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Size of heterogeneous deformations in sheared granular flows
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Sheared granular materials spontaneously develop heterogeneous and transient
kinematic fields which resemble turbulence. We focus here on characterizing the length
scale of these heterogeneities. We simulate plane-shear flows and measure the local grain
velocity, velocity fluctuation, shear rate, vorticity, and dilation rate. The results show that
these quantities are widely distributed, even more so at low inertial numbers. We relate this
effect to spatial correlations that develop at low inertial numbers, where the flow becomes
partitioned into “cold” patches with lower than average strain rate and “hot” zones where
the strain rate is concentrated. We finally extract a characteristic length scale for the size
of these heterogeneities, corresponding to the size of a representative elementary volume.
This size is found to vary from a few grain diameters at high inertial number to a few dozen
grain diameters at low inertial number, following a characteristic power law. These insights
into. representative elementary volume (REV) size may be of importance to further develop
continuum models for granular flows, capturing local and nonlocal effects.

DOI: 10.1103/PhysRevFluids.8.124301

I. INTRODUCTION

A continuum description for granular flows is key to predict the behavior of many natural
events and industrial processes. This description hinges on continuity equations capturing mass
and momentum conservation. Each law relates a diffusion coefficient—diffusivity or viscosity—to
spatially averaged deformations and stresses. Examples of such laws include the μ(I ) frictional
rheology [1,2], nonlocal models [3–5], and scaling laws for shear-induced diffusion [6–8]. These
laws are predicated on the assumption of the existence of a finite size representative elementary
volume (REV), which is defined as the minimum volume of material needed to obtain a behavior
similar to any larger volume.

The existence of a REV has been demonstrated in granular packings subjected to quasistatic
loading, focusing on structural and mechanical properties such as porosity [9], and stress and energy
dissipation [10,11]. The size of the REV was found to be influenced by various factors, including
the type of material, elastic properties, geometry [10,12,13], boundary conditions [10], and loading
patterns [11]. In contrast, the existence and size of REVs in granular flows remains to be established.

While a single grain diameter is an intuitive lower bound for a REV, analysis of granular flow
internal kinematics suggest that it could, in fact, be much larger. These studies have revealed
the spontaneous development of the correlated motion of grains, a process coined “granulence”
by analogy with velocity correlations observed in turbulent flows [14,15]. The structure of these
granular clusters yields some mesoscopic length scale which is likely to affect the REV size [16–20].
For example, a configuration that is too small to let granular clusters develop to their full size
could behave differently to a larger configuration able to accommodate larger clusters. The drop
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in effective viscosity observed near flow boundaries is an empirical confirmation of this relation
[21–23].

This work attempts to measure the REV size in granular flow by focusing on their internal
kinematics. In discrete element method simulations of plane-shear flows covering a range of inertial
numbers (Sec. II), we first measure local quantities including grain velocity, relative velocity
(Sec. III), and local velocity gradient tensors (Sec. IV), and analyze their statistical distribution.
We then extract a REV size based on the local rate of shear and vorticity (Sec. V), with a particular
interest in its variation with the inertial number.

II. PLANE SHEAR FLOWS

We use the discrete element method (DEM) to simulate plane-shear flows of dry, cohesionless
grains. The simulated system is presented in Fig. 1(a). It consists of a two-dimensional assembly of
104 grains with a mean diameter d , mass m, and density ρ. To prevent shear-induced crystallization,
a uniform polydispersity of d ± 20% is introduced in the grain diameters. The system is two
dimensional (x and y directions only) and Lees-Edwards periodic boundary conditions [24] are used
to avoid flow heterogeneity induced by solid walls [22]. The shear rate γ̇ = 2u

H and normal stress P
are prescribed and kept constant during flow, where u is the shearing velocity at the boundaries and
H is the system size in the y direction, which varies to maintain a constant value of P. The system
size in the x direction is kept constant at 100d .

Grains interact through direct contact via a contact force comprised of a linear elastic repulsion,
a viscous dissipation, and tangential friction. The associated mechanical parameters are the normal
stiffness kn = 103P, the coefficient of restitution set to 0.5, and the coefficient of friction set to 0.5.
The choice of these parameters was found to only mildly influence the rheological behavior of the
packing [2,25]. The ratio kn/P is selected to be as low as possible to enable larger time steps and
therefore reduce computational time, while large enough not to affect the flowing properties of the
material. It is expected that stiffer grains would yield similar results. In contrast, softer grains could
affect the flow dynamics [25], although such highly deformable grains are seldom.

In the absence of gravity, this configuration yields homogeneous, steady shear flows. Here,
homogeneous means that when averaged over time, the shear rate γ̇ and the stresses are the same
anywhere in the flow. This implies that the inertial number [1,2] is also homogeneous,

I = γ̇ ti,

where ti = d
√

ρ

P is the inertial time. At any point in time, however, local fluctuations may arise,
which will be the focus of the analysis below.

A series of steady flows was simulated covering a range of inertial numbers 10−3 � I � 1. The
lower values correspond to a quasistatic regime, while the higher values correspond to a collisional
regime. Each flow is prepared by preshearing an initially loose and random packing over five shear
deformations. This is sufficient to reach a steady regime during which macroscopic stresses and
solid fractions are no longer evolving. The grain’s velocity and position are then recorded every
1/20th of a shear deformation, for a duration of 15 shear deformations. This forms the database
analyzed below.

III. GRAIN AND PAIR VELOCITIES

We first consider individual grain velocities, given by �vi for the velocity of grain i in the x and y
directions, with components vi

x and vi
y. We define the nonaffine components δ�vi as

δvi
x = vi

x − yiγ̇ , δvi
y = vi

y. (1)

Here, δ�vi measures the deviation from the time-averaged flow field, which is yγ̇ in the x direction
and 0 in the y direction. We refer to δ�vi as the velocity fluctuation. Figures 1(b) and 1(c) illustrate
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FIG. 1. Velocity fluctuations in plane-shear flows. (a) Schematic of the plane-shear flow configuration,
featuring a snapshot of the grain packing under applied pressure P and shear velocity u. The system dimension
is 100d × 80d . (b),(c) Snapshots of grain velocity fluctuations for inertial numbers I = 0.01 and I = 0.5,
respectively. The arrows represent the velocity fluctuations δv in both the x and y directions for each grain,
with the arrow base located at the center of the grain.

fields of velocity fluctuation in two snapshots taken in flows with I = 0.01 and I = 0.5, respectively.
In agreement with previous findings [6,14,26], these snapshots show that grains are not simply
following the average flow field. They feature large fluctuations, with some spatial correlations at
low inertial number.
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FIG. 2. Velocity and relative velocity distributions in plane-shear flows. (a),(b) Distributions of grain
velocity (vi

y ) and grain relative velocity (vi j
y ) in the y direction for two different inertial numbers I = 0.01 and

I = 1, respectively. Black lines are normal distribution fits; red line is an exponential distribution fit. Means
and standard deviation of the distributions are given in the legends. (c),(d) Distributions of vi

y and vi j
y for a

range of inertial numbers. (a)–(d) Velocities are in units of d/ti. (e) Standard deviation of velocity fluctuations
σ (δvi

y ) (blue) and σ (δvi j
y ) (green) for different inertial numbers I , and power law in Eq. (3) (black line).

(f) Kurtosis of vi
y (blue) and vi j

y (green) for different inertial numbers.

To highlight the existence of cooperative motion suggested in Fig. 1(b), we next consider the
relative velocity of pairs of grains in the y direction, defined as

δvi j
y = v j

y − vi
y, (2)
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FIG. 3. Velocity gradient and decomposition into deformation rates. Top: Illustration of how the velocity
gradient tensor F is calculated for a single grain (green) including close neighbors (blue) using Eq. (4);
the calculation involves relative position (ri j ) and relative velocity (vi j

y ). The cutoff distance used to define
neighboring grains in this study is |ri j | � 2d , which is highlighted as the dashed circle. This cutoff distance
is chosen to evaluate the velocity gradient on the smallest possible zone while ensuring that enough neighbors
are present to determine F . Bottom: Decomposition of the velocity gradient tensor into volumetric strain rate,
shear strain rate, and vorticity, corresponding to the trace, symmetric, and antisymmetric parts of F .

for all neighboring pairs of grains i and j. Two grains are deemed neighbors if their center-to-center
distance is less than 2d . Pairs that are farther away are excluded. The rationale for considering pair
relative velocities is that their distribution can indicate the presence of spatial correlation within
a distance 2d . In the absence of spatial correlation, grain and pair velocities should be equally
distributed. In contrast, some differences in their distribution should arise in the presence of spatial
correlation.

Figures 2(a) and 2(b) compare the probability density functions (PDFs) of these two quantities
including all grains, all pairs, and all time steps at two inertial numbers I = 0.01 and I = 1. At high
inertial number, grain and pair velocities both follow a normal distribution. At low inertial number,
grain velocities follow a normal distribution, while pair velocities follow an exponential distribution.
Consistent with the representation in Fig. 1, this suggests the development of spatially correlated
motion at low inertial number. This transition, or lack of transition, from a normal to an exponential
distribution is further illustrated in Figs. 2(c) and 2(d).

How much the grain and pair velocities deviate from the mean flow—which is null in
this direction—is measured by the standard deviation of these distributions, σ (vi

y) and σ (vi j
y ).

Figure 2(e) shows that in spite of the difference in the shape of these distributions, standard
deviations of grain and pair velocities follow a similar power law of the inertial number,

σ (δvi
y)

d/ti
≈ σ (δvi j

y )

d/ti
≈ αInI . (3)

The results are consistent with exponents nI ≈ 0.60 and coefficient α ≈ 0.50. Such a power law
for vi is consistent with previous results [2,8,27]. A power exponent nI = 1 would yield δv

i j
y ∝ γ̇ d ,

which means that velocity fluctuations are entirely driven by the characteristic shear velocity γ̇ d ,
with no effect of the inertial time ti. A power exponent less than 1 means that the two standard
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FIG. 4. Distribution of local deformation rates. (a) Shear strain rate (ε̇s ), (b) volumetric strain rate (ε̇v ), and
(c) vorticity (w) for different inertial number I . (a)–(c) Means and standard deviations of the distributions are
indicated in the legends. (d) Means 〈ε̇s〉 (green line), 〈ε̇v〉 (red line), and 〈w〉 (blue line) of these distributions
normalized by the macroscopic shear rate γ̇ , including a black line at 0.5 for visual reference.

FIG. 5. Fluctuations of deformation rates, represented by the standard deviation of the local shear strain
rate σ (ε̇s ), volumetric strain rate σ (ε̇v ), and vorticity σ (w) in unit t−1

i at different inertial number. The black
line is the power law in Eq. (6) with β = 0.23, m = 0.70.
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FIG. 6. Spatial distribution of kinematic fields. (a)–(i) Normalized shear strain rate, volumetric strain
rate, and vorticity fields at three different inertial numbers I = 0.001, I = 0.01, and I = 0.1, respectively.
(j)–(l) Spatial distribution of extreme values in each kinematic field at the same inertial numbers.

deviations become sensitive to the inertial time ti and are much larger than the characteristic shear
velocity γ̇ d at low inertial numbers. A qualitative interpretation is that velocity fluctuations become
driven by inertial rearrangements, which characteristic time ti is independent of the shear time γ̇ −1.

Compared to a normal distribution, an exponential distribution features higher probability near
the mean value—zero in our case—and a higher probability very far from the mean. The transition
from a normal to an exponential distribution for the pair velocities can then be understood as
resulting from a partitioning of the flow into (i) “cold” zones with low pair velocities comprised of
most pairs, and (ii) “hot” zones with high pair velocities comprised of few outlier pairs. The measure
of the kurtosis of these distributions, shown in Fig. 2(f), further highlights the increasing presence
of outliers at low inertial number. For individual grain velocity, the value of the kurtosis remains
near 3, which is the value expected for a normal distribution. In contrast, pair velocity distributions
exhibit significant excess kurtosis, with values reaching 25 at the lower inertial number. These high
values are driven by, and thus reflect the increasing presence of, outliers in these distributions.
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FIG. 7. REV size. (a),(b) Illustrations of the window size (W = 2d and 40d) used to measure standard
deviations σ of kinematic quantities, and the mean of these standard deviations 〈σ 〉 including all windows and
all times. (c)–(e) Evolution of the mean standard deviation as a function of the window size W , normalized by
its maximum value defined as σmax = 〈σ 〉(W = 40d ). Dashed lines on (c) show the method used to extract a
minimum REV size W0 for different inertial numbers. (d) Minimum REV size W0 obtained from shear strain
rate, volumetric strain rate, and vorticity velocity fluctuation in the y direction, as a function of the inertial
number. The green and black lines correspond to the power law in Eq. (7).

IV. VELOCITY GRADIENT AND DEFORMATION RATE

The heterogeneity in grain and pair velocities evidenced above suggests that the rate of deforma-
tion within the flow is also not homogeneous and is likely to deviate from the macroscopic shear
rate γ̇ . To evidence heterogeneities in the deformation rate, we measured the local velocity gradient
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FIG. 8. Effect of criterion on REV. REV size of shear strain rate for two criteria of 95% and 90%. Lines
are best fit using Eq. (7).

tensor defined for each grain as [22,28]

F i = 〈ri j ⊗ ri j〉−1 · 〈ri j ⊗ vi j〉. (4)

The symbols · and ⊗ denote the tensor product and the outer product, respectively, and −1 represents
the inverse of the tensor. 〈·〉 represents an average over all pairs of neighboring grains j; and ri j is the
center-to-center vector between two grains and vi j their relative velocity vector. Pairs are considered
neighbors if their center-to-center distance is less than 2d . F i is a second-rank tensor that measures
a spatial average of the velocity gradient in this zone, as illustrated in Fig. 3. The distance 2d is
chosen to be as small as possible to obtain local information while ensuring that enough neighbors
are included to evaluate the velocity gradient.

In the following, we will focus on three kinematic quantities extracted from this tensor: the shear
strain rate ε̇i

s (symmetric part of F ), the vorticity wi (antisymmetric part of F ), and the volumetric

FIG. 9. Spatial correlation of vy. (a) The dependence of the vy spatial correlation to the controlling
parameter 	(d ), where d is the average diameter of the grains. (b) The comparison between the extracted
minimum REV size W0/d and correlation length (l) obtained from vy for different inertial numbers.
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strain rate ε̇i
v (trace of F ), defined as

ε̇i
s = F i

xy + F i
yx

2
; wi = F i

xy − F i
yx

2
; ε̇i

v = F i
xx + F i

yy. (5)

For reference, the macroscopic deformation rates of the plane-shear configuration are γ̇ /2 for the
shear strain rate and the vorticity and 0 for the volumetric strain rate.

Figure 4 shows that the microscopic deformations rate are, on average, equal to their macroscopic
counterpart. However, they are widely distributed. Shear strain rate, and vorticity and volumetric
strain rate all follow a normal distribution at high inertial number and transition to an exponential
distribution at low inertial numbers, which is similar to the distribution of pair velocities. Figure 5
shows that their standard deviations σ (ε̇i

s), σ (ε̇i
v ), and σ (wi) follow a similar power law of the

inertial number,

σ (ε̇i
s)

1/ti
≈ σ (ε̇i

v )

1/ti
≈ σ (wi )

1/ti
∝ βIm, (6)

with best-fit values of β = 1.48 and m = 0.70. Here, too, a power m = 1 would mean that all
standard deviations would simply scale with the macroscopic shear rate γ̇ . A power less than
one indicates that the inertial number affects these standard deviations, which become increasingly
greater than γ̇ at low inertial number. These distributions mean that there exist zones in the flow with
a shear strain rate larger or smaller than the macroscopic one. Similarly, there exist zones rotating
faster or slower than the macroscopic vorticity, and zones which are dilating or contracting while
the flow is macroscopically neither dilating or contracting.

Figures 6(a)–6(i) evidence the spatial distributions of these three quantities. They highlight a
spatially random distribution at high inertial number and large spatial correlations at low inertial
number. Figures 6(j)–6(l) help one to visualize where the zones of extreme values of shear strain
rate, volumetric strain rate, and vorticity coincide. They represent only grains with outlier values:
|x − 〈x〉| > 2σ (x), with x being either ε̇i

s, ε̇i
v , or wi, 〈·〉 the mean value of the distribution, and σ

its standard deviation. These results show that at high inertial number zones of extreme vorticity,
the volumetric and shear strain rates do not coincide and are rather seemingly randomly distributed
within the flow. In contrast, they do coincide at low inertial number, where the flow features “hot”
zones with extreme values of all three quantities and “cold” zones with close to average values of
all of these quantities.

V. REPRESENTATIVE ELEMENTARY VOLUME

The distribution and spatial correlation of kinematic fields evidenced above suggest that mi-
croscopic strain rates spontaneously feature a mesoscopic organization at low inertial number.
One could expect that their associated length scale constitutes a lower bound for the size of a
representative elementary volume in these flows.

To determine the size of a REV, we propose the statistical method illustrated in Figs. 7(a) and
7(b). The flow is first split into square cells of size W . The standard deviation σ of a kinematic
quantity (ε̇s, ε̇v , or w) is measured in each cell, and averaged over all cells and all time steps. We
refer to the resulting averages 〈σ (ε̇s)〉, 〈σ (ε̇v )〉, and 〈σ (w)〉. A REV would exist if there is a finite
cell size W0 for which these quantities are similar to those measured in larger cells.

Figures 7(c)–7(e) show the evolution of these quantities with the cell size W . For the shear strain
rate, the volumetric strain rate, and the vorticity, they are minimal for small cells (W = 2d). They
gradually increase for larger cells before reaching a plateau. The explanation for this increase is that
smaller cells are more likely to be fully contained within a hot zone or a cold zone. They would
then include grains undergoing a similar kinematic, which yields small standard deviations within
the cell. On the contrary, large cells are more likely to contain grains belonging to both hot and cold
zones, featuring different kinematics.
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As illustrated in Fig. 7(c), we propose to define a REV size W0 as the cell size required to reach
a mean standard deviation 95% of the maximum value: 〈σ (W0)〉 = 0.95〈σ (W = 40d )〉. Taking the
example of the shear strain rate, Fig. 7(c) shows that the REV size W0 depends on the inertial number
I: it becomes larger at lower inertial numbers.

Figure 7(f) presents the REV size W0 obtained from the shear strain rate, volumetric strain rate,
vorticity, and velocity fluctuations in the y direction. REV sizes related to the shear strain rate and
vorticity are similar. They are generally larger than the REV size related to the volumetric strain
rate. Accordingly, we propose to define the REV size of the flows based on shear strain rate and
vorticity. Results are then consistent with a power law of the inertial number,

W0

d
≈ ζ InR , (7)

with an exponent nR = −0.25 and ζ = 4.5. The REV size related to velocity fluctuations exhibits a
power law with a similar exponent, but with a larger prefactor ζ = 9. In the range of inertial numbers
explored here, the REV size W0 varies from a few grain diameters at high inertial numbers to a
few dozen grain diameters at I = 10−3. These values are dependent on the choice for the threshold
(95%). Nonetheless, the REV results obtained with a different threshold (see Appendix A) show that
this choice only affects the prefactor ζ , but not the power exponent nR. Furthermore, Appendix B
compares the value of the REV obtained with vy with its spatial correlation length. While the REV
size appears to be consistently larger than the correlation length, both quantities appear to increase
as I decreases and diverge in the limit of I → 0.

Extrapolating the law (7) to lower inertial number would lead to large REV sizes, for instance,
W0 ≈ 450d for I = 10−8, a value commonly encountered in sheared fault gouge during earthquakes
[29]. Experimental studies have revealed that REV dimensions for the volume fraction and energy
dissipation in quasistatic flow conditions under simple shear are equal to 5d and 25d , respectively
[11]. Furthermore, for triaxial compression, a representative cubic element with a side length of
5.33d is introduced to capture the contact fabric, which is characterized by the coordination number
and the contact fabric anisotropy [30]. The results presented here suggest that REV size based
on internal kinematics may be much larger than these values in quasistatic flows. Further still,
extrapolating our results to γ̇ → 0 predicts a diverging REV size. This would correspond to an
absence of a finite REV.

VI. CONCLUSION

This paper highlights a striking contrast between the macroscopic and microscopic deformation
in granular flows. In macroscopically homogeneous shear flows, local strain rates are found to be
widely distributed and spatially correlated, even more so at low inertial number. This observation
resulted in the identification of a kinematics-based representative elementary volume, the size
of which significantly increases and seemingly diverges at low inertial number. This REV size
represents the characteristic size of instantaneous kinematic structures spontaneously developing
within the flow.

This REV size is a fundamental piece of information to further develop homogenization theories
explaining the effective behavior of granular flows as a continuum. It may be particularly useful to
better understand the origin of finite-size effects. For instance, let us assume that constitutive laws
for granular viscosity μ(I ) and diffusivity D(I ) are measured in a large enough system—larger than
the REV. The existence of a large REV size W0 suggests that deviations from these laws could arise
in flows at a distance from a boundary h < W0, as kinematic structures would not have enough space
to fully develop. The granular viscosity and diffusivity could then become a function of h: μ(I, h)
and D(I, h). Such deviations were indeed observed in experimental and simulated sheared flows in
Refs. [6,21,22].
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These results further suggest that large REV size may also develop in other soft materials which
feature correlated particle motion; these include suspensions of grains [31–33], cohesive granular
flows [34,35], foams [36,37], and suspensions of deformable particles (blood, emulsions) [38,39].

APPENDIX A: THE EFFECT OF THRESHOLD ON REV SIZE

Figure 8 shows the REV related to ε̇S obtained using two different thresholds: 95% and 90%.
The results indicate that this choice is affecting the prefactor of the power law, but not its exponent.

APPENDIX B: COMPARING REV AND CORRELATION LENGTH

To measure the spatial correlation C of velocity in the y direction, we used the following
expression:

C(	) = < vi
yvy(yi + 	) >

< (vi
y)2 >

, (B1)

where < . > is an average over all grains i, vi
y is the y velocity of that grain, and vy(yi + 	) is

the velocity at a distance 	y from the position of that grain. This velocity must be defined by
some spatial average of the grain velocity near the position (xi; yi + 	). We used the following
coarse-graining function to estimate this average:

vy(	) =
∑n

j=1 v
j
yw(x j − xi, yi + 	 − y j )∑n

j=1 w(x j − xi, yi + 	 − y j )
, (B2)

with the weight function defined as

w(X,Y ) = e− X2+Y 2

l2 . (B3)

The length scale of the coarse graining l is set to be one grain diameter. Grains located much farther
than l from the coordinate (xi; yi + 	y) will have virtually no influence on the coarse-grain velocity.
Finally, the correlation length � is defined as

� =
∫ ∞

0
C(	)∂	, (B4)

which is approximated by � = ∫ 20d
0 C(	)∂	. Figure 9 shows the autocorrelation function and

compares the associated length scale � to the REV (W0). It appears that the REV size is consistently
larger than the correlation length �, but that both quantities diverge in the limit of I → 0. This
divergence is consistent with the results in Ref. [40].

[1] G. MiDi, On dense granular flows, Europhys. J. E 14, 341 (2004).
[2] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir, Rheophysics of dense granular materials:

Discrete simulation of plane shear flows, Phys. Rev. E 72, 021309 (2005).
[3] O. Pouliquen and Y. Forterre, A non-local rheology for dense granular flows, Philos. Trans. R. Soc. A:

Math. Phys. Eng. Sci. 367, 5091 (2009).
[4] K. Kamrin and G. Koval, Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett. 108,

178301 (2012).
[5] M. Bouzid, M. Trulsson, P. Claudin, E. Clément, and B. Andreotti, Nonlocal rheology of granular flows

across yield conditions, Phys. Rev. Lett. 111, 238301 (2013).

124301-12

https://doi.org/10.1140/epje/i2003-10153-0
https://doi.org/10.1103/PhysRevE.72.021309
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.1103/PhysRevLett.108.178301
https://doi.org/10.1103/PhysRevLett.111.238301


SIZE OF HETEROGENEOUS DEFORMATIONS IN SHEARED …

[6] P. Kharel and P. Rognon, Vortices enhance diffusion in dense granular flows, Phys. Rev. Lett. 119, 178001
(2017).

[7] R. Artoni, M. Larcher, J. T. Jenkins, and P. Richard, Self-diffusion scalings in dense granular flows, Soft
Matter 17, 2596 (2021).

[8] P. Rognon and M. Macaulay, Shear-induced diffusion in dense granular fluids, Soft Matter 17, 5271
(2021).

[9] F. De Cola, A. Pellegrino, E. Barbieri, D. Penumadu, and N. Petrinic, Void ratio based representative
volume element for modelling the high strain rate behaviour of granular materials, Intl. J. Impact Eng. 91,
46 (2016).
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