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Integral relation in zero-pressure-gradient boundary layer flows
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In their 2016 paper, Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016)] developed an
integral relation, UeVe/u2

τ = H12, which connects key parameters in zero-pressure-gradient
(ZPG) boundary layer flows: mean velocity components Ue and Ve at the boundary layer
edge, and friction velocity uτ to shape factor H12. While this relation holds exactly for
ZPG laminar boundary layers featuring self-similar streamwise velocity profiles, it is an
approximation for ZPG turbulent boundary layers (TBLs), with its accuracy improving
as the Reynolds number increases. In this paper, we present a correction to the original
integral relation, providing an exact integral relation that is applicable to ZPG boundary
layer flows at arbitrary Reynolds numbers. The correction comprises two terms: one
addressing deviations from self-similarity in mean streamwise velocity, and the other
considering the impact of Reynolds normal stresses. Experimental and numerical data are
shown to support the relative insignificance of the newly identified correction terms, except
for Reynolds numbers in the transitional regime.
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I. INTRODUCTION

Through an integral analysis of the mean continuity and momentum equations in the zero-
pressure-gradient (ZPG) turbulent boundary layer (TBL), Wei and Klewicki [1] developed an
integral equation that relates the mean velocity components at the boundary layer edge, the friction
velocity, and the shape factor as follows:

UeVe

u2
τ

= H12 . (1)

The shape factor H12 = δ1/δ2 is significant in boundary layer flow analysis [2], as it quantifies the
ratio of the mass displacement thickness δ1 to the momentum thickness δ2. In particular, H12 plays a
pivotal role in characterizing mean streamwise velocity profiles and overall flow behavior [2].

It can be demonstrated that Eq. (1) holds exactly for the ZPG laminar boundary layer equations.
To evaluate this integral relation within ZPG TBLs, Fig. 1 presents the direct numerical simulation
(DNS) data of UeVe/u2

τ and H12. In general, the behavior of UeVe/u2
τ closely mirrors that of H12,

demonstrating a consistent trend. Nevertheless, some noticeable differences emerge, particularly
for TBLs at lower Reynolds numbers.
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FIG. 1. Evaluating Eq. (1) with DNS data: UeVe/u2
τ and H12. Reθ and Reτ are defined using free-stream

velocity and momentum thickness, and friction velocity and boundary layer thickness, respectively. DNS data
are sourced from Schlatter and Örlü [3] (SO) and Simens et al. [4] (SJHM).

In this paper, we present a correction to the integral relation equation (1). The analysis reveals that
the correction’s magnitude diminishes with increasing Reynolds numbers. As the Reynolds number
tends towards infinity, Eq. (1) progressively converges to an exact relationship for ZPG TBLs.

II. INTEGRAL ANALYSIS OF ZERO-PRESSURE-GRADIENT BOUNDARY LAYER FLOWS

For statistically steady two-dimensional turbulent boundary layer flows, the governing equa-
tions of mean continuity and streamwise mean momentum can be expressed as (see, e.g., Refs. [2,5])

∂U

∂x
+ ∂V

∂y
= 0; (2)

U
∂U

∂x
+ V

∂U

∂y
= ν

∂2U

∂y2
+ ∂Ruv

∂y
+ ∂ (Ruu − Rvv )

∂x
, (3)

where uppercase U and V denote the mean velocity components in the streamwise x and wall-
normal y directions, respectively, while lowercase u and v denote the corresponding velocity
fluctuations. The fluid’s kinematic viscosity is denoted by ν. The kinematic Reynolds shear stress
is denoted as Ruv = −〈uv〉, and the kinematic Reynolds normal stresses in the streamwise and
wall-normal directions are denoted as Ruu = −〈uu〉 and Rvv = −〈vv〉, respectively, with the angle
brackets denoting the Reynolds averaging operator. The boundary layer equation for ZPG laminar
flow can be obtained by setting Ruv = Ruu = Rvv = 0 in Eq. (3).

In the study of ZPG TBLs, the term ∂ (Ruu − Rvv )/∂x is often considered to have a negligible
impact on the mean momentum equation balance, as discussed by Townsend [5]. For the sake
of completeness, however, we include this term in our analysis. The corresponding boundary
conditions at the wall and the boundary layer edge are summarized in Table I.

In a recent study, Wei et al. [6] conducted an integral analysis of the mean continuity equation (2)
for ZPG boundary layers, deriving an analytical equation for the mean wall-normal velocity. The
derivation employed the following normalized variables:

x∗ ≡ x

L
, y− ≡ y

δe
, U − ≡ Ue − U

Ue
; V − ≡ V

Ve
, (4)
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TABLE I. Boundary conditions for zero-pressure-gradient tur-
bulent boundary layers at the wall and boundary layer edge.

Boundary conditions

y = 0 U = 0, V = 0, Ruv = 0
y = δe U = Ue, V = Ve, Ruv = 0

where L represents a length scale in the streamwise direction and δe is the boundary layer thickness.
Using the normalized variables, the ∂U/∂x term in the mean continuity equation (2) can be
expressed as

∂U

∂x
= Ue

δe

dδe

dx
y− ∂U −

∂y− − Ue

L

∂U −

∂x∗ . (5)

In Ref. [1], the x-derivative term −(Ue/L)∂U −/∂x∗ in Eq. (5) was omitted. Wei et al. [6] included
this term to obtain an analytical equation for the mean wall-normal velocity at the boundary layer
edge:

Ve = Ue
dδ1

dx
. (6)

Note that Eq. (6) is identical to Eq. (5.5.62) in Tennekes and Lumley’s book [7], but the derivation
in Ref. [7] includes unnecessary assumptions.

Applying the result for Ve, the integral analysis of the mean momentum equation introduces a
correction term to the relation UeVe/u2

τ = H12 developed by Wei and Klewicki [1]. To simplify the
integral analysis of the mean momentum equation, Eq. (3) is rewritten as

∂U 2

∂x
+ ∂ (UV )

∂y
= ν

∂2U

∂y2
+ ∂Ruv

∂y
+ ∂ (Ruu − Rvv )

∂x
. (7)

Upon integrating the mean momentum equation (7) in the wall-normal direction from y = 0 to
y = δe and applying the appropriate boundary conditions, we arrive at

u2
τ = −

∫ δe

0

∂U 2

∂x
dy − UeVe +

∫ δe

0

∂ (Ruu − Rvv )

∂x
dy. (8)

After mathematical manipulation (see Appendixes A and B for details), the global integral of the
mean momentum equation (8) can be expressed as follows:

UeVe

u2
τ

= H12 + 2δ1

Cf

d ln(H12 )

dx
− H12

u2
τ

d

dx

(
δeu2

τ

∫ 1

0
(R+

uu − R+
vv )dy−

)
. (9)

In a ZPG laminar boundary layer flow, there are no Reynolds stresses, and H12 is a constant due to
self-similarity of the streamwise velocity profiles. Therefore Eq. (9) indicates that UeVe/u2

τ = H12

holds exactly for the ZPG laminar boundary layer flows.
The second and third terms on the right-hand side (RHS) of Eq. (9) serve as corrections to the

integral relation developed by Wei and Klewicki in 2016 [1]. The second term emerges from the
inclusion of the x-derivative term −(Ue/L)∂U −/∂x∗ in the analysis (see Appendix A). The final
term addresses the impact of Reynolds normal stresses on the mean momentum balance.

III. EVALUATION OF THE INTEGRAL EQUATION (9)

In this section, both experimental and numerical data are employed to assess the validity of the
integral equation (9) and to quantify the magnitudes of the corrective terms.

124601-3



TIE WEI AND JOSEPH KLEWICKI

(a) (b)

FIG. 2. (a) Friction coefficient vs Reθ . (b) Free-stream velocity, boundary layer thickness, and mass
displacement thickness. Experimental data are from Ref. [8], archived as case 20 in the European Research
Community on Flow, Turbulence and Combustion (ERCOFTAC) database [9].

A. Experimental data

Accurately measuring the mean wall-normal velocity in experimental studies of boundary layer
flows is challenging due to its small magnitude. Consequently, direct measurements of Ve are
sparse and prone to uncertainties. If data of Ue and δ1 are available across the x range, Eq. (6)
can, however, be applied to compute Ve indirectly. In this paper, experimental data obtained from
Ref. [8] were used to indirectly assess the validity of Eq. (9). These experiments were conducted
at the Rolls-Royce Applied Science Laboratory and involved flat-plate transitional two-dimensional
(2D) boundary layer flows. The boundary layers initially develop in a laminar state and then undergo
a transition to turbulence at a specific distance downstream of the leading edge, depending on the
turbulence level in the free stream and the leading-edge geometry. For our analysis, we employ two
cases under zero pressure gradient, namely case T3A and case T3B.

Figure 2 presents key variables characterizing the two experiments. The friction factor Cf =
2u2

τ /U 2
e is shown in Figs. 2(a) and 2(b) displays the free-stream velocity Ue, the boundary layer

thickness δe, and the mass displacement thickness δ1. Figure 2(a) highlights distinct transitions
from laminar to turbulent flows for the two cases: Case T3A enters the turbulent regime at
approximately Reθ ≈ 540 (Reτ ≈ 250), while case T3B enters at a lower Reynolds number of
Reθ ≈ 340 (Reτ ≈ 180). Additionally, case T3A initiates the transition at approximately Reθ ≈ 260
(Reτ ≈ 75), exceeding case T3B’s corresponding values of Reθ ≈ 180 (Reτ ≈ 55).

Figure 2(b) indicates that the free-stream velocity in case T3B is approximately twice that of case
T3A. Consequently, the boundary layer thickness and mass displacement thickness in case T3B are
thinner in comparison to case T3A. Due to the inherent uncertainties present in experimental studies,
measurements of Ue or δe may not be completely smooth in the x direction, as shown in Fig. 2(b).
This, in turn, leads to larger uncertainties when calculating x derivatives.

Figure 3 displays the four terms of integral equation (9) for the two experiments. It is important
to note that Ve was not directly measured but was calculated using Eq. (6). The sum of the RHS of
Eq. (9) closely approximates to UeVe/u2

τ , particularly in case T3B. There are, however, noticeable
scatter and discrepancies. These could be attributed to (1) measurement uncertainties in uτ , Ue, and
δ1 and (2) uncertainties in the calculation of x derivatives resulting from the distances between x-
measurement stations being significantly greater than the local boundary layer thickness, especially
at low Reynolds numbers where the boundary layer is thin. For instance, the distances between the
initial x-measurement stations in case T3A or T3B may reach up to 20 times the local boundary layer
thickness. Additionally, the measurement and calculation of Reynolds normal stress derivatives can
introduce uncertainty and scatter.
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(a) (b)

FIG. 3. Evaluating the validity of integral equation (9) using experimental data. (a) Case T3A. (b) Case T3B.

Even with these uncertainties, Fig. 3 provides clear evidence that the second term on the RHS
of Eq. (9) holds significance during the transitional Reynolds number range, but diminishes to
negligible magnitudes as the ZPG boundary layer flow progresses into fully turbulent states. On
the other hand, the last term on the RHS of Eq. (9), originating from the Reynolds normal stresses,
remains relatively small throughout.

B. Direct numerical simulation data

In theory, DNS data offer greater convenience for evaluating the accuracy of Eq. (9), as all the
terms in the equation, including Ve, can be directly computed with high resolution and precision.
However, exact calculation of x derivatives requires access to two-dimensional mean field data in a
spatially developing boundary layer flow. Unfortunately, certain DNS databases of ZPG boundary
layers only provide discrete Reynolds number data without specifying the corresponding x locations.
While UeVe/u2

τ and H12 values can be obtained from such data (see Fig. 1), the necessary information
to calculate dH12/dx or other x derivatives is generally lacking.

Wu and Moin [10] conducted a DNS study of a nominally zero-pressure-gradient boundary layer
flow, covering the transition from the Blasius regime to turbulence. The transition to turbulence was
initiated by periodic introduction of intermittent localized disturbances from the free stream at the
inlet. The mean wall static pressure gradient, represented as Cpw, was maintained within the range
0–0.012 along the streamwise direction for 80 < Reθ < 940. However, near the exit, the convective
outflow boundary condition led to a rapid increase in the magnitude of Cpw [10]. As a result, caution
should be exercised when interpreting simulation results for Reθ > 1000 in the DNS of Wu and
Moin since they deviate from ZPG TBL behavior.

Figure 4(a) shows the variation of the friction coefficient, indicating transition initiation at Reθ ≈
240 (or Reτ ≈ 50) and entry into the turbulent regime at Reθ ≈ 780 (or Reτ ≈ 360). Using the
same DNS data set, Klewicki et al. [11] analyzed the leading-order balance structure of the mean
momentum equation (3) and confirmed the onset of the four-layer structure identified by Wei et al.
[12] at an estimated Reθ ≈ 780 (or Reτ ≈ 360).

Figure 4(b) presents the variations of UeVe/u2
τ , H12, and the correction term arising from

∂U −/∂x∗. The calculation of the correction term from Ruu − Rvv was, however, not possible due
to the unavailability of the relevant data. It is, nevertheless, assumed to be relatively small. The
determination of Ve involves a higher level of uncertainty in comparison to other flow statistics,
primarily due to the difficulty of precisely and consistently identifying the boundary layer edge
[13]. In this paper, the boundary layer edge is determined as the location of 0.99Ue.
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(a) (b)

FIG. 4. DNS data of Wu and Moin [10]. (a) Friction coefficient vs Reθ . (b) UeVe/u2
τ , H12 , and the correction

term from ∂U −/∂x∗.

Figure 4(b) shows that, overall, the DNS data from Wu and Moin [10] agree well with the
analytical equation (9) for Reθ � 1000. Across transitional Reynolds numbers, the significance of
the second term on the right-hand side of Eq. (9) becomes apparent; yet this term tends to approach
zero at Reθ ≈ 1000. Although the specific values of the third term are not available, the data in
Fig. 4(b) suggest that its contribution is negligible.

In Fig. 4(b), a notable discrepancy can be seen between the calculated UeVe/u2
τ and H12, with

differences of up to 25% within the 1000 < Reθ < 1600 range. In contrast, the agreement between
UeVe/u2

τ and H12 across the same range of Reynolds numbers is much better in the DNS study
conducted by Schlatter and Örlü [3], as shown in Fig. 1. It is worth noting that Schlatter and Örlü’s
DNS deals with fully turbulent flow without simulating a transition from laminar to turbulence.
Conversely, Wu and Moin’s DNS [10] involved a complex transition from laminar to turbulent
flow [10]. Interestingly, Elnahhas and Johnson [14] and Kianfar et al. [15], in their examination
of the same DNS data set, observed a reversal in the direction of the mean wall-normal velocity
during the transitional regime. Through the application of integral equations, they demonstrated that
this velocity reversal significantly influences skin friction. How such a reversal could be physically
realized is unclear, and likely highlights the challenges of simulating transitional flows.

IV. SUMMARY

This work presents an improved formulation of the integral relation proposed by Wei and
Klewicki in 2016 [1] for ZPG boundary layer flows. The modification introduced in this analysis
extends the applicability of the relation to arbitrary Reynolds numbers, spanning the laminar,
transitional, and turbulent regimes. The examination of additional terms highlights their significance
for transitional Reynolds numbers. In this regime, the development of time-averaged profiles is
significantly affected by instability details, resulting in distinct values of Cf , δ1, H12 , Reynolds
normal stresses, and the associated correction terms. With increasing Reynolds number into the fully
developed turbulent regime [12], the simple integral relation of Wei and Klewicki [1] is recovered
with high precision according to comparisons with the experiments described by Roach and Brierlay
[8] and the DNS of Schlatter and Örlü [3] and Simens et al. [4]. Furthermore, the improved integral
relation can serve as a valuable tool for evaluating the accuracy of numerical simulations of the ZPG
TBL, as it encapsulates the principles of mass and momentum conservation.
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APPENDIX A: CORRECTION TERM FROM ∂U−/∂x∗

The first two terms on the RHS of Eq. (8) can be expressed as

−
∫ δe

0

∂U 2

∂x
dy − UeVe = −

(
d

dx

∫ δe

0
U 2dy − U 2

e

dδe

dx

)
− U 2

e

dδ1

dx

= −
(

d

dx

[
U 2

e (δe − δ1 − δ2)
] − U 2

e

dδe

dx

)
− U 2

e

dδ1

dx

= U 2
e

dδ2

dx
. (A1)

Note that by definition,
∫ δe

0 U 2dy = U 2
e (δe − δ1 − δ2). Also, U 2

e dδ2/dx represents the classic Kár-
mán integral for the ZPG TBL (see Ref. [2]), which can be rearranged as follows:

U 2
e

dδ2

dx
= U 2

e

d(δ1/H12 )

dx
= U 2

e

H12
dδ1
dx − δ1

dH12
dx

H2
12

= UeVe

H12

− U 2
e δ1

H2
12

dH12

dx
. (A2)

Note that Eq. (6) is used to write U 2
e dδ1/dx as UeVe. Substituting Eq. (A2) back into the momentum

integral equation (8) and multiplying both sides by H12/u2
τ results in

UeVe

u2
τ

= H12 + 2δ1

Cf

d ln(H12 )

dx
− H12

u2
τ

∫ δe

0

∂ (Ruu − Rvv )

∂x
dy. (A3)

In ZPG laminar boundary layer flow, H12 ≈ 2.59 remains constant, resulting in the second term
on the RHS of Eq. (9) becoming identically zero. In the ZPG TBL, as the Reynolds number
increases, H12 decreases while δ1 increases. These variations are generally gradual, except within
the transitional Reynolds number range. Figure 5 shows the variations of 2δ1 d ln(H12 )/dx and Cf

with Reynolds numbers. At large Reynolds numbers, say, Reθ � 1000, 2δ1 d ln(H12 )/dx approaches
zero. Consequently, the second term on the RHS of Eq. (9) also becomes negligible, as shown in
Fig. 3. However, over the transitional regime, this term remains significant and cannot be neglected.

To elucidate the source of the corrective term (2δ1/Cf )d ln(H12)/dx, we can reformulate Eq. (A1)
as

−
∫ δe

0

∂U 2

∂x
dy − UeVe = −

∫ δ2

0
2U

∂U

∂x
dy − UeVe

= −
∫ 1

0
2(Ue − UeU

−)

(
Ue

δe

dδe

dx
y− ∂U −

∂y− − Ue

L

∂U −

∂x∗

)
δedy− − UeVe (A4)

and represent Ve in the following form (refer to Ref. [6] for more details):

Ve = Ue
dδe

dx

δ1

δe
+ Ue

δe

L

∫ 1

0

∂U −

∂x∗ dy−. (A5)
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(a) (b)

FIG. 5. Variation of 2δ1 d ln(H12 )/dx and Cf . (a) Experimental data from experiments of Ref. [8]. (b) DNS
data from Ref. [10].

Following straightforward mathematical steps, the global integral of the advective terms can be
formulated as follows:

−
∫ δe

0

∂U 2

∂x
dy − UeVe = U 2

e

dδe

dx

δ2

δe
+ U 2

e

δe

L

(∫ 1

0

∂U −

∂x∗ dy− −
∫ 1

0

∂ (U −)2

∂x∗ dy−
)

. (A6)

We rearrange the first term in Eq. (A6) as

U 2
e

dδe

dx

δ2

δe
=

(
U 2

e

dδe

dx

δ1

δe

)
δ2

δ1
=

(
UeVe − U 2

e

δe

L

∫ 1

0

∂U −

∂x∗ dy−
)

1

H12

. (A7)

Therefore it can be demonstrated that the origin of the correction term ( 2δ1
Cf

) d ln(H12 )/dx arises from
the ∂/∂x∗ components.

APPENDIX B: CORRECTION FROM REYNOLDS NORMAL STRESSES

The Leibniz integral rule allows one to show that the last term in Eq. (A3) can be written as

− H12

u2
τ

∫ δe

0

∂ (Ruu − Rvv )

∂x
dy

= −H12

u2
τ

(
d

dx

∫ δe

0
(Ruu − Rvv )dy − (Ruu(δe) − Rvv (δe))

dδe

dx

)

= −H12

u2
τ

d

dx

∫ δe

0
(Ruu − Rvv )dy + H12 (R+

uu(δe) − R+
vv (δe))

dδe

dx

= −H12

u2
τ

d

dx

(
u2

τ δe

∫ 1

0
(R+

uu − R+
vv )dy−

)
+ H12 (R+

uu(δe) − R+
vv (δe))

dδe

dx
. (B1)

Here, R+
uu and R+

vv represent the inner-scaled Reynolds normal stresses, defined as Ruu/u2
τ and

Rvv/u2
τ , respectively. Typically, the Reynolds normal stresses at the boundary layer edge are small,

resulting in a small second term in the last line of Eq. (B1). Figure 6 illustrates the relationship
between the integrals of 〈uu〉+ and 〈vv〉+ as a function of Reynolds numbers. In the transitional
regime, the integrals show significant variations with changes in Reynolds number or x location.
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(a) (b)

FIG. 6. Integrals of 〈uu〉+ and 〈vv〉+ vs Reynolds numbers. (a) Low and moderate Reynolds numbers.
(b) Over a wider range of Reynolds numbers. Data symbols: red, T3A in Ref. [8]; magenta, T3B in Ref. [8];
green, DNS from Ref. [16]; blue, experimental data from Ref. [17].

However, as the Reynolds numbers increase to sufficiently high values, the variations of the integrals
diminish to negligible values.
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