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The efficient transport of fluids through disordered media requires a thorough un-
derstanding of how the driving rate affects two-phase interface propagation. Despite
our understanding of front dynamics in homogeneous environments, as well as how
medium heterogeneities shape fluid interfaces at rest, little is known about the effects
of localized topographical variations on large-scale interface dynamics. To gain physical
insights into this problem, we study here oil-air displacements through an “imperfect”
Hele-Shaw cell. Combining experiments, numerical simulations, and theory, we show that
the flow rate dramatically alters the interface response to a porous constriction as one
approaches the Saffman-Taylor instability, strictly under stable conditions. This gives rise
to asymmetric imbibition–drainage hysteresis cycles that feature divergent extensions and
nonlocal effects, all of which are aptly captured and explained by a minimal free boundary
model.

DOI: 10.1103/PhysRevFluids.8.124002

I. INTRODUCTION

Multiphase flows through porous media play an essential role in a variety of natural and
engineered processes, including sap circulation in plants, CO2 storage, oil recovery, filtering, and
printing [1,2]. Despite extensive research, predicting how local medium heterogeneities of different
types alter the large-scale displacements of fluid-fluid interfaces remains a major challenge [3–5].
Recent studies focused on the effects of changing the fluid wetting properties [6–10], while the
impact of the displacement rate and its interplay with sharp heterogeneities of the solid matrix has
received less attention [11–15]. Back in 1986, de Gennes suggested that a narrow channel with
localized chemical or topographical defects would be a relevant system for studying the complex-
ities of multiphase flows in disordered media [16]. Such “imperfect” Hele-Shaw (HS) cells have
since been used to address a variety of interesting problems, including viscous fingering alterations
[17–19], fluid trapping [20,21], bubble and foam dynamics [22,23], capillary rise [24,25], kinetic
roughening [26,27], avalanches of fluid fronts [28–30], and the emergence of pressure-saturation
hysteresis cycles [31,32]. Such hysteresis loops present a problem of high relevance in hydrology
and engineering. Until recently, this behavior was addressed from a purely phenomenological
perspective.

Here, we use an “imperfect” HS cell to clarify the time-dependent response of an advancing fluid
interface to an elongated constriction. Examining a simplified model system containing only one
topographic defect, we gain a clear and measurable understanding of the local and nonlocal interface
response in various stages: preinvasion, contact phase, and depinning. Correctly delineating these
elementary processes can help understand the emergence of hysteretic flows in more complex
disordered media. By varying the flow rate in this study, we extend upon previous research that was
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FIG. 1. Setup and sample images. (a) Schematic y-z side view of our tilted HS cell near the back-end and
front-end of the mesa (light orange). Red (blue) arrow indicates the direction of oil propagation in imbibition
(drainage). (b1,b2) Sample images from two separate experiments, captured from above the back-end or front-
end of the mesa.

restricted to quasistatic driving [31,32]. We show experimentally that increasing flow rates for oil-air
displacements suppress the interface deformation in imbibition and amplify it in drainage, still under
stable Saffman-Taylor (S-T) conditions. We interpret this bias as a prebifurcation enhancement:
the interface becomes more susceptible to the defect as one approaches the S-T instability. We
further show that finite flow rates in both directions trigger nonlocal effects associated with mass
conservation. The mechanisms underlying these phenomena are clarified through our theoretical
and numerical analysis of the gap-varying HS problem. The insights gained from this study are
relevant to any pair of fluids that are displaced through similar heterogeneities.

II. METHODS

A. Experimental setup

We fabricated a rectangular chamber, of width W = 190 mm, made of two parallel glass plates
separated by a small gap, b0 = 0.46 ± 0.02 mm. At the center of the bottom plate, we fixed a
mesa-shaped constriction of thickness δb = 0.060 ± 0.003 mm, width w = 3.00 ± 0.05 mm, and
length l = 60.00 ± 0.05 mm (see Fig. 1). By tilting the cell y axis at an angle α = 5◦3′ ± 2′ with
respect to the horizontal, we set the effective gravity to −geŷ, where ge = g sin α. At the cell inlet
or outlet (positioned beneath y = −100 mm), we used a syringe pump to inject or withdraw a
silicone oil (viscosity μ = 51.6 ± 0.6 cP, density ρ = 972 ± 4 kg/m3, surface tension with air γ =
21.0 ± 1.3 mN/m) at a constant rate, leading to a velocity V0ŷ of the fluid (positive in imbibition,
negative in drainage). Our top-view camera (resolution: 0.16 mm/px, frame rate: 100 fps) imaged
the free oil-air interface as it traversed the constriction. Displacements were limited to linearly stable
conditions, meaning Ca + Bo > 0, where Ca = �μV0/γ and Bo = k0ge�ρ/γ are the capillary and
Bond numbers. Here, k0 = b2

0/12 is the hydraulic permeability of the homogeneous cell. The oil-air
differences in viscosity and density, �μ and �ρ, are well approximated by μ and ρ of the oil phase
alone. Stable drainage displacements were thus possible in the range −k0geρ/μ < V0 < 0.

B. Model equations and numerical solution

Assuming small modulations in the cell height b(x, y), and neglecting pressure gradients in the
air, the gap-averaged two-dimensional (2D) flow u and pressure p of the oil solve the free-boundary
problem

u = k

μ
(−∇p − geρŷ), ∇ · (b u) = 0, in �(t ), (1)

p = γ

(
π

4
κ − 2

b

)
, Vn = u · n, on 
1(t ), (2)
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where �(t ) is the projected oil domain and 
1(t ) is the oil-air interface. The first equation is Darcy’s
law, with k(x, y) = b(x, y)2/12 the varying cell permeability [33]. The second equation imposes
volumetric incompressibility, and is equivalent to ∇ · u = −u · ∇b/b. This means that sources or
sinks in the effective 2D problem emerge where the fluid moves against a spacing gradient. In
Eq. (2), we present first the Young-Laplace condition, with κ denoting the in-plane curvature. For
simplicity, we assume that the oil perfectly wets the top and bottom surfaces, implying prewetting
conditions for imbibition [34], and also neglect the thickness of the oil layers coating the cell
plates, which depends nontrivially on the local Ca [35–37]. The last equation in (2) is the kinematic
condition, with Vn the sharp interface velocity. We further impose no-flux conditions at the lateral
cell walls: ux = 0 at x = ±W/2, and the driving speed at the cell inlet/outlet: uy = V0 at y = −L
(see detailed summary in Appendix A).

We developed a finite-element (FE) solver of the moving-boundary-value problem, implemented
in FREEFEM++ [38]. Our scheme, detailed in Appendix B, features (i) a sharp-interface discretiza-
tion with an implicit variational treatment of the curvature κ [39,40], and (ii) a dynamic adaptive
mesh, determined by the mesa geometry and the evolving interface 
1.

III. RESULTS

A. Displacements through a mesa constriction

Figure 2 shows the evolution of the oil-air interface during oil injection (imbibition, in red)
and withdrawal (drainage, in blue). Experimental and computational results for both slow and
fast driving velocities are presented for comparison. Over the mesa cross-section, the curvature
of the oil-air meniscus increases abruptly [see Fig. 1(a)]. Since oil is wetting the surfaces, this local
capillary jump pulls the interface forward. The tension force associated with the in-plane curvature,
as well as the viscous and gravitational forces in the bulk, produce a centered bell-shaped protrusion
that decays on the sides of the mesa. To facilitate trajectory comparisons, we define a deformation
amplitude η that measures the distance from the tip of the protrusion, at x = 0, to a baseline, defined
arbitrarily as the mean interface height at a lateral distance d = 3w = 9 mm (see Fig. 2). In Fig. 3,
we plot η as a function of the displaced baseline.

In imbibition (red, advancing from left to right in Figs. 2 and 3), we understand the trajectory
as follows. Before coming in contact with the mesa, the interface is under constant gap height
and remains flat (η = 0). Upon first contact, the local capillary jump induces the protrusion. As
this happens rapidly, mass conservation imposes that lateral segments of the interface may retract
backwards in the frame of reference that moves with V0. This effect is captured experimentally and
theoretically for low driving speeds [see dark red curve in Fig. 3(b)]. Ultimately, a new steady-state
profile is reached as the oil continues to displace the air at a constant rate. Faster imbibition speeds
produce flatter steady states (lighter red curves in Fig. 3). At the front-end of the mesa, the interface
tip is effectively pinned because it is no longer pulled preferentially towards air [note the sharp
corner of the red curve in Fig. 3(c)]. For low velocities, the interface is completely flattened by
the time it clears the front-end [dark red curve in Fig. 3(d)]. However, at large finite speeds the
viscous relaxation to the flat state can be slower than the displacement itself: the tip surpasses the
constriction while the interface is still deformed [see light red curve in Fig. 3(d)].

In drainage (blue, advancing from right to left in Figs. 2 and 3), air is displacing the oil while the
fingering instability is avoided. Before first contact with the mesa front-end, the interface remains
flat if the driving speed is low [see dark blue curve in Fig. 3(d)]. For large speeds, the interface begins
to deform already at this stage [light blue curve in Fig. 3(d)]. This nonlocal effect is triggered by
volumetric incompressibility on the front-end, which acts as an effective 2D source when embedded
in the drained oil phase. Once contact is made, the central tip of the interface is pinned, as in
imbibition. For low velocities, the tip passes this edge when the interface reaches the new deformed
steady state [note the sharp corner of the dark blue curve in Fig. 3(c)]. For large speeds, this happens
while the deformation continues to grow [light blue curve in Fig. 3(c)]. In fact, the interface may
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FIG. 2. Oil-air displacements through a mesa constriction at increasing flow rates. Top views of the
experimental and computational interface evolution during imbibition (red, advancing from left to right) and
drainage (blue, advancing from right to left). Interface profiles are presented in intervals of �t = 100 s for low
velocities (left panels) and �t = 10 s for high velocities (right panels). We define the deformation measure η

as shown in the bottom right experimental panel, with d = 9 mm.

not even reach steady state by the time it had fully cleared the length of the mesa (η does not level
out). Moreover, in this case the deformation begins to decrease gradually before the tip reaches
the back-end [see Fig. 3(a)]. This nonlocal effect is attributed to the back-end of the mesa acting
as an effective 2D sink. The depinning dynamics also vary as a function of V0. Higher drainage
speeds prolong the interface relaxation by increasing the viscous resistance, as explained by a linear
stability analysis (see Appendix C). For low drainage speeds, as in imbibition, the rapid relaxation
of the interface leads to retraction of lateral segments in the moving frame of reference [see dark
blue curve in Fig. 3(b)].

Importantly, the depinning point in drainage is distinct from the point of first contact in imbibi-
tion. This is true also for quasistatic displacements owing to the bistability of hydrostatic states
[31,41]. Our study shows that finite driving speeds accentuate the difference between the two
displacement directions, thereby producing highly “asymmetric” hysteresis cycles.

124002-4



PREBIFURCATION ENHANCEMENT OF …

FIG. 3. Asymmetric imbibition-drainage hysteresis cycles. Top left: The deformation amplitude η =
h(0) − h̄(±d ) is plotted with confidence |h(d ) − h(−d )| against the interface reference position, h̄(±d ) =
(h(d ) + h(−d ))/2, for drainage or imbibition experiments (blue or red curves). Lighter colors correspond to
faster speeds. Increasing the displacement rate in drainage (imbibition) gives rise to stronger (weaker) defor-
mations. Experimental drainage speeds are V0 = {−216 ± 14, −139 ± 9, −10 ± 1} µm/s about the front-end
of the mesa and V0 = {−201 ± 14, −126 ± 10, −9 ± 2} µm/s about the back-end. Experimental imbibition
speeds are V0 = {8 ± 2, 51 ± 4, 205 ± 14} µm/s about the back-end of the mesa and V0 = {8 ± 1, 52 ±
4, 215 ± 14} µm/s about the front-end. Bottom left: Same plots for FE simulations with drainage speeds
V0 = {−210, −130, −8} µm/s (light to dark blue) and imbibition speeds V0 = {8, 130, 210} µm/s (dark
to light red). Right boxes: Zooms highlighting different corners of the trajectories, excluding intermediate
velocities for clarity.

B. Steady interface deformations

We gain further insight by deriving the steady profile of a moving oil front that traverses the
elongated constriction. To this end, we assume that the oil is displaced uniformly, with u = V0ŷ
in �(t ), over an infinitely long mesa, b = b0 − δb rect(x/w) (no y dependence). It follows from
Eqs. (1) and (2) that the interface profile in the moving frame of reference, h(x) := y(x, t ) − V0t ,
solves the nonlinear ordinary-differential-equation (ODE)

−
(

μ

k(x)
V0 + geρ

)
h(x) = γ

(
π

4
κ (x) − 2

b(x)
+ 2

b0

)
, (3)

where κ (x) = −h′′(x)/[1 + h′(x)2]3/2.
In the limits δb/b0 � 1 and |h′| � 1, the steady front profile is approximated by

h(x) = 8

π

(
�c

b0

)2

δb

⎧⎨
⎩

1 − e−w/2�c cosh
(

x
�c

)
, |x| � w

2 ,

sinh
(

w
2�c

)
e−|x|/�c , |x| > w

2 ,
(4)
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FIG. 4. Impact of flow rate on steady deformations. Measured and computed values of the deformation
amplitude η as a function of the driving speed V0. Green line marks the threshold of the Saffman-Taylor
instability, where Ca = −Bo.

where �c is the capillary length

�c =
√

k0π/4

Ca + Bo
,

as shown in Appendix D (and similarly in Ref. [32] for the quasistatic case). This linear approx-
imation captures well the qualitative features of the measured profiles: the bell-shaped tip with
exponentially decaying wings, the discontinuous second derivative on the lateral mesa edges (x =
±w/2), and the negative dependence of the deformation on V0 (see Fig. 7 in Appendix D). However,
we find that the linear curvature assumption, |h′| � 1, does not hold well in our experimental regime
(see Fig. 8 in Appendix D).

To solve the exact Eq. (3) computationally, one must specify two boundary conditions. One
of these, h(x = 0), is unknown a priori and should be varied to satisfy h → 0 as x → ±∞. We
resolved this problem through a dedicated “shooting method” explained in Appendix D. Compared
with the linear approximation, the nonlinear solution points to stronger deformations, particularly in
drainage, that are more in line with observations. We also used these results to verify our dynamic
FE simulations (see Fig. 9 in Appendix D).

Figure 4 summarizes the experimental and theoretical dependence of the deformation amplitude
η on the driving speed. Specifically, we show (i) the maximal deformation measured experimentally,
(ii) the maximal deformation in our FE simulations [integration of Eqs. (1)–(2)], (iii) the nonlinear
steady state [computational solution of Eq. (3)], and (iv) the steady-state linear approximation
[Eq. (4)]. Without a single fitting parameter, we find remarkable quantitative agreement between
the nonlinear theory and our experiments. In imbibition, the small deviation of experiments from
the theory may be due to the presence of prewetting films. At high drainage speeds, the deviation
of both experiments and FE simulations from the nonlinear steady-state prediction is expected: in
this regime the interface completely cleared the length of the mesa before a steady state could be
reached.

Oil withdrawal that is maintained close to the onset of the S-T instability may lead to extreme
transient deformations. As shown in Fig. 5(a1), a necking phenomenon ensues beneath the back-end
of the mesa while the tip of the interface still lingers on the constriction. The eventual detachment
of the tip gives way to highly nonlinear depinning dynamics [Fig. 5(a2)]. Such observations are
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FIG. 5. Extreme front deformations and nonlinear depinning from the back-end. (a1,a2) Experimental
images separated by 10 s, captured in the course of oil withdrawal with V0 = −255 ± 17 µm. (b1,b2) Mesh
and interface of a moving computational domain separated by 10 s, taken from a drainage simulation with
V0 = −260 µm. (c) Thin filament produced by quasistatic oil withdrawal through a wider mesa (w = 9 mm)
with a lower inclination of the cell (α = 2◦21′), meaning lower Bo. This picture was captured manually from
an oblique angle using a different type of illumination.

predicted by the model and can be effectively captured in our FE simulations, provided adequate
resolution and frequent remeshing [Figs. 5(b1) and 5(b2)]. Notwithstanding, our current compar-
isons are mainly qualitative in nature due to the challenging sensitivity of this limit. In quasistatic
experiments with different geometrical conditions (wider mesa, lower inclination) we observe the
formation of a slender and straight thread of connected interface [Fig. 5(c)]. This scenario eventually
results in a pinch-off event and the entrapment of a separated oil drop. It is acknowledged that our
sharp-interface simulations are not well suited for addressing singularities of this type. Leastwise,
as the neck width becomes comparable to the gap height b0, the assumptions that underlie the 2D
equations are no longer valid.

IV. DISCUSSION AND CONCLUSION

Our findings showcase the prebifurcation enhancement of the interface response to a constriction
in an idealized porous medium. All displacements were performed under stable S-T conditions,
such that the interface would flatten out if the cell was homogeneous. However, in the presence of
a weak topographic heterogeneity, the proximity to the fingering instability is shown to be highly
impactful. For increasing drainage speeds, the deformation tends to diverge as the interface extends
straight segments along the side edges of the mesa. This preinstability finger reflects a balance
between the tendency to maximize the total wetted area (promoted by a decrease in the pressure
gradient) and the tendency to minimize the interfacial perimeter (due to surface tension) for a given
volume of fluid.

We further demonstrated a rich dynamic phenomenology that emerges in this simple one-defect
setup. Time-dependent imbibition or drainage displacements are captured in great detail by a
reduced 2D model that neglects the dynamic contact angle and wetting layer thickness. The local
capillary perturbation is explicitly injected in the problem through the Young-Laplace condition in
Eq. (2). Nonlocal effects mediated by the fluid bulk are evidently attributable to volume conser-
vation via the incompressibility condition in Eq. (1). In general, the interface dynamics are also
affected nonlocally by spatial variations in the permeability, k = b2/12 [33]. This is captured by the
equations but negligible in our system because δb � b0.
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A natural extension of this study is to consider many constrictions and/or expansions simulta-
neously to emulate a spatially extended disordered medium. The presence of multiple defects is
known to give rise to cooperative phenomena in the form of large-scale avalanches. We expect
such complex displacements to be even more sensitive to the driving rate, owing to the local and
nonlocal effects described in this paper. The experimental and numerical tools presented here could
be directly extended to a variety of fluid pairs and geometries to yield further physical insights and
quantitative predictions.
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APPENDIX A: HYDRODYNAMIC PROBLEM

Our driven fluid is confined to a Hele-Shaw cell of spatially varying height b(x, y), which
accounts for the mesa-shaped constriction. The y axis of this cell is also tilted with respect to the
ground at an angle α > 0, leading to an effective gravitational force: −geρŷ, where ge = g sin α.
The governing equations read

u = k

μ
(−∇p − geρŷ), in �(t ), (A1)

∇ · (b u) = 0, in �(t ), (A2)

p = γ

(
π

4
κ − 2

b

)
, on 
1(t ), (A3)

ux = 0, on 
2(t ) and 
4(t ), (A4)

uy = V0, on 
3(t ). (A5)

In the zero Re limit, and under the lubrication approximation, the gap-averaged flow u is determined
by Darcy’s law with permeability k = b2/12 [Eq. (A1)]. The incompressibility condition, which
projects the three-dimensional (3D) divergence on the 2D domain �(t ), is given by Eq. (A2).
Here p represents the difference between the fluid pressure in �(t ) and the air pressure outside
�(t ), which is assumed constant due to negligible viscosity. To define the boundary conditions,
it is convenient to distinguish between four sections of 
(t ). In our notation, 
1 refers to the top
free-boundary (the oil-air interface) that traverses the constriction. Normal force balance on this
section is given by the Young-Laplace condition, Eq. (A3), with the π/4 geometric correction to
the in-plane curvature [36]. This condition assumes perfect wetting (cos θ = 1) and zero thickness
of the wetting layer. Next, we denote by 
2 and 
4 the rigid side walls of the cell, i.e., x = ±W/2.
The no-flux condition on these walls is given by Eq. (A4). Lastly, 
3 refers to the rear end of the
domain under consideration, located at L = 100 mm behind the back-end of the mesa. There, we
impose that the fluid moves with the driving velocity V0ŷ [Eq. (A5)].

The boundary-value problem above is accompanied by the kinematic condition, stating that the
normal velocity of the free interface Vn is determined by the normal flow

Vn = u · n on 
1(t ). (A6)
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APPENDIX B: FINITE-ELEMENT SIMULATIONS

Our simulations of the full hydrodynamic problem are based on the finite element method (FEM).
Explained briefly, the PDE domain is partitioned into a finite number of triangular elements on
which a piecewise polynomial solution for u and p is computed. The calculus used to find this
solution relies on the variational (or “weak”) formulation of the corresponding PDE. To capture the
evolving shape dynamics, we utilize a stabilized moving-mesh scheme that features our implicit
treatment of the curvature term [39,40]. Furthermore, we define a dynamic adaptive mesh that
is refined specifically around the sharp mesa edges and the free boundary 
1. The rest of this
section is organized as follows. We first write the time-discrete version of the original continuous
equations. We then present the variational form of our time-discrete PDEs. Lastly, we explain the
spatial discretization into finite elements and discuss some key aspects of our moving-mesh method.

1. Time discretization

We introduce a time step �t and solve, in each time iteration i, for the implicit fluid flow ui+1

and pressure pi+1 based on the current domain configuration �i and its interface 
i (with normal
ni). The time-discrete version of Eqs. (A1) to (A5) is given by

μ

k
ui+1 + ∇pi+1 + geρŷ = 0, in �i, (B1a)

b∇ · ui+1 + ∇b · ui+1 = 0, in �i, (B1b)

pi+1ni = γ

(
π

4
H̃i+1 − 2

b

)
, on 
i

1, (B1c)

ui+1
x = 0, on 
i

2 and 
i
4, (B1d)

ui+1
y = V0, on 
i

3, (B1e)

where H̃i+1 in Eq. (B1c) is a nonlinear function of ui+1 that approximates the curvature vector
on the deformed interface 
i+1

1 , expressed back on 
i
1. This implicit curvature term is designed to

overcome a strict time-stepping condition associated with a purely explicit curvature calculation
[39,40]. Formally,

H̃i+1 := −dT i+1

ds
= −∇T i+1 ti, (B2)

where s and ti are, respectively, the arc-length coordinate and unit tangent on 
i
1, and

T i+1 := ti+1 ◦ (Id +�t ui+1) = (I + �t∇ui+1)ti

|(I + �t∇ui+1)ti|

is the tangent on 
i+1
1 “pulled back” to 
i

1. Note that the nonlinear dependence on ui+1 is handled
with a Newton-like method, explained in more detail later.

After computing ui+1, we propagate the domain with the flow ui+1, such that

�i+1 = ϕi+1(�i ) := (Id +�t ui+1)(�i ). (B3)

This propagation also dictates that any point xi on 
i
1 translates to xi+1 = xi + �t ui+1(xi ) on 
i+1

1 .
The normal component of this operator is essentially a time discrete version of the kinematic
condition, Eq. (A6). Note that tangential movement of the interface is irrelevant in the sense of
the continuous problem. However, upon spatial discretization, it is quite useful to move boundary
vertices with both components of ui+1.
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2. Modified flux condition

To facilitate the weak formulation of the time-discrete problem, we chose an alternative to the
flux condition in Eq. (B1e). It is nearly equivalent to impose that the pressure at the inlet or outlet
varies constantly in time as follows:

pi+1 = p3(t ) :=
(

μ

k0
V0 + geρ

)
(L + y0 + V0t ) − γ

2

b0
on 
3, (B4)

where 
3 corresponds to the line y = −L, y0 is the initial position of 
1 and t = i�t .

3. Variational (weak) formulation

We present here the weak formulation of the time-discrete problem to be solved via FEM. For
brevity, we omit in the following all superscripts (time indices) specified in Eqs. (B1), (B2), and
(B4). The Dirichlet conditions in Eq. (B1d) constrain the function space on which we solve∫

�

(μ

k
u + geρŷ

)
· v da −

∫
�

p∇ · v da +
∫


3

p3(t )v · n dl − γ

∫

1

2

b
v · n dl

+
∫

�

(b∇ · u + ∇b · u)q da + γ
π

4

∫

1

(∇v t) · T dl = 0. (B5)

The goal is to find p ∈ L2(�) (the Lebesgue space) and u ∈ H1(�)2 (a two-component Sobolev
space H1) such that Eq. (B5) holds for any arbitrary smooth test functions v : � → R2 and q :
� → R.

4. Newton-like method

To handle the nonlinear term T i+1 in Eq. (B5) we shall compute the limit of a converging
sequence of solutions to a modified linear problem. The linearization of Eq. (B5) is based on a
second-order variational expansion of the deformed perimeter [39,40].

In each time step i, we define a sequence (uk )k , where u0 = 0 and uk+1 ∈ H1(�)2, p ∈ L2(�)
are solutions to the following problem:∫

�

(μ

k
uk+1 + geρŷ

)
· v da −

∫
�

p∇ · v da +
∫


3

p3(t )v · n dl − γ

∫

1

2

b
v · n dl

+
∫

�

(b∇ · uk+1 + ∇b · uk+1)q da + γ
π

4

∫

1

(
(∇v t) · T k + �t

(∇δuk+1 t) · (∇v t)

dSk

)
dl = 0,

(B6)

for all arbitrary smooth test functions v : � → R2 and q : � → R, and where

T k := (I + �t ∇uk )t
|(I + �t ∇uk )t| , dSk := |(I + �t ∇uk )t|, δuk+1 := uk+1 − uk .

In our algorithm, Eq. (B6) is solved recursively until the following stopping criterion is satisfied∫
�

(δuk+1)2 da∫
�

(uk )2 da
< ε.

We set the tolerance to ε = 10−5 and also imposed a minimum of two Newton iterations.

5. Spatial discretization

We cover the domain � by a triangulation Th (with maximum mesh size h) that is globally con-
forming, meaning that 
h is a piecewise affine approximation of the interface 
. For computational
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FIG. 6. Mesh and pressure in FE simulation. Snapshots from a typical drainage simulation (V0 =
−210 µm/s) showing the adaptive mesh (black) and the resulting pressure field (color-coded contour plot).
The mesa constriction is either fully embedded, partly embedded, or out of the oil domain �, depending on the
progression of the free interface 
1.

efficiency, our mesh is designed to be coarser in the bulk of the domain and much finer along the
boundary 
1, particularly, the central segment that is most deformed. We also refine the mesh around
the sharp mesa edges that lie inside � (see Fig. 6). For robustness, we define b with continuous edges
of slope |∇b| = 1. This means that the side edges, as well as the back-end and front-end of the mesa
have a width δb � w. Our adaptive mesh is defined in way that appropriately captures this profile.

In each element K ∈ Th, we approximate both components of the velocity u ∈ X := H1(�)2 by
a polynomial of degree one enriched with a “bubble” function (a polynomial of degree three defined
as the product of the barycentric coordinates in K and vanishing on the faces of K), and the pressure
p ∈ M := L2(�) by a polynomial of degree one. These approximations are continuous across the
element faces except for the pressure at the interface 
h. Formally, our functional spaces are

Xh = {vh ∈ C0(�̄)2 ; ∀K ∈ Th, vh|K ∈ (P1 + bK )2} ∩ X,

Mh = {qh ∈ C0(�̄) ; ∀K ∈ Th, qh|K ∈ P1} ∩ M,

such that u, v ∈ Xh and p, q ∈ Mh in Eq. (B6).
We run our simulations using the open-source program FREEFEM++ [38]. Given a boundary

discretization, this program generates the mesh and also the basis of “hat functions” that span our
discrete functional spaces. The integrals in our variational equation are consequently converted to
sums, which form a large system of coupled algebraic equations. The associated matrix problem is
solved via the SPARSESOLVER in FREEFEM++.

6. Moving mesh

After computing ui+1 in T i
h , one must propagate the domain via Eq. (B3). The MOVEMESH

function translates each vertex k from xi
k ∈ T i

h to xi+1
k = xi

k + �tui+1(xi
k ) ∈ T i+1

h . This step moves
and deforms the triangular elements that make up the mesh. Over time, depending on the degree of
variance in u (as determined by the physics) and the choice of �t , this could lead to a poor spatial
discretization, particularly around the mesa edges and 
1. Hence, we chose to remesh our domain
at the end of each time step.
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7. Remeshing

Our remeshing algorithm immediately follows the propagation step. It is designed to retain a
desired distribution of elements throughout the course of the simulation, both in the bulk and on
the boundary. It is important to mention at this point that the most sensitive quantity in our problem
is the curvature κ on 
1. A standard remeshing of this boundary, based on a linear interpolation
of nodes, leads to significant numerical error. To avoid this, we define a custom remeshing of 
i+1

1
that aims to preserve the “integrity” of the shape. In practice, we keep most boundary vertices intact
(meaning moved with ui+1 but not remeshed) and only redefine a central segment of 
i+1

1 that is
highly deformed by the mesa. The new set of vertices is computed from a cubic spline interpolation
of the propagated nodes of this segment. The new bulk triangulation is then subordinate to the
updated boundary discretization as well as the fixed outline of the mesa edges that lie inside �.
Note also that the extent of this refined outline varies in time based on the current position of 
1.

APPENDIX C: LINEAR STABILITY AT CONSTANT GAP

The following analysis is not new, but it is presented here for completeness. Our objective is to
explain the stability criterion for our experiments and also derive an explicit formula describing the
decay of linear interface modulations with respect to the flat configuration. We consider the classical
Hele-Shaw problem, such that the gap height is constant: b = b0. Note that this is the case in our
drainage displacements after the interface depins from the back-end of the mesa.

Assume that the sharp interface 
1, in the moving frame, can be described by h(x, t ) = y − V0t
for t > 0 and x ∈ [−W/2,W/2]. Here, h accounts for all shape deviations from the flat configura-
tion. Reflecting the symmetry in our problem, we expand h as a cosine series

h =
∞∑

m=1

hm(t ) cos(qmx), qm := 2πm

W
. (C1)

It follows from Darcy’s law, Eq. (A1), and normal force balance, Eq. (A3), that the resulting
pressure field in �(t ) is a sum of three contributions

p = −
(

geρ + μ

k0
V0

)
ȳ − 2γ

b0
+ δp(x, ȳ, t ), (C2)

where ȳ is the vertical coordinate in the moving frame. The first term accounts for the hydrostatic
pressure and the viscous pressure gradient associated with a uniform flow of the fluid. The second
term balances the capillary pressure associated with the constant meniscus curvature. The third term,
δp, captures the pressure deviations resulting from the deformation of the planar interface.

At constant gap height, Eqs. (A1) and (A2) lead to ∇2 p = 0, and thus

∇2δp = 0 in �(t ). (C3)

The boundary conditions for δp are obtained from substituting Eq. (C2) back in Eqs. (A3) and
(A5):

δp = π

4
γ κ +

(
μ

k0
V0 + geρ

)
h, on ȳ = h(x, t ), (C4)

∂xδp = 0, on x = ±W/2, (C5)

∂yδp = 0, on ȳ = −L − V0t . (C6)

Note that the last condition reflects the fact that the inlet, which is stationary in the laboratory,
is moving in the ȳ frame. The generic solution to Eq. (C3), that satisfies Eqs. (C5) and (C6),
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is given by

δp =
∞∑

m=1

δpm(t ) cosh [qm(ȳ + L + V0t )] cos(qmx). (C7)

Next, we find {δpm} by imposing Eq. (C4). To first order in δp and h, the pressure and curvature
on the boundary 
1 are given by

δp � δp(ȳ = 0) =
∞∑

m=1

δpm(t ) cosh[qm(L + V0t )] cos(qmx), (C8)

κ � −∂xxh(x, t ) =
∞∑

m=1

q2
mhm(t ) cos(qmx). (C9)

Substituting Eqs. (C8) and (C9) back in Eq. (C4) gives

δpm(t ) = sech[qm(L + V0t )]

(
πγ

4
q2

m + μ

k0
V0 + geρ

)
hm(t ). (C10)

To first order in h, the normal velocity of the interface V̄n and the normal component of the flow
ū (in the moving frame) are

V̄n � ∂t h(x, t ) =
∞∑

m=1

h′
m(t ) cos(qmx), (C11)

ū · n � −k0

μ
∂ȳδp(ȳ = 0) = −k0

μ

∞∑
m=1

tanh[qm(L + V0t )]qm

(
π γ

4
q2

m + μ

k0
V0 + geρ

)
hm(t ) cos(qmx).

(C12)

Lastly, substituting Eqs. (C11) and (C12) back in Eq. (A6) yields

h′
m(t ) = ωmhm(t ), (C13)

where

ωm = −k0

μ
tanh[qm(L + V0t )]qm

(
π γ

4
q2

m + μ

k0
V0 + geρ

)
� −γ

μ
qm

(
πk0

4
q2

m + Ca + Bo

)
(C14)

is the dispersion relation. For L + V0t > W , the tanh factor tends to 1 and is thus ignored. The
growth rates ωm, which determine the temporal decay of linear deformations, depend linearly on Ca.
It follows that, in drainage (Ca < 0), the depinning from the mesa would be slower for increasing
speeds.

The linear stability of the flat interface is thus determined by the sign of Ca + Bo. Note that, in
the unstable regime, the marginal mode is

q∗ =
√

−Ca + Bo

πk0/4
.

Hence, λ∗ = 2π/q∗ is the marginal wavelength: sinusoidal modulations of wavelength greater than
λ∗ are linearly unstable while those smaller are linearly stable.

In conclusion, if we denote by {am} the cosine series expansion of h(x, t0) (corresponding, e.g.,
to the point of depinning from the mesa), we have, for t > t0,

h(x, t ) =
∞∑

m=1

ameωm (t−t0 ) cos(qmx).

We used this result to verify the linear depinning dynamics in our FE simulations (not shown).
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APPENDIX D: STEADY INTERFACE DEFORMATIONS

We derive here the steadily moving solution, defined such that u = V0ŷ in �(t ), considering an
infinitely long mesa

b(x) = b0 − δb rect(x/w).

It follows from Eq. (A1) that the pressure takes the simple form

p = −
(μ

k
V0 + ρge

)
(y − V0t ) + C, (D1)

where C is a constant that needs to be determined. Note that we disregard the lateral gradient of this
pressure profile on the side edges of the mesa, where ∂xk−1 ∝ b−3∂xb �= 0.

Let h(x) := y − V0t describe the steadily moving boundary line 
1. Substituting Eq. (D1) back
in Eq. (A3), we obtain

−
(μ

k
V0 + geρ

)
h(x) + C = γ

(
π

4
κ (x) − 2

b(x)

)
, (D2)

where κ (x) = −h′′(x)
(1+h′(x)2 )3/2 .

We shall now impose, without loss of generality, that h = 0 marks the altitude (in the comoving
frame) at which the side “wings” of the interface level out. In the flat limit, far away from the mesa,
h′′ → 0, and thus Eq. (D2) is balanced by setting C = −γ 2/b0. We now have

−
(μ

k
V0 + geρ

)
h(x) = γ

(
π

4
κ (x) − 2

b(x)
+ 2

b0

)
. (D3)

This ODE poses a nonlinear “elastica”-like problem for the steadily moving boundary line. We
first linearize this equation to derive an approximate formula for h(x). Afterwards, we solve the
exact nonlinear problem computationally through a dedicated “shooting method.”

1. Linearization

To first order in h, h′, h′′, and δb, Eq. (D3) reduces to(
1 − �2

c

d2

dx2

)
h = 8

π

(
�c

b0

)2

δb rect(x/w), (D4)

where

�c =
√

γπ/4

μV0/k0 + ρge
=

√
k0π/4

Ca + Bo

is the capillary length, which measures the extent of lateral correlations of front modulations
[31,33,42]. Note that �c is real-valued only under stable Saffman-Taylor conditions, meaning
Ca + Bo > 0, and pure imaginary otherwise. In the unstable regime, 2π Im[�c] corresponds to the
wavelength λ∗ of the marginally stable Fourier mode (see Appendix C).

Solving Eq. (D4) in Fourier space, one obtains

ĥ(q) = 8

π

(
�c

b0

)2

δb
w sinc(wq/2)

1 + �2
c q2

. (D5)

The inverse transform of ĥ is found analytically [copy of Eq. (4)]

h(x) = 8

π

(
�c

b0

)2

δb

⎧⎨
⎩

1 − e−w/2�c cosh
(

x
�c

)
, |x| � w

2 ,

sinh
(

w
2�c

)
e−|x|/�c , |x| > w

2 .
(D6)
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FIG. 7. Linear steady state. We plot the linear profile h(x), defined in Eq. (4), for different values of V0.
Drainage speeds were set to V0 = {−200, −160, −120, −80, −40} µm/s (light to dark blue) and imbibition
speeds were set to V0 = {40, 80, 120, 160, 200} µm/s (dark to light red). The V0 = 0 state is plotted in black.
Axes ticks are in mm.

An equivalent expression was derived in Ref. [32] for the case V0 = 0. Figure 7 shows examples of
the linear profile for different values of V0 (drainage in blue, imbibition in red).

We obtain from Eq. (D6) the linear deformation amplitude,

ηlin(d ) = h(0) − h(d ) = 8

π

(
�c

b0

)2[
1 − e−w/2�c − sinh

(
w

2�c

)
e−d/�c

]
δb. (D7)

We plot ηlin(9 mm) as a function of V0 in Fig. 4 (dashed line). We recover also the expression derived
in [31] for d → ∞,

ηlin(∞) = h(0) = 8

π

(
�c

b0

)2

(1 − e−w/2�c )δb. (D8)

In our regime of interest, we find that the solution given by Eq. (D6) is, in fact, inconsistent
with the assumption |h′| � 1, which underlies Eq. (D4). The slope of h(x) is maximized on the side
edges of the mesa. Per Eq. (D6), one has

|h′|max = |h′(x = ±w/2)| = 8

π

�cδb

b2
0

sinh

(
w

2�c

)
e−w/2�c .

As shown in Fig. 8, we find that |h′|max of the linear profile is close to 1 and may even exceed 1
under our experimental conditions. The nonlinear solution to Eq. (D3) (discussed in the following
subsection) shows that this quantity tends to diverge well before the S-T critical point.

2. Shooting method

The objective here is to obtain more theoretically accurate solutions that go beyond the linear
approximation. The idea is to find (i) better agreement with experiments and (ii) a means of
validating our dynamic FE simulations at the nonlinear level. To this end, we developed a method
for finding the most physically relevant solution to Eq. (D3). To solve this ODE computationally,
one must specify two boundary conditions. We chose the following for convenience:

h′(0) = 0, h(0) = h0. (D9)

The first condition reflects the fact that the profile of interest is symmetric about the y axis with a
maximum at x = 0 (the tip of the protrusion). However, the amplitude at this point is not known a
priori. We thus employ a “shooting method” that consists of the following. (1) Generate a sequence
of numerical ODE solutions corresponding to different values of h0. (2) Find the value of h0 that
produces the optimal solution, meaning the one for which h → 0 as x → ±∞. In practice, we vary
h0 as to minimize |h(±W/2)|. Our goal is to trace out a branch of optimal solutions corresponding to
different values of V0 (the control parameter in this study). To do this efficiently, we further employ
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FIG. 8. Invalidity of the linear curvature assumption. The maximal slope of the linear and nonlinear steady
state is plotted as a function of the driving speed. Other parameters are fixed at their experimental values. Green
line marks the threshold of the Saffman-Taylor instability, where Ca = −Bo.

a parametric continuation procedure. We iterate small steps in V0 and use previously computed
values of h0 to generate a good initial guess for the amplitude in the next iteration of the velocity.
We developed a tool in MATHEMATICA, based on the NDSOLVE and INTERPOLATE functions, that
facilitates this process.

As we have done in our FE simulations, we modify the gap profile to obtain robust computational
solutions. Specifically, we avoid the discontinuity in b along the side edges of the mesa by defining

FIG. 9. Steady state profiles. Top panels: The nonlinear steady-state solution (black, obtained via our
“shooting method”) and its explicit linear approximation [dashed, Eq. (4)] are compared with the maximal
interface deformation in drainage or imbibition simulations (blue or red). Confidence levels on the first
represent the deviation due to cumulative uncertainty in our measured parameters (not including error in V0).
Axes ticks are in mm. Bottom panels: Comparison of the profile derivatives.
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continuous edges with slope |b′(x)| = 1, i.e.,

b(x) = b0 −

⎧⎪⎨
⎪⎩

δb, |x| � w
2 − δb,

w
2 − |x|, w

2 − δb < |x| � w
2 ,

0, |x| > w
2 .

(D10)

Note that this choice does not significantly modify the geometry since δb � w.
In Fig. 9 we compare the linear and nonlinear steady state prediction with the maximal interface

deformation captured in our FE simulations. This figure exemplifies the strengths and weaknesses
of the explicit linear approximation, Eq. (D6). More specifically, for the relevant drainage speeds in
this study, the linear approximation fails to capture the observed vertical elongation of the interface
along the side edges of the mesa. As noted also in the main text, we expect the FE interface to agree
with the nonlinear ODE solution (black) only in cases where the dynamical system had actually
reached steady state. For the examples shown in Fig. 9, this happens in imbibition (red) but not in
drainage (blue).
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