second one, and y∗ ≈ 100 in the third one. All subfigures share the same color bar. The black dashed
line denotes a fitted equation of |�∗| with respect to r∗: |�∗| = 0.68(r∗)2.05 at y∗ ≈ 15; |�∗| = 0.22(r∗)2.33 at
y∗ ≈ 50; |�∗| = 0.13(r∗)2.38 at y∗ ≈ 100.
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such as the circulation. They conclude that the vortex circulation remains almost constant from the
top of the buffer layer (y+ = 50) to the middle of the logarithmic region, which is consistent with
the result of Pirozzoli et al. [19]. Generally, a comparable vortex strength could be observed in the
logarithmic region considered in this work.

3. Interrelation of the vortex size and strength

Having discussed the size and strength of vortices, it is now necessary to reveal the interrelation
of these two parameters. To explore it, joint PDFs are provided as follows. In order to be concise,
the joint PDFs of cases M08R8K and M08R17K are not presented, as they give similar results to
other cases.

Joint PDFs of the core circulation and radius are plotted in Fig. 17. A good agreement between
the compressible and incompressible cases can be observed. A power-law function |�∗| = a(r∗)b

is also superposed, where a and b are parameters fitted by the corresponding most probable radius
for a specific circulation using the least-squares method. The explicit expression can be found in
the caption of Fig. 17. As proposed by Gao et al. [20], b > 2 indicates that the larger the vortex
core is, the stronger its average vorticity is, because the circulation is estimated by the integration
of vorticity over the core’s in-plane area. The other parameter a implies the mean magnitude of the
local vorticity. Gao et al. [20] declare a slightly increasing trend of parameter b from 2.1 (y+ ≈ 47)
to 2.2 (y+ ≈ 110 and 198) and a decreasing trend of parameter a from 0.51 (y+ ≈ 47) and then 0.34
(y+ ≈ 110) to 0.26 (y+ ≈ 198) in incompressible channel flows. The same patterns of parameters
a and b are observed in the present work as well. Specifically, the parameter b in both the buffer
layer and the logarithmic region is larger than 2 and grows from 2.05 (y∗ ≈ 15) to 2.33 at y∗ ≈ 50
and finally 2.38 at y∗ ≈ 100. Starting from 0.68 at y∗ ≈ 15, the parameter a declines sharply to 0.22
at y∗ ≈ 50, and then 0.13 at y∗ ≈ 100. Gao et al. [20] argue that the decrease of the parameter a
is due to the shrinking of the mean magnitude of vorticity with wall-normal distance, as observed
by Stanislas et al. [58]. Despite the fact that parameters a and b have a different magnitude from
that in the paper [20], it is acceptable to conclude the consistency between the compressible and
incompressible channel flow explored in the present work and the incompressible channel flow in
Gao et al. [20].

4. Morkovin’s hypothesis and semilocal units for instantaneous vortex features

As discussed in Sec. IV B 3, the evolution of vorticity in compressible flows primarily relies
on vortex stretching and viscous diffusion for the present data with Ma < 1.5, which share the
same mechanism as incompressible flows [57]. However, the magnitude could be significantly
different. For instance, though Sec. IV B verifies the stretching direction stays unchanged, the
stretching strength may vary. Additionally, the viscosity coefficient changes due to the variation
in temperature. These instantaneous vortex features, i.e., radii and circulation, are the combined
effects of the vortex stretching and the viscous diffusion. If an agreement for them can be achieved,
then one needs a certain rescaling that compensates for these variations, such as the streamwise
velocity transformation which requires a rescaling not only for the wall-normal coordinate by mean
flow properties but also for the mean velocity itself.

One potential choice is the semilocal units deduced from Morkovin’s hypothesis [26], accounting
for the compressibility effect by the variation of mean flow properties at moderate Mach numbers.
The semilocal scaling succeeds in many mean statistics, e.g., mean velocity profiles and profiles
of the Reynolds stress. Whether Morkovin’s hypothesis and semilocal units can be extended to
these instantaneous features is still a question. The previous sections show that the vortex radius
and circulation in compressible flows collapse to their counterparts in incompressible flows by
employing semilocal scaling. Thus, Morkovin’s hypothesis and semilocal units are also applicable
to instantaneous vortex features, at least for Mach numbers included in this work.
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E. Vortex population

The population trends of prograde, retrograde, and streamwise vortices and the total number are
investigated in this subsection. Prograde spanwise vortices rotate in the same direction as the mean
shear, while retrograde spanwise vortices are in the opposite direction. In the present study, those
vortex cores with |θ−zx,c| � 10◦ are considered as prograde vortices, |θ−zx,c| � 170◦ as retrograde
vortices, and 80◦ � |θ−zx,c| � 100◦ as streamwise vortices, since based on the ideal hairpin vortex
model, the rotation and stretching directions form an acute angle in most cases.

The population distribution can be a function with respect to the wall-normal distance, Reynolds
number, and Mach number for compressible turbulent channel flows. The population density �(y/h)
is defined as the ensemble-averaged number of vortices N divided by the corresponding statistical
area they reside in. Here a subscript is employed to denote the type of vortices, i.e., p for prograde
spanwise vortices, r for retrograde vortices, s for streamwise vortices, and T for the total number of
all kinds of vortices. For instance, the number density of prograde vortices �p(y/h) is given by

�p(y/h) = Np(y/h)
Lx
h

Lz

h

, (7)

where Lx and Lz are the size of the statistical region in the x and z directions, respectively. This
equation indicates the number of prograde vortices in the area of h2 for a specific wall-normal
location y/h, which is the outer-scaled number density. Alternatively, the semilocal-scaled number
density of prograde vortices �∗

p(y∗) is given by

�∗
p(y∗) = Np(y∗)

L∗
x L∗

z

, (8)

where L∗
x and L∗

z are the size of the statistical region in the semilocal scaling. �∗
p(y∗) represents the

number density of prograde vortices in the area of δ∗2
τ at a specific y∗.

The outer-scaled and semi-local-scaled number densities versus y/h and y∗ are shown in Fig. 18.
For the outer-scaled number density, the effect of Re∗

τ is more distinct, while Mab has less influence.
All the four number densities from cases with a higher Re∗

τ are much larger. �p has a peak in the
near-wall region (y/h < 0.2), then decreases monotonically with y/h for all cases examined. Wu and
Christensen [22] also report this rise-fall trend of �p in incompressible channel flows and boundary
layers. For retrograde vortices, �r has two local maxima, the first local maximum at y/h ≈ 0.2
and the second one at the center line of the channel (y/h ≈ 1). Wu and Christensen [22] notice
a similar trend in incompressible channel flows, while the number density of retrograde vortex in
incompressible boundary layers maintains decreasing after the first peak. The reason could be that
part of retrograde vortices originate from the flow near the opposite wall, as argued by Wu and
Christensen [22]. These retrograde vortices are equivalently prograde in the reference frame of the
opposite wall, and they advect across the center line and join the flow near the bottom wall. Similar
to �p, the other two types of number densities �s and �T achieve their maxima within y/h < 0.2.

Compared with the outer-scaled number density, the semi-local-scaled counterpart is shown in
Figs. 18(b)–18(h), whose variation with respect to y∗ collapses better in the near wall region. The
rise-fall pattern mentioned above is also observed for �∗

p, �∗
s , and �∗

T . �∗
p approaches its peak

at about 80 < y∗ < 90, while �∗
s and �∗

T early at y∗ ≈ 40 and y∗ ≈ 70, respectively. Again, �∗
r

has two peaks, whose reason has already been discussed above. For the first peak, the four high-
Re∗

τ cases approach it at around y∗ ≈ 130, and the two low-Re∗
τ compressible cases at y∗ ≈ 120

corresponding to y/h ≈ 0.3 the outer edge of the logarithmic region. The explanation could be that
the logarithmic region of the two low-Re∗

τ cases is too short to reach the same peak as the high-Re∗
τ

cases. Additionally, the first peak is followed by a slight reduction such that its magnitude is lower
while achieved at a smaller y∗.

The population distribution is further explored by the proportion � of different kinds of vortices
to the total number and its variation in the wall-normal direction. The same subscript is employed
to distinguish different types of vortices as mentioned above, e.g., the fraction of prograde vortices
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FIG. 18. The outer-scaled population density distributions of prograde (�p), retrograde (�r), streamwise
(�s) vortices, and the total vortices (�T ) with respect to y/h are shown in (a), (c), (e), and (g), respectively. The
semilocal-scaled population density distributions of prograde (�∗

p), retrograde (�∗
r ), streamwise (�∗

s ) vortices
and the total vortices (�∗

T ) with respect to y∗ are shown in (b), (d), (f), and (h), respectively.
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FIG. 19. The fraction distributions of prograde (�p), retrograde (�r), and streamwise (�s) vortices with
respect to y/h are shown in (a), (c), and (e), respectively; those with respect to y∗ are shown in (b), (d), and (f),
respectively.

�p for a specific wall-normal location y is defined as

�p(y) = �p(y)

�T (y)
. (9)

Figure 19 displays fractions of three kinds of vortex versus y/h and y∗. For � with respect to
y/h [see Figs. 19(a), 19(c), and 19(e)], an overall collapse among cases can be seen only near the
center line, while a more consistent collapse among cases examined can be seen in the semilocal
scaling [see Figs. 19(b), 19(d), and 19(f)] in the near-wall region. The peak of �p is in the viscous
sublayer, and it keeps reducing in the buffer layer until the inner edge of the logarithmic region. A
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slight rise can be found at the beginning of the logarithmic region, and then it levels off. There
are almost no retrograde spanwise and streamwise vortices in the viscous sublayer, where �r

and �s are approximately zero. �r begins to increase from the middle of the buffer layer and a
more steep increment is noticed from y/h ≈ 0.7. With respect to �s, it starts growing in the buffer
layer, approaches its peak at y∗ ≈ 30 followed by a reduction to y∗ ≈ 50, and ultimately levels off
within the logarithmic region. To further determine the dominant structures, the ratio of the number
densities of prograde and retrograde spanwise cores and streamwise cores, i.e., �p : �r : �s, is
investigated quantitatively. At y∗ ≈ 15, �p : �r : �s is approximately 2:0:3. In the logarithmic
region, the ratio becomes 4.5:1:13 for y∗ ≈ 50, 3:1:6.5 for y∗ ≈ 100, and 2.5:1:5.3 for y∗ ≈ 150. In
the outer layer (y/h ≈ 0.5), this ratio is 2:1:4 based on the high-Re∗

τ cases. In summary, streamwise
and prograde vortices are comparable in the buffer layer. Then, the number of streamwise vortices
rises sharply until the inner edge of the logarithmic region, after which both prograde and retrograde
spanwise vortices appear more and more frequently with the increasing wall-normal distance.

F. Further discussions

In the discussion above, we uncover some characteristics of vortices using Eq. (3) considering
the close association between vortex structure and vorticity. Obviously, the mechanism becomes
far more complex in high-Mach compressible flows. Equation (3) has extra terms compared with
its form in incompressible flows, including the compressibility effect (the first term on the right-
hand side), the baroclinic torque (the third term) and the torque generated by the variation of shear
stress and density (the fourth term). In addition, the strength variation of strain and the variation
of viscosity also take effect. It is concluded that these extra terms are negligible for all the cases
included here, and the governing mechanism for vorticity evolution and vortex evolution is similar to
incompressible flows. Besides, the semilocal scaling compensates for the variation of flow properties
such that good consistency is achieved for instantaneous vortex features among channel flows with
Mach numbers from 0 to 4. However, these effects may be more and more dominant as the Mach
number increases. Although the range of Mach and Reynolds numbers in our channel flow database
almost represents the state-of-the-art in the literature, it is still not rigorous to confirm the validity for
very high Mach numbers due to the lack of databases. To comprehensively study the compressibility
effects with a more critical parameter range on this topic is rather essential and belongs to our future
work when the new databases are available.

Another aspect of interest in compressible flows is the shock wave. According to Crocco’s
theorem [59], the curved shock generates vorticity by inducing nonuniform entropy downstream.
Their interaction with vortices could be even more sophisticated, which is another active research
topic. Both the shock and vortex deform during the interaction. The shock waves compress vortices
in the streamwise direction, e.g., a circular vortex can become an elliptical one after a shock
[60]. Meanwhile, strong vortices diffract and reflect shock waves, which is closely related to the
generation of acoustic waves. In the cases used in the present work, however, we have not noticed
the existence of shocks, and nor have them been observed by researchers in turbulent boundary
layers with Mach number smaller than 10 [61,62]. Thus, the study of these phenomena is out of the
scope of this work.

Though the present work concentrates on compressible channel flows, one could extrapolate the
obtained conclusions to other types of compressible wall turbulence, like pipe flows and boundary
layers. Considering the similarity of turbulent channel flows and pipe flows throughout the inner and
outer layer [63], all the findings above stand a high opportunity to be established in compressible
pipe flows. In regard to compressible boundary layers, the difference compared with pipe or channel
flows originates from the large-scale energetic motions in the outer regions [63]. Characteristics of
vortices might mostly remain similar in the near-wall region. On the other hand, in the outer region,
some properties may still hold, e.g., θxy,m still approaches 45◦ based on our theoretical analysis
above. Some observations may disappear, like the increase of retrograde vortices near the center
line. Since the main difference can be attributed to very large-scale motions or superstructures that
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FIG. 20. A sketch for the topology of dominant vortex structures from y∗ ≈ 14 to 150 (y+ ≈ 18 to 220).
The red lines represent the model in the semilocal scaling, and the blue lines represent that in the wall unit.
The solid lines represent the 3D vortex filament. Their projections onto the x-y, z-x, and y-z planes are shown
by the dashed lines. The dotted lines indicate the projection lines.

are not directly associated with vortex structures, concluding the distinction and similarity of more
characteristics, such as the vortex size and strength, requires further studies.

G. A sketch of vortex tube based on statistics

This section is dedicated to providing a quantitative heuristic model for the topology of vortex
structures. It is an improvement beyond the classical conceptual hairpin vortex model, whose
features remain qualitative. In order to characterize its geometry, the present work neglects its
thickness as a vortex filament.

This 3D model is given by the following differential equations:

dx f

dy f
= cot(θxy,m), (10)

dz f

dx f
= −cot(θ−zx,m). (11)

By manipulating Eqs. (10) and (11), the relation between dz f and dy f is obtained as

dz f

dy f
= −cot(θ−zx,m)cot(θxy,m), (12)

where x f , y f , and z f denote the coordinates of the vortex filament in the x, y, and z directions,
respectively. Then, one can obtain the topological shape of the vortex filament as shown in Fig. 20
by an integration of Eqs. (10) and (12). θxy,m and θ−zx,m are the most probable inclination angles
from PDFs in Sec. IV B 1 varying with y∗. In this subsection, only the result from Case M15R20K
is used, which has the highest Mab and Re∗

τ , and the finest spatial resolution.
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FIG. 21. The replication of the topology vortex model in Pirozzoli et al. [19] and corresponding angle
distributions computed at y/h = 0.5 using case M15R20K. (a) The approximately sinusoidal dependence of θ e

on θzx; (b) the PDF of θzx; (c) the 3D view of the vortex model with its height normalized to be one; and (d) its
projection onto the x-y plane.

Due to the symmetric patterns of θxy and θ−zx, the PDF within the range of 0◦ < θxy, θ−zx < 180◦
are employed. The interval of integration is 14–150 semilocal units (corresponding to 18–220 in
the wall unit). The 3D curves in both the wall unit and the semilocal scaling (blue and red solid
lines) and their orthogonal projections on the x-y, z-x, and y-z planes (blue and red dashed lines)
are displayed in Fig. 20. An apparent difference is noticed for the same vortex filament in these two
scales. According to the structural similarity established above, the one in the semilocal scaling is
more appropriate, and we will concentrate on it. The red curve is similar to the one in Wang et al.
[21] for incompressible turbulent boundary layers. A more and more steep upward bending shows
up in the x-y plane, indicating that a larger and larger inclination angle forms between the dominant
vortex structure and the wall. Consistent with incompressible cases, an � shape corresponding to
the hairpin leg appears in the y-z plane. For y∗ > 50, the direction of the vortex filament changes
from streamwise to quasispanwise, which is more obvious in the y-z plane than in the z-x plane. The
current model shows a satisfactory agreement with the classic hairpin vortex model and the vortical
structures extracted from the instantaneous λci field in Figs. 6(a) and 7(a).

To clarify the advantages and weaknesses of this model requires a comparison with other
topology models in prior studies: the ringlike one for compressible flows in Pirozzoli et al. [19]
and an analogous one for incompressible flows in Wang et al. [21]. Although they all rely on
the differential equation and integration, each has its own concentration and assumption. Pirozzoli
et al. [19] notice that the conditional expected value of θe depends on θzx sinusoidally as shown
in Fig. 21(a), which can be interpreted by a closed-loop vortex filament. θe is the elevation angle
formed with the wall, and θzx has a similar definition to θ−zx defined in Fig. 4 but represents the one
formed with z direction. They consider a differential equation of the vortex filament with respect to
the arc length s [see Eqs. (4.7) and (4.8) in their work] and assume that (i) the conditional expected
value θ e is a function of θzx in the outer region and (ii) the differential arc length is estimated by the
probability of the associated θzx, i.e., ds ∼ P(θzx )dθzx, where P(θzx ) denotes the corresponding PDF.
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The integration of P(θzx ) from −π to π gives a ringlike topology. We replicate their calculations and
show results in Fig. 21. The sinusoidal dependence of θ e on θzx observed at y/h = 0.5 in Figs. 21(a),
and 21(b) provides the PDF of θzx. Although we do not obtain a closed loop in Fig. 21(c), the
topology has an acceptable ringlike shape. One possible reason for this discrepancy is that this work
uses the real eigenvector to characterize the vortex orientation instead of the vorticity vector in
Pirozzoli et al. [19]. In addition, this work adopts the total velocity gradient tensor while Pirozzoli
et al. [19] employ the fluctuating velocity gradient tensor. Both these two factors alter the PDF
of θzx, especially the region near θzx = 0/ ± 180, which ultimately result in the unclosed loop in
Fig. 21(c). As one can expect, the method in Pirozzoli et al. [19] focuses on vortex structures in
the outer region, while the present model is more in the buffer layer and the logarithmic region.
Based on the noted relation between θ e and θzx, it can provide a reasonable topology in the outer
region using statistics from only one wall-normal location, unlike the current one which has to use
multiple wall-normal locations. However, it might deviate from instantaneous structures since the
conditional expected value θ e could be an assemblage effect of multiscale vortices. This point is
clearly demonstrated by its projection on the x-y plane in Fig. 21(d), which has a much smaller
inclination angle around 15◦ than the theoretically estimated 45◦ [55,64]. Comparably, the model
in Wang et al. [21] and the present model could reflect the instantaneous structures better since the
most probable angles are adopted.

In regard to the model in Wang et al. [21], the fitting step for the most probable angle using
a second-order polynomial is ignored because the raw data without fitting can provide a smooth
topology in the present work. We extend this model to compressible flows by applying the semilocal
scaling in the wall-normal direction. This topology is uniform at least for Re∗

τ and Mab examined
in this work, due to the consistency among all the compressible and incompressible cases. One
weakness merits mentioning that the current model is deduced under the assumption that the most
probable angle varying with y∗(y+) is obtained from one vortex extending in the wall-normal
direction. Actually, the most probable angle at different y∗(y+) may come from vortices of multiple
scales. Considering this aspect, the current model is more likely to be an assembly of pieces from
multiscale vortices (the assemblage effect should be much weaker than the model in Ref. [19]).
Overall, this model could perform as a reliable vortex topology while using vortex methods to
compute flow fields.

V. CONCLUDING REMARKS

The present work utilizes DNS databases of compressible channel flows with Mab up to 4
to explore the statistical features of vortex structures, including their orientations, convection
velocities, sizes, strength, and population tendencies.

The vortex orientation characterized by the real eigenvector depends less on Mab and Re∗
τ

if the wall-normal distance is scaled by the semilocal scaling. Both theoretical estimation and
statistical results show an increasing trend towards 45◦ of the inclination angle θxy with y∗ increases.
A heuristic model representing instantaneous vertical structures is proposed based on the most
probable angles. Meanwhile, the most probable θ−zx reduces with y∗, and θ−zx = 0◦ occurs more
frequently. For vortex cores, their average size r∗ and strength �∗ in the semilocal scaling are
consistent for all the cases considered. Even though a slight growth of the average r∗ is observed
with increasing y∗, the average �∗ turns out to be weaker and weaker.

Vortices on average, advect at the local mean streamwise velocity. The distribution of the
vortex convection velocity U +

c becomes narrower and narrower with increasing y∗, and so does
the discrepancy between the most probable U +

c and U +
m .

The population of prograde, retrograde, and spanwise vortices and the total population are
investigated. Both inner- and semi-local-scaled number densities show an obvious dependence on
the Reynolds number and marginal dependence on the Mach number, but their fractions have a
satisfactory collapse versus y∗. Except for retrograde vortices, populations of the other three types
reach their peak in the logarithmic region. The number of prograde and streamwise vortices is
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comparable at y∗ ≈ 15. Then, streamwise vortices gradually dominate near the inner edge of the
logarithmic region, after which the fraction of spanwise vortices grows continuously over the entire
outer layer.

This work provides a relatively comprehensive study of the kinematic properties of vortical struc-
tures in compressible channel flows. Overall, a quantitative consistency of most features between
compressible and incompressible channel flows after applying the semilocal scaling is observed.
This indicates that Morkovin’s hypothesis is valid not only for mean flow variable statistics but for
the instantaneous vortex features as well. It is a piece of crucial knowledge for developing advanced
modeling approaches [29] and extending incompressible theories and models to compressible flows.
It also shows that the principal mechanism (vortex stretching and viscous diffusion) dominating
the vortex evolution remains unchanged through analyzing the vorticity evolution equation. The
compressibility effect and attendant torques are negligible at moderate Mach numbers considered
here. To concretely validate this point, another aspect of interest, their dynamic properties, requires
more investigation as well. These statistics themselves are also of importance. Mean values and
distributions, as well as the topological model, provide a fundamental reference if one intends to
reconstruct the flow field by pilling up vortices of various scales. In addition, corresponding studies
regarding vortical features in the hypersonic channel flows and boundary layer and the influence of
wall temperature are still lacking. Thus, future studies are recommended to give a comprehensive
insight into vortices in the compressible wall turbulence.
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APPENDIX A: VALIDATION OF DNS DATABASES

DNSs of compressible turbulent channel flows have been conducted with a finite-difference
code, by solving the 3D unsteady compressible Navier-Stokes equations. The convective terms are
discretized with a seventh-order upwind-biased scheme, and the viscous terms are evaluated with
an eighth-order central difference scheme. Time advancement is performed using the third-order
strong-stability-preserving Runge-Kutta method [65]. A constant molecular Prandtl number Pr of
0.72 and a specific heat ratio γ of 1.4 are employed. The dependence of dynamical viscosity μ on
temperature T is given by Sutherland’s law, i.e.,

μ = μ0
T0 + S

T + S

(
T

T0

)3/2

, (A1)

where S = 110.4 K and T0 = 273.1 K.
All the DNSs are carried out in a rectangular box with the given sizes along streamwise, span-

wise, and wall-normal directions, respectively. In the streamwise and spanwise directions, the mesh
is uniformly spaced, whereas, in the wall-normal direction, the mesh is hyperbolically clustered
towards the walls. The isothermal no-slip conditions are imposed at the top and bottom walls, and
the periodic boundary condition is imposed in the wall-parallel directions, i.e., x and z directions.
All simulations begin with a parabolic velocity profile with random perturbations superimposed
and uniform temperature and density values. A body force is imposed in the streamwise direction to
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FIG. 22. Mean streamwise velocity profiles transformed by (a) the Trettel-Larsson transformation [28] and
(b) the total-stress-based transformation [29]. All the DNS cases in Table I are examined. The black solid line
denotes the reference and is taken from the incompressible channel flow with Reτ ≈ 5200 in Ref. [70].

maintain a constant mass flow rate, and a corresponding source term is also added to the energy
equation. The code has been validated by previous studies on the energy-containing eddies in
subsonic channel flows [66] and supersonic channel flows [67–69].

The accuracy of the DNS database in Table I is examined using the mean streamwise velocity
profile and the semi-local-scaled Reynolds normal stress. Due to the compressibility effect, a
velocity transformation is required for the compressible wall-bounded turbulence to recover the
universal law-of-the-wall in incompressible flows. The Trettel-Larsson [28] and total-stress-based
[29] transformations are employed in this work since they have been widely recognized as effective
methods for compressible channel flows. The transformed velocity profiles are shown in Fig. 22(a)
for the Trettel-Larsson transformation [28] and (b) the total-stress-based one [29]. All the cases
show a satisfactory collapse to the well-known law-of-the-wall, and the performance of the total-
stress-based transformation [29] is even better.

For the six cases in Table I, three semi-local-scaled Reynolds normal stress components τ ∗
ii =

ρũ′′
i u′′

i /τw, where i = 1, 2, and 3, are examined in Fig. 23. Cases of M08R3K, M08R3K, M08R17K,
and M15R3K [see Figs. 23(a)–23(c) and 23(e)] share the same Mab and Reb with the data of
compressible channel flows by Yao and Hussain [71] and a decent agreement can be found. The
other two cases, M15R9K and M15R9K [see Figs. 23(d) and 23(f)], are compared with the data of
compressible channel flows by Modesti and Pirozzoli [72] with similar Reτ and Mab. An acceptable
consistency can be observed, although a narrow discrepancy exists due to the slight difference of
Reτ . As for the case M40R5K, there is no existing data sharing similar Mab and Reb for a fair
comparison. Therefore, its stress components are not presented. Overall, the accuracy of the present
data set in Table I has been verified.

APPENDIX B: ADAPTABILITY OF PARAMETER η

This section validates the adaptability of η used to estimate the threshold for λci. The range of
η considered is from 0.2 to 0.4, and the corresponding threshold is from λci,thre = 0.2/PDFmax to
λci,thre = 0.4/PDFmax. We compare the threshold determined in Sec. III A with two bounds of the
interval to reveal its impact on the vortex orientation, size, and strength, using two representative
cases: M00R19K and M15R20K. The validation begins with the vortex orientation shown in Fig. 24.
Obviously, the shape of PDFs of θxy, θ−zx remains similar with different choices of η. Figure 25
demonstrates the variation of vortex radii with η. A higher probability density appears at smaller
radii at y∗ ≈ 15 as η decreases. Conversely, in the logarithmic region, smaller radii are more likely
to appear as η increases. Since these changes in PDFs are slight, the mean vortex radius has a
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FIG. 23. Distributions of the Reynolds normal stress components τ ∗
ii , i = 1, 2, and 3, with respect to y/h

for six DNS cases in Table I, which are compared with the data of corresponding compressible channel flows
in Refs. [71] and [72] denoted by the same case name as original papers.

slight decline, around 10%, and the rising tendency of radii still exists. The variation of vortex
strength is more consistent for different wall-normal locations as indicated by Fig. 26. When η

becomes smaller, distributions of the vortex strength tend to move leftward and vice versa. The
resultant mean circulations vary around 10%, which does not alter the conclusion of the present
work.
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FIG. 24. PDFs of θxy and θ−zx with different η using cases: M00R19K and M15R20K. The PDFs of θxy are
plotted in the first row; θ−zx in the second row. The first column presents the statistics at y+ ≈ 15, the second
one y+ ≈ 50, and the third one y+ ≈ 100.
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FIG. 25. PDFs of the vortex core radius r∗ with different η using cases: M00R19K and M15R20K. The
leftmost subfigure presents the statistics at y∗ ≈ 15, the middle one at y∗ ≈ 50, and the rightmost one at y∗ ≈
100.
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FIG. 26. PDFs of the vortex core circulation �∗ with different η using cases: M00R19K and M15R20K.
The leftmost subfigure presents the statistics at y∗ ≈ 15, the middle one at y∗ ≈ 50, and the rightmost one at
y∗ ≈ 100.
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