
PHYSICAL REVIEW FLUIDS 8, 124101 (2023)

Tensor network reduced order models for wall-bounded flows

Martin Kiffner 1,2,* and Dieter Jaksch3,1,4

1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
2PlanQC GmbH, Lichtenbergstr. 8, 85748 Garching, Germany

3Institut für Quantenphysik, Universität Hamburg, 22761 Hamburg, Germany
4The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany

(Received 6 March 2023; accepted 13 November 2023; published 8 December 2023)

We introduce a widely applicable tensor network-based framework for developing
reduced order models describing wall-bounded fluid flows. As a paradigmatic example,
we consider the incompressible Navier-Stokes equations and the lid-driven cavity in two
spatial dimensions. We benchmark our solution against published reference data for low
Reynolds numbers and find excellent agreement. In addition, we investigate the short-time
dynamics of the flow at high Reynolds numbers for the lid-driven and doubly-driven
cavities. We represent the velocity components by matrix product states and find that
the bond dimension grows logarithmically with simulation time. The tensor network
algorithm requires at most a few percent of the number of variables parametrizing the
solution obtained by direct numerical simulation, and approximately improves the runtime
by an order of magnitude compared to direct numerical simulation on similar hardware.
Our approach is readily transferable to other flows, and paves the way towards quantum
computational fluid dynamics in complex geometries.

DOI: 10.1103/PhysRevFluids.8.124101

I. INTRODUCTION

Direct numerical simulation (DNS) of the Navier-Stokes equations at large Reynolds numbers
would be a highly desirable capability for science and engineering applications. However, it remains
an elusive goal due to the extremely large numerical complexity associated with the multiscale
nature of turbulence [1,2]. The state-of-the-art method for mitigating this issue in computational
fluid dynamics (CFD) is turbulence modeling [3], which continues to be under constant development
for improving its accuracy.

A conceptionally different approach to reducing the numerical complexity of DNS is through
structure-resolving methodologies [4,5]. These methods aim to establish a reduced order model
(ROM) of the full system by exploiting correlated structures in the solution. However, identifying
suitable modes for building ROMs is difficult and therefore under active investigation [5–8].

Recently, quantum-inspired tensor network methods have been introduced as a novel paradigm
for modeling turbulent flows for diagnostic and predictive purposes [9]. The tensor network algo-
rithm in [9] for solving the incompressible Navier-Stokes equation (INSE) approximates the velocity
components in matrix product state (MPS) format [10]. In the examples studied in Ref. [9], the
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number of variables parametrizing the solution (NVPS) in MPS representation is reduced by over an
order of magnitude compared to DNS. The MPS algorithm thus realizes a ROM for the investigated
flows. However, the efficient compression reported in Ref. [9] only resulted in a computational
speedup in a one-dimensional system, but not in two or three spatial dimensions. Furthermore, the
examples in Ref. [9] are restricted to homogeneous flows with periodic boundary conditions.

Here we show that ROMs based on tensor networks can be extended to wall-bounded flows.
We illustrate our approach using the lid-driven cavity in two spatial dimensions, which is a very
well-studied problem [11] with tabulated reference solutions [12]. We solve the INSE in the stream-
function-vorticity formulation and find that our MPS algorithm reproduces the data in Ref. [12] for
stationary states at low Reynolds numbers.

As an application of our approach, we assume that the fluid is initially at rest and investigate the
short-time dynamics at high Reynolds numbers. We represent the velocity components by MPSs
with bond dimension χ and investigate how χ depends on time and grid size. We find that χ grows
logarithmically in time and reduces the NVPS compared to direct numerical simulation by about
97%.

As an extension towards more complex flows, we also investigate the doubly driven cavity where
both the top and bottom lids move and find the same qualitative behavior. We compare the run
times of the MPS and DNS algorithms on similar hardware and at different Reynolds numbers. We
find that the MPS algorithm can give rise to significant runtime improvements compared to DNS,
peaking at a 17-fold speedup in case of the lid-driven cavity.

The MPS algorithm in Ref. [9] advances the solution to the INSE by solving an optimization
problem. More specifically, the continuity equation is combined with the momentum equations via
the penalty method [13], and the updated velocity components are obtained by minimizing a single
cost function. On the contrary, the MPS algorithm in this work is constructed by emulating the DNS
algorithm step-by-step. We achieve this by decomposing the DNS algorithm into four elementary
operations (multiplication, addition, matrix-vector operations, and solving linear systems of equa-
tions) that can be realized in MPS format. It follows that our approach is directly transferable to a
broad class of other CFD methodologies and flow geometries.

An important feature of quantum-inspired tensor network algorithms is that they can be ported
to a quantum computer [9,14]. This transfer can be achieved with quantum circuits of known depth
[15] and will provide at least a quadratic speedup over the scaling of the classical tensor network
algorithm with the bond dimension [9]. Improved speedups may be achieved by problem-specific
quantum circuits [15–17] that perform exponentially better than the MPS encoding of flow fields.
Our work thus represents a first step towards efficient quantum algorithms for solving CFD problems
with boundary conditions.

This paper is organized as follows. The model for the lid-driven cavity in the stream-function-
vorticity formulation is presented in Sec. II. We give a detailed description of the model and the
spatial discretization because this forms the foundation for constructing the MPS algorithm. We
outline the encoding of flow fields in MPS format and describe how the DNS algorithm can be
transformed into MPS format. All technical details are summarized in the Appendices. The results
are shown in Sec. III and begin with a validation of our tensor network algorithm against previous
work. We then consider the short-time dynamics following the quench by the moving lid and analyze
the bond dimension as a function of time and grid size. A summary and discussion of our results is
provided in Sec. IV.

II. MODEL

The setup for the lid-driven cavity in two spatial dimensions is shown in Fig. 1(a). We consider
a square box with edge length L, and the upper lid moves with velocity u0 in x-direction. The x
component (y component) of the fluid is denoted by u (v). At t = 0, the fluid is at rest, u = v = 0.
We consider a viscous fluid with kinematic viscosity ν and seek solutions to the incompressible
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FIG. 1. (a) Setup of the square lid-driven cavity with edge length L. The upper lid moves at constant
velocity u0 in x-direction. Ct , Cr , Cb, Cl are the top, right, bottom and left boundaries, respectively. Lv (Lh)
denotes a vertical (horizontal) line through the center of the cavity. (b) Contour plot of the velocity magnitude
s = √

u2 + v2 at t = 50 for Re = 1000 and evaluated with the tensor network algorithm. (c) Comparison of
the tensor network solution for the x component u of the velocity along Lv (black solid line) with the reference
values in Ref. [12] (red dots). (d) Comparison of the tensor network solution for the y component v of the
velocity along Lh (black solid line) with the reference values in Ref. [12] (red dots).

Navier-Stokes equations in the stream-function-vorticity approach [13],

∂tw = −[∂x(uw) + ∂y(vw)] + ν�w, (1a)

�ψ = −w. (1b)

The stream function ψ and the velocity components u and v are connected via

u = ∂yψ, (2a)

v = −∂xψ, (2b)

where

w = ∂xv − ∂yu (3)

is the vorticity. Throughout this work we scale time in units of t0 = L/u0, length in terms of L and
velocities by u0. Solutions to Eq. (1) are then characterized by the Reynolds number

Re = u0L

ν
. (4)

We discretize the interior of the cavity (excluding boundaries) by a uniform grid with K grid points
in each spatial dimension. The computational domain thus comprises K2 equally spaced points rk

with grid spacing

h = L/(K + 1). (5)

Each grid point vector rk is uniquely described by a tuple of integers,

rk ↔ (kx, ky), (6)
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TABLE I. Dirichlet boundary conditions for velocity fields u, v and the stream function ψ on boundaries
Cα as indicated in Fig. 1(a).

Ct Cr Cb Cl

u u0 0 0 0
v 0 0 0 0
ψ 0 0 0 0

where kα ∈ {0, . . . , K − 1} is the index of the grid point in the direction êα with α ∈ {x, y}. The
one-to-one correspondence in Eq. (6) allows us to label discrete function values on the grid by
F (rk ) ≡ Fkx,ky . We denote ghost points on the left (bottom) boundary by kx = −1 (ky = −1), and
those on the right (top) boundary by kx = K (ky = K).

The stream function ψ must vanish everywhere on the boundary, and all velocity components are
zero except for u = u0 on boundary Ct [see Fig. 1(a)]. The boundary conditions for ψ , u and v are
summarized in Table I. We obtain the boundary values for the vorticity w in the standard approach
[12] and find (p, q ∈ {0, . . . , K − 1}):

wp,K = −3

h
u0 + 1

h2

(
−4ψp,K−1 + 1

2
ψp,K−2

)
, (7a)

wp,−1 = 1

h2

(
−4ψp,0 + 1

2
ψp,1

)
, (7b)

w−1,q = 1

h2

(
−4ψ0,q + 1

2
ψ1,q

)
, (7c)

wK,q = 1

h2

(
−4ψK−1,q + 1

2
ψK−2,q

)
. (7d)

The DNS algorithm for solving Eq. (1) with the boundary conditions in Table I is outlined in
Appendix A. For the time integration of Eq. (1a), we use a second-order MacCormack algorithm
[13,18,19]. Finite-difference operations are realized by sparse matrix-vector multiplications, and
we use a preconditioned conjugate gradient algorithm for solving the Poisson equation (1b). The
self-consistent solution to the set of Eq. (1) is found by iteratively solving Eqs. (1b) and (1a) until
convergence is achieved.

We begin the description of our MPS algorithm with a discussion of the encoding of discrete
functions in MPS format. For this we assume that the number of grid points in each spatial
dimension is K = 2N for an integer N . The binary representation (. . .)2 of a grid point index kα

requires N bits,

kα = (
σα

1 , σ α
2 , . . . , σ α

N

)
2, (8)

where σα
i ∈ {0, 1}, α ∈ {x, y}, i = 1, . . . , N, and σα

1 and σα
N are the most and least significant bits,

respectively. We approximate a discrete function F by an MPS of bond dimension χ and length 2N ,

F (rk ) ≈ f (rk, χ ) = Mσ
y
1 Mσ

y
2 · · · Mσ

y
N︸ ︷︷ ︸

y-encoding

Mσ x
1 · · · Mσ x

N︸ ︷︷ ︸
x-encoding

, (9a)

= Mω1 Mω2 · · · Mω2N , (9b)

where we introduced

ωn =
{
σ

y
n , 1 � n � N,

σ x
n−N , N < n � 2N.

(10)
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The matrices Mωn have dimensions d (n − 1) × d (n), where

d (n) = min(2n, 22N−n, χ ) (11)

are the internal bonds that are summed over in the product of matrices in Eq. (9). These bonds are
responsible for describing correlations between different length scales [9,20].

The first N matrices in Eq. (9) encode the y components of F , and the remaining N matrices
account for the x components. Note that this encoding employs the scale encoding introduced
in Refs. [9,20] in each spatial dimension separately. The encoding in Eq. (9) thus corresponds to
expanding the function f as a sum of product functions,

f (rk, χ ) =
d (N )∑
i=1

Yi(k
y)Xi(k

x ), (12)

where Yi (Xi) is a function of the y index ky (x index kx) only. We find that this encoding is more
efficient for the cavity geometry than the encoding in [9] where combined scales of all spatial
dimensions are considered. Note that the encoding in Eq. (9) can be straightforwardly generalized
to the case where each spatial dimension is discretized by a different number of grid points. This is
of interest for more complex geometries than the square box considered here.

Next we describe how we emulate the DNS algorithm in tensor network format. The DNS
algorithm can be broken down into the following elementary operations: (i) addition of flow fields,
(ii) multiplication of flow fields, (iii) the algorithm for solving the Poisson equation, and (iv) sparse
matrix-vector operations. Sparse matrix-vector operations realize finite difference operations on the
flow fields, as well as the boundary conditions for the vorticity in Eq. (7).

Since all operations (i)–(iv) can be realized in MPS format, the MPS algorithm for solving
Eq. (1) can be obtained by replacing each elementary operation in the DNS algorithm by its MPS
counterpart. MPSs can be added [10] and multiplied [21], and a Poisson solver in MPS format has
been reported in Ref. [22]. Matrix-vector operations are realized by contracting a matrix product
operator (MPO) with an MPS [10], and all MPOs for realizing the finite difference operations and
boundary conditions are provided in Appendix C. The numerical complexity of all these operations
scales polynomially with the bond dimension χ of the MPS [for details see Appendix B]. It follows
that the MPS realizations of operations (i)–(iv) can be numerically more efficient than their standard
implementations for sufficiently small χ .

All variables (velocity components u and v, stream function ψ and vorticity w) are approximated
by an MPS with bond dimension χ . We allow χ to dynamically grow in order to keep the numerical
complexity of our algorithm minimal. We achieve this by normalizing the MPSs representing ψ

and w to unity, and by inspecting the singular values near the center of these MPSs. We increase
the bond dimension if the smallest singular value exceeds a threshold ε, which we set to ε = 5 ×
10−8 throughout this work. This choice has been informed by numerical tests, ensuring that all
precision targets of the algorithms implementing the elementary operations are met with the smallest
possible χ .

III. RESULTS

In a first step we validate the MPS algorithm against the tabulated results for the stationary state
of the lid-driven cavity in Ref. [12]. We consider a 27 × 27 grid (N = 7) and Reynolds number
Re=1000. The contours showing the velocity magnitude according to the MPS algorithm and for
t/t0 = 50 are shown in Fig. 1(b). We compare this to the data in Ref. [12] in Figs. 1(b) and 1(c). The
velocity component u along the vertical line Lv [see Fig. 1(a)] according the the MPS algorithm
(black solid lines) agrees very well with the data in Ref. [12] (red dots). Similarly, we find that our
MPS results for v along the horizontal line Lh agree very well with Ref. [12] as shown in Fig. 1(d).
We note that our DNS algorithm is in excellent agreement with the MPS algorithm and with the
reference data in Ref. [12].
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FIG. 2. (a) Bond dimension χ versus time on a logarithmic scale and for the flow in Fig. 1(b). (b) The ratio
between the NVPS and the total number of grid points K2 in percent and as a function of time. Solid lines are
a guide to the eye.

The MPS algorithm dynamically adapts the bond dimension of the MPS representing the flow
fields. Initially the fluid it as rest, u = v = 0. This constant velocity field is an MPS with bond
dimension χ = 1. However, we find through numerical experiments that the sudden quench induced
by the moving lid requires a starting bond dimension of χ = 26. The subsequent evolution of χ

with time for the flow in Fig. 1(b) is shown in Fig. 2(a). We find that χ approximately grows
logarithmically with time until t/t0 ≈ 3, and then it stays constant at χ = 38. At t/t0 ≈ 3, the vortex
created by the moving lid has expanded from the top right corner to the whole size of the cavity.
While the vortex changes shape until the steady state is reached, the bond dimension stays constant
in this regime.

The bond dimension χ is directly related to the NVPS, which is shown in Fig. 2(b) in relation to
the total number of grid points K2. Initially the NVPS are about 47% of K2. For larger times, the
NVPS slowly increases to 82% of K2. It follows that the MPS format does not result in an efficient
compression of the stationary state for Re = 1000.

The situation is completely different in a transient regime at high Reynolds numbers. For this we
consider a flow with Re = 24 000, and Fig. 3(a) shows the corresponding contours of the velocity

FIG. 3. (a) Contour plot of the velocity magnitude s = √
u2 + v2 at t/t0 = 3 for the flow configuration

shown in Fig. 1(a). The grid size is K2 = 211 × 211, Re = 24 000 and results are obtained with the MPS
algorithm. (b) Same as in (a) but focusing on the region where the initial vortex forms. (c) Same as in (b) but
for K2 = 29 × 29. (d) Same as in (b) but for K2 = 210 × 210.
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FIG. 4. Analysis of the bond dimension as a function of time and grid size. Black crosses [red circles]
correspond to the flow in Fig. 3(a) [Fig. 5], and solid lines are a guide to the eye. (a) Bond dimension χ versus
time on a logarithmic scale. (b) The ratio between the NVPS and the total number of grid points K2 in percent
and as a function of time. (c) Bond dimension χmax at t/t0 = 3 as a function of grid size. (d) Temporally
averaged bond dimension χ̄ as a function of grid size.

magnitude on a 211 × 211 grid at t/t0 = 3. A magnified view of the vortex forming in the top
right corner is shown in Fig. 3(b). It is well known that the lid-driven cavity only exhibits a truly
stationary state for Re � 10 000 [23]. For larger Reynolds numbers, the system becomes chaotic
and develops random fluctuations that persist for all times. However, we find that at the short times
considered here where turbulence has not formed yet, the system is still deterministic. All runs with
the same initial conditions give the same result. We expect the onset of turbulence and nonstationary
fluctuations at much later times when the vortex has spread to the whole cavity.

Next we investigate the required grid size to correctly represent this transient flow. For this we
run the calculation for different grid sizes 2N × 2N with N = 8, 9, 10, 11, and 12. The results for
N = 9 and N = 10 are shown in Figs. 3(c) and 3(d), respectively. By comparing it to the solution
for N = 11 in Fig. 3(b), we find that the flow fields are underresolved on the N = 9, 10 grids. For
N = 9 [see Fig. 3(c)], the vortex in the upper right corner is strongly deformed. The amount of
deformation is much smaller but still visible for the N = 10 grid [see Fig. 3(d)]. On the other hand,
increasing the size to N = 12 (not shown) does not result in any significant changes compared with
the results for N = 11. We thus conclude that the 211 × 211 grid is sufficiently large for representing
this flow.

The smallest length scale in a fully developed turbulent flow is the Kolmogorov microscale
η/L ≈ Re−3/4 [1,2]. Although the flow investigated in Fig. 3 is not in the turbulent regime
yet, the value of η/L ≈ 5.19 × 10−4 for Re = 24 000 is consistent with the grid point spacing
2−11 ≈ 4.88 × 10−4 for the 211 × 211 grid that resolves this flow. We conclude that the smallest
scale according to Kolmogorov theory is excited even in the investigated regime where the flow is
still laminar. It follows that η/L gives a reasonable estimate for the required grid size.

The variation of χ with time and for the flow in Fig. 3(a) is shown by the black crosses in
Fig. 4(a). At t = 0 we set χ = 40, and after a short initial phase [not shown in Fig. 4(a)] we find
that χ grows logarithmically in time. The corresponding NVPS in relation to the total number of
grid points is shown by the black crosses in Fig. 4(b). At very short times, the NVPS are only about
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FIG. 5. (a) Boundary conditions corresponding to the doubly driven cavity where the upper [bottom] lid
moves at constant velocity u0 [−u0] in x direction. (b) Contour plot of the velocity magnitude s = √

u2 + v2 at
t/t0 = 3 for the doubly driven cavity on a K2 = 211 × 211 grid with Re = 24 000 and evaluated with the MPS
algorithm.

1% of K2, and thus the MPS format achieves a compression of 99%. For larger times, the NVPS
slowly increases to 3.4% of K2, corresponding to a compression of 96.6%.

Next we investigate the dependence of the bond dimension on the grid size. We find that for
all studied grids (N = 8, 9, 10, 11, 12), χ vs time has the same qualitative behavior as shown in
Fig. 4(a) for N = 11. For each of these curves, we calculate the maximal value χmax at t/t0 = 3 and
the temporally averaged bond dimension χ̄ . The results for χmax and χ̄ are shown by black crosses
in Figs. 4(a) and 4(b), respectively. We find that χmax and χ̄ vary with 2N until the grid is fine
enough to represent the flow. While χ̄ increases steadily with 2N , χmax first increases then decreases
with 2N .

We now investigate how the results for the bond dimension in the lid-driven cavity geometry
change if we consider a doubly driven cavity instead, see Fig. 5. The upper lid continues to move at
constant velocity u0 in the x direction. In addition, the bottom lid moves at constant velocity −u0 in
the x direction. The corresponding contours of the velocity magnitude on a 211 × 211 grid and with
Re = 24 000 are shown in Fig. 5(b). We find that a second vortex forms in the bottom left corner of
the cavity. The corresponding results for the bond dimension as a function of time and grid size are
shown by the red circles in Fig. 4. The qualitative behavior of all curves is similar to the lid-driven
cavity, but the bond dimension for the doubly driven cavity is larger than for the lid-driven cavity at
each point in time. The NVPS in relation to the total number of grid points grows to about 9% for
the doubly driven cavity, and hence the MPS format still achieves a compression of more than 90%.

The results in Fig. 4 show that the bond dimension only grows logarithmically with simulation
time, and that the MPS format achieves an efficient compression of the flow fields. The numerical
complexity of the MPS algorithm depends on the bond dimension χ as detailed in Appendix B.
While the most costly operation is the multiplication of two MPSs, the algorithm spends the most
time on solving the Poisson equation which scales as 2Nχ3 [22]. On the other hand, the DNS
algorithm can be broken down into sparse matrix-vector multiplications scaling with the total
number of grid points K2 = 22N . The exponentially worse scaling of the DNS algorithm with respect
to the number of grid points K2 suggests that the MPS algorithm can give rise to a computational
advantage for sufficiently small values of χ .

To address this question we compare the runtimes of the MPS and DNS algorithms. In order to
achieve a fair comparison, we implemented the DNS and MPS algorithms in the same programming
language (i.e., Matlab [24]), and evaluated all runs on a single node of the ARC facility (Intel Xeon
Platinum 8268 CPU @ 2.90GHz) [25]. Furthermore, we ensure that the DNS and MPS algorithms
solve Eq. (1) with the same accuracy (see Appendix B). We find that the MPS algorithm is 5.8 times
faster than the DNS algorithm in the case of the lid-driven cavity. The speedup reduces to 3.3 for the
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FIG. 6. (a) Ratio of the average times TMPS for completing a single iteration of the MPS algorithm and TDNS

for completing a single iteration of the DNS algorithm as a function of Reynolds number Re. Black crosses
[red circles] correspond to the lid-driven [doubly driven] cavity. Averages are taken up to t/t0 = 3. TDNS for
Re = 24k (Re = 60.5k) is only taken for t/t0 � 1 (t/t0 � 0.1) due to the large run times, and TMPS for the
doubly driven cavity and Re = 60.5k is evaluated for t/t0 = 2.1. The grid spacing for each Re is chosen such
that it matches the corresponding microscale η/L ≈ Re−3/4. For data points above (below) the horizontal blue
dashed line, the MPS (DNS) algorithm runs faster than its DNS (MPS) counterpart. Solid lines are a guide to
the eye. (b) Time-averaged bond dimensions χ̄ (LD) [χ̄ (DD)] corresponding to the lid-driven [doubly driven]
cavity for different Reynolds numbers.

doubly-driven cavity since the bond dimension is larger than for the lid-driven cavity at each time
step, see Fig. 4(a).

A more comprehensive runtime comparison of the MPS and DNS algorithms at different
Reynolds numbers is presented in Fig. 6(a). The grid spacing for each Re is chosen such that it
matches the corresponding microscale η/L ≈ Re−3/4. We show the ratio of the average times TDNS

for completing a single iteration of the DNS algorithm and TMPS for completing a single iteration
of the MPS algorithm. Since the MPS and DNS algorithms approximately require the same number
of iterations, this ratio is also representative of the overall runtime ratio. The MPS algorithm for the
lid-driven and doubly driven cavities runs faster than the DNS algorithm for Re � 9.5 × 103. For
a given Reynolds number, the MPS algorithm for the doubly driven cavity takes more time than in
the case of the lid-driven cavity because the former requires larger bond dimensions, see Fig. 5(b).
For the largest Reynolds number, the MPS algorithm approximately achieves a 17-fold [ten-fold]
speedup compared with the DNS algorithm for the lid-driven [doubly driven] cavity.

The speedups shown in Fig. 6 can be qualitatively explained by noting that the DNS algorithm
scales like Re6/4, whereas the MPS algorithm scales as log Re for fixed bond dimension. However,
the bond dimension grows with time and with Reynolds number, and therefore a general scaling of
the runtime ratio with Reynolds number is difficult to obtain. At larger simulation times, the runtime
advantage of the MPS algorithm may decrease or vanish if the required bond dimension becomes
too large. The results in Fig. 6 nevertheless illustrate the tremendous potential of MPS for simulating
transient flows.

IV. SUMMARY AND DISCUSSION

We have shown that dynamical solutions to the incompressible Navier-Stokes equations for the
lid-driven and doubly driven cavities can be obtained via a tensor network algorithm. Our work
extends the results in Ref. [9] by showing that the tensor network approach is not restricted to
periodic boundary conditions but works equally well for problems with fixed boundary conditions.
We achieve this by decomposing a DNS algorithm based on MacCormack’s method [13,18,19] into
four elementary operations of addition, multiplication, matrix-vector multiplication, and solving
the Poisson equation. These four operations can be implemented in MPS format and the resulting
MPS algorithm automatically builds a ROM characterized by a bond dimension χ . Note that this

124101-9



MARTIN KIFFNER AND DIETER JAKSCH

ROM becomes exact with sufficiently large bond dimension, which distinguishes it from data-driven
ROMs [6–8] for CFD which lack this guarantee of success.

It is important to note that our approach also applies to other CFD methodologies and flow
geometries. For example, the stream-function-vorticity formulation chosen in this work can be
replaced with continuity and momentum equations expressed in terms of velocities and pressure
[26]. Rewriting this algorithm in terms of tensor network operations follows the same route as
presented here.

We run the MPS algorithm on a uniform grid and find that it automatically allocates resources
only to those regions in space where they are needed. No a priori knowledge of the flow is required.
For example, the NVPS required by MPS to describe the transient regime at large Reynolds number
is at most 3% of the total number of gridpoints. This very efficient MPS representation of the flow
occurs because the vortex only occupies a small region in space. Very little resources are needed to
represent the flow in the large area where the fluid is nearly at rest, see Fig. 3(a). Adding the second
vortex in the case of the doubly driven cavity increases the NVPS to 9%.

A related finding is that the bond dimension of the MPSs representing the flow fields is
approximately constant if the grid is fine enough to represent the flow. This feature is related to the
known fact that polynomials and Fourier series have efficient MPS representations where the bond
dimension is independent of the grid size [27,28]. This behavior is also akin to one-dimensional
quantum systems obeying an area law [29].

We find that the bond dimension of the MPSs representing the transient flows investigated in this
work grows logarithmically in time. This slow increase can translate into a runtime advantage of
the MPS vs DNS algorithms if the bond dimension of the initial flow fields is sufficiently small.
We find that the MPS algorithm can be significantly faster than the DNS algorithm for simulation
times of several units of t0 = L/u0, i.e., the time it takes the lid to traverse the length L of the cavity.
In general, our analysis shows that the MPS algorithm will outperform the DNS algorithm at large
Reynolds numbers, provided that the required bond dimension is sufficiently small. We anticipate
that the maximal bond dimension allowing for a speedup depends on the used hardware and software
implementation of the algorithm, which is subject for further study.

Several avenues for further research emerge from here. First, the transient flow example studied
in this work may also be efficiently described with adaptive mesh refinement [30,31]. In this
approach, the grid spacing is dynamically varied in space at the cost of detecting the areas requiring
high-resolution grids. It would be interesting to directly compare the performance of these two
methods for different flow types, and to establish the differences and similarities between them.

Second, MPS algorithms for CFD may benefit from modern hardware architectures optimized for
tensor operations [32]. This opens up the exciting prospect of developing tensor network algorithms
for technical flows that outperform state-of-the-art CFD algorithms.

Finally, CFD algorithms in tensor network format represent a first step towards solving the
Navier-Stokes equations on a quantum computer [15,33,34]. Quantum CFD [9,14] promises to
enable DNS for analyzing and optimizing technical flows, which would represent a revolutionary
improvement of the state-of-the-art [33]. Creating and benchmarking quantum CFD algorithms for
wall-bounded flows by porting tensor network algorithms to quantum hardware is thus an exciting
prospect for future research.
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APPENDIX A: DNS ALGORITHM

The DNS algorithm for solving Eq. (1) can be broken down into four steps for advancing the
solutions for w, ψ , u and v from time t to t + �t . In the following we describe each of these steps:

(i) Starting with the stream function ψ t at time t , we calculate the velocity components u and v

according to Eq. (2). For this we employ a second-order accurate central difference approximation
of the first derivatives in the x and y direction,

[∂xψ]p,q = 1

2h
(ψp+1,q − ψp−1,q ), (A1a)

[∂yψ]p,q = 1

2h
(ψp,q+1 − ψp,q−1). (A1b)

(ii) The vorticity is propagated in time by an explicit, second-order accurate MacCormack
scheme [13,18,19]. To this end we write Eq. (1a) as

∂tw = ∂xF + ∂yG, (A2)

where

F = −uw + ν(∂xw), (A3a)

G = −vw + ν(∂yw). (A3b)

MacCormack’s algorithm advances wt to wt+�t in a two-step predictor-corrector procedure:
(1) Predictor step:
In order to evaluate F and G, the derivatives ∂xw and ∂yw in Eq. (A3) are approximated by

first-order accurate backward differences δbwd
x and δbwd

x , respectively,[
δbwd

x w
]

p,q = wp,q − wp−1,q

h
, (A4a)

[δbwd
y w]p,q = wp,q − wp,q−1

h
. (A4b)

The predicted solution w̄t+�t (indicated by an overbar) is obtained by a first-order accurate
forward discretization of the spatial derivatives in Eq. (A2),

w̄t+�t
p,q = wt

p,q +
(

Ft
p+1,q − Ft

p,q

h
+ Gt

p,q+1 − Gt
p,q

h

)
�t . (A5)

Evaluating Eq. (A4) on the inner grid with p, q ∈ {0, . . . , K − 1} requires the boundary values of
w for w−1,q and wp,−1 in Eq. (7). In addition, Eq. (A5) for p = K − 1 requires [δbwd

x w]K,q, and for
q = K − 1 we need [δbwd

y w]p,K . These values can be obtained with the help of the boundary values
wK,q and wp,K , respectively.

(2) Corrector step:
The derivatives ∂xw and ∂yw in Eq. (A3) are now approximated by first-order accurate forward

differences δfwd
x and δfwd

x , respectively,[
δfwd

x w
]

p,q = wp+1,q − wp,q

h
, (A6a)

[
δfwd

y w
]

p,q = wp,q+1 − wp,q

h
. (A6b)

We update the functions F and G with the predicted solution w̄t+�t and obtain F̄ t+�t and
Ḡt+�t . The solution for the vorticity wt+�t at t + �t is then obtained by approximating the spatial
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TABLE II. Overview of the algorithms for realizing the building blocks of the DNS algorithm in MPS
format. The last column indicates the scaling of the operation with the bond dimension of the MPSs and
MPOs.

Operation Algorithm Scaling

Addition Variational addition of MPS (see Sec. 4.5 in Ref. [10]). χ 3

Multiplication Multiplication algorithm in Ref. [21] combined with variational
compression [10] of the product MPS.

χ 4

Poisson solver MPS algorithm for solving the Poisson equation in Ref. [22]. χ 3

Matrix-vector multiplication MPO-MPS contraction combined with variational compression
(see Sec. 5 in Ref. [10]). For the system considered here, the MPO
bond dimension D � 6 and thus D � χ .

Dχ 3

derivatives in Eq. (1a) by first-order accurate backward differences,

wt+�t
p,q = 1

2

(
wt

p,q + w̄t+�t
p,q

)
+ 1

2

(
F̄ t+�t

p,q − F̄ t+�t
p−1,q

h
+ Ḡt+�t

p,q − Ḡt+�t
p,q−1

h

)
�t . (A7)

With the help of the boundary values for w in Eq. (7), Eq. (A7) can be evaluated on every point
of the inner grid with p, q ∈ {0, . . . , K − 1}. Although the forward- and backward differences in
Eqs. (A5)–(A7) are only first-order accurate in h, the resulting expression for wt+�t

p,q in Eq. (A7) is
second-order accurate [13,18,19].

(iii) The vorticity wt+�t is used to find the stream function ψ t+�t at time t + �t by solving
Eq. (1b) with the boundary conditions in Table I and a second-order accurate discretization of the
Laplace operator,

[�ψ]p,q = ψp+1,q + ψp−1,q + ψp,q+1 + ψp,q−1 − 4ψp,q

h2
. (A8)

(iv) The set of equations (1) are coupled because the updated stream function ψ t+�t gives rise to
new velocity components ut+�t and vt+�t via Eq. (2). We repeat steps (i)–(iii) until a self-consistent
solution to Eq. (1) has been found. This results in updated functions ψ t+�t , wt+�t , ut+�t and ut+�t

and completes the time step from t to t + �t . We repeat steps (i)–(iv) until the final time is reached.

APPENDIX B: MPS ALGORITHMS

Table II outlines the MPS algorithms for realizing the required elementary operations as well
as their scaling with the bond dimension χ . All these algorithms have in common that they are
variational in nature. The desired MPS for representing the target, i.e., the sum or product of MPSs or
the solution to the Poisson equation, is found by minimizing a cost function. These cost functions are
quadratic in the variables and hence efficient and reliable methods for finding that optimal solutions
exist. We employ single-site density matrix renormalization group (DMRG)-like [10] sweeps where
each tensor in the MPS is sequentially optimized until overall convergence has been achieved.

In order to make the results of the MPS algorithm comparable to the DNS results, we impose the
same accuracy goal for solving the Poisson equation and the same convergence criterion for solving
Eq. (1) in both algorithms.
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APPENDIX C: MPOs FOR FINITE DIFFERENCE OPERATIONS

Here we show how the required finite difference operations can be created in the MPO-MPS
formalism. We denote an MPO by Q and its contraction with an MPS f as Q f . A generic MPO
with bond dimension D can be written as [35]

Q = AB[1] · · · B[N]B[N + 1] · · · B[2N]C, (C1)

where A is a 1 × D row vector, C is a D × 1 column vector, and B[k] with k ∈ {1, . . . , 2N} are
D × D matrices whose matrix elements are 2 × 2 matrices. Any 2 × 2 matrix can be expanded in
terms of the following four operators:

σ01 =
(

0 1
0 0

)
, (C2a)

σ10 =
(

0 0
1 0

)
, (C2b)

σ00 =
(

1 0
0 0

)
, (C2c)

σ11 =
(

0 0
0 1

)
. (C2d)

For convenience, we also introduce the identity matrix

1 =
(

1 0
0 1

)
. (C3)

When multiplying the matrices B[k] in Eq. (C1), we take the outer product of the matrix-valued
matrix elements. In order to illustrate this notation, we consider the following example for N = 1:

A = (1, 0), (C4)

B[k] =
(

1 σ01

< /p >< p > 0 σ10

)
, 1 � k � 2 (C5)

C = (1, 1)t . (C6)

The corresponding MPO is

Q = (1, 0)

(
1 ⊗ 1 1 ⊗ σ01 + σ01 ⊗ σ10

0 σ10 ⊗ σ10

)(
1
1

)
(C7)

= 1 ⊗ 1 + 1 ⊗ σ01 + σ01 ⊗ σ10, (C8)

where ⊗ denotes the outer product.
The MPO representation of the first-order accurate forward-backward differences are described

in Appendix C 1, and Appendices C 2 and C 3 provide the MPOs for the Laplace operator and the
central differences, respectively.

1. Forward-backward differences

We provide generic expressions for the MPOs facilitating forward- and backward differences in
Appendix C 1 a. These expressions are valid if the boundary values of the function to be differen-
tiated are zero everywhere. Specific expressions are required for functions with nonzero boundary
values. In the algorithm described in Appendix A, boundary values are required for calculating
finite-difference approximations of the first and second spatial derivatives of w. These expressions
are given in Appendices C 1 b and C 1 c for the predictor and corrector steps, respectively.
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a. Generic expressions

(1) Forward-differencing in the x direction:[
Qfwd

x f
]

p,q
= fp+1,q − fp,q

h
, (C9a)

with

A = (1, 0)/h, (C9b)

B[k] = 1, 1 � k � N, (C9c)

B[k] =
(
1 σ01

0 σ10

)
, N < k � 2N. (C9d)

C = (−1, 1)t . (C9e)

(2) Backward differencing in the x direction:[
Qbwd

x f
]

p,q = fp,q − fp−1,q

h
, (C10a)

with

A = (1, 0)/h, (C10b)

B[k] = 1, 1 � k � N, (C10c)

B[k] =
(
1 σ10

0 σ01

)
, N < k � 2N, (C10d)

C = (−1, 1)t . (C10e)

(3) Forward differencing in the y direction:

[Qfwd
y f ]p,q = fp,q+1 − fp,q

h
, (C11a)

with

A = (1, 0)/h, (C11b)

B[k] =
(
1 σ01

0 σ10

)
, 1 � k � N, (C11c)

B[k] = 1, N < k � 2N. (C11d)

C = (−1, 1)t . (C11e)

(4) Backward differencing in the y direction:[
Qbwd

y f
]

p,q = fp,q − fp,q−1

h
, (C12a)

with

A = (1, 0)/h, (C12b)

B[k] =
(
1 σ10

0 σ01

)
, 1 � k � N, (C12c)

B[k] = 1, N < k � 2N, (C12d)

C = (−1, 1)t . (C12e)
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b. Finite differences of w - predictor step

Here we provide the MPOs required for evaluating the predictor step in Eq. (A5).
(1) Backward difference of w in the x direction:

δbwd
x w ≈ Qbwd

x fw − 1

h
QCl fψ = f bwd

wx
, (C13)

where Qbwd
x is given in Eq. (C10), and fw and fψ are the MPSs representing w and ψ , respectively.

The MPO QCl creates the boundary values for w at Cl ,

[QCl f ]p,q = 1

h2

(
−4 f0,q + 1

2
f1,q

)
δp,0, (C14a)

with

A = 1/h2, (C14b)

B[k] = 1, 1 � k � N, (C14c)

B[k] = σ00, N < k � 2N − 1, (C14d)

B[2N] = −4σ00 + σ01/2, (C14e)

C = 1. (C14f)

In Eq. (C13), f bwd
wx

is the MPS representing δbwd
x w.

(2) Forward-backward difference of w in the x direction:

δfwd
x

(
δbwd

x w
) ≈Qfwd

x f bwd
wx

+ 1

h

[
1

h
(QCr fψ − Qr fw )

]
, (C15)

where QCr is defined as

[QCr f ]p,q = 1

h2

(
−4 fK−1,q + 1

2
fK−2,q

)
δp,0, (C16a)

with

A = 1/h2, (C16b)

B[k] = 1, 1 � k � N, (C16c)

B[k] = σ11, N < k � 2N − 1, (C16d)

B[2N] = −4σ11 + σ10/2, (C16e)

C = 1. (C16f)

The MPO Qr in Eq. (C15) extracts the values of a function on the line kx = K − 1,

[Qr f ]p,q = fp,qδK−1,q, (C17)

with

A = 1, (C18a)

B[k] = 1, 1 � k � N, (C18b)

B[k] = σ11, N < k � 2N, (C18c)

C = 1. (C18d)

(3) Backward difference of w in the y direction:

δbwd
y w ≈ Qbwd

y fw − 1

h
QCb fψ = f bwd

wy
, (C19)
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where Qbwd
y is given in Eq. (C12), and fw and fψ are the MPSs representing w and ψ , respectively.

The MPO QCb creates the boundary values for w at Cb and is defined as

[QCb f ]p,q = 1

h2

(
−4 fp,0 + 1

2
fp,1

)
δq,0, (C20a)

with

A = 1/h2, (C20b)

B[k] = σ00, 1 � k � N − 1, (C20c)

B[N] = −4σ00 + σ01/2, (C20d)

B[k] = 1, N < k � 2N, (C20e)

C = 1. (C20f)

In Eq. (C19), f bwd
wy

is the MPS representing δbwd
y w.

(4) Forward-backward difference of w in the y direction:

δfwd
y

(
δbwd

y w
) ≈ Qfwd

y f bwd
wy

+ 1

h

[
1

h
(QCt fψ + fu0 − Qt fw )

]
, (C21)

where QCt is defined as

[QCt f ]p,q = 1

h2

(
−4 fp,K−1 + 1

2
fp,K−2

)
δq,K−1, (C22a)

with

A = 1/h2, (C22b)

B[k] = σ11, 1 � k � N − 1, (C22c)

B[N] = −4σ11 + σ10/2, (C22d)

B[k] = 1, N < k � 2N, (C22e)

C = 1. (C22f)

The MPS fu0 of bond dimension 1 accounts for the u0 term in the boundary condition (7a). The
matrices in the generic MPS definition (9b) corresponding to fu0 are given by

Mωk =

⎧⎪⎨
⎪⎩

−3 u0
h δω1,1, k = 1,

δωk ,1, 2 � k � N,

1, N < k � 2N.

(C23)

Finally, the MPO Qt in Eq. (C21) extracts the values of a function on the line ky = K − 1,

[Qt f ]p,q = fp,qδq,K−1, (C24a)

with

A = 1, (C24b)

B[k] = σ11, 1 � k � N, (C24c)

B[k] = 1, N < k � 2N, (C24d)

C = 1. (C24e)

c. Finite differences of w - corrector step

Here we provide the MPOs required for evaluating the corrector step in Eq. (A7).
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(1) Forward difference of w in the x direction:

δfwd
x w ≈ Qfwd

x fw + 1

h
QCr fψ = f fwd

wx
, (C25)

where Qfwd
x is given in Eq. (C9), and fw and fψ are the MPSs representing w and ψ , respectively.

The MPO QCr creates the boundary values for w at Cr and is defined in Eq. (C16). In Eq. (C25),
f fwd
wx

is the MPS representing δfwd
x w.

(2) Backward-forward difference of w in the x direction:

δbwd
x

(
δfwd

x w
) ≈Qbwd

x f fwd
wx

− 1

h

[
1

h
(Ql fw − QCl fψ )

]
, (C26)

where QCl is defined in Eq. (C14) and Ql is given by

[Ql f ]p,q = fp,qδ0,q, (C27a)

with

A = 1, (C27b)

B[k] = 1, 1 � k � N, (C27c)

B[k] = σ00, N < k � 2N, (C27d)

C = 1. (C27e)

(3) Forward difference of w in the y direction:

δfwd
y w ≈ Qfwd

y fw + 1

h

(
QCt fψ + fu0

) = f fwd
wy

, (C28)

where Qfwd
y is given in Eq. (C11) and the MPS fu0 is defined in Eq. (C23). The MPO QCt is defined

in Eq. (C22). In Eq. (C28), f fwd
wy

is the MPS representing δfwd
y w.

(4) Backward-forward difference of w in the y direction:

δbwd
y

(
δfwd

y w
) ≈ Qbwd

y f fwd
wy

− 1

h

[
1

h
(Qb fw − QCb fψ )

]
, (C29)

where QCb is defined in Eq. (C20) and Qb extracts the values of a function on the line ky = 0,

[Qb f ]p,q = fp,qδq,0, (C30a)

with

A = 1, (C30b)

B[k] = σ00, 1 � k � N, (C30c)

B[k] = 1, N < k � 2N, (C30d)

C = 1. (C30e)

2. Laplace operator

The Laplace operator appearing in the Poisson equation (1b) is represented by an MPO with
bond dimension D = 6,

[Q� f ]p,q = fp+1,q + fp−1,q + fp,q+1 + fp,q−1 − 4 fp,q

h2
, (C31a)
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with

A = (1, 0, 0, 1, 0, 0)/h2, (C31b)

B[k] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 σ01 σ10 0 0 0
0 σ10 0 0 0 0
0 0 σ01 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, 1 � k � N, (C31c)

B[k] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 σ01 σ10

0 0 0 0 σ10 0
0 0 0 0 0 σ01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N < k � 2N, (C31d)

C = (−2, 1, 1,−2, 1, 1)t . (C31e)

3. Central differences

Here we provide the MPO representations for the central differences in Eq. (A1).
(1) Second-order accurate approximation of the first derivative in the x direction:

[Q∂x f ]p,q = 1

2h
( fp+1,q − fp−1,q ), (C32a)

with

A = (1/2, 0, 0)/h, (C32b)

B[k] =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, 1 � k � N, (C32c)

B[k] =
⎛
⎝1 σ01 σ10

0 σ10 0
0 0 σ01

⎞
⎠, N < k � 2N, (C32d)

C = (0, 1,−1)t . (C32e)

(2) Second-order accurate approximation of the first derivative in the y direction:

[Q∂y f ]p,q = 1

2h
( fp,q+1 − fp,q−1), (C33a)

with

A = (1/2, 0, 0)/h, (C33b)

B[k] =

⎛
⎜⎝1 σ01 σ10

0 σ10 0
0 0 σ01

⎞
⎟⎠, 1 � k � N, (C33c)
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B[k] =

⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠, N < k � 2N, (C33d)

C = (0, 1,−1)t . (C33e)
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