
PHYSICAL REVIEW FLUIDS 8, 124602 (2023)

Wall shear stress and wall heat flux in a supersonic turbulent boundary layer
subjected to concave surface curvature

Fulin Tong (���),1 Junyi Duan (���),2,3 Xiangxin Ji (���) ,2,3 Siwei Dong (���),1

Xianxu Yuan (���),1,* and Xinliang Li (���)2,3

1State Key Laboratory of Aerodynamics, Mianyang 621000, China
2LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

3School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 18 June 2023; accepted 7 November 2023; published 5 December 2023)

Direct numerical simulation is employed to investigate the characteristics of wall shear
stress (WSS) and wall heat flux (WHF) beneath a spatially developing supersonic turbulent
boundary layer with a cold-wall thermal condition subjected to a concavely curved com-
pression ramp with a deflection angle of 24◦. The Mach number is 2.25 and the friction
Reynolds number is 769. Numerical data are exploited to characterize the effect of the
concave surface curvature on the statistical and structural properties of the fluctuating
WSS and WHF, including the probability density function, space-time correlations, and
frequency spectra. Across the curved region, the occurrence probability of extreme nega-
tive events is strongly affected by the curvature, as manifested by a noticeable dissimilarity
in the large negative tails of the probability density functions. The correlation results
show that the streamwise extent of the WSS fluctuations becomes smaller, in contrast
to that of the WHF fluctuations, and a considerable decrease in the convection velocity
is observed downstream from the curvature. It is found that the curvature qualitatively
modifies the WHF frequency spectra, leading to a shift to lower frequencies, while the
spectral alternation is less pronounced for the WSS. Importantly, the mean WHF and WSS
are also decomposed into different physically informed components, with the finding that
the mean WSS generation is fundamentally changed by the curvature but the generation
mechanism of the mean WHF is constant throughout the concave surface. Finally, an
analysis of velocity and temperature structures is performed with the aid of bidimensional
empirical mode decomposition to quantitatively demonstrate the contributions of specific
spanwise length scales. We highlight that the outer large-scale organized structures, which
are significantly energized by the concave surface, make an increasingly important contri-
bution to the mean WSS and WHF generation.

DOI: 10.1103/PhysRevFluids.8.124602

I. INTRODUCTION

Compressible turbulent boundary layers (TBLs) over concave surface curvature are of major
interest in the design of high-speed aircraft and propulsion systems, such as airfoils, turbine blades,
and combustion chambers. It is now well established that the presence of concave surface curvature
destabilizes a boundary layer [1–3], leading to an enhancement in turbulent mixing [2] and an
increase in wall skin friction [3]. The response of a compressible TBL in such a flow is associated
with the simultaneous action of concave streamline curvature, an adverse pressure gradient (APG),
and bulk compression, which were originally defined as extra strain rates by Bradshaw [1], in

*Corresponding author: yuanxianxu@cardc.cn

2469-990X/2023/8(12)/124602(29) 124602-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8443-1435
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.124602&domain=pdf&date_stamp=2023-12-05
https://doi.org/10.1103/PhysRevFluids.8.124602


TONG, DUAN, JI, DONG, YUAN, AND LI

addition to the mean shear. Despite the development of some general conclusions in the past few
decades, as reviewed by Smits [2] and Spina et al. [3], the kinematic and dynamic behaviors involved
in compressible concave boundary layers are not yet fully understood due to the flow complexity,
and there is still a clear need to investigate the influence of these extra strain rates on boundary layer
turbulence, both separately and in combination.

Most previous studies related to concave-curvature compressible TBLs have been experimental
and confined to mean-flow and turbulence behaviors. For instance, Sturek and Danberg [4,5]
observed a logarithmic region in the mean velocity profiles of a supersonic APG boundary layer
along an isentropic curved ramp model. This observation was inconsistent with measurements
obtained by Laderman [6], who found that the distorted velocity profiles obviously deviated from
the logarithmic law and explained this deviation through an increase in the mixing length. Later,
Jayaram et al. [7] measured turbulent fluctuations inside a supersonic TBL over short regions of
concave surface curvature with two different curvature radii (equal to 10 and 50 initial boundary
layer thicknesses) and made a comparison with the corresponding 8◦ corner flow. It was revealed
that increasing the curvature radius led to larger amplification of the absolute turbulent stresses,
whereas the structural parameters were essentially unchanged. The authors argued that the rapid
perturbations in the short radius model are characterized by the total strains and insensitive to the
path taken, while the local strain rates are more pronounced in the large radius model. However,
no unsteady longitudinal roll cells were observed in the above-cited supersonic experiments, in
contrast to the generation of Taylor-Görtler type vortices previously discussed by Bradshaw [1] and
Hoffmann et al. [8] in subsonic concave flows. Donovan et al. [9] further investigated the response
of large-scale motions in a TBL at Mach 2.86 to a short region of strong concave surface curvature.
They found that the combined effect of all the extra strain rates was to increase the characteristic
structure angles and double the streamwise extent of the average large-scale motions. Neel et al. [10]
examined the effects of a streamline curvature-induced APG on a Mach 4.9 TBL using quadrant
decomposition analysis. They reported that the amplified Reynolds shear stress can be attributed to
the corresponding increase in the magnitude and percentage of Q2 and Q4 events in the near-wall
region, reflecting essential changes in the near-wall-flow structures. Wang et al. [11,12] carried out
an experimental campaign on the structural responses of a Mach 2.95 TBL to different concave
curvatures. Collectively, high-resolution measurements based on nanoparticle-based planar laser
scattering and particle image velocimetry revealed that the upstream large-scale vortices appeared
to break up into smaller ones in the concave region and that this was more pronounced for a
larger curvature. The authors suggested that the increased turbulence level was brought about by
statistically well-organized hairpin packets, which were significantly reinforced by the concave
curvature.

Although only a very limited number of experiments designed to study the extra strain rates
separately have been reported so far, significant progress has already been made in understanding the
separate contributions of concave streamline curvature and APGs. In remarkable work by Thomann
[13], the pressure gradient along a concave wall was eliminated by fitting suitably shaped bodies
opposite the test surface to investigate the influence of streamwise wall curvature alone on heat
transfer. They noted that the rate of heat transfer increased by about 20% due to the wall curvature.
In another example, Fernando and Smits [14] performed experiments on a flat-plate supersonic
turbulent boundary layer imposed by a reflected wave system and found that the obtained mean
wall pressure distribution matched that of the supersonic curved-wall model previously studied by
Jayaram et al. [7]. Their quantitative comparisons suggested that the increases in the wall friction
for the curved-wall experiments were only around 17% larger than that in the flat-plate case, and the
additional effect of concave streamline curvature on the Reynolds stress field was more significant
than on the mean velocity profiles. Similar companion experiments were also conducted by Smith
and Smits [15], who pointed out that the destabilizing effect of the bulk compression is generally
complemented by the influence of concave curvature and that a larger curvature leads to a greater
increase in the wall shear stress (WSS) and Reynolds stresses inside the disturbed boundary layer.
Furthermore, Wang et al. [16] performed an experimental investigation on an APG flat plate and
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a concave wall at Mach 2.95 using particle image velocimetry and suggested that the concave
curvature (in the form of centrifugal instability) exhibits an influence on the boundary layer that
is similar to that of an adverse pressure gradient.

Direct numerical simulation (DNS) has provided a powerful alternative tool with which to
shed light on the evolution of compressible concave flows from the numerical perspective, since
a well-resolved flow field with the full range of spatial and temporal scales of turbulence cannot
possibly be measured in experiments. A preliminary attempt to perform a DNS study of a supersonic
concavely curved flow was undertaken by the present authors [17]. The response of a turbulent
boundary layer at M∞ = 2.9, Reθ = 2300 to a curved compression ramp with a total turning angle
of 24◦ and a radius of curvature R = 15δ (with δ being the initial boundary layer thickness) was
analyzed. The presence of unsteady longitudinal roll cells, which were not observed in previous
experiments, was highlighted. A dynamic mode decomposition analysis of the streamwise velocity
fields in the spanwise–wall-normal plane also showed a qualitative association between the domi-
nant low-frequency dynamic modes and the Görtler-like vortices.

Sun et al. [18] carried out DNS studies of supersonic Mach 2.7 flows over concave surfaces
with two different curvature radii to comparatively investigate the effect of concave curvature on
turbulence structures and statistics. They noted that Görtler-like vortices generated by the significant
centrifugal effects occurred in the outer region of the boundary layer, while abundant small-scale
vortices on the concave wall were associated with baroclinic production from the interaction of
the density gradients and concave compression. They also showed that compressibility effects
in the concave case with a large curvature rate were not negligible and that the profiles of the
turbulent kinetic energy and turbulent Mach number were featured by a characteristic two-layer
structure. In follow-up work, Wang et al. [19] analyzed the amplification of large-scale motions in
a supersonic concave boundary layer and its impact on mean properties and turbulence statistics. It
was found that the interaction between low- and high-momentum flows was significantly promoted
by the large-scale streamwise roll cells, especially in the outer layer, and a large number of hairpin
vortices were generated in the near-wall region, resulting in a stronger wall-normal correlation.
Similarly, the DNS data of Wu et al. [20] showed that the striking amplification of outer-layer
turbulence, as evidenced by energy spectra, was mainly contributed by the increasingly energized
large-scale motions in the outer boundary layer. By inspecting the spanwise two-point correlations,
they quantified the amplitude modulation of the inner-outer interactions and demonstrated that the
considerably enhanced turbulence modulation caused by the concave surface was still governed by
logarithmic-region superstructures, rather than the large-scale motions in the lower-wake region.
In a more recent DNS of hypersonic APG TBLs over a planar concave wall, Nicholson et al. [21]
showed that the pressure gradient had little effect on the turbulent Prandtl number and the modified
strong Reynolds analogy, whereas profiles of turbulence intensities at different pressure gradients
did not collapse under Morkovin’s scaling.

The aim of the present study is to investigate the behaviors of the WSS and wall heat flux
(WHF) in concave-curvature flows, which are still not well understood. To our knowledge, except
for the DNS study of wall pressure fluctuations given by Sun et al. [18], direct measurement and
numerical analysis of the wall-flow variables with concave surface have been mainly paid on the
mean distribution; the current paper is an attempt to make the best of DNS to uncover the combined
effect of all the extra strain rates on the WSS and WHF fluctuations, which provides absolute
access to the whole fluctuating fields that are very difficult to obtain in experiments. As far as
the mean wall quantities are concerned, how the changes in turbulence structures relate to the
generation of the mean WSS and WHF is still unknown. The objective of this work is to fill in
the above gaps by delineating a statistical picture of the fluctuating WSS and WHF, including the
probability density function (PDF), space-time correlations, and power spectra, and by decomposing
the mean wall-flow variables into physics-informed contributions using the identities proposed by
Li et al. [22] and Sun et al. [23]. In the cases of wall-bounded boundary layer flows [24–26] and the
interaction of impinging shock waves with TBLs [27–29], the quantitative contributions of various
turbulent scales to the mean WSS and WHF have been identified using these novel theoretical

124602-3



TONG, DUAN, JI, DONG, YUAN, AND LI

decompositions, with the aid of the bidimensional empirical mode decomposition (BEMD) method.
These investigations inspire us to adopt a similar methodology to explore the underlying generation
mechanisms in supersonic concave TBLs.

In this paper, a new DNS is performed of a TBL with a Mach number of M∞ = 2.25 and a
friction Reynolds number of Reτ = 769 subjected to a longitudinal concave surface with a total
turning angle of 24◦. The radius of curvature is 20 initial boundary layer thicknesses. The major
consideration for the inflow conditions and concave curvature selected is to make sure that the
shock wave is formed just outside the boundary layer, and therefore, that a smooth rise in pressure
is generated throughout the concave surface, as in the previous experiments of Jayaram et al. [7]
and Donovan et al. [9]. The setup of the simulation is briefly introduced in Sec. II, together with a
validation of the DNS data. In Sec. III, the general properties of the flow field, key statistical results,
and decomposition analysis are discussed. Finally, the concluding remarks are given in Sec. IV.

II. SIMULATION SETUP

A. Numerical strategy

We solve the three-dimensional compressible conservative Navier-Stokes equations, nondimen-
sionalized by the inflow parameters, for a perfect gas with a ratio of specific heat γ = 1.4 and a
Prandtl number Pr = 0.71. The pressure p, density ρ, and temperature T are assumed to obey the
ideal-gas equation of state, and the Sutherland law is adopted to calculate the molecular viscosity μ.
The thermal conductivity is calculated as k = μCp/Pr, with the heat capacity at constant pressure
being Cp = 1/(γ−1) M2

∞. Details of these equations are provided in the work of Tong et al.
[17]. The present DNS is performed using an open-source code OpenCFD-SC, provided by Li
et al. [30,31]. This high-order finite difference flow solver has been extensively used to simulate a
wide range of shock-induced separated flows [32,33] and hypersonic transitional boundary layers
[34,35]. The discretization of the adopted governing equations is fulfilled by a bandwidth-optimized
fourth-order weighted essentially nonoscillatory scheme [36] with Steger-Warming flux splitting
for the inviscid fluxes, an eighth-order accurate central difference scheme for the viscous fluxes,
and a third-order total variation diminishing Runge-Kutta method [37] for the time integration.
The freestream Mach number, static temperature, and unit Reynolds number are M∞ = 2.25,
T∞ = 169.44 K, and Re∞/mm = 2.5 × 104, in accordance with recent DNS studies by Tong et al.
[25]. Throughout this paper, the subscript “�” indicates that the quantity is taken in the freestream,
while the subscript “w” represents a quantity at the wall.

In the present study, a turbulent boundary layer is initially developed on a zero-pressure-gradient
flat plate before entering a curved surface region with a total turning angle of 24◦ and then relaxing
on a flat plate downstream. The overall size of the computational domain sketched in Fig. 1 is Lx ×
Ly × Lz = 87.7δ × 14.0δ × 5.0δ in the direction along the bottom wall (x), in the direction normal
to the bottom wall (y), and in the spanwise direction (z), respectively, with δ = 1.27mm being the
nominal thickness of the incoming turbulent boundary layer at the reference location xref , estimated
hereafter from the 99% freestream velocity. In the following, δ denotes the boundary layer thickness
at xref ; x, y, and z are the body intrinsic coordinates in the local tangential, wall-normal, and spanwise
directions, respectively; and u, v, and w are the corresponding velocity components. Meanwhile, X,
Y, and Z refer to the Cartesian coordinates, and U, V, and W are the velocity components in the axial,
transverse, and spanwise directions, respectively. The origin (x, y) = (0, 0) is located at the start of
the curvature Xs, having the same origin as X and Y. The domain inlet and the reference location
xref are placed at X = −56.0δ and X = −5.5δ, respectively, and the curvature ends at Xe = 8.8δ.
A region of blowing and suction, as shown by the contour of the instantaneous velocity V/U∞,
is centered at the bottom wall between Xa = −50.0δ and Xb = −40.0δ to induce the laminar-to-
turbulent transition, which generates the fully developed TBL upstream of the curved region, as
illustrated by the contour of instantaneous velocity U/U∞ in the X-Y plane at Z = 0.

The grid spacing in the spanwise direction is uniform and the grid points in the X-Y plane are
sketched in Fig. 2. In the streamwise direction, the grid points are equally distributed in the region

124602-4



WALL SHEAR STRESS AND WALL HEAT FLUX …

FIG. 1. A sketch of the computational domain together with the contour of the instantaneous velocity
U/U∞ in the X-Y plane at Z = 0 and the contour of the instantaneous velocity V/U∞ at the wall in the blowing
and suction region located between Xa and Xb. The variables Xs and Xe denote the start and end points of the
curved region, respectively. The reference location is denoted by xref . The inset shows a side view of the curved
region.

of interest between x = −16.0δ and x = 27.0δ, while the grid spacing is progressively refined in
the transition zone at x < −16.0δ and is sharply coarsened in the fringe zone at x > 27.0δ. In the
wall-normal direction, grid stretching is used to guarantee that there are at least 280 points clustered
inside the boundary layer to adequately resolve turbulent structures. In our simulations, two grids
with different resolutions are considered, denoted Grid A (nx × ny × nz = 3094 × 430 × 340) and
Grid B (nx × ny × nz = 4244 × 430 × 485). For both grids, the grid resolutions in the wall-normal
direction are nearly the same, with �yw

+ = 0.55 (the first grid point from the wall) and �ye
+ =

8.0 (at the boundary layer edge), respectively. Going from Grid A to Grid B, the streamwise and
spanwise grid spacing in the well-resolved curvature region are decreased from �x+ = 11.4 and
�z+ = 9.9 to �x+ = 8.2 and �z+ = 7.1, respectively. The present computational grid resolutions
are comparable to the values adopted in well-accepted DNS studies of compressible turbulent wall-
bounded flows [38,39]. Unless otherwise stated, the subscript “+” stands for a quantity scaled in
wall units at xref .

To generate the inflow turbulence, a steady laminar boundary layer profile provided by Tong
et al. [25] is applied at the domain inlet, and the normal velocity disturbances proposed by Pirozzoli
et al. [40], including two temporal modes, two spatial modes in the streamwise direction, and ten
spatial modes in the spanwise direction, are applied in the wall blowing and suction region with

FIG. 2. A sketch of the computational grid in the X-Y plane. The grid points are displayed every three
points in both directions.
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(a) (b) (c)

FIG. 3. Spanwise two-point correlation coefficients at X/δ = 8.0: (a) streamwise velocity Cuu; (b) wall-
normal velocity Cvv; (c) pressure Cpp.

a net flow rate of zero. The selected disturbance amplitude and fundamental frequency, which are
the same as those used by Tong et al. [25–28], produce a realistic turbulent boundary layer after
the transition within a short distance of about 125 times the inflow boundary layer thickness. Note
that the grid is sharply coarsened to drive the flow toward a uniform state in the fringe region,
and supersonic outflow boundary conditions are applied at the domain outlet. Additionally, no-slip
isothermal conditions are enforced at the bottom wall, while nonreflecting conditions are enforced at
the parallel top boundary layer to eliminate the reflection of disturbances back into the domain. The
constant wall temperature is Tw = 254.16 K, corresponding to 0.75 times the recovery temperature
Tr, and thus the wall is cold in the present study. In the span, the selected domain width is large
enough to allow flow homogeneity (as discussed below) and periodic boundary conditions are
imposed on both sides.

We start the simulations by using the imposed laminar boundary layer profile at the domain
inlet to initialize the full three-dimensional flow field and perform flow sample collection for a time
period of approximately 500δ/U∞ when the effect of the initial transient flow is washed out after a
time period of about 170δ/U∞. In the results that follow, either Reynolds or Favre averaging is used
for a generic variable φ. The Reynolds average φ over the spanwise direction and time is denoted by
〈φ〉 or φ̄, while the Favre average is denoted by {φ} = 〈ρφ〉/〈ρ〉 or φ̃ = ρφ/ρ̄. The corresponding
fluctuations are then obtained as φ′ = φ − 〈φ〉 and φ′′ = φ − {φ}, respectively.

B. Numerical validity

Assessments of the domain width are performed in Fig. 3, where spanwise two-point correlation
coefficients for the velocity and pressure fluctuations at X/δ = 8.0 are plotted as computed on Grid
B. For the four wall-normal locations selected (from the near-wall region to the outer region), all
the correlations confirm that the turbulent fluctuations are uncorrelated as the spanwise separation
rz is over Lz/2, suggesting that the domain width used is large enough and the turbulence dynamics
inside the curved region are not inhibited. Similar results (not shown here for clarity) can be obtained
at other streamwise locations.

The accuracy of the inflow turbulence is assessed by examining the mean-flow properties and
turbulence statistics at the reference location xref computed on Grid B. In Fig. 4(a), the obtained
shape factor H12 is compared with the empirical relation given by Hopkins et al. [41] and the DNS
data reported by Huang et al. [42], and good agreement is seen. The wall-normal profile of the
van Driest transformed mean streamwise velocity 〈uvd〉+, shown in Fig. 4(b), agrees very well with
the compressible DNS data for zero-pressure-gradient TBLs given by Tong et al. [25] and Fang
et al. [43] under similar flow conditions. Clearly, the well-resolved viscous sublayer at y+ < 6
and the logarithmic region at 30 < y+ < 100 obey the classic law of the wall, consistent with
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(a) (b)

FIG. 4. Mean-flow properties at the reference location xref : (a) shape factor H12; (b) profile of the van Driest
transformed mean streamwise velocity 〈uvd〉+.

canonical wall-bounded turbulent flow structures. The high resolution in the present simulation is
further confirmed in Fig. 5(a), where the wall-normal profiles of the density-scaled Reynolds stress
components Ri j normalized by the square of the friction velocity uτ agree well with the numerical
results of Fang et al. [43] and the experimental measurements of Eléna and Lacharme [44] at
M = 2.23 and Reθ = 4700. In addition, the computed temperature-velocity correlation coefficient,
RuT , plotted in Fig. 5(b), with an approximate value of 0.55 at y/δ > 0.2, exhibits close similarities
with those in the DNS database of Pirozzoli and Bernardini [38] with Reτ = 1116 at M = 2.0
and Huang et al. [42] with Reτ = 774 at M = 2.5 and 4.9. This ensures that a fully developed
equilibrium state of the incoming TBL is obtained at the reference location upstream of the concave
curvature.

The sensitivity of the numerical results to the grid resolution is investigated by comparing the
time- and spanwise-averaged wall quantities as well as root-mean-square (rms) values computed
from the two grids. In Fig. 6, the spatial distribution of wall pressure, skin friction coefficient,
and heat flux is shown, respectively. Across the concave curvature, the wall pressure and heat flux
increase smoothly, while the skin friction coefficient drops and no mean-flow separation occurs.

(a) (b)

FIG. 5. Turbulence statistics at the reference location xref : (a) density-scaled Reynolds stress components
Ri j = (〈ρ〉/〈ρw〉){u′′

i u′′
j }; (b) temperature-velocity correlation coefficient, RuT .
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(c) (d)

(e) (f)

(a) (b)

FIG. 6. Distribution of time- and spanwise-averaged (left) and root-mean-square (right) wall quantities for
both grids: (a) pressure; (b) skin friction coefficient; (c) heat flux. Red: Grid A; black: Grid B.

Going from Grid A to Grid B, all the curves nearly collapse, with the notable differences being
less than 5% seen in Fig. 6(c). It can be concluded that the present resolution is adequate to obtain
grid-converged results. Thus, the analysis given below is based on results calculated using Grid B.

III. RESULTS AND DISCUSSION

A. General properties of the flow field

The instantaneous temperature field in the X-Y midplane presented in Fig. 7(a) gives a first
impression of the flow characteristics in the concave region. As expected, the curvature diffuses
the shock wave into a weak compression fan near the boundary layer edge in a qualitatively
similar way to that seen in the schlieren photograph experiments performed by Donovan et al.
[9] for turbulent flows over a 16◦ concave surface curvature. Across the curvature, the temperature
significantly increases and the boundary layer thickness becomes thinner at 0 < X/δ < 6, followed
by an obvious thickening in the downstream relaxation. Another important observation is clearly
seen in Figs. 7(b)–7(d), where three cross-sectional planes at X/δ = 0 (the start of the curvature),
8.0 (almost the end of the curvature), and 20.0 (far downstream from the curvature) are shown,
respectively. In Fig. 7(b), the upstream TBL is characterized by high-temperature fluids in the
near-wall region and highly intermittent low-temperature turbulent bulges in the outer layer, which
resemble those found in previous studies of wall-bounded turbulent flows [38,40]. Meanwhile, the
δ-sized high-temperature bulges in the outer region of the distorted boundary layer [see Figs. 7(c)
and 7(d)] imply the existence of large-scale longitudinal roll cells. Similar behavior of the enhanced
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(b) (c) (d)

(a)

FIG. 7. Contours of the instantaneous temperature field T/T∞: (a) X-Y midplane; (b) y-z plane at X/δ = 0;
(c) y-z plane at X/δ = 8.0; (d) y-z plane at X/δ = 20. The dashed lines in (b)–(d) denote the local boundary
layer thickness.

momentum transport in a concave turbulent boundary layer DNS was also reported by Wang et al.
[19] at a turning angle of 12◦.

To give a three-dimensional representation of the flow, in Fig. 8 we visualize the instantaneous
vortex structures in terms of the isosurface of the Q criterion [45]. The figure highlights an
augmentation of the outer-layer vortices after the flow passes through the weak compression fan
and relaxes in the downstream region, which is consistent with the occurrence of the outer energetic
peaks in the spanwise energy spectra (as discussed below). These amplified vortices, frequently
seen at X/δ > 5, appear to be organized into large-scale coherent structures in the outer region,
with a streamwise length scale O(10δ). Such behavior in vortical activity is likely associated
with Görtler-like structures, which are difficult to distinguishably extract from turbulent flows, as
previously explained by Sun et al. [18] for the case of supersonic concave surface curvature.

The contours of the time-averaged WSS and WHF fields are shown in Figs. 9(a) and 9(c),
respectively, while the instantaneous WSS and WHF fluctuations, calculated as

τ ′(X, Z, t ) = τ − 〈τ 〉= μ
∂u(X, y, Z, t )

∂y

∣∣∣∣
w

−
〈
μ

∂u(X, y, Z, t )

∂y

∣∣∣∣
w

〉
, (1)

q′(X, Z, t )= q − 〈q〉 = k
∂T (X, y, Z, t )

∂y

∣∣∣∣
w

−
〈

k
∂T (X, y, Z, t )

∂y

∣∣∣∣
w

〉
(2)

are shown in Figs. 9(b) and 9(d), respectively. It is apparently seen that both the time-averaged
WSS and WHF fields exhibit significant variations in the spanwise direction at X/δ > 0, implying
a strong spanwise modulation inside the curved region. Similar findings of the time-averaged WSS
in sharp compression ramp simulations were also reported by Grilli et al. [46] and Loginov et al.
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FIG. 8. The instantaneous vortex structure extracted using the Q criterion, colored with the wall-normal
distance and contour of the pressure gradient modulus in the X-Y plane at Z = 0. The isosurface of Q equaling
to 0.2% of its global maximum is shown.

[47], who explained the spanwise variations as footprints of counter-rotating steady streamwise
vortices. It is important to note that the mean flow is attached, but small patches of Cf < 0 reveal
instantaneous flow reversal occurring in the curvature [see the black solid lines in Figs. 9(b) and
9(d)]. The maximum statistical probability of negative skin friction is below 8% at X/δ = 5.6,
indicating that the flow is in the incipient detachment state, as suggested by Simpson [48]. As

(a) (b)

(c) (d)

FIG. 9. Contours of time-averaged fields (left) and instantaneous fluctuations (right) with the isoline Cf =
0 in black: (a), (b) WSS; (c), (d) WHF. The solid lines denote five streamwise locations S1–S5.
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(a) (b)

FIG. 10. (a) A comparison of the Reynolds analogy factor and QP85 scaling; (b) the streamwise variation
of the root-mean-square level of the WSS and WHF fluctuations normalized by the local mean values, 〈τ 〉 and
〈q〉. The shaded areas in (a) and (b) denote the concave surface.

anticipated for TBLs [25], both the WSS and the WHF fluctuations are streamwise elongated, and
the characteristic length scales of the former are much larger than those of the latter. It is seen that
the predominance of streamwise coherence is still maintained in the curved region with a locally
reversed flow. More interestingly, there are increasingly pronounced similarities between τ ′ and q′
downstream from the curvature at X/δ > 8.0, except for the notable differences in magnitude. These
qualitative observations of the fluctuating WSS and WHF fields will be extended and clarified in the
next few sections, in which the statistical behaviors of τ ′ and q′ at six different streamwise locations
(xref and S1–S5) will be investigated through a comparative analysis. Here three locations denoted
as S1–S3 are placed at the onset, midpoint, and endpoint of the curvature, respectively, and two
locations denoted as S4 and S5 are placed at X/δ = 12.8 and 20.4 in the downstream relaxation
region, respectively.

Figure 10(a) compares the streamwise distribution of the Reynolds analogy factor (RAF) and
QP85 scaling, which are defined as RAF = 2〈q〉/〈Cf 〉 and QP85 = (〈q〉/〈q〉u)(〈pw〉u/〈pw〉)0.85,
respectively, with 〈q〉u and 〈pw〉u being the mean WHF and wall pressure at the reference location
xref . Upstream of the curvature, the RAF and QP85 are nearly constant, with RAF ≈ 1.15 and
QP85 ≈ 0.98, in good agreement with the hypersonic boundary layer simulations of Priebe and
Martin [39], who reported RAF ≈ 1.2 and QP85 ≈ 1.0 for Reθ = 3300. It can be seen that the
RAF experiences a rapid increase in the concave region, attaining a peak value of RAF ≈ 4.28 at
X/δ ≈ 7.2, and then undergoes a slow decrease in the downstream relaxation region, approaching
RAF ≈ 2.15 at X/δ = 24. Meanwhile, the value of QP85 is relatively unchanged by the curvature,
and varies between 0.76 and 1.10, supporting the validity of the scaling linking the mean WHF and
wall pressure in the concave boundary layer. Moreover, the root-mean-square fluctuations in the
WSS and WHF (τrms and qrms) are displayed in Fig. 10(b) as functions of X/δ, where the intensities
are normalized by the local mean values, 〈τ 〉 and 〈q〉, respectively. At X/δ < 0, τrms/〈τ 〉 attains
a constant value of 0.411, which matches the incompressible empirical correlation proposed by
Örlü and Schlatter [49], τrms/〈τ 〉 = 0.298 + 0.018lnReτ , and the fluctuation amplitude in the WHF
exhibits a larger fraction of the mean value, where qrms/〈q〉 ≈ 0.55, very close to the typical values
reported by Huang et al. [42] for hypersonic cold-wall TBLs under various flow conditions. Notably,
the overall trends of τrms/〈τ 〉 and qrms/〈q〉 are completely different on the concave surface, which
is primarily due to the difference in the respective mean value, but the scaled WSS and WHF
fluctuations are nearly equal, attaining an approximate value of 0.431 in the relaxation region at
X/δ > 16, implying that the recovery of the fluctuating WSS is much faster than that of the
fluctuating WHF.
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(a) (b)

FIG. 11. PDFs of the fluctuating WSS and WHF at various streamwise locations: (a) P(τ ′/τrms);
(b) P(q′/qrms).

B. Probability density function

The PDFs of the WSS and WHF fluctuations at various streamwise locations are shown in
Fig. 11. It is clearly seen from the figure that all of the PDFs exhibit a skewed behavior for τ ′
and q′, with the peaks occurring at τ ′ ≈ −0.5τrms and q′ ≈ −0.5qms, respectively, as found by Yu
et al. [50] in their compressible wall-bounded turbulence studies, but clear curvature dependence
is observed for both the negative and the positive tails of the PDFs. That is, in the positive tail, the
values slightly increase in the region S1–S2 and then collapse onto each other at S3–S5, indicating a
higher occurrence probability of rare extreme events at τ ′/τrms > 4 and q′/qrms > 4. In the negative
tail, the influence of the curvature on τ ′ and q′ is different. A comparison of Figs. 11(a) and 11(b)
highlights a significantly increased probability of extreme negative events at τ ′/τrms < −4 and a
sharply decreased probability of extreme negative events at q′/qrms < −4, since the PDFs of τ ′ in the
region S2–S3 become wider and the corresponding PDFs of q′ become narrower. This dissimilarity
is noteworthy due to the enhanced instantaneous separation flows along the concave surface (see
Fig. 9). In addition, a faster recovery of the negative tails of τ ′ is achieved in the relaxation region;
that is, the PDFs at S4–S5 deviate slightly from the upstream profile, whereas the PDFs of q′ show
far lower values than those of xref .

In Fig. 12, the premultiplied PDFs are shown to investigate the fractional contributions of the
rms values. As we can see, the dominant contribution of the positive fluctuations to qrms and τrms

is very insensitive to the presence of curvature, with the main difference being a smaller amplitude
at τ ′/τrms ≈ 1. Similar behavior was also found by Abe et al. [51], who studied the influence of
the Reynolds number on surface heat flux fluctuations in low-speed turbulent channel flows up to
Reτ = 1020. As expected, the effect of curvature is mainly reflected by the contributions of negative
values to qrms and τrms. It is seen from Fig. 12(a) that the decreased contributions at τ ′/τrms ≈ −1
are partially compensated for by a small increase in the contributions of extreme negative events
of τ ′, whereas the local contributions at q′/qrms ≈ −1 are increased to balance out the attenuated
contributions at q′/qrms < −2, as seen in Fig. 12(b).

The joint PDFs and premultiplied joint PDFs of the fluctuations of the WSS and WHF scaled
by the local rms values (τrms and qrms) at various streamwise locations, denoted as P(τ ′, q′) and
τ ′q′P(τ ′, q′), are plotted in Figs. 13(a) and 13(b), respectively, to examine the correlations between
τ ′ and q′. It is important to emphasize that the strong correlation is essentially not affected by
the curvature, as evidenced by values of the correlation coefficient larger than 0.79 and the highly
narrowed distributions of P(τ ′, q′), with the major axis inclined in the first (τ ′ > 0, q′ > 0) and
third (τ ′ < 0, q′ < 0) quadrants, as shown in Fig. 13(a). This behavior is better seen in Fig. 13(b),
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(a) (b)

FIG. 12. Premultiplied PDFs of the fluctuating WSS and WHF at various streamwise locations:
(a) (τ ′/τrms)2P(τ ′/τrms); (b) (q′/qrms)2P(q′/qrms).

in which pairs of τ ′/τrms ≈ −1 and q′/qrms ≈ −1 contribute mostly to the observed high correlation
coefficients at all the selected locations, in line with previous findings of Yu et al. [52].

C. Space-time correlations

In this section, the influence of curvature on the structural properties of the WSS and WHF
fluctuations is mainly investigated by comparing the two-point space-time correlation coefficients,
computed as

Rττ (�x+,�z+,�t+) = 〈τ ′(x0, z, t )τ ′(x0 + �x+, z + �z+, t + �t+)〉√
〈τ ′(x0, z, t )2〉

√
〈τ ′(x0 + �x+, z + �z+, t + �t+)2〉

, (3)

Rqq(�x+,�z+,�t+) = 〈q′(x0, z, t )q′(x0 + �x+, z + �z+, t + �t+)〉√
〈q′(x0, z, t )2〉

√
〈q′(x0 + �x+, z + �z+, t + �t+)2〉

(4)

(a) (b)

FIG. 13. Joint PDFs and premultiplied joint PDFs at various streamwise locations: (a) P(τ ′q′);
(b) τ ′q′P(τ ′, q′). The solid and dashed contour lines correspond to 0.8 and 0.2 times the maximum value,
respectively. xref : black; S1–S5: red, green, blue, pink, and orange.
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(a) (b)

(e) (f)

(c) (d)

FIG. 14. Streamwise-spanwise correlation coefficients at various streamwise locations: (a) xref ; (b)–(f)
S1–S5. Red: Rττ (�x+, �z+, 0); blue: Rqq (�x+, �z+, 0). Four contour levels between 0.3 and 0.9 with an
increment of 0.2 are shown.

where x0 is the reference streamwise location, �x+ and �z+ correspond to the spatial spacing in

the streamwise and spanwise directions, respectively, and �t+ is the time delay. Note that the axes
in the correlation contours are on different scales, in order to better demonstrate the changes in the
sizes of the energetic structures.

Figure 14 compares the contour lines of the streamwise-spanwise correlation coefficients Rττ

(�x+,�z+, 0) and Rqq (�x+,�z+, 0) at six streamwise locations. At all of these locations, the
isolines are clearly elongated in the streamwise direction for both τ ′ and q′, with the streamwise
extent of the contour map always being larger than its width, which supports that the streaky
structures are well preserved through the curvature, as previously shown in Fig. 9. At xref , the
comparison in Fig. 14(a) shows that the WSS field has a larger streamwise dimension and a smaller
spanwise dimension than those of the WHF field. Taking the correlation level of 0.3 as an example,
the spatial extents in the streamwise and spanwise directions are about �x+ = 440 and �z+ = 52
for τ ′, respectively, where �x+ = 210 and �z+ = 68 for q′. Importantly, the effect of curvature on
the spatial dimension of Rττ (�x+,�z+, 0) is different from that of Rqq (�x+,�z+, 0). In the x
direction, we find that the spatial extent of the structures in τ ′ generally decreases as the reference
probe moves downstream, with the exception of an abrupt increase at location S3 [see Fig. 14(d)],
whereas the sizes of the structures in q′ appear to increase on the whole. In the z direction, the width
of the correlations for the WSS field increases considerably in the concave region and decreases
rapidly in the relaxation region, in contrast to the consistent decrease observed in the WHF field. As
a consequence, the correlation map for τ ′ at locations S5 has nearly the same spatial extent as that
for q′, where �x+ = 296 and �z+ = 36, as shown in Fig. 14(f). This finding provides evidence for
the aforementioned strong similarities between the WSS and WHF fluctuations downstream from
the curvature, as noted in Fig. 9.
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(a) (b) (c)

FIG. 15. Space-time correlation coefficients of the WSS fluctuations at various streamwise locations:
(a) S1; (b) S2 and S3; (c) S4 and S5. Four contour levels are shown: Rττ (�x+, 0, �t+) = 0.2, 0.3, 0.5, and 0.7.
The gray isolines in (a)–(c) denote the results at xref .

The contour lines of the longitudinal space-time correlation coefficients Rττ (�x+,0,�t+) and
Rqq (�x+,0,�t+) at the six locations are plotted in Fig. 15 for the WSS fluctuations and in Fig. 16
for the WHF fluctuations. The space-time organization of the WSS and WHF fields at xref , upstream
of the curvature, is consistent with that observed in the zero-pressure-gradient compressible wall-
bounded turbulence by Yu et al. [52]. It is characterized by a narrowed forward-leaning elliptical
behavior, which is a clear indication of the strong downstream propagation of fluctuations. The
correlations further confirm that the propagative nature of the fluctuations is independent of the
presence of the curvature, with the skewed shape of the contours being well preserved at locations
S1–S5. However, the main effect of the curvature is obviously a considerable reduction in the
inclination angle for both τ ′ and q′. In particular, the comparisons shown in Figs. 15(a) and 16(a)
demonstrate that the space-time correlations at xref and S1 collapse well and that the inclination
angles are slightly changed, except for small differences at larger separations, indicating a slow
response of the fluctuations near the curvature onset. Throughout the curvature, it is evident that the
inclined major axes become much closer to the axis of the delay time, and are more pronounced
in the WHF field [see Fig. 16(b)], which reflects a dramatically decreased coherence along the
rear part of the concave surface. After the curved region, it is clearly seen in Figs. 15(c) and 16(c)
that the changes in the inclination angles at locations S4 and S5 are less significant but the angles
are still lower than the upstream values, meaning that the recovery of the convection velocity is
incomplete in the downstream relaxation region under the flow conditions investigated. It can be

(a) (b) (c)

FIG. 16. Space-time correlation coefficients of the WHF fluctuations at various streamwise locations:
(a) S1; (b) S2 and S3; (c) S4 and S5. Four contour levels are shown: Rqq(�x+, 0, �t+) = 0.2, 0.3, 0.5, and 0.7.
The gray contour lines in (a)–(c) denote the results at xref .

124602-15



TONG, DUAN, JI, DONG, YUAN, AND LI

(a) (b)

FIG. 17. The local convection velocity uc as a function of the time delay �t+ at various streamwise
locations: (a) WSS; (b) WHF. xref : black squares; S1–S5: red circles, green left triangles, blue deltas, pink
squares, and gray gradients.

reasonably inferred from this that the curvature has a large influence on the convection velocity of
the fluctuating WSS and WHF.

To quantify the deceleration of the propagation caused by the curvature, the local convection
velocities at the six streamwise locations, obtained from Figs. 15 and 16, are compared in Figs. 17(a)
and 17(b) for τ ′ and q′, respectively, as a function of the time delay �t+. Following Duan et al. [53]
and Bernardini and Pirozzoli [54], the convection velocity uc for a given time separation �t∗ is here
computed as the ratio �x∗/�t∗, where the spatial separation �x∗ is taken at the point at which the
space-time correlation Rττ (�x, 0,�t∗) or Rqq (�x, 0,�t∗) attains a local maximum. It is apparent
at xref that the WHF fluctuations propagate downstream with speeds larger than those of the WSS
fluctuations; that is, uc = 0.55U∞–0.62U∞ for q′ and uc = 0.42U∞–0.49U∞ for τ ′. As expected,
the convection velocities experience a remarkable decrease in the curved region, with the computed
values at location S3 being about 0.15U∞–0.3U∞ for τ ′ and 0.1U∞–0.2U∞ for q′. Interestingly, an
asymptotic behavior is noticeable in the relaxation region, where the WSS and WHF fluctuations at
locations S4 and S5 propagate at a similar speed of around uc = 0.2U∞.

D. Frequency spectra

The wall frequency spectra at the six streamwise locations are plotted in Fig. 18 for the WSS
and in Fig. 19 for the WHF as a function of the angular frequency ω, to single out the effect of
curvature on the energy distribution in frequency space. For comparison purposes, the frequency is
normalized with respect to the reference viscous timescale υw/u2

τ , with the kinematic viscosity at
the wall υw and the friction velocity uτ being taken at xref , whereas the spectra are normalized with
respect to the local fluctuation intensity. The WSS and WHF fluctuations are sampled at a constant
time interval of �tu2

τ /υw = 1.55, and thus the maximum Nyquist frequency is approximately
ωυw/u2

τ = 2.0. The power spectral density ψ(ω) of the signal is estimated using Welch’s algorithm
with Hamming widows and a 50% overlap between successive segments. To further improve the
statistical convergence of the estimated spectra, ψ(ω) is averaged over 485 points in the z direction.

Regarding the WSS spectra, Fig. 18(a) shows that the premultiplied spectrum at xref is character-
ized by a single broadband peak centered at ωυw/u2

τ = 0.07, which is coincident with previous
findings for the WSS spectrum in low-speed TBLs at Reτ = 265 − 680 by Daniel et al. [55]
and channel flows up to Reτ = 1440 by Hu et al. [56]. It is shown that the peak frequency is
very insensitive to the curvature, but the peak magnitude varies significantly as the probe moves
downstream, experiencing a large decrease in the curved region and a rapid increase in the relaxation
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(a) (b)

FIG. 18. Comparison of the WSS spectra at various streamwise locations: (a) the weighted power spectral
density ωψ(ω) on a log-linear plot; (b) the integration of power spectra density. The variable τrms denotes the
local WSS fluctuation intensity and the viscous timescale υw/u2

τ is taken at xref .

region. Comparing the spectrum at location S5 with that at xref , it is apparent that the effect of
curvature on the energy distribution among various frequencies becomes negligible. In contrast, the
WHF spectra shown in Fig. 19(a) show significant curvature dependence. Upstream of the curvature,
the dominant frequency occurs at ωυw/u2

τ = 0.5, which is about seven times larger than that of the
WSS spectra at xref . When the upstream turbulent boundary layer enters the concave surface, a
shift toward lower frequencies is observed in the premultiplied WHF spectrum. It is seen that the
energy at frequencies ωυw/u2

τ ≈ 0.2 is remarkably enhanced and a distinct spectral peak located
at ωυw/u2

τ ≈ 0.06 emerges, which is very close to the central frequency of the peak in the WSS
spectrum, whereas the energy at ωυw/u2

τ ≈ 0.3 is attenuated. A more detailed view is given in
Figs. 18(b) and 19(b), with the integrated spectra being compared below a specific frequency ω. It
is evident from Fig. 18(b) that all the curves collapse well, supporting a weak effect of curvature on
the spectral energy in the WSS spectrum, whereas the curves at locations S3–S5 seen in Fig. 19(b)
are obviously shifted to the left side of the figure, reflecting a strong amplification of the energy at

(a) (b)

FIG. 19. Comparison of the WHF spectra at various streamwise locations: (a) the weighted power spectral
density ωψ(ω) on a log-linear plot; (b) the integration of the power spectral density. The variable qrms denotes
the local WHF fluctuation intensity and the viscous timescale υw/u2

τ is taken at xref .
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the lower frequencies. In particular, the portion of fluctuating energy in the range ωυw/u2
τ ≈ 0.2 is

gradually increased from about 60% at xref to 83% at locations S3–S5. Although the reason is not
clear, the decrease in the dominant frequency ω can be understood from the change in the convection
velocity uc and characteristic length scale , assuming that ω = 2πuc/ still holds inside the
concave boundary layer investigated here. The streamwise dimension in the spatial correlation
analysis does not strictly reveal the typical size of the fluctuating WSS and WHF; however, it is
a good indicator of the change in the characteristic length scale. Recalling the two-point space-time
correlations seen in Figs. 14 and 17, since the presence of curvature leads to an increase in the
streamwise extent and a decrease in the convection velocity, the observed spectral peak at lower
frequencies is not surprising in the WHF field. On the other hand, the streamwise extent of the
fluctuating WSS decreases throughout the curvature as well as the convection velocity, which
reasonably explains the slight variation in the peak frequency.

E. Decomposition of the mean WSS and WHF

In this section, the mean wall skin friction coefficients Cf at selected streamwise locations are de-
composed to gain further insights into the mean WSS generation in the concave boundary layer. Fol-
lowing Li et al. [22], the decomposition formula for Cf in a compressible flow can be cast in the form

Cf = 2τ (x, z, t )/ρ∞u2
∞ = Cf ,V + Cf ,T + Cf ,G, (5)

where

Cf ,V = 2

ρ∞u3∞

∫ ∞

0
τ̄yx

∂ ũ

∂y
dy, (6)

Cf ,T = 2

ρ∞u3∞

∫ ∞

0
ρ̄(−ũ′′v′′)

∂ ũ

∂y
dy, (7)

Cf ,G = 2

ρ∞u3∞

∫ ∞

0
(ũ − u∞)

[
ρ̄

(
ũ
∂ ũ

∂x
+ ṽ

∂ ũ

∂y

)
+ ∂

∂x
(ρ̄ũ′′u′′ − τ̄xx ) + ∂ρ̄

∂x

]
dy. (8)

The terms Cf ,V, Cf ,T, and Cf ,G, respectively, account for direct viscous dissipation, the power
spent for turbulent kinetic energy production, and the streamwise heterogeneity. Note that τxx in
Eq. (8) and τyx in Eq. (6) represent the streamwise components of the shear and the normal stress in
the body intrinsic coordinate system, respectively.

Figure 20(a) shows the decompositions of Cf at selected streamwise locations. Throughout
the curved ramp, Cf is decomposed with good accuracy, with the sum of the three terms on the
right-hand side of Eq. (5) being very close to Cf (with the relative errors confined to ±1.0%). This
confirms the high reliability of the forthcoming analysis. In agreement with the decomposed results
of Fan et al. [24], the Cf generation at xref is typical of a canonical zero-pressure-gradient boundary
layer, where positive Cf ,T and positive Cf ,V are predominant, contributing about 42% and 45%
of Cf , respectively, and the small positive contribution of Cf ,G is negligible. In the curved region
(0 < X/δ < 10), the decomposition at location S1 is similar to that at xref , whereas differences are
observed at locations S2 and S3, where the Cf generation is dominated by a balance of negative
Cf ,G and positive Cf ,T (both with absolute values even larger than Cf ), and the positive Cf ,V can be
neglected. A similar trend was also reported by Fan et al. [57] in adverse-pressure-gradient TBLs.
In the downstream relaxation region (X/δ > 10), the dominance of the positive Cf ,T is preserved
and the ratio Cf ,T/Cf is decreased, but the decreased contribution of the negative Cf ,G is gradually
overtaken by that of the positive Cf ,V. Moreover, the premultiplied integrands of Cf ,V/Cf , Cf ,T/Cf ,
and Cf ,G/Cf at different streamwise locations are shown as a function of y+ in Figs. 20(b)–20(d),
respectively, to help further characterize the Cf generation. As shown in Fig. 20(b), most of the Cf ,V

contribution comes from the region y+ < 30, regardless of the curvature. It is clear in Fig. 20(c)
that the distributions of Cf ,T/Cf are characterized by an inner peak around y+ = 10 and an outer
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(a) (b)

(c) (d)

FIG. 20. (a) Contributions to Cf and (b)–(d) premultiplied integrands as a function of y+ at selected
streamwise locations. (b) Cf ,V/Cf ; (c) Cf ,T/Cf ; (d) Cf ,G/Cf .

peak at y+ > 100, with the inner peak relatively insensitive to the curvature, whereas the magnitude
of the outer peak significantly increases at locations S2–S5 and becomes much larger than that
of the inner peak, implying that the fluctuations in the outer layer play an increasingly important
role in the Cf ,T contribution. This behavior will be discussed later in conjunction with a scale-
based decomposition analysis based on the BEMD method. In addition, Fig. 20(d) shows that the
counterbalance between the negative contribution from the inner region and the positive contribution
within the outer layer is mainly responsible for the negative Cf ,G contribution caused by the
curvature, and the location of the sign switching is moved away from the wall as the probe is moved
downstream.

Next, the decomposition formula for the mean wall heat transfer coefficient Ch proposed by Sun
et al. [23] is used to investigate the effect of curvature on the mean WHF generation, which can be
expressed as

Ch = q(x, z, t )/ρ∞u3
∞ = Ch,C + Ch,TH + Ch,MD + Ch,TKE + Ch,MS + Ch,RS + Ch,G. (9)

The seven terms on the right-hand side of Eq. (9) are explicitly expressed as follows:

Ch,C = 1

ρ∞u4∞

∫ ∞

0
k
∂T̄

∂y

∂ ũ

∂y
dy, (10)

Ch,TH = 1

ρ∞u4∞

∫ ∞

0
−cpρ̄ ˜v′′T ′′ ∂ ũ

∂y
dy, (11)
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Ch,MD = 1

ρ∞u4∞

∫ ∞

0
(u′′σxy + v′′σyy)

∂ ũ

∂y
dy, (12)

Ch,TKE = 1

ρ∞u4∞

∫ ∞

0
−1

2
(ρu′′u′′v′′ + ρv′′v′′v′′)

∂ ũ

∂y
dy, (13)

Ch,MS = 1

ρ∞u4∞

∫ ∞

0
(ũσ̄xy + ṽσ̄yy)

∂ ũ

∂y
dy, (14)

Ch,RS = 1

ρ∞u4∞

∫ ∞

0
−ρ̄(ũũ′′v′′ + ṽṽ′′v′′)

∂ ũ

∂y
dy, (15)

Ch,G = 1

ρ∞u4∞

∫ ∞

0
(ũ − u∞)

[
ρ

DẼ

Dt
+ ∂ (ũρ̄)

∂x
+ ∂ (ṽρ̄)

∂y
−

(
k
∂T̄

∂x
− cpρ̄˜u′′T ′′ + u′′σxx + v′′σyx

− 1

2
ρu′′u′′u′′ − 1

2
ρv′′v′′u′′ + ũσ̄xy + ṽσ̄yy − ũρu′′u′′ − ṽρv′′u′′

)
dy

]
. (16)

Here, the variables σxx, σxy, and σyy denote the viscous stress components in the body intrinsic
coordinate system. The terms Ch,C, Ch,TH, Ch,MD, Ch,TKE, Ch,MS, and Ch,RS, respectively, represent the
contributions of the mean heat conduction, the turbulent heat transport, the wall-normal component
of molecular diffusion, the turbulent kinetic energy transport, and the work of molecular stresses
and Reynolds stresses. The term Ch,G accounts for the variation of the specific total energy Ẽ with
time, the work of the pressure, and the streamwise heterogeneity.

Figure 21(a) shows the decompositions of Ch at selected streamwise locations. The sum of
the seven terms on the right-hand side of Eq. (9) compares very well with Ch and the relative
errors are confined to ±2.0%, which serves as further confirmation of the accuracy of the present
decompositions. As shown by Tong et al. [29], in the case of incident shock interactions under
similar flow conditions, the Ch generation does not essentially change in character. At xref , it is clear
that there are two dominant terms in the generation, a large positive Ch,RS and a large native negative
Ch,TH, which contribute nearly 127% and −77% of Ch, respectively, whereas the small contributions
of the other terms are negligible, except for a relatively large contribution from Ch,MS (about 44% of
Ch). Throughout the curved ramp, we can see that the effect of curvature exhibits little influence on
the balance between Ch,RS and Ch,TH, despite the two contributors experiencing a very large increase
in magnitude, reaching about 276% and −177% of Ch at location S3, respectively. It is reasonable
to infer that the observed high Ch along the curved ramp surface [see Fig. 6(e)] is mainly caused
by the combined action of the work of the Reynolds stresses and the turbulent transport of heat,
with the excessive heat at the wall generated by the former being carried away from the wall toward
the outer region through the latter, in a qualitatively similar way to that observed in a previous
DNS of a spatially developing supersonic TBL by Tong et al. [25]. However, the most important
difference can be obtained from the premultiplied integrands of the significant contributors shown
in Figs. 21(b)–21(d), given that the proportions of Ch,RS, Ch,MS, and Ch,TH, respectively, in the total
mean WHF are accurately reflected by the areas beneath the respective curves. To be specific, the
results in Figs. 21(b) and 21(d) reveal that beyond the curved region, the contributions coming from
the near-wall region are no longer comparable to those related to the outer layer. The magnitude
of the outer peak is significantly increased, in contrast to the decreased inner peak, and the peak
gradually emerges at much higher wall-normal locations, leading to a dominant role of the outer
layer in the contributions of Ch,RS and Ch,TH. The energization of the outer layer shown in Fig. 21(b)
is consistent with what we found in the premultiplied integrand of Cf ,T/Cf [see Fig. 20(c)], because
of the high similarity between the integrands in Eqs. (7) and (15). Moreover, in Fig. 21(c), the
energization of the outer layer is not observed, whereas the decreased contribution of Ch,MS is only
associated with the inner layer around y+ = 10.

To shed light on how turbulent structures contribute to the generation of Cf and Ch, we further
break down the three dominant contributors, Cf ,T, Ch,RS, and Ch,TH, through a scale decompo-
sition analysis, which is performed only along the z direction, as the flow in the x-y plane is
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(a) (b)

(c) (d)

FIG. 21. (a) Contributions to Ch and (b)–(d) premultiplied integrands as a function of y+ at selected
streamwise locations. (b) Ch,RS/Ch; (c) Ch,MS/Ch; (d) Ch,TH/Ch.

inhomogeneous. Similarly to Cheng et al. [58], we split the fluctuating velocity and temperature
into their four BEMD modes

u′′ =
4∑

i=1

u′′
i , v′′ =

4∑
i=1

v′′
i , T ′′ =

4∑
i=1

T ′′
i , (17)

where u′′
i , v′′

i , and T ′′
i are the decomposed fluctuations of the ith mode of the streamwise velocity,

wall-normal velocity, and temperature, respectively. Under such a decomposition, the characteristic
spanwise length scale for a given mode increases as the mode number increases. We now consider a
simple decomposition of the Reynolds shear stress into 4 diagonal components and 12 nondiagonal
components as

−ũ′′v′′ = −
4∑

i=1

ũ′′
i v

′′
i −

4∑
i=1, j=1,i 	= j

ũ′′
i v

′′
j , (18)

where the first 4 diagonal components, denoted as (1, 1), (2, 2), (3, 3), and (4, 4), are related to
fluctuations with specific spanwise length scales, whereas the last 12 nondiagonal components are
produced by the interaction between the decomposed velocity fluctuations of the four modes, as
identified by Cheng et al. [58] in turbulent channel flows. In particular, the first diagonal component
(1,1) is associated with small-scale velocity fluctuations, and the fourth diagonal component (4,4)
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is linked to large-scale velocity fluctuations, while the components (2,2) and (3,3) represent the
contributions of intermediate-scale fluctuations. Substituting Eq. (18) into Eqs. (7) and (15), we
have

Cf ,T = 1

ρ∞u3∞

∫ ∞

0
−ρ̄ũ′′

1v
′′
1

∂ ũ

∂y
dy + 1

ρ∞u3∞

∫ ∞

0
−ρ̄ũ′′

1v
′′
2

∂ ũ

∂y
dy

+ · · · + 1

ρ∞u3∞

∫ ∞

0
−ρ̄ũ′′

4v
′′
3

∂ ũ

∂y
dy + 1

ρ∞u3∞

∫ ∞

0
−ρ̄ũ′′

4v
′′
4

∂ ũ

∂y
dy, (19)

Ch,RS = 1

ρ∞u4∞

∫ ∞

0
−ũρ̄ũ′′

1v
′′
1

∂ ũ

∂y
dy + 1

ρ∞u4∞

∫ ∞

0
−ũρ̄ũ′′

1v
′′
2

∂ ũ

∂y
dy

+ · · · + 1

ρ∞u4∞

∫ ∞

0
−ũρ̄ũ′′

4v
′′
3

∂ ũ

∂y
dy + 1

ρ∞u4∞

∫ ∞

0
−ũρ̄ũ′′

4v
′′
4

∂ ũ

∂y
dy, (20)

where the 16 terms on the right-hand sides of Eqs. (19) and (20) are their counterparts in Eq. (18).
Note that the contribution of the wall-normal component of the Reynolds stresses in Eq. (15) is less
than 5%, so it is neglected in Eq. (20). In a similar manner to that for the wall-normal heat flux, one
can obtain the decomposition of Ch,TH as

Ch,TH = 1

ρ∞u4∞

∫ ∞

0
−cpρ̄ ˜v′′

1 T ′′
1

∂ ũ

∂y
dy + 1

ρ∞u4∞

∫ ∞

0
−cpρ̄ ˜v′′

1 T ′′
2

∂ ũ

∂y
dy

+ · · · + 1

ρ∞u4∞

∫ ∞

0
−cpρ̄ ˜v′′

4 T ′′
3

∂ ũ

∂y
dy + 1

ρ∞u4∞

∫ ∞

0
−cpρ̄ ˜v′′

4 T ′′
4

∂ ũ

∂y
dy. (21)

In the following, we quantify the effect of curvature on the local contributions to Cf ,T, Ch,RS, and
Ch,TH by comparing the decomposed results in the y-z plane at three streamwise locations (xref , S2,
and S5).

The premultiplied spanwise spectra of the streamwise velocity, wall-normal velocity, and tem-
perature at various streamwise locations are shown in Fig. 22, and convincingly demonstrate the
strong amplification of the outer large-scale fluctuations caused by the effect of curvature and the
qualitative observation of the instantaneous vortical structures discussed in Fig. 8. Although the
inner peak centered at y+ ≈ 13 and λ+

z ≈ 120, which is associated with the frequently quoted
near-wall streaks, is slightly changed compared with that of xref , as shown in Figs. 22(a) and
22(d), the energy peak becomes apparent in the large (y+, λ+

z ) domain. This corresponds to the
large-scale energetic organization of the fluctuating streamwise velocity in the outer region of the
distorted boundary layer, similar to that identified in the numerical study of Wu et al. [20]. Such an
energization of the wall-normal velocity and temperature fluctuations in the outer region is clearly
seen in Figs. 22(b) and 22(c), and 22(e) and 22(f), respectively, where the curvature has significantly
increased the wall-normal location and width of the most energetic structures. It is shown that the
primary inner peak, located in the small-wavelength region of the energy spectra at xref , loses
its importance and vanishes completely at location S5, mainly due to the weakened near-wall
turbulence activity, whereas a distinct energetic peak emerges in the outer large-wavelength region.

Figure 23 shows the energy spectra of the decomposed velocity and temperature fluctuations
contained in each mode, with the full spectra calculated from the raw DNS data also included for
comparison. It is clear that the full spectra are well covered by modes with consistently increasing
spanwise length scales, implying the accuracy of the BEMD used. It can be concluded that the
first mode is characterized by a strong peak located at λz

+ < 100, which corresponds to the small-
scale fluctuations in the full flow field, whereas the energy peak of the fourth mode is at around
λz

+ ≈ 1000 or λz ≈ 1.3δ, and is responsible for the energized large-scale motions. The typical
spanwise length scales of the second and third modes are in the range 100 < λz

+ < 1000, and can
be assumed to represent intermediate-scale fluctuations. Another key observation is obtained from
the variation of the wall-normal location of the spectral peaks. It can be seen in Figs. 23(a) and 23(b),
and 23(d) and 23(e) that the peak location in the spectra of the decomposed velocity consistently
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(a) (b) (c)

(d) (e) (f)

FIG. 22. Contours of the premultiplied spanwise spectra of fluctuations at locations S2 (upper panels) and
S5 (lower panels): (a), (d) streamwise velocity; (b), (e) wall-normal velocity; (c), (f) temperature. The five
isolines at levels 0.1, 0.3, 0.5, 0.7, and 0.9 are taken from xref . The spectra are normalized by the maximum
value of each case. The horizontal and vertical dashed lines denote y+ = 100 and λ+

z = 479 (or λz = 0.5δ),
respectively.

moves away from the inner region (y+ ≈ 6) to the outer region (y+ ≈ 500) as the mode number
increases. However, the wall-normal locations of the spectral peaks, as seen in Figs. 23(c) and 23(f),
are generally maintained at y+ > 100 and show a weak dependence on the mode number, except for
the first mode in Fig. 23(f). This dissimilarity might be explained by a slower recovery of T ′′ in the
near-wall region, compared to those of u′′ and v′′, since the full spectra of T ′′ at locations S2 and S5
are mainly dominated by the large (y+, λz

+) domain.
The decomposition of the Reynolds shear stress is shown in Fig. 24 as a function of y+ at

locations S2 and S5. For both locations, the sum of the 16 components on the right-hand side of
Eq. (18) collapses perfectly onto the wall-normal profile of the full Reynolds shear stress calculated
using the raw DNS data, again confirming the high reliability of our decomposition. It is expected
that the 4 diagonal components contribute most to the full profile, whereas the 12 nondiagonal
components are negligible, which is consistent with the findings of previous studies by Tong et al.
[26,29]. Among the four diagonal components, we note that the component (1,1) related to the
small-scale fluctuations and the component (4,4) associated with the large-scale fluctuations are
the two decisive factors in the Reynolds shear stress. At location S2, Fig. 24(a) shows that the
component (1,1) attains its maximum value at y+ ≈ 17 and is then overtaken by the component
(4,4), which peaks at y+ ≈ 221. This supports the importance of the energized large-scale velocity
fluctuations in the outer region for the generation of the Reynolds shear stress in the concavely
curved flow presently studied. This finding is inconsistent with the decomposition at xref (not shown
here), where the inner small-scale velocity fluctuations are dominant over the outer large-scale
velocity fluctuations in the upstream TBL. From S2 to S5, the peak magnitude of the component
(4,4) shown in Fig. 24(b) is amplified by a factor of about 2.5, with its peak positioned at y+ ≈ 523,

124602-23



TONG, DUAN, JI, DONG, YUAN, AND LI

(a) (b) (c)

(d) (e) (f)

FIG. 23. Premultiplied spanwise spectra (colors) of the decomposed fluctuations in each mode together
with the full spectra (black lines) at locations S2 (upper panels) and S5 (lower panels): (a), (d) streamwise
velocity; (b), (e) wall-normal velocity; (c), (f) temperature. The spectra are normalized by the maximum values
in each case. The black lines mark four isolines at levels 0.2, 0.4, 0.6, and 0.9.

while the component (1,1) increases slightly in the near-wall region and the other two diagonal
components decrease significantly across the boundary layer. This behavior also suggests that
downstream from the concave curvature, the outer large-scale velocity fluctuations are expected
to have a much larger weight. With respect to the decomposition of the wall-normal heat flux at
locations S2 and S5, the predominance of the diagonal components, and especially the absolute

(a) (b)

FIG. 24. Decomposition of the Reynolds shear stress at different streamwise locations: (a) S2; (b) S5. The
profiles are normalized by the maximum value of the Reynolds shear stress.
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(a) (b)

FIG. 25. Decomposition of the wall-normal heat flux at different streamwise locations: (a) S2; (b) S5. The
profiles are normalized by the maximum value of the wall-normal heat flux.

importance of the component (4,4), is highlighted in Fig. 25. As shown in Fig. 25(a), the peak
magnitude of the component (4,4) is roughly four times larger than those of the other three diagonal
components, and it significantly increases at location S5, which is very close to the maximum value
of the wall-normal heat flux at y+ ≈ 581 [see Fig. 25(b)], implying a prominent role for the outer
large-scale v′′ and T ′′ fluctuations.

Figure 26(a) shows the contributions of the four diagonal components to Cf ,T, as calculated using
Eq. (19). At xref , the four diagonal components contribute about 72% of Cf ,T, where the dominant
component (1,1) provides up to 34%. This demonstrates that upstream of the curvature, the Cf ,T

(a)

(b)

(c)

FIG. 26. Contributions of the four diagonal components at different streamwise locations: (a) Cf ,T;
(b) Ch,RS; (c) Ch,TH.
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contribution is mainly generated by the near-wall small-scale u′′ and v′′ structures. At locations
S2 and S5, despite most of Cf ,T still coming from the four diagonal components, the significantly
increased contribution of the component (4,4) reaches approximately 48% of Cf ,T, which is much
larger than the relatively decreased contribution of the component (1,1). For Ch,RS, Fig. 26(b) shows
a similar trend, where the component (1,1) reaches up to 27% of Ch,RS at xref , whereas the component
(4,4) accounts for nearly 54% of the work of the Reynolds stresses at location S5. Since Cf ,T

and Ch,RS are the leading positive contributions to Cf and Ch, respectively, it is believed that the
generation of the mean WSS and WHF in the concave boundary layer is mostly associated with the
energized outer large-scale velocity structures. Regarding the leading negative contribution to Ch, it
can be seen from Fig. 26(c) that the Ch,TH generation is indisputably dominated by the component
(4,4), whose contribution is consistently increased from 25% at xre to 96% at S5, whereas the first
three diagonal components always represent less than 15% (and even become negative at S5). This
implies that throughout the curved ramp, the outer large-scale v′′ and T ′′ structures are the sole
determinant of the upward transport motion of the excessive heat at the wall.

IV. CONCLUSIONS

In the present study, we have performed DNS of a supersonic turbulent boundary layer at
M∞ = 2.25 and Reτ = 769 over a concavely curved compression ramp with a turning angle of
24◦ to investigate the effect of longitudinal concave surface curvature on the characteristics of WSS
and WHF. Flow visualizations showed that the temperature field was increased significantly and a
remarkable enhancement of the vortex structures was observed in the outer region of the distorted
boundary layer. It was found that the mean WHF scaled well with the mean wall pressure in the
concavely curved flow and the root-mean-square fluctuations in the WSS and WHF showed good
collapse downstream from the curvature when scaled with the local mean values.

PDF analysis suggested that the strong correlation between the fluctuating WSS and WHF was
less affected by the curvature, with the negative tail of the former becoming much wider and
the opposite for the latter. A two-point correlation analysis showed that the effect of curvature
had a clear impact on the streamwise coherence, leading to a decrease in the WSS field and an
increase in the WHF field. The convection velocity of the downstream-propagating WSS and WHF
fluctuations in the curved-wall flow was found to decrease significantly, reaching about 0.2U∞ in the
downstream relaxation region. In addition, the premultiplied spectra showed that the characteristic
frequency of the fluctuating WSS was very insensitive to the curvature, whereas the shape of the
WHF frequency spectrum was qualitatively modified across the curved region, showing a shift to
lower frequencies.

The mean WSS and WHF in the supersonic concavely curved ramp were decomposed using
the identities proposed by Li et al. [22] and Sun et al. [23]. It was found that the effect of
curvature essentially changed the generation mechanism of the mean WSS, with the dramatically
increased contribution of Cf ,T responsible for turbulence kinetic energy production balancing the
contribution of Cf ,G associated with the spatial growth of the flow, which became negative and large
in the curved region. The generation mechanism of the mean WHF, which was dominated by the
balance between the work of the Reynolds stresses Ch,RS and the turbulent transport of heat Ch,TH,
remained practically unchanged, while the above two contributors were simultaneously increased.
By performing a scale decomposition analysis of the velocity and temperature fluctuations based
on the BEMD method, we quantitatively demonstrated that the curvature influenced the mean WSS
and WHF generation largely by enhancing the contributions of outer large-scale structures.
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