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This study considers advective and diffusive transport of passive scalar fields by spa-
tially varying incompressible flows. Prior studies have shown that the eddy diffusivities
governing the mean-field transport in such systems can generally be nonlocal in space and
time. While for many flows nonlocal eddy diffusivities are more accurate than commonly
used Boussinesq eddy diffusivities, nonlocal eddy diffusivities are often computationally
cost prohibitive to obtain and difficult to implement in practice. We develop a systematic
and more cost-effective approach for modeling nonlocal eddy diffusivities using matched
moment inverse operators. These operators are constructed using only a few leading-order
moments of the exact nonlocal eddy diffusivity kernel, which can be easily computed using
the inverse macroscopic forcing method [Mani and Park, Phys. Rev. Fluids 6, 054607
(2021)]. The resulting reduced-order models for the mean fields that incorporate the
modeled eddy diffusivities often improve Boussinesq-limit models because they capture
leading-order nonlocal effects. But more importantly, these models can be expressed as
partial differential equations that are readily solvable using existing computational fluid
dynamics capabilities rather than as integropartial differential equations.

DOI: 10.1103/PhysRevFluids.8.124501

I. INTRODUCTION

Scalar transport phenomena are critical to a broad range of everyday applications such as in
engineering [1–3] and geophysics [4,5]. One commonly used approach for modeling mean scalar
transport by a turbulent flow is to Reynolds average the governing equations [6]. This approach
leads to an unclosed scalar flux term that must be specified. If (1) the time and length scales over
which the mean scalar field varies are much greater than the mixing times and mixing lengths of
the underlying turbulent fluctuations, and (2) the mixing by the underlying turbulent fluctuations is
assumed to be isotropic, then the Boussinesq approximation [7] is valid. Under this approximation,
one can write the scalar flux as the product of an eddy diffusivity and the gradient of the mean scalar.
The scalar flux at a given point depends only on the gradient of the mean scalar at that one point,
i.e., the Boussinesq approximation is a purely local (and isotropic) approximation.

However, in many realistic flows, the Boussinesq locality approximation is not valid [8]. A
modification introduced by Berkowicz and Prahm [9] allows for the mean scalar flux to depend on
the gradient of the mean scalar at all points in space rather than a single point. The eddy diffusivity
becomes a nonlocal eddy diffusivity, capturing the spatial dependence of the scalar flux. Moreover,
a nonlocal eddy diffusivity may also be modified to capture the temporal dependence of the scalar
flux on the history of the gradient of the mean scalar [10–13]. These ideas and definitions will be
made concrete in the problem formulation in Sec. I A.

A nonlocal eddy diffusivity can give the precise description of the mean scalar flux (as long as the
scalar source fields and boundary conditions are precise in the mean space [14]). Moreover, it can
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reveal information fundamental to the understanding and prediction of the evolution of the passive
scalar field, such as the sensitivity of the scalar flux to the mean scalar gradient in certain regions.
The practical issue, however, is that for a given flow the nonlocal eddy diffusivity may be very
computationally expensive to obtain. One method, introduced by Kraichnan [11] and later modified
by Hamba [12,13] for directly computing the nonlocal eddy diffusivity, is to use the Green’s function
solution to a passive scalar equation. The nonlocal eddy diffusivity, representing the projection of
the scalar flux into the mean space, is then formulated exactly in terms of the Green’s function
and velocity fluctuation. Another method, which we use in this work, is the macroscopic forcing
method (MFM), a numerical technique introduced by Mani and Park [14] in which one probes the
closure operator by applying an appropriate forcing (not necessarily a Dirac delta function) to the
governing equations and measures the averaged response. Through this input-output analysis, one
can determine the exact nonlocal eddy diffusivity corresponding to the unclosed term. However,
because the full nonlocal eddy diffusivity captures the dependency of the scalar flux on the mean
scalar gradient everywhere in the averaged space, either of these brute-force approaches would
require as many direct numerical simulations (DNS) as degrees of freedom in the averaged space.

Recent work by Bryngelson and Schäfer et al. [15] leveraged hidden sparsity in the discretized
nonlocal eddy diffusivity to substantially reduce the number of DNS required to obtain the nonlocal
eddy diffusivity.

However, even once obtained, a nonlocal eddy diffusivity may still be expensive to implement
in a model due to the resulting integrodifferential equation accounting for the effect of the mean
scalar gradient everywhere in space (and time). A spatially nonlocal eddy diffusivity would raise
the computational cost from O (N ) to O (N2); a temporally nonlocal eddy diffusivity would require
keeping the history of the mean scalar gradient stored in memory.

Previous works have attempted to address the cost of implementing a nonlocal eddy diffusivity by
suggesting various approaches for modeling a nonlocal eddy diffusivity using a partial differential
equation rather than an integrodifferential equation. Georgopoulos and Seinfeld [16] assumed an
exponential kernel shape for a temporally nonlocal (but spatially local) eddy diffusivity and arrived
at a hyperbolic telegrapher’s equation for the mean scalar. Yoshizawa [17] expanded the nonlocal
eddy diffusivity using the two-scale direct interaction approximation and used higher-order terms
involving products of the mean scalar gradient and mean velocity gradient as corrections to the
local eddy diffusivity. Hamba [12,13] expanded the nonlocal eddy diffusivity using a Taylor series
expansion (also known as a Kramers-Moyal expansion [18]) and used higher-order terms of the
Taylor series as corrections to the local eddy diffusivity. Such an expansion can have convergence
issues as we discuss in Sec. II. Hamba [13] also suggested another model form based on a partial
differential equation for the scalar flux; however, the coefficients of this model require knowledge of
the full nonlocal eddy diffusivity. More recently, Hamba [19] modeled the nonlocal eddy diffusivity
for decaying homogeneous isotropic turbulence in Fourier space by using the energy spectrum.

To alleviate the computational cost while keeping the accuracy of the nonlocal eddy diffusivity,
we introduce a systematic technique for modeling nonlocal eddy diffusivities using what we
call matched moment inverse (MMI) operators. Determining these operators does not require
computing the full nonlocal eddy diffusivity—as the name suggests, they require only a few
moments of the nonlocal eddy diffusivity, which can be cost-effectively computed using inverse
MFM (IMFM) [14].

The remainder of this article is organized as follows: In Sec. I A, we define the passive scalar
transport problem and nonlocal eddy diffusivity. In Sec. I B, we introduce IMFM for obtaining
moments of the nonlocal eddy diffusivity. In Sec. II, we discuss modeling approaches for nonlocal
eddy diffusivities, culminating in the development of MMI. Then, in Sec. III, we demonstrate
the use of MMI for a simple homogeneous problem and illustrate the importance of including
nonlocal effects in a model. Last, in Sec. IV, we demonstrate the use of MMI for inhomoge-
neous flows and address some of the challenges with MMI for inhomogeneous wall-bounded
flows.

124501-2



SYSTEMATIC APPROACH FOR MODELING A NONLOCAL …

A. Problem formulation

Consider a passive scalar, c(x, t ), being transported by a flow with velocity, u(x, t ). The govern-
ing equation is

∂c

∂t
+ ∂

∂x j
(u jc) = DM

∂2c

∂x j∂x j
, (1)

where DM is the molecular diffusivity. In many applications, instead of the full solution, c, one may
be only interested in the average of the solution, c̄. For example, the average may be taken over
ensembles, in time if the flow is statistically stationary, or over homogeneous spatial directions, but
its definition is system dependent and varies between problems. One can derive an equation for c̄ by
applying the Reynolds decomposition [6]:

c = c̄ + c′, (2a)

u j = ū j + u′
j, (2b)

where () denotes a mean quantity and ()′ denotes fluctuations about the mean quantity. Substituting
(2a) and (2b) into Eq. (1) and then averaging the resulting equation leads to the mean scalar transport
equation:

∂ c̄

∂t
+ ∂

∂x j
(ū j c̄) = DM

∂2c̄

∂x j∂x j
− ∂

∂x j
u′

jc
′. (3)

The scalar flux, u′
jc

′, is unknown and further attempts to analytically develop governing equa-
tions for this term would result in more unknown quantities, i.e., this term is unclosed. A commonly
used closure model, introduced by Boussinesq [7], approximates −u′

jc
′ as a diffusive flux:

−u′
jc

′(x) = D
∂ c̄

∂x j

∣∣∣∣
x
, (4)

where D is commonly referred to as the eddy diffusivity. Equation (4) relies on two simplifying
approximations. The first approximation is isotropy of the underlying mixing process, resulting in
a scalar eddy diffusivity. More critically relevant to our study, the second approximation is that the
mean scalar, c̄, varies over a time and length scale much larger than that of the fluctuations, c′. In
other words, the fluctuations mix very quickly and very locally due to the underlying flow. In this
limit, one can draw an analogy to kinetic theory, where molecular mixing happens very quickly and
locally due to Brownian motion, but the average motion represented at the continuum scale, which
is much larger than the Brownian mean free path, can be approximated via a local diffusive flux.
Reliant on a separation of scales, the Boussinesq approximation is a purely local approximation:
−u′

jc
′ at a given location, x, is only dependent on the gradient of c̄ at the same location, x.

However, such isotropy and idealized separation of scales between mean fields and fluctuations
of continuum passive scalar fields often does not exist in turbulent flows [8]. When the Boussinesq
approximation breaks down, a more general form of the eddy diffusivity is introduced by Berkowicz
and Prahm [9]:

−u′
jc

′(x) =
∫

y
Dji(x, y)

∂ c̄

∂xi

∣∣∣∣
y
dy, (5)

where −u′
jc

′ at a given location, x, may now be influenced by the gradient, ∂ c̄/∂xi, at another
location, y. The eddy diffusivity is now tensorial and can capture anisotropy of the underlying
mixing process by allowing the mean scalar flux to depend on different directions of the mean
scalar gradient. Moreover, there is no requirement of length scale separation, and fluctuations are not
assumed to mix locally. Dji(x, y) is a nonlocal eddy diffusivity kernel and captures the dependence
of the scalar flux on the mean scalar gradient at other locations. Figure 1 shows an example of a
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FIG. 1. Example of a nonlocal eddy diffusivity. (a) Full nonlocal eddy diffusivity kernel, D(x1, y1), and
(b) cross sections of D(x1, y1) at various x1 locations.

nonlocal eddy diffusivity kernel (corresponding to the inhomogeneous model problem with periodic
boundary conditions in Sec. IV A in which only D11(x1, y1) is active). If one considers the eddy
diffusivity as a discretized matrix, then for a purely local eddy diffusivity, only the diagonal values
would be nonzero. However, the exact nonlocal eddy diffusivity in Fig. 1(a) shows some spread
around the diagonal, indicating the presence of nonlocality. Figure 1(b) shows cross sections of the
nonlocal eddy diffusivity at various x1 locations.

A nonlocal eddy diffusivity can also include temporal effects [10–13]:

−u′
jc

′(x, t ) =
∫

y,τ

Dji(x, y, t, τ )
∂ c̄

∂xi

∣∣∣∣
y,τ

dydτ, (6)

where −u′
jc

′ at a given time, t , may now also depend on the time history, τ , of the gradient of c̄.
If the underlying flow is statistically stationary and homogeneous, then the nonlocal eddy

diffusivity expression in (6) has a simplified form [9]:

−u′
jc

′(x, t ) =
∫

y,τ

Dji(y − x, τ − t )
∂ c̄

∂xi

∣∣∣∣
y,τ

dydτ, (7)

where the nonlocal eddy diffusivity does not depend on the specific point, (x, t ), but rather only
on the distance, (y − x, τ − t ). We consider nonlocal eddy diffusivities for homogeneous flows in
Sec. III before considering inhomogeneous flows in Sec. IV.

The moments of the nonlocal eddy diffusivity are related to the full nonlocal eddy diffusivity by
considering the Taylor series expansion of Eq. (6) locally about y = x and τ = t (also known as a
Kramers-Moyal expansion [18]) as done by Kraichnan [11] and Hamba [12,13]:

−u′
jc

′(x, t ) =
∫

y,τ

Dji(x, y, t, τ )

[
1 + (yk − xk )

∂

∂xk
+ · · · + (τ − t )

∂

∂t
+ . . .

]
∂ c̄

∂xi

∣∣∣∣
x,t

dydτ. (8)

The term involving c̄ is now no longer a function of y and τ and can be taken out of the integral
such that

−u′
jc

′(x, t ) =
[

D0
ji(x, t ) + D1s

jik (x, t )
∂

∂xk
+ · · · + D1t

ji (x, t )
∂

∂t
+ · · ·

]
∂ c̄

∂xi
, (9)

124501-4



SYSTEMATIC APPROACH FOR MODELING A NONLOCAL …

where D0
ji is the zeroth-order spatial and temporal moment,

D0
ji(x, t ) =

∫
y,τ

Dji(x, y, t, τ )dydτ, (10)

D1s
jik is the first-order spatial moment (superscript s for spatial),

D1s
jik (x, t ) =

∫
yk ,τ

(yk − xk )Djik (x, y, t, τ )dykdτ, (11)

D1t
ji is the first-order temporal moment (superscript t for temporal),

D1t
ji (x, t ) =

∫
y,τ

(τ − t )Dji(x, y, t, τ )dydτ, (12)

and so forth. The zeroth-order spatial and temporal moment, D0
ji, is the local and anisotropic eddy

diffusivity, and higher-order moments characterize the nonlocality of the eddy diffusivity.

B. Methods for obtaining moments of the nonlocal eddy diffusivity

While the moments of the nonlocal eddy diffusivity may be obtained by computing the full
nonlocal eddy diffusivity and then integrating using the definitions in Eqs. (10)–(12), Mani and Park
[14] use IMFM to compute the moments more directly. We first review methods for obtaining the
full nonlocal eddy diffusivity before introducing direct methods for obtaining the eddy diffusivity
moments.

The passive scalar transport equation in (1) can be written in operator form as

L c = 0, (13)

where L is a matrix representing the discretized advection-diffusion operator. The desired equa-
tion governing the mean scalar field is

L c̄ = 0, (14)

where L is the averaged operator containing both the closed advection-diffusion operator and the
closure operator for the scalar flux in Eq. (3). Let averaging be defined by

c̄ = Pc, (15)

where P is the projection operator. Similarly, E is an extension operator such that E = nP�, where
n is the number of points used for averaging. Mani and Park [14] show that the averaged operator
can be found by using

L = (PL −1E )−1. (16)

The derivation of (16) and its connection to the forcing methods introduced later in this section are
shown in Appendix A.

Once the averaged operator L is obtained, one can subtract out the closed portion of the
Reynolds-averaged advection-diffusion operator to find the closure operator, L

′
, using

L = ∂

∂t
+ ū j

∂

∂x j
− DM

∂2

∂x j∂x j
+ L

′
. (17)

For example, if averages are taken over all directions except x1 and the unclosed term is simply
L

′
c̄ = ∂/∂x1(u′

1c′), then after obtaining L
′
one can then write the closure operator as

L
′ = − ∂

∂x1
D

∂

∂x1
. (18)
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By removing the appropriate ∂/∂x1 matrices, one can recover the eddy diffusivity, D, in discretized
form. If D is a purely diagonal matrix, then the eddy diffusivity is purely local. If instead, there are
nonzero off-diagonal entries in D, which then multiply a spread of corresponding entries in ∂ c̄/∂x1,
then the eddy diffusivity is nonlocal. Matrix multiplication can be expressed as a convolution, and, in
continuous form, generalizes to the nonlocal eddy diffusivity formulation of Berkowicz and Prahm
[9] in Eq. (5).

We use this method for obtaining the full nonlocal eddy diffusivities for the simple problems
with low degrees of freedom in this work. However, inversion of L , which is size dependent on
the number of degrees of freedom, can become prohibitively expensive for complex problems.
Moreover, for general problems, L

′
may include multiple unclosed terms from which it may not be

possible to extract a nonlocal eddy diffusivity for each term separately using this approach.
Forcing methods, such as MFM of Mani and Park [14] or use of the Green’s function by Hamba

[12,13], can take advantage of computational fluid dynamics solvers and probe the nonlocal eddy
diffusivity directly. MFM is a more flexible technique that allows (1) explicit specification of the
forcing and postprocessing of c̄ to arrive at the closure operator; (2) specification of the gradient of c̄
as a Dirac delta function and postprocessing of the scalar flux to obtain the nonlocal eddy diffusivity,
which is consistent with the Green’s function approach of Hamba [12,13] as shown in Appendix B;
or (3) specification of c̄ as polynomials and postprocessing of scalar fluxes to obtain moments of the
nonlocal eddy diffusivity. Moreover, this linear-algebra-based forcing technique does not require the
governing (microscopic) equations as analytical partial differential equations but only as operators
in discretized form.

Rather than obtaining the full nonlocal eddy diffusivity, we introduce IMFM and its usage for
directly obtaining moments of the eddy diffusivity. In IMFM, one adds a forcing in order to maintain
a prespecified mean field and measures the scalar flux response. For example, a forcing, s, is added
to the passive scalar transport equation in Eq. (1):

∂c

∂t
+ ∂

∂x j
(u jc) − DM

∂2c

∂x j∂x j
= s. (19)

At each time step, c̄ is constrained to its prespecified value due to s while c is free to evolve.
In this procedure, at each time step, one can solve for c without the forcing, and then shift
c appropriately (while observing the macroscopic forcing property s = s̄) such that the average
matches the prespecified c̄.

Specifying the mean field as polynomials leads to moments of the eddy diffusivity. For simplicity,
consider a problem in which averaging is taken over all directions except x1, and there is only one
component of the scalar flux, u′

1c′. Equation (9) becomes

−u′
1c′(x1, t ) =

[
D0(x1, t ) + D1s (x1, t )

∂

∂x1
+ D2s (x1, t )

∂2

∂x2
1

+ · · · + D1t (x1, t )
∂

∂t
+ . . .

]
∂ c̄

∂x1
.

(20)
To obtain the zeroth-order spatial and temporal moment of the eddy diffusivity, one can use IMFM
to specify c̄ = x1 and solve the forced passive scalar transport equation in (19). Postprocessing of
−u′

1c′ leads to the zeroth moment:

−u′
1c′|c̄=x1 (x1, t ) = D0(x1, t ), (21)

as shown by substitution of c̄ = x1 into (20). Specifying c̄ as higher-order polynomials leads to
higher-order moments of the eddy diffusivity. For the first-order spatial moment, specifying c̄ =
x2

1/2 leads to

−u′
1c′|c̄=x2

1/2(x1, t ) = x1D0(x1, t ) + D1s (x1, t ) (22)

as shown by substitution of c̄ = x2
1/2 into (20). Postprocessing the scalar flux and then subtracting

out the contribution from the zeroth-order moment leads to D1s . Similarly, for the second-order
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spatial moment, specifying c̄ = x3
1/6 leads to

−u′
1c′|c̄=x3

1/6(x1, t ) = x2
1

2
D0(x1, t ) + x1D1s (x1, t ) + D2s (x1, t ), (23)

and postprocessing the scalar flux and then subtracting out the contribution from the zeroth-order
moment and first-order spatial moment leads to D2s . For the first-order temporal moment, specifying
c̄ = x1t leads to

−u′
1c′|c̄=x1t (x1, t ) = tD0(x1, t ) + D1t (x1, t ) (24)

as shown by substitution of c̄ = x1t into (20). Postprocessing the scalar flux and then subtracting
out the contribution from the zeroth-moment leads to D1t . Generally, calculation of higher-order
moments depends on having previously obtained lower-order moments. IMFM has been used to
investigate the nonlocal eddy diffusivity in turbulent flows such as channel flow [20], a separated
boundary layer [21,22], and Rayleigh-Taylor instability [23].

II. APPROACHES FOR MODELING A NONLOCAL EDDY DIFFUSIVITY

Given a spatiotemporally nonlocal eddy diffusivity as in Eq. (6), one may want to model the
nonlocal eddy diffusivity in order to express the governing equation for the mean scalar as a partial
differential equation rather than an integrodifferential equation. For simplicity, consider a problem
where averaging is taken over all directions except x1, and there is only one component of the scalar
flux, u′

1c′. The scalar flux can be expressed exactly as

−u′
1c′(x1, t ) =

∫
y1,τ

D(x1, y1, t, τ )
∂ c̄

∂x1

∣∣∣∣
y1,τ

dy1dτ. (25)

A. Boussinesq model

In the Boussinesq limit, where mixing is purely local, D(x1, y1, t, τ ) = D0(x1, t )δ(y1 − x1)δ(τ −
t ). The purely local model is given by

−u′
1c′(x1, t ) = D0(x1, t )

∂ c̄

∂x1
, (26)

where D0 is the zeroth-order spatial and temporal moment. This is also sometimes called the
K model where the local eddy diffusivity, K , may be generalized to be a tensor to account for
anisotropy [11,16,17]. The purely local model is the first term of the Taylor series expansion in
Eq. (9). Figure 2(a) shows an example of the eddy diffusivity kernel shape.

B. Explicit model

If the Boussinesq locality approximation is not valid, then one may consider higher-order terms
of the expansion as nonlocal corrections to the local model. For example, including the first- and
second-order spatial moments and first-order temporal moment of the nonlocal eddy diffusivity
results in

−u′
1c′(x1, t ) = D0(x1, t )

∂ c̄

∂x1
+ D1s (x1, t )

∂2c̄

∂x2
1

+ D2s (x1, t )
∂3c̄

∂x3
1

+ D1t (x1, t )
∂2c̄

∂t∂x1
. (27)

This type of model form has been investigated by Hamba [12,13]. In general, addition of these
higher-order terms may not guarantee improvement of the model as demonstrated in Sec. III B and
by Mani and Park [14]. Nonconvergence of the Kramers-Moyal expansion has also been previously
shown in the context of molecular dynamics [24]. This lack of convergence may be explained by
examining the eddy diffusivity kernel shape as shown in Fig. 2(b). The leading term in Eq. (27)
implies a Dirac delta function as the eddy diffusivity kernel, and adding higher-order corrections
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FIG. 2. (a) Example eddy diffusivity kernel corresponding to the Boussinesq model in Eq. (26). (b) Ex-
ample eddy diffusivity kernel corresponding to the explicit model in Eq. (27) with D0 = 1/2, D1s = 0, and
D2s = 1/32 using a second-order central difference scheme and �y1 = 0.1.

is equivalent to adding higher-order derivatives of Dirac delta functions; these corrections are still
highly local and may not adequately capture the smooth shape of the nonlocal eddy diffusivity.

C. A temporally nonlocal model

A simple nonlocal eddy diffusivity kernel that is smooth and can be represented with a partial
differential equation is a decaying exponential function. For example, if the flow is statistically
stationary and homogeneous, then a simple eddy diffusivity that is local in space but nonlocal in
time is

D(y1 − x1, τ − t ) = δ(y1 − x1)
β

α
exp−(t−τ )/α, (28)

where α and β are constants and the history effect of the eddy diffusivity decays exponentially
backward in time. Figure 3(a) shows an example of the nonlocal eddy diffusivity kernel. The scalar

FIG. 3. (a) Example temporally nonlocal eddy diffusivity kernel in Eq. (28) with α = β = 1. (b) Example
spatially nonlocal eddy diffusivity kernel in Eq. (31) with α = β = 1.
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flux is governed by [
α

∂

∂t
+ 1

]
(−u′

1c′) = β
∂ c̄

∂x1
, (29)

and as shown by Georgopoulos and Seinfeld [16], the mean scalar is governed by the hyperbolic
telegrapher’s equation:

α
∂2c̄

∂t2
+ ∂ c̄

∂t
= β

∂2c̄

∂x2
1

, (30)

which was first derived by Goldstein [25] for a one-dimensional correlated random walk.

D. A spatially nonlocal model

Similarly, a simple spatially nonlocal eddy diffusivity kernel that is smooth and can be repre-
sented by a partial differential equation is a double-sided exponential function. For example, if the
flow is statistically stationary and homogeneous, then a simple eddy diffusivity that is nonlocal in
space but local in time is

D(y1 − x1, τ − t ) = β

α
e−|y1−x1|/αδ(τ − t ), (31)

where α and β are constants and the spatial nonlocality of the eddy diffusivity is captured as a
double-sided exponential. Figure 3(b) shows an example of the nonlocal eddy diffusivity kernel. As
shown by Hamba [13], the scalar flux is governed by[

1 − α2 ∂2

∂x2
1

]
(−u′

1c′) = 2β
∂ c̄

∂x1
. (32)

Moreover, the shape of the nonlocal eddy diffusivity kernel as shown in Fig. 3(b) often qualitatively
resembles the true nonlocal eddy diffusivity kernel, for example, as shown in Fig. 1(b).

E. MMI operators

For many flows, the measured nonlocal eddy diffusivity may not be exactly an exponential in
time or space [13,20,26]. However, it may still be appropriate to model the shape of the nonlocal
eddy diffusivity as exponential functions or combinations of exponential functions. For such flows,
the key question we seek to address is how to appropriately determine the coefficients. For this
purpose, we introduce MMI operators which systematically allow determination of the coefficients
using, as the name suggests, only measured moments of the nonlocal eddy diffusivity rather than
the full measured nonlocal eddy diffusivity. For a statistically stationary and homogeneous flow,
consider a model for a spatiotemporally nonlocal eddy diffusivity formed by combining Eq. (29)
and (32) (and more generally in which, higher-order terms may be included):[

a3
∂

∂t
+

(
1 + a1

∂

∂x1
+ a2

∂2

∂x2
1

)]
(−u′

1c′) = a0
∂ c̄

∂x1
. (33)

The coefficients, ai, will be determined by matching up to the second spatial moment and first
temporal moment of the nonlocal eddy diffusivity. Rearranging,

−u′
1c′ =

[
1 + a1

∂

∂x1
+ a2

∂2

∂x2
1

+ a3
∂

∂t

]−1

a0
∂ c̄

∂x1
, (34)

and Taylor series expanding the inverse operator on the right-hand side leads to

−u′
1c′ =

[
1 − a1

∂

∂x1
− a2

∂2

∂x2
1

+ a1
∂

∂x1

(
a1

∂

∂x1

)
+ · · · − a3

∂

∂t
+ . . .

]
a0

∂ c̄

∂x1
. (35)
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FIG. 4. (a) The exact spatiotemporally nonlocal eddy diffusivity, D(y1 − x1, τ − t ), for the homogeneous
model problem in Sec. III A. (b) The modeled eddy diffusivity using MMI.

Because the flow is statistically stationary and homogeneous, the coefficients are constants. To
match the first few moments of the modeled nonlocal eddy diffusivity with the exact measured
moments, compare the expansion in (35) with the Taylor series expansion of the nonlocal eddy
diffusivity in (9) and simplified for a one-dimensional problem in (20). This leads to the coefficients
a0 = D0, a1 = −D1s/D0, a2 = −D2s/D0 + (D1s/D0)2, and a3 = −D1t /D0. After determination of
the coefficients, the model form in Eq. (33) is used for the scalar flux. The bracketed operator on
the left-hand side of (33) acting on the scalar flux is the MMI operator and may be generalized to
include higher-order derivatives and mixed derivatives.

Note that while the explicit model in Eq. (27) also matches the low-order measured moments of
the eddy diffusivity, the shape of the nonlocal eddy diffusivity is not properly captured and leads to
convergence issues. By truncating the Taylor series expansion, each additional term in the explicit
model in Eq. (27) adds a highly local correction and an infinite series is needed for convergence.
By keeping an infinite Taylor series in Eq. (35) that smoothly approximates the nonlocal eddy
diffusivity as an exponential function in time and a double-sided exponential function in space,
MMI operators better approximate the true shape of the nonlocal eddy diffusivity. For example,
Fig. 4(a) shows the measured spatiotemporally nonlocal eddy diffusivity for the homogeneous
model problem described in Sec. III, and Fig. 4(b) shows the MMI-constructed spatiotemporally
nonlocal eddy diffusivity. The two nonlocal eddy diffusivities have the same zeroth-, first-, and
second-order spatial and first-order temporal moments.

For inhomogeneous flows, the moments of the eddy diffusivity are functions of space, and
correspondingly the coefficients of the MMI model will also be functions of space. In this case,
the MMI coefficients cannot analytically be matched with the eddy diffusivity moments since an
infinite number of higher-order derivatives of the unknown coefficients appear in the Taylor series
expansion of the MMI operator. We present a modified numerical procedure for determining the
MMI coefficients in order to match the low-order moments of the eddy diffusivity.

For illustration, consider an inhomogeneous flow in which the eddy diffusivity is spatially
nonlocal:

−u′
1c′(x1) =

∫
y1

D(x1, y1)
dc̄

dx1

∣∣∣∣
y1

dy1. (36)

The MMI model including up to the second-order spatial moment is[
1 + a1(x1)

d

dx1
+ a2(x1)

d2

dx2
1

]
(−u′

1c′) = a0(x1)
dc̄

dx1
, (37)
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where the coefficients, ai, are now also functions of x1 and yet to be determined. The Taylor series
expansion of the nonlocal eddy diffusivity is

−u′
1c′(x1) =

[
D0(x1) + D1s (x1)

d

dx1
+ D2s (x1)

d2

dx2
1

+ . . .

]
dc̄

dx1
, (38)

where the moments of the eddy diffusivity are given by

D0 =
∫

y1

D(x1, y1)dy1, (39a)

D1s =
∫

y1

(y1 − x1)D(x1, y1)dy1, (39b)

D2s =
∫

y1

1

2
(y1 − x1)2D(x1, y1)dy1. (39c)

To obtain the low-order moments of the eddy diffusivity using IMFM, the forcing is applied such
that c̄ = x1, c̄ = x2

1/2, c̄ = x3
1/6, etc. Substituting these c̄(x1) into Eq. (38) and postprocessing the

corresponding −u′
1c′|c̄ leads to

−u′
1c′|c̄=x1 = D0(x1), (40a)

−u′
1c′|c̄=x2

1/2 = x1D0(x1) + D1s (x1), (40b)

−u′
1c′|c̄=x3

1/6 = x2
1

2
D0(x1) + x1D1s (x1) + D2s (x1). (40c)

If −u′
1c′|c̄ are directly available from IMFM, then one should use them directly. Otherwise, if only

the moments are available, then one should form −u′
1c′|c̄ using the expressions above in Eqs. (40a)–

(40c). −u′
1c′|c̄ contains exact information about the low-order moments of the true eddy diffusivity

that one can now incorporate into the MMI model in Eq. (37). One can form three equations for
a0(x1), a1(x1), and a2(x1) by substituting c̄ = x1, c̄ = x2

1/2, and c̄ = x3
1/6 and the corresponding

−u′
1c′|c̄ from Eqs. (40a)–(40c) into Eq. (37):

−u′
1c′|c̄=x1 + a1

d

dx1
(−u′

1c′|c̄=x1 ) + a2
d2

dx2
1

(−u′
1c′|c̄=x1 ) = a0, (41a)

−u′
1c′|c̄=x2

1/2 + a1
d

dx1
(−u′

1c′|c̄=x2
1/2) + a2

d2

dx2
1

(−u′
1c′|c̄=x2

1/2) = a0x1, (41b)

−u′
1c′|c̄=x3

1/6 + a1
d

dx1
(−u′

1c′|c̄=x3
1/6) + a2

d2

dx2
1

(−u′
1c′|c̄=x3

1/6) = a0
x2

1

2
. (41c)

This linear system of equations for a0, a1, and a2 is solved pointwise to obtain the MMI coefficients
at each x1 location. For example, Fig. 5(a) shows the coefficients of the MMI model for the
inhomogeneous model problem with periodic boundaries in Sec. IV A. Figure 5(b) shows the exact
spatially nonlocal eddy diffusivity and the MMI-constructed eddy diffusivity.

The suggested use of MMI is not the only way to mimic the nonlocal behavior of the eddy
diffusivity. For example, Hamba [13] first obtained the exact nonlocal eddy diffusivity and then
constructed alternative inverse operators by examining their shape against the exact eddy diffusivity
kernel shape. The suggested MMI is an alternative that substantially reduces the number of DNS
needed by focusing only on a limited number of moments of the nonlocal eddy diffusivity to
characterize the kernel shape, while providing a systematic path for determining the coefficients
of the inverse operator.
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FIG. 5. For the inhomogeneous model problem with periodic boundaries in Sec. IV A: (a) MMI coefficients
for Eq. (37). (b) The eddy diffusivity kernel from the MMI model closely approximates the exact eddy
diffusivity kernel as shown for various x1 locations.

III. EXAMPLE MMI MODELS FOR HOMOGENEOUS FLOWS

A. Model problem: Dispersion by a parallel flow

As a simple example, consider the dispersion of a passive scalar by a homogeneous, laminar,
parallel flow. This problem was first introduced by Taylor [27] and revisited by Mani and Park [14]
to demonstrate how MFM can be used to obtain the exact nonlocal eddy diffusivity. Moreover,
this problem is a simple example in which the scale separation assumption of the Boussinesq
approximation does not hold, requiring the consideration of nonlocal effects. Specifically, consider
a two-dimensional problem with the governing equation:

∂c

∂t
+ ∂

∂x1
(u1c) + ∂

∂x2
(u2c) = DM

(
∂2c

∂x2
1

+ ∂2c

∂x2
2

)
, (42)

where c(x1, x2, t ) is a passive scalar, DM is the molecular diffusivity, and u j is the parallel flow
velocity:

u1 = U cos

(
2π

L2
x2

)
, u2 = 0. (43)

The domain is −∞ < x1 < ∞ and 0 � x2 < L2 with periodic boundary conditions in x2. Nondi-
mensionalizing x2 by L2/(2π ), x1 by UL2

2/(4π2DM ), and t by L2
2/(4π2DM ) leads to the following

nondimensionalized equation:

∂c

∂t
+ ∂

∂x1
(cos(x2)c) = ε2 ∂2c

∂x2
1

+ ∂2c

∂x2
2

, (44)

where ε = 2πDM/(L2U ) is the only nondimensional parameter. As in Ref. [14], for simplification
we consider ε = 0, corresponding to the limit of large Peclet number, i.e., assume the advective
flux is much greater than the diffusive flux in the x1 direction. The governing equation for the
homogeneous example problem is

∂c

∂t
+ ∂

∂x1
(cos(x2)c) = ∂2c

∂x2
2

. (45)
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(a) (b

(c) (d)

)

FIG. 6. (a) The velocity profile for the homogeneous, parallel flow (u1 = cos(x2), u2 = 0). (b) An initial
condition corresponding to the release of a narrow band of passive scalar in the center of the domain, c(t = 0) =
exp(−x2

1/0.025). (c) The dispersed scalar field, c(x1, x2, t ), and x2-averaged field, c̄(x1, t ), at time t1 = 0.5.
(d) c(x1, x2, t ) and c̄(x1, t ) at a later time, t2 = 4.

For this problem, averaging is taken over the x2 direction, i.e.,

c̄(x1, t ) = 1

L2

∫ L2

0
c(x1, x2, t )dx2. (46)

Correspondingly, the mean scalar transport equation for this problem is

∂ c̄

∂t
+ ∂

∂x1
u′

1c′ = 0, (47)

where u′
1c′ = cos(x2)c′ is the unclosed scalar flux. The mean advection, ∂/∂x1(ū1c̄), does not appear

in (47) since ū1 = cos(x2) = 0. The mean diffusion, ∂2c̄/∂x2
2, also drops from (47) due to averaging

over x2 and periodic boundary conditions.
Figure 6(a) shows the prescribed velocity profile. Figures 6(b)–6(d) show the initial condition,

c(t = 0) = exp(−x2
1/0.025), and time snapshots of the dispersed scalar field, c(x1, x2, t ), and

averaged field, c̄(x1, t ) solved using DNS. The goal is to predict the complex behavior of c̄(x1, t )
using a one-dimensional partial differential equation. Mani and Park [14] also attempted to model
this problem by finding the nonlocal eddy diffusivity in Fourier space in both space and time using
MFM, analytically fitting the operator in Fourier space and then transforming it back into physical
space. We revisit this problem in order to develop a method that does not need the full nonlocal
eddy diffusivity and results in an operator that does not involve the operational square root.

B. Model comparison

We compare some of the models in Sec. II with MMI models for the homogeneous problem. The
moments of the nonlocal eddy diffusivity for this problem may be obtained numerically using IMFM
or analytically using Taylor’s approach for dispersion by a parallel flow [27] and its extension by
Aris [28]. Taylor’s approach uses the transport equation for the fluctuations, c′, and applies the same
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length/timescale separation assumptions as the Boussinesq approximation to find the leading-order
term balance, resulting in the Boussinesq model. Higher-order moments are found by considering
perturbative corrections to the leading-order term balance, resulting in models similar to the explicit
model in Sec. II. The first few moments of the nonlocal eddy diffusivity are D0 = 1/2, D1s = 0,
D2s = 1/32, and D1t = −1/2.

The Boussinesq model or leading-order Taylor model is

−u′
1c′ = 1

2

∂ c̄

∂x1
, (48)

and the explicit model or higher-order Taylor model is

−u′
1c′ = 1

2

∂ c̄

∂x1
+ 1

32

∂3c̄

∂x3
1

− 1

2

∂2c̄

∂t∂x1
. (49)

As discussed in Mani and Park [14], for this problem, the higher-order Taylor model is modified
such that the last term in Eq. (49) does not appear and the signs of the coefficients are consistent
with the energy-damping mechanism:

−u′
1c′ = 1

2

∂ c̄

∂x1
− 7

32

∂3c̄

∂x3
1

. (50)

The MMI model only incorporating temporal nonlocality and whose coefficients are determined
using the procedure in Sec. II is [

∂

∂t
+ 1

]
(−u′

1c′) = 1

2

∂ c̄

∂x1
, (51)

and similarly the MMI model incorporating spatiotemporal nonlocality is[
∂

∂t
+

(
1 − 1

16

∂2

∂x2
1

)]
(−u′

1c′) = 1

2

∂ c̄

∂x1
. (52)

Figure 4(a) shows the exact measured nonlocal eddy diffusivity, and Fig. 4(b) shows the shape of
the nonlocal eddy diffusivity captured by the spatiotemporal MMI model in Eq. (52). Appendix C
details how these spatiotemporal eddy diffusivities are computed.

Figure 7 shows the evolution of the averaged field, c̄(x1, t ). Compared with the DNS solution,
the spatiotemporal MMI model closely predicts the spread of the averaged field. The leading-order
Taylor model causes the mean field to spread out too quickly, indicating the importance of including
nonlocality. The higher-order Taylor model performs even worse, which demonstrates that adding
a finite number of higher-order corrections from an infinite Taylor series expansion of the eddy
diffusivity may not guarantee model improvement. Figure 8 shows a comparison between the
leading-order Taylor model and higher-order Taylor model at an early time, t = 0.5, and a later
time, t = 4.

Figure 9 shows a comparison between the MMI model incorporating temporal nonlocality and
the MMI model incorporating spatiotemporal nonlocality. Both models capture the qualitative shape
of the DNS solution better than either the leading-order Taylor model or higher-order Taylor model
at early times. The spatiotemporal MMI model reasonably matches the DNS solution whereas the
temporal MMI model shows some overshoot. The spatiotemporal MMI model excellently captures
the late-time solution. All four models are expected to perform well at late times in the limit of
slowly varying mean field, i.e., where the Boussinesq approximation becomes valid. However, in
this case, the spatiotemporal MMI model performs well even outside of this limit due to its close
approximation of the true nonlocal eddy diffusivity as shown in Fig. 4. A discussion of the error
due to the inclusion of only the low-order moments in the spatiotemporal MMI model is included
in Appendix D. Note also that the higher-order Taylor model actually produces a negative solution,
whereas the MMI models do not have this issue.
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FIG. 7. Model comparison of the averaged field, c̄(x1, t ), using the initial condition c(t = 0) =
exp(−x2

1/0.025). The spatiotemporal MMI model in Eq. (52) closely captures the spread of the averaged field,
whereas the leading-order Taylor model and higher-order Taylor model overpredict the spread of the averaged
field.

FIG. 8. Model comparison of leading-order Taylor model and higher-order Taylor model at (a) early time,
t = 0.5, and (b) late time, t = 4.
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FIG. 9. Model comparison of the temporal MMI model and spatiotemporal MMI model at (a) early time,
t = 0.5, and (b) late time, t = 4.

C. Comparison with other nonlocal eddy diffusivity models

We now compare the spatiotemporal MMI model in Eq. (52) with another nonlocal model pre-
sented by Mani and Park [14] for the same homogeneous problem. Mani and Park [14] approximate
the nonlocal eddy diffusivity by fitting an operator to match MFM data in the limits of k, ω → 0 and
k, ω → ∞, where k is the wave number corresponding to the Fourier transform in x1 direction and
ω the frequency corresponding to the Fourier transform in time. Transforming back into physical
space, the unclosed scalar flux [14] is modeled as

− ∂

∂x1
u′

1c′(x1, t ) =
⎡⎣−

√(
I + ∂

∂t

)2

− ∂2

∂x2
1

+
(

I + ∂

∂t

)⎤⎦c̄(x1, t ), (53)

where I is the identity operator. Note that this MFM-inspired, eddy diffusivity operator does not
have the cost-saving advantages of using MMI since any numerical implementation of the model
in (53) would require nonlocal operations in physical space involving full matrices. We show a
comparison of this MFM-inspired model with the MMI model to address a more general modeling
question: When adding nonlocal corrections to the local model, is it more appropriate to match the
limits of large k and ω or the low-order moments of the nonlocal eddy diffusivity?

To illustrate the effect of matching the limits of large k and ω on the eddy diffusivity, consider
the Taylor series expansion in Eq. (9), simplified for the homogeneous problem in Sec. III A:

−u′
1c′ =

[
D0 + D1s

∂

∂x1
+ D2s

∂2

∂x2
1

+ · · · + D1t
∂

∂t
+ · · ·

]
∂ c̄

∂x1
, (54)

where the moments of the eddy diffusivity are constants. Taking the Fourier transform leads to

−û′
1c′ = [D0 + ikD1s − k2D2s + · · · + iωD1t + · · · ]ik ˆ̄c. (55)

This shows that matching the limit of k, ω → 0 is equivalent to matching the zeroth-order moment
of the eddy diffusivity, D0. Matching the first and second moments of the eddy diffusivity, as done
by MMI models, adds corrections in the limit of small k and ω. This prioritizes better capturing
smooth and slowly varying solutions, whereas matching large k and ω, as done in Ref. [14], is
equivalent to matching high-order moments of the nonlocal eddy diffusivity. This would prioritize
capturing sharp and quickly varying features in the solutions.

For illustration, Fig. 10(a) shows a comparison of the exact and modeled spatially nonlocal
eddy diffusivities for the homogeneous problem (equivalent to the spatiotemporally nonlocal eddy
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FIG. 10. Comparison of the spatially nonlocal eddy diffusivities (equivalent to the spatiotemporally nonlo-
cal eddy diffusivities integrated over τ ) (a) in physical space and (b) in Fourier space.

diffusivities in Figs. 4(a) and 4(b) integrated over τ ). Figure 10(b) shows the Fourier transform of
the spatially nonlocal eddy diffusivities. Because the exact and MMI-modeled spatially nonlocal
eddy diffusivities were first obtained in physical space and then Fourier transformed, there is
some numerical discretization error due to the use of second-order finite differences; however,
the truncated plotting window shown in Fourier space is converged. The eddy diffusivity for the
MFM-inspired model is obtained in Fourier space analytically by Fourier transforming Eq. (53) and
evaluating at ω = 0 (equivalent to integration over τ ):

D̂(k) = −√
1 + k2 + 1

−k2
. (56)

The eddy diffusivity of the MFM-inspired model in physical space is then obtained by taking the
inverse Fourier transform of (56).

In Fig. 10(a), the shaded area in gray under the eddy diffusivity, D0, corresponds to D̂(0) in
Fourier space in Fig. 10(b). The first spatial moment of eddy diffusivity, D1s , is related to the first
derivative of the kernel in Fourier space, d

dk D̂(0), and so forth. In Fourier space, the MMI model
matches the shape of the eddy diffusivity for small k as shown in Fig. 10(b), whereas the high-
wave-number region, shaded in red in Fig. 10(b), corresponds to the peak in physical space at D(0)
which involves a sharp feature in Fig. 10(a). This peak at D(0) is correspondingly captured by
the MFM-inspired model. Matching low-order moments better captures the overall shape of the
nonlocal eddy diffusivity in physical space, whereas matching large k and ω captures the large
wavelength/frequency features of the eddy diffusivity.

Figure 11 shows a solution comparison between the MMI model in Eq. (52) and the MFM-
inspired model at early and late time. At early time, when the solution is dominated by a small-scale
feature that quickly disperses, the MFM-inspired model performs better. For late time, when the so-
lution features are smooth and both models are expected to perform well, the MMI model performs
better than MFM-inspired model. Appendix E shows a comparison with a simple fractional-order
closure operator [29–31], which produces inferior results to both the MMI and MFM-inspired
models. This is expected since a simple fractional-order Laplacian cannot capture the limits of large
k and ω or low-order corrections to the leading moment of the eddy diffusivity.

Whether a model should match the limits of k and ω or the low-order moments of the nonlocal
eddy diffusivity depends on the problem of interest. If there is a singularity or very sharp feature in
the solution, then a model matching the limits of k and ω may be more appropriate. Otherwise, if
the solution is reasonably smooth (as is true for many practical applications), then a model matching
the low-order moments is more appropriate.
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FIG. 11. MMI model and MFM-inspired model comparison at (a) early time, t = 0.5, and (b) late
time, t = 4.

IV. EXAMPLE MMI MODELS FOR INHOMOGENEOUS FLOWS

We begin with an inhomogeneous example with periodic boundary conditions, and then discuss
wall-bounded flows and the challenges of determining the MMI coefficients in the near-wall region.

A. Inhomogeneous problem with periodic boundary conditions

Consider a two-dimensional domain corresponding to the cross section of a channel with periodic
boundary conditions at the left and right walls at x1 = ±π , and a no flux condition, ∂c/∂x2 = 0, at
the top and bottom walls at x2 = 0, 2π . The flow consists of two vortices given by the velocity field:

u1 = 1
2 [2 + cos(x1)] cos(x2), u2 = 1

2 sin(x1) sin(x2). (57)

Streamlines of the velocity field are shown in Fig. 12(a). The steady, governing equation is

∂

∂x1
(u1c) + ∂

∂x2
(u2c) = ε2 ∂2c

∂x2
1

+ ∂2c

∂x2
2

+ f , (58)

FIG. 12. (a) Streamlines of the velocity field in Eq. (57). (b) Contour plot of c(x1, x2) from DNS.
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where f is an external source function. The parameter, ε2, results from directional nondimensional-
ization as in Sec. III A. For this example problem, we consider ε2 = 0.05 and f to be an oscillatory
source function given by f = cos(x1).

Figure 12(b) shows contours of c(x1, x2) from DNS. The problem is discretized using second-
order central difference on a uniform staggered mesh with N1 = 200 grid points in x1 and N2 = 50
grid points in x2. Due to the boundary conditions of the problem, c(x1, x2) can arbitrarily be shifted
by a constant. Hence, there is an additional constraint such that at the first point in x1, the average
of c(x1, x2) over x2 is zero.

As in Sec. III A, averaging is defined in the x2 direction as

c̄(x1) = 1

L2

∫ L2

0
c(x1, x2)dx2, (59)

where L2 = 2π . The corresponding mean scalar transport equation for this problem is

d

dx1
u′

1c′ = ε2 d2c̄

dx2
1

+ f̄ . (60)

The MMI model matching up to the second-order spatial moment of the nonlocal eddy diffusivity
is as follows: [

1 + a1(x1)
d

dx1
+ a2(x1)

d2

dx2
1

]
(−u′

1c′) = a0(x1)
dc̄

dx1
, (61)

where the procedure for determining the coefficients is described in Sec. II. Figure 5(a) shows
the coefficients for the MMI model, and Fig. 5(b) shows cross sections of the exact nonlocal eddy
diffusivity obtained using MFM and the modeled eddy diffusivity. The MMI model closely captures
the double-sided exponential shape of the exact eddy diffusivity including the slight asymmetry at
some x1 locations. Appendix F provides an appropriate IMFM formulation for obtaining moments
of the eddy diffusivity for problems in which the periodic boundary conditions are incompatible
with the IMFM required c̄. Appendix F also provides details for obtaining the exact eddy diffusivity
for periodic problems.

Figure 13 shows a comparison between the MMI model and DNS solution for the inhomoge-
neous problem with periodic boundary conditions. The DNS solution corresponds to averaging the
full solution in Fig. 12(b) over the x2 direction. The Boussinesq model given by

−u′
1c′ = D0(x1)

∂ c̄

∂x1
(62)

is also shown for comparison. The Boussinesq model greatly underpredicts the solution while the
MMI model solution is almost indistinguishable from the DNS solution.

B. Wall-bounded inhomogeneous flows

As an example application of the MMI model to wall-bounded inhomogeneous flows, we
consider the model problem of Mani and Park [14] which uses the same two-dimensional channel
geometry as in Sec. IV A but replaces the periodic boundary conditions with solid walls and
Dirichlet boundary conditions c(x1 = ±π ) = 0. To satisfy the no-slip and no-penetration conditions
at the solid wall, the velocity field is modified to be

u1 = [1 + cos(x1)] cos(x2), u2 = sin(x1) sin(x2). (63)

Streamlines of the velocity field are shown in Fig. 14(a). The governing equation is given by Eq. (58)
with ε2 = 0.05 as before. The source function, f , is specified to be a constant, f = 1. Contours of
c(x1, x2) from DNS with grid resolution N1 = 200 and N2 = 50 are shown in Fig. 14(b). Averaging
is defined over x2 by Eq. (59), and the corresponding mean scalar equation is given by Eq. (60) as
before.
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FIG. 13. Model comparison for the inhomogeneous problem with periodic boundary conditions. The MMI
model closely matches the DNS solution.

The steady MMI model is given in Eq. (61), and the coefficients are found via the procedure
described in Sec. II. Figure 15(a) shows the MMI coefficients for the wall-bounded inhomogeneous
flow. The coefficients are well behaved in the center of the domain; however, near the wall, there
is a sharp spike in the MMI coefficients at |x1| ≈ 2.5. The location of the singularity remains fixed
under mesh refinement, indicating that the issue is not due to the numerics. Despite the ill-behaved
coefficients, the resulting c̄(x1) from the MMI model is still very accurate, as shown in Fig. 16, and
greatly outperforms the Boussinesq model given in Eq. (62).

To gain an understanding of why this singularity in the coefficients occurs, Fig. 15(b) shows the
exact eddy diffusivity obtained using MFM at various x1 locations approaching the wall. While the
modeled eddy diffusivity closely follows the exact eddy diffusivity, both eddy diffusivities deviate
from a double-sided exponential shape, gradually becoming smoother and smaller in magnitude
near the wall as the flow also diminishes.

FIG. 14. (a) Streamlines of the velocity field in Eq. (63). (b) Contour plot of c(x1, x2) from DNS.
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FIG. 15. (a) MMI coefficients for Eq. (61) for the wall-bounded inhomogeneous problem. (b) The exact
and modeled nonlocal eddy diffusivity shown for various x1 approaching the wall (x1 = −2.922, −2.796,

−2.670, −2.545).

The transition in kernel behavior due to the presence of the wall causes the singularity seen in
the MMI coefficients. The ill-behaved coefficients are a result of the specific MMI model form in
Eq. (61). In the procedure for determining the coefficients, the determinant of the pointwise matrix
formed by the linear system in Eqs. (41a)–(41c) crosses zero at the location of the singularity.

However, near the wall, molecular effects dominate. For example, the molecular diffusivity, ε2,
is larger than the leading-order eddy diffusivity, D0, until |x1| ≈ 2.35, which includes the region of
singularity at |x1| ≈ 2.5. The MMI model form is unimportant near the wall, and the resulting c̄(x1)
is still very accurate as shown in Fig. 16.

FIG. 16. Model comparison for the wall-bounded inhomogeneous problem. The MMI model closely
matches the DNS solution.
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1. Coefficient regularization

We provide a coefficient regularization technique to remedy the singularity in the MMI coeffi-
cients in Fig. 15(a). Because the molecular term dominates near the wall, a portion of the molecular
diffusion flux with small parameter σ is added when determining the MMI coefficients:[

1 + a1(x1)
d

dx1
+ a2(x1)

d2

dx2
1

](
−u′

1c′ + σ
dc̄

dx1

)
= a0(x1)

dc̄

dx1
, (64)

where σ is a constant smaller than the molecular diffusivity, ε2. With this choice, away from the
wall, the added regularization is negligible. Near the wall, the added regularization dominates and
prevents the singularity in the coefficients by preventing the effective kernel shape from diminishing.
In other words, as −u′

1c′ goes to zero near the wall, the additional σdc̄/dx1 term adds a Dirac delta
function to the kernel that keeps it from diminishing.

Once the coefficients are determined using Eq. (64), the closure model for the scalar flux is

−u′
1c′ =

[
1 + a1(x1)

d

dx1
+ a2(x1)

d2

dx2
1

]−1

a0(x1)
dc̄

dx1
− σ

dc̄

dx1
, (65)

where the portion of the molecular diffusion flux that was added for regularization when determining
the coefficients is now subtracted.

However, for model implementation, we found the following closure form to be more robust:[
1 + a1(x1)

d

dx1
+ a2(x1)

d2

dx2
1

]
(−u′

1c′) = (a0(x1) − σ )
dc̄

dx1
, (66)

where the coefficients are still determined using Eq. (64). With this model implementation, even
choices of σ larger than ε2 (up to σ ≈ 3ε2) still produced very accurate solutions with up to around
1% maximum error. In the procedure for determining the coefficients, due to the presence of the
MMI operator acting on the regularization term in Eq. (64), the added regularization is not purely
local. The model form in Eq. (66) mimics an added nonlocal effect of the regularization term.
Equation (66) also still ensures that the implemented MMI model matches the zeroth moment, i.e.,
case when c̄ = x1. The presence of σ will affect the higher-order moments of the eddy diffusivity;
for example, substituting c̄ = x2

1/2 into Eq. (66) results in an extra σ (x1 + a1) when compared with
Eq. (41b). However, as long as σ is small, this error in the higher-order moments is also small.

Figure 17(a) shows the MMI coefficients for the wall-bounded inhomogeneous problem with
coefficient regularization. The coefficient, σ , is chosen to be 0.1ε2, where ε2 is the nondimension-
alized molecular diffusivity in the x1 direction. With regularization, the coefficients are now well
behaved; however, this is not yet systematic with regards to choice of σ .

Figure 17(b) shows a comparison between the MMI model with coefficient regularization in
Eq. (66) and the DNS solution. The MMI model with coefficient regularization performs even
slightly better the original MMI model in Eq. (61) although this depends on the choice of σ .
While the coefficient regularization technique performs well for this wall-bounded inhomogeneous
problem, this does not address the original issue with the potential model form error. The MMI
model form in Eq. (61) admits a variety of exponential kernel shapes, but there are some shapes it
cannot capture, and the model form may need to be modified. Alternative formulations for the MMI
model are shown in Appendix G, but this is still an area of ongoing investigation.

V. CONCLUSION

A nonlocal eddy diffusivity can greatly improve modeling of mean scalar transport when the
Boussinesq approximation is invalid. However, both obtaining and implementing full nonlocal eddy
diffusivities are too expensive for most practical applications, and thus we introduce MMI operators
to model the nonlocal eddy diffusivity. These operators offer leading-order corrections to capture
nonlocal effects in the eddy diffusivity by systematically matching the low-order moments of the
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FIG. 17. (a) MMI coefficients using the regularization in Eq. (64). (b) Model comparison for the wall-
bounded inhomogeneous problem.

true nonlocal eddy diffusivity, while avoiding the known divergence issues of explicit models that
truncate the Kramers-Moyal expansion. By keeping an infinite Taylor series in the expansion rather
than truncating the expansion, MMI models better approximate smooth nonlocal eddy diffusivity
kernels, whereas explicit models that truncate the expansion have highly local kernels. MMI models
quantitatively approximate the shape of the nonlocal eddy diffusivity as combinations of exponential
functions, and these assumptions may break down in near-wall regions where the eddy diffusivity
diminishes. However, in these regions the molecular effects dominate, and the model form becomes
unimportant.

Moreover, the resulting MMI model is in the form of a differential equation rather than a
computationally or memory-intensive nonlocal integral. These models only require information
about the moments of the nonlocal eddy diffusivity, which can be obtained using one simulation per
moment, rather than the full nonlocal eddy diffusivity, which would require as many simulations as
degrees of freedom in the averaged space. Furthermore, we show that MMI models are expected to
perform well as long as the mean scalar field is reasonably smooth; for fields with sharp features, one
may want to consider other operators that match the large- and small-wave-number limits instead.

In this work, we demonstrate the application of MMI models to homogeneous and inhomo-
geneous example problems. We discuss challenges in inhomogeneous wall-bounded flows where
the scalar flux goes to zero near the wall and show a coefficient regularization technique although
this is not yet systematic with regards to the regularization parameter. Concurrent work in Lavacot
et al. [23] demonstrates the application of MMI to two-dimensional Rayleigh-Taylor instability, an
unsteady and chaotic flow. They show that a MMI model performs better than an explicit model that
truncates the Taylor series expansion. Moreover, without the presence of walls, they have fewer of
the coefficient singularity issues encountered in the inhomogeneous wall-bounded flows considered
in this work.

ACKNOWLEDGMENTS

This work was supported by the Boeing Company and the Office of Naval Research under Grant
No. N00013-20-1-2718. J.L. was additionally supported by the Burt and Deedee McMurtry Stanford
Graduate Fellowship. The authors are grateful for the anonymous reviewer comment that led to the
addition of Appendix D.

124501-23



LIU, WILLIAMS, AND MANI

APPENDIX A: DERIVATION OF THE RELATIONSHIP BETWEEN L AND L

For completeness, the derivation of the relationship in (16) between the averaged operator, L ,
and the governing operator, L , is reproduced from Mani and Park [14] below. This Appendix also
shows the relationship between these operators and the forcing methods detailed in Sec. I B.

The forced governing equation in (19) can be written in operator form as

L c = s, (A1)

where L is a matrix representing the discretized advection-diffusion operator, c is a vector resp-
resenting the discretized scalar field, and s is vector representing the MFM forcing. Similarly, the
forced averaged equation can be written as

L c̄ = s̄, (A2)

where L is a linear operator and includes the nonlocal eddy diffusivity, c̄ is the discretized mean
scalar field, and s̄ is the MFM forcing. The averaged operator, L , is unknown, and a relation
between L and L is desired. Let averaging be defined by a projection operator, P, such that

c̄ = Pc. (A3)

While the MFM forcing satisfies the property, s = s̄, s and s̄ may discretely have different dimen-
sions; thus, let E be an extension operator such that

s = Es. (A4)

Rearranging (A1) to solve for c and substituting the result into (A3) leads to

c̄ = PL −1s = PL −1Es̄, (A5)

where the definition of the extension operator in (A4) is used. Further rearrangement,

(PL −1E )−1c̄ = s̄, (A6)

and comparison with (A2) leads to the relation for L in (16).
In the above approach, the MFM forcing, s, is never explicitly specified, and the entire L

operator is obtained at the expense of inverting L . However, as detailed in Mani and Park [14],
one can also use MFM to obtain the averaged operator by explicitly specifying the forcing to

obtain columns of L
−1

. For example, one can specify s̄ = [1 0 . . . 0]�, solve the forced governing

equation in (19), postprocess c̄ to obtain the first column of L
−1

using

c̄ = L
−1

s̄, (A7)

and repeat until all columns of L
−1

are filled. Alternatively, as detailed in Mani and Park [14] and
in Sec. I B, one can also use IMFM to specify c̄ for more direct computation of the nonlocal eddy
diffusivity or moments of the nonlocal eddy diffusivity.

APPENDIX B: COMPARISON OF METHODS FOR OBTAINING
THE NONLOCAL EDDY DIFFUSIVITY

This Appendix is motivated by the observation of two apparently different derivations for the
exact expression of the nonlocal eddy diffusivity. Using a Green’s function solution, Hamba [12,13]
derived an exact expression for the nonlocal eddy diffusivity, while Mani and Park [14] presented
a derivation based on macroscopic forcing of a linear system. In this Appendix, we demonstrate
that when IMFM is used to obtain the full nonlocal eddy diffusivity (as opposed to using IMFM
to obtain moments as used extensively in this work), its formulation is compatible with the earlier
work by Hamba. In Hamba’s approach, the transport equation for the scalar fluctuation, c′, is given
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by

∂c′

∂t
+ ∂

∂x j
(u jc

′ − u′
jc

′) − DM
∂2c′

∂x j∂x j
= −u′

j

∂ c̄

∂x j
. (B1)

The mean scalar gradient on the right-hand side is considered a source term for c′. Using the Green’s
function, g′

i(x, y, t, τ ), satisfying

∂g′
i

∂t
+ ∂

∂x j
(u jg

′
i − u′

jg
′
i ) − DM

∂2g′
i

∂x j∂x j
= u′

iδ(x − y)δ(t − τ ), (B2)

the solution to Eq. (B1) is

c′(x, t ) = −
∫

y,τ

g′
i(x, y, t, τ )

∂ c̄

∂xi

∣∣∣∣
y,τ

dydτ. (B3)

Hence, the scalar flux can be written as

−u′
jc

′(x, t ) =
∫

y,τ

u′
j (x, t )g′

i(x, y, t, τ )
∂ c̄

∂xi

∣∣∣∣
y,τ

dydτ, (B4)

where

Dji(x, y, t, τ ) = u′
j (x, t )g′

i(x, y, t, τ ) (B5)

is the nonlocal eddy diffusivity, and Eq. (B4) is identical to Eq. (6).
To compare the approach presented by Mani and Park [14], which arrived at the same nonlocal

eddy diffusivity, consider the forced scalar transport equation:

∂c

∂t
+ ∂

∂x j
(u jc) − DM

∂2c

∂x j∂x j
= s. (B6)

To obtain the full nonlocal eddy diffusivity, one can specify the macroscopic forcing, s = s̄, to
maintain the mean scalar gradient as a Dirac delta function and then postprocess −u′

jc
′. To allow

further comparison with Hamba’s approach, the forced mean scalar transport equation is

∂ c̄

∂t
+ ∂

∂x j
(ū j c̄) + ∂

∂x j
u′

jc
′ − DM

∂2c̄

∂x j∂x j
= s̄. (B7)

Substituting s̄ = s from Eq. (B7) into Eq. (B6) leads to the scalar fluctuation equation:

∂c′

∂t
+ ∂

∂x j
(u jc

′) + u′
j

∂ c̄

∂x j
− ∂

∂x j
u′

jc
′ − DM

∂2c′

∂x j∂x j
= 0, (B8)

which is identical to Hamba’s equation in (B1).
Additionally, to compare the MFM forcing with the implied forcing in Hamba’s approach, we

rearrange (B7):

− ∂

∂x j
u′

jc
′ = ∂ c̄

∂t
+ ∂

∂x j
(ū j c̄) − DM

∂2c̄

∂x j∂x j
− s̄, (B9)

and observe that the corresponding term in the Green’s function equation [Eq. (B2)], −∂/∂x j (u′
jg

′
i ),

is an implied forcing term that contains the macroscopic forcing. An analogous comparison between
Hamba [26] and Mani and Park [14] can also be made for momentum transport and Reynolds stress
closures.
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APPENDIX C: OBTAINING THE SPATIOTEMPORAL EDDY DIFFUSIVITY
FOR THE HOMOGENEOUS MODEL PROBLEM

The spatiotemporal eddy diffusivity shown in Fig. 4(a) may be obtained by using the Green’s
function approach of Hamba [13] or, similarly, IMFM as detailed here. For the homogeneous model
problem in Sec. III A, the unclosed scalar flux can be written as

−u′
1c′(x1, t ) =

∫ t

0

∫ ∞

−∞
D(y1 − x1, τ − t )

∂ c̄

∂x1

∣∣∣∣
y1,τ

dy1dτ, (C1)

where (̄) denotes averaging in the x2 direction and D(y1 − x1, τ − t ) is the spatiotemporal eddy
diffusivity. Using IMFM and prescribing ∂ c̄/∂x1 as a Dirac delta function in both space and time,

−u′
1c′(x1, t ) =

∫ t

0

∫ ∞

−∞
D(y1 − x1, τ − t )δ(y1, τ )dy1dτ, (C2)

then by the sifting property of the delta function,

−u′
1c′(x1, t ) = D(−x1,−t ). (C3)

The spatiotemporal eddy diffusivity can be obtained by postprocessing −u′
1c′(x1, t ) since the flow

is homogeneous.

APPENDIX D: MMI MODEL ERROR FOR THE HOMOGENEOUS PROBLEM

For the homogeneous model problem in Sec. III A, the spatiotemporal MMI model in (52)
matches up to the second-order spatial moment and first-order temporal moment of the eddy diffu-
sivity. While the MMI model keeps an infinite Taylor series expansion (whereas the leading-order
Taylor model and higher-order Taylor model truncate the expansion), the higher-order moments are
not enforced to match those of the true eddy diffusivity kernel. The resulting error is discussed in
this Appendix.

Consider the Taylor series expansion of the nonlocal eddy diffusivity in (9) simplified for the
homogeneous model problem in Sec. III A:

−u′
1c′ = D0 ∂ c̄

∂x1
+ D1s

∂2c̄

∂x2
1

+ D2s
∂3c̄

∂x3
1

+ · · · + D1t
∂2c̄

∂t∂x1
+ . . . . (D1)

The order of each term can be estimated by approximating the eddy diffusivity moments using
a characteristic velocity, urms, and mixing length, l , e.g., D0 ∼ urmsl , and the mean scalar gradient
using �c̄/L, where L is a characteristic length scale of the mean scalar:

−u′
1c′ ∼ urms�c̄

(
l

L

)
+ urms�c̄

(
l

L

)2

+ urms�c̄

(
l

L

)3

+ . . . . (D2)

The ratio l/L may be O (1) for problems with small L, e.g., for the initial condition in the
homogeneous problem which consists of a narrow band of c̄. In this case, the higher-order terms
are not necessarily small. By truncating the Taylor series expansion, the higher-order Taylor model
neglects these higher-order terms, which causes the large errors seen at early time. By keeping an
infinite Taylor series expansion, the MMI model can approximate the effects of the higher-order
terms depending on how well the shape of the MMI-modeled eddy diffusivity matches that of the
true eddy diffusivity.

For problems where L 	 l , e.g., in the limit of late time for the homogeneous problem, the
error can be estimated. The error in the leading-order Taylor model in (48), which only captures
the leading term in (D1), is O (1/L2). The error in the spatiotemporal MMI model in (52), which
captures up to the second-order spatial moment, is O (1/L4).
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FIG. 18. (a) Error comparison for the leading-order Taylor model and the spatiotemporal MMI model. For
large L, the models follow the expected 1/L2 and 1/L4 scaling, respectively. (b) Model comparison for t = 12.
In this limit, all models are expected to perform well; however, the spatiotemporal MMI model still outperforms
both the leading-order Taylor model and the higher-order Taylor model.

Figure 18(a) shows the normalized error for the leading-order Taylor model and spatiotemporal
MMI model and the expected 1/L2 and 1/L4 scaling, respectively. The characteristic solution width
L is computed at each timestep using the location where c̄ drops by 99% of its maximum value. At
very late time, the error in the spatiotemporal MMI model deviates from the expected scaling as the
error in the numerical scheme, which is first-order in time and second-order in space, dominates.

At very late time, all of the models shown are expected to perform well due to the negligible effect
of the higher-order terms in the Taylor series expansion. However, the spatiotemporal MMI model
still outperforms both the leading-order Taylor model and higher-order Taylor model as shown in
Fig. 18(b).

APPENDIX E: COMPARISON WITH A FRACTIONAL-ORDER OPERATOR

Several recent works [29–31] examine using fractional-order operators for nonlocal models. A
simple model with a fractional-order Laplacian for the homogeneous problem in Sec. III A is

∂ c̄

∂t
= 1

2

(
∂2

∂x2
1

)α/2

c̄, (E1)

where 0 < α < 2, and the coefficient in front of the fractional-order Laplacian is chosen such that
when α = 2, the model reduces to the leading-order Taylor model (Boussinesq model) in Eq. (48).
Equation (E1) can be solved by Fourier transforming in x1:

∂ ¯̂c

∂t
= 1

2
(−(k2)α/2) ¯̂c, (E2)

where k is the corresponding wave number in x1 and time-advancing in Fourier space.
To obtain the nonlocal eddy diffusivity, recall that the right-hand side of Eq. (E2) is a model for

the derivative of the unclosed scalar flux:

ik(−û′
1c′) = 1

2 (−(k2)α/2) ¯̂c. (E3)

Rearranging,

−û′
1c′ = 1

2
(k2)α/2−1(ik ¯̂c), (E4)
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FIG. 19. The nonlocal eddy diffusivity of the simple fractional-order model shown in Fourier space for
various choices of α compared with the exact nonlocal eddy diffusivity and the MMI-modeled eddy diffusivity.

where the gradient of c̄ in Fourier space is ik ¯̂c, and correspondingly the nonlocal eddy diffusivity in
Fourier space is

D̂(k) = 1

2
(k2)α/2−1. (E5)

Figure 19 shows the nonlocal eddy diffusivity in Fourier space for several α in comparison with the
exact and MMI-modeled nonlocal eddy diffusivity.

Figure 20 shows an early time (t = 0.5) and late time (t = 4) comparison of the spatiotemporal
MMI model in Eq. (52) and the fractional-order model for several choices of α. For early time,
the simple fractional-order model with a constant α does not capture the double-peaked feature
in the DNS solution of c̄(x1), whereas the MMI model does. For late time, the fractional-order
model overpredicts the spread of c̄(x1). As shown in Fig. 19, the nonlocal eddy diffusivity of the
fractional-order model is larger than the exact nonlocal eddy diffusivity in both of the limits of large

FIG. 20. Fractional-order model comparison for the homogeneous problem in Sec. III A at early time,
t = 0.5, and late time, t = 4.
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k and small k. Thus, the fractional-order model solution disperses too quickly for both early time,
where narrow (large wave-number) features are present, and late time, where very smooth (small
wave-number) features are present.

This result may be remedied by a more sophisticated fractional-order model with a variable α

but this is not considered here.

APPENDIX F: MFM FOR PERIODIC PROBLEMS

1. Obtaining moments of the nonlocal eddy diffusivity

The c̄ required for IMFM, e.g., c̄ = x1 for the zeroth moment, may be incompatible with the
periodic boundary conditions of the problem as for the inhomogeneous model problem in Sec. IV A.
We decompose c(x1, x2) = c̄(x1) + c′(x1, x2) where c̄(x1) may be nonperiodic but c′(x1, x2) is
periodic.

Moreover, following a similar line of reasoning as for the input-output relationship between
−u′

1c′(x1) and c̄(x1), c′(x1, x2) can be Taylor series expanded as

c′(x1, x2) = c0(x1, x2)
∂ c̄

∂x1
+ c1(x1, x2)

∂2c̄

∂x2
1

+ c2(x1, x2)
∂3c̄

∂x3
1

+ . . . , (F1)

where c0(x1, x2), c1(x1, x2), etc., are to be determined. Once determined, to get to the desired
moments, multiply Eq. (F1) by −u′

1(x1, x2) and average over x2,

−u′
1c′(x1) = −u′

1c0(x1)
∂ c̄

∂x1
− u′

1c1(x1)
∂2c̄

∂x2
1

− u′
1c2(x1)

∂3c̄

∂x3
1

− . . . , (F2)

which leads to D0(x1) = −u′
1c0(x1), D1s (x1) = −u′

1c1(x1), D2s (x1) = −u′
1c2(x1), etc.

For example, to obtain the zeroth moment of the nonlocal eddy diffusivity for the inhomogeneous
model problem in Sec. IV A, substitute c̄ = x1 into Eq. (F1) to get c′(x1, x2) = c0(x1, x2), and
substitute c(x1, x2) = x1 + c0(x1, x2) into the governing equation for the inhomogeneous model
problem [Eq. (58)]:

u1 + u1
∂c0

∂x1
+ u2

∂c0

∂x2
= ε2 ∂2c0

∂x2
1

+ ∂2c0

∂x2
2

+ s(x1), (F3)

where s(x1) is the IMFM forcing required to enforce c′(x1) = c0(x1) = 0. One can then solve
for c0(x1, x2) and obtain the zeroth moment by forming D0(x1) = −u′

1c0(x1). Using Eq. (F3) for
c0(x1, x2) rather than the full governing equation for c(x1, x2) bypasses the issue of needing to
explicitly enforce c̄ with periodic boundary conditions.

Similarly, to obtain the first spatial moment of the nonlocal eddy diffusivity, substitute c(x1, x2) =
x2

1/2 + c0(x1, x2)x1 + c1(x1, x2) into the governing equation for the inhomgeneous model problem
and subtract x1 times Eq. (F3):

u1c0 + u1
∂c1

∂x1
+ u2

∂c1

∂x2
= ε2 + 2ε2 ∂c0

∂x1
+ ε2 ∂2c1

∂x2
1

+ ∂2c1

∂x2
2

+ s(x1), (F4)

where s(x1) is the forcing required to enforce c1(x1) = 0. One can then solve for c1(x1, x2) and
obtain the first spatial moment by forming D1s (x1) = −u′

1c1(x1). Note that Eq. (F4) relies on having
c0(x1, x2) from Eq. (F3).

One can obtain the second spatial moment of the nonlocal eddy diffusivity from solving the
equation for c2(x1, x2), and so forth. As with IMFM where obtaining the second moment relies on
having the zeroth and first moments, the equation for c2(x1, x2) relies on having c0(x1, x2) and
c1(x1, x2). However, this decomposition does not raise the cost of obtaining the moments, still
requiring one simulation per moment. We leave the extension of this formulation to unsteady and
chaotic flows as future work.
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2. Obtaining the full nonlocal eddy diffusivity

This section provides details for obtaining the nonlocal eddy diffusivity for the inhomogeneous
problem with periodic boundary conditions in Sec. IV A. Either the Green’s-function-based ap-
proach of Hamba [13] or MFM can be used to obtain the nonlocal eddy diffusivity. However, due
to the small number of degrees of freedom in this problem, we obtain the nonlocal eddy diffusivity
by directly inverting the discretized advection-diffusion operator and projecting it into the averaged
space as detailed in Sec. I B. Due to the periodic boundary conditions, some additional treatment
is needed, which is detailed here. In other words, the averaged operator, L , can be obtained via
Eq. (16) and can be further written as

L = − d

dx1
(D + ε2I )

d

dx1
, (F5)

where D is the desired nonlocal eddy diffusivity matrix and I is the identity matrix. However, due
to the periodic boundary conditions, d/dx1 is uninvertible, and thus one cannot simply solve for D
using Eq. (F5).

Rather, the decomposition in Sec. F 1 is applied, and let

c′ = cd
dc̄

dx1
, (F6)

where c′ is a discretized vector of the scalar fluctuation (N1N2 × 1), cd is a discretized matrix
(N1N2 × N1), and dc̄/dx1 is a discretized vector of the mean scalar gradient (N1 × 1), where N1

and N2 are the number of points in the x1 direction and x2 direction, respectively. This is equivalent
to Eq. (F1) before it is Taylor-series expanded. Then,

−u′
1c′ = −Pu′

1c′ = −Pu′
1cd

dc̄

dx1
= D

dc̄

dx1
, (F7)

where P is the projection (i.e., averaging) matrix (N1 × N1N2), and thus the nonlocal eddy diffusivity
matrix is

D = −Pu′
1cd . (F8)

To obtain cd , substitute c = c̄ + c′ into the governing equation for the inhomogeneous model
problem [Eq. (58)] with the MFM forcing, s(x1):

u1
∂c′

∂x1
+ u2

∂c′

∂x2
− ε2 ∂2c′

∂x2
1

− ∂2c′

∂x2
2

= −u1
∂ c̄

∂x1
+ ε2 ∂2c̄

∂x2
1

+ s(x1), (F9)

where the role of s(x1) is to enforce the condition c′(x1) = 0. In matrix-operator form, Eq. (F9) is
written as

L c′ = L 1
∂ c̄

∂x1
+ s, (F10)

where L 1 = −u1 + ε2∂/∂x1. Substituting s = Es̄ into Eq. (F10), and forming a matrix system to
simultaneously solve for c′ and s̄ such that Pc′ = 0 leads to[

L −E
P 0

][
c′
s̄

]
=

[
L 1

0

][
∂ c̄

∂x1

]
. (F11)

Rearranging, [
c′
s̄

]
=

[
L −E
P 0

]−1[
L 1

0

][
∂ c̄

∂x1

]
=

[
cd

∗
][

∂ c̄

∂x1

]
(F12)

allows one to obtain cd and subsequently the nonlocal eddy diffusivity, D, using Eq. (F8).
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FIG. 21. (a) Coefficients of the alternative MMI formulation in Eq. (G1) for the wall-bounded inhomoge-
neous problem in Sec. IV B. (b) Model comparison for the wall-bounded inhomogeneous problem.

APPENDIX G: AN ALTERNATIVE MMI FORMULATION

For the inhomogeneous problems in Sec. IV, an alternative to the steady MMI model in Eq. (61)
is [

1 + a1(x1)
d

dx1
+ a2(x1)

d2

dx2
1

](
−u′

1c′

a0

)
= dc̄

dx1
. (G1)

By choosing a0(x1) = D0(x1), the MMI formulation in Eq. (G1) matches the zeroth moment of
the exact nonlocal eddy diffusivity (i.e., for c̄ = x1, the model recovers −u′

1c′|c̄=x1 = D0). The
remaining coefficients, a1(x1) and a2(x1), can be determined by matching the other low-order
moments via specifying c̄ = x2

1/2 and c̄ = x3
1/6 as done in Sec. II. This alternative formulation

has one fewer coefficient to solve for than the original MMI formulation but may have singularity
issues if the zeroth moment of the eddy diffusivity goes to zero, for example near a wall.

Figure 21(a) shows the coefficients of the alternative MMI formulation for the wall-bounded
inhomogeneous model problem in Sec. IV B, and Fig. 21(b) shows the resulting solution, c̄(x1), of
the alternative MMI formulation closely matching the DNS solution. Although the solution of the
alternative MMI formulation is very similar to that of the original MMI formulation in Fig. 16, the
coefficients show some differences particularly in a1(x1) and the location of the singularities. At the
wall, both u′

1c′(x1) and D0(x1) go to zero, leading to a zero divided by zero and numerical issues in
determining the coefficients at the wall. However, at the wall, molecular effects also dominate and
the eddy diffusivity model is unimportant leading to a well-behaved solution.

A coefficient regularization technique similar to the one shown in Sec. IV B may be used. A
small parameter σ is introduced for determining the MMI coefficients:[

1 + a1(x1)
d

dx1
+ a2(x1)

d2

dx2
1

](−u′
1c′ + σ dc̄

dx1

D0 + σ

)
= dc̄

dx1
. (G2)

The σ parameter is added to both the numerator and denominator in order to match the zeroth
moment (i.e., for c̄ = x1, the model recovers −u′

1c′|c̄=x1 + σ = D0 + σ ). Equation (G2) is used
purely for determining the model coefficients; for ease of implementation, the final model is
still Eq. (G1) with a0(x1) = D0(x1). As with the previous coefficient regularization technique
in Sec. IV B, this introduces a small amount of error in matching the first- and second-order
moments, but the trade-off is better-behaved coefficients. Figure 22(a) shows the coefficients for the
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FIG. 22. (a) Coefficients for the alternative MMI formulation with coefficient regularization and
σ = 0.01ε2. (b) Model comparison for the wall-bounded inhomogeneous problem in Sec. IV B.

alternative MMI formulation using coefficient regularization with σ = 0.01ε2, and Fig. 22(b) shows
a comparison of the model solution with DNS. While the alternative MMI model with coefficient
regularization performs slightly better than without coefficient regularization, the choice of σ is not
yet systematic.
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