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In this work, baroclinic instability in a current-undercurrent system is analyzed using
the biglobal instability analysis (BIA). Idealized model flows are considered and the flow
parameters are estimated from the Western North Pacific circulation system. Compared
with the prevailing one-dimensional linear stability analysis (1D-LSA), BIA can deal with
the basic flow of continuously nonuniform vertical shear and strong horizontal variation
within the framework of the Boussinesq equation to account for nongeostrophic effects.
The basic velocity gradually changes from the vertically linear Eady type to a more realistic
distribution, which destabilizes the Phillips-type mode due to the strengthening of the verti-
cal shear. With an increasing zonal velocity variation, the mode is more of a barotropic type
in the long-wave range and is more of a baroclinic type in the short-wave range. Moreover,
the high vertical shear near the vertical boundaries supports a series of Charney-type modes
in the confined boundary region. The Charney modes are severely affected by the boundary
constraint, leading to a wide unstable wave-number range deep into the small-scale region
and enhanced ageostrophic motions. The top and bottom boundary layers due to viscosity
and diffusivity can be destabilizing and sustain the modal growth for short waves. In
comparison, 1D-LSA can overestimate the growth rate of baroclinic modes and cannot
quantify the coupling effects with the horizontal shear for the present case.
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I. INTRODUCTION

A prominent feature of oceanic flows is that they cover vast ranges of temporal and spatial scales.
Nevertheless, most of the kinetic energy resides in mesoscale eddies [1], whose horizontal scales
are typically ∼10 to ∼100 km with Rossby numbers (Ro) smaller than unity. These energetic eddies
play significant roles in transporting mass, heat, and biogeochemical components [2]. It is generally
accepted that most mesoscale eddies are initially driven by a mechanism called baroclinic instability,
which occurs in vertically sheared, rotating stratified flows [3]. The available potential energy related
to buoyancy gradients serves as the source of eddy kinetic energy [4]. Furthermore, baroclinically
unstable waves are capable of inducing sizable vertical buoyancy fluxes and thus crucial in the
restratification process in oceanic mixed layers [5]. Therefore, baroclinic instability has long been
one of the most important problems in geophysical fluid dynamics, earning wide focus in theoretical,
modeling, and observational investigations. Though investigated extensively, baroclinic instability
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deserves a revisit to explore further its behavior in realistic multidimensional and complex flow
systems.

Early pioneering works on baroclinic instability were accomplished by Charney [6], Eady [7],
and Phillips [8]. Different model problems were established using a mean flow of either uniform
vertical shear or multilayers, based on which linear stability analysis (LSA) was conducted. It is
found that there is a dominant geostrophic mode, associated with the sign change of the potential
vorticity gradient (see Refs. [9,10] for the full Charney-Stern-Pedlosky (CSP) condition). This mode
is successful in explaining the scales and growth rates of the disturbances commonly observed.
Afterwards, Stone [11] (also Tokioka [12]) extended Eady’s results to account for nongeostrophic,
or ageostrophic, effects, and found extra unstable modes beyond the short-wave cutoff. These
ageostrophic modes are classified into at least three types: convective mode, symmetric mode, and
inertial critical layer (ICL) mode, where the Richardson number (Ri) is crucial for the classification.
The geostrophic mode is nearly balanced in an extensive range of Ro, while ageostrophic modes
are highly unbalanced [13]. Ageostrophic modes are active on small scales, so they are crucial
in inducing submesoscale motions [14]. Although various types of ageostrophic modes have been
identified [11,13,15], a complete physical picture is still lacking. In addition to idealized model
flows, baroclinic instability in real oceans has also been widely analyzed using observational
or numerical data. For example, Qiu [16] applied LSA on satellite-measured mean flows and
successfully explained the seasonal variation of the growth rate of mesoscale eddies in the North
Pacific subtropical countercurrent. Smith [17] demonstrated that nearly the entire ocean was linearly
unstable. In low-latitude regions, the instability is more dominated by surface intensified modes,
while at higher latitudes, the instability is more due to the thermocline depth shears. Furthermore,
the timescale is well approximated by the Eady estimate, while the spatial scale has an apparent
deviation. Recently, by using LSA, Feng et al. [18] provided a view of how four types of baroclinic
instability were distributed in global oceans.

The starting point of this work is from the methodology view of LSA. The prevailing way of
analyzing baroclinic instability is the local one-dimensional (1D) LSA, where the disturbance q̃′
(velocity, buoyancy, or others) is assumed periodic temporally and spatially except in the vertical
direction,

q̃′ = q̂′
1D(z) exp[i(−ωt + kxx + kyy)]. (1)

Here q̂′ is the shape function, z is the vertical coordinate, and x and y are the horizontal ones; ω,
kx, and ky are the disturbance circular frequency and two horizontal wave numbers. We consider
meridional flows on the f plane here. To match the 1D assumption of q̂′

1D, only vertical variations
of the basic flow velocity V̄ and buoyancy frequency N2 are considered. If the primitive or the
Boussinesq equations are needed to account for ageostrophic effects, then the thermal-wind relation
poses an additional restriction that V̄ (z) is a linear function of z for the solution of Eq. (1) (see
Sec. II B for more details), adopted since Eady’s model. Nevertheless, a linear distribution of V̄ (z)
can be largely different from realistic oceanic flows. As a simplification, the restriction of linearity
is relaxed in some works by artificially dropping several terms in the basic flow and disturbance
equations (see, e.g., Refs. [15,19]). The 1D quasigeostrophic (QG) LSA can deal with V̄ (z) and
N2(z) of arbitrary shapes [17,20]. Nevertheless, the “local approximation” assuming local horizontal
homogeneity may have deviations when the basic flow encounters strong horizontal variations. A
careful estimation on the above approximations is lacking. More importantly, as one neglects the
contribution of the horizontal velocity gradient, i.e., the horizontal shear, the relative importance of
baroclinic instability cannot be judged versus, e.g., the barotropic one whose major energy source
is horizontal shear.

A natural thought to extend the theory availability is to utilize the 2D-LSA or biglobal instability
analysis (BIA) (see the review articles of Theofilis [21,22] and the references herein). The distur-
bance is not restricted to be periodic in one horizontal direction, taken here to be the x direction
considering the thermal wind relation between V̄ (z) and the buoyancy field. Instead, it takes the

123801-2



BIGLOBAL ANALYSIS OF BAROCLINIC INSTABILITY …

form of

q̃′ = q̂′
2D(x, z) exp[i(−ωt + kyy)]. (2)

Here q̂′
2D is discretized in both the x and z directions for a global solution of the disturbance

mode, and the basic flow V̄ (x, z) can be an arbitrary 2D function. An obvious advantage is that the
overall instability characteristics of the flow cross section V̄ (x, z) can be obtained. This is especially
suitable for currents with slight along-current variations, so a section-by-section analysis is feasible.
Meanwhile, one can include the effects of topography with the basic flow equation strictly satisfied.
Compared with the multilayer QG model which also allows a horizontally varying V̄ [23], BIA
is more generalized by allowing continuous vertical variation (mathematically, sufficient vertical
levels) and including ageostrophic effects. In comparison with the direct numerical or large-eddy
simulations [24], BIA is computationally cheaper and more effective in revealing the normal-mode
characteristics of small-amplitude disturbances over wide wave-number ranges.

On the other hand, BIA is limited to linear normal-mode analysis and 2D basic flow. Also, the
number of variables after discretization rises by a factor of Nx (grid number) over that in 1D-LSA,
leading to a severe increase in computational cost. There have been some successful applications
of BIA in analyzing geophysical flows. Barth [25] finished a pioneering work of employing Eq. (2)
and the primitive equation to analyze the coastal jets off Northern California. The dynamics of
frontal instability was investigated in detail, though a global mode spectrum was not presented
due to limited computational resources. Snyder [26] designed 2D-LSA on steady fronts subject
to baroclinic and Kelvin-Helmholtz instabilities. Instead of solving a large-scale global matrix
of the eigenvalue problem, they directly solved the disturbance equations using a time-stepping
method. Other attempts of BIA for studying coastal jets and frontal instabilities include the works
of Lozier et al. [27], Brink [28], and Johnson and Rodney [29]. Considering the strong capability
and relative obscurity of BIA, the main objective of the present work is to utilize BIA for studying
baroclinic instability and ageostrophic motions based on a mean flow with nonuniform vertical
shear and strong horizontal variation. The specific flow we considered is a current-undercurrent
system. An undercurrent means that the lower-layer water flows in the opposite direction from the
upper layer. A well-known example is the eastward Equatorial Undercurrent [30]. Undercurrents
have received increasing academic interest recently, owing to their global existence, crucial roles
in ocean circulation, and unique dynamical features [31]. Due to its strong vertical shear, the
current-undercurrent system is subject to pronounced baroclinic instability and hence is a classic
model problem [3,13,15]. As shown in Fig. 1, there are complex undercurrents in the Western North
Pacific (WNP) [33,34]. A recent hotspot is the Luzon Undercurrent (LUC) flowing southward within
a depth range of around 750 to 1500 m, right beneath the northward Kuroshio Current (KC) [32,35].
Currently, the dynamics of LUC are not fully understood. It is believed that barotropic and baroclinic
instabilities have joint contributions and the latter is crucial in the alteration of the vertically sheared
KC-LUC system and thus in the formation and maintenance of the LUC. Therefore, the present
BIA on the current-undercurrent system will help understand the dynamics related to baroclinic and
ageostrophic instabilities.

Observational and modeling datasets have been developed in the present authors’ group for
the WNP and marginal seas [36,37]. They can serve as the basic flow for BIA. Nevertheless,
idealized analytical flows are adopted in this work as a first step, enabling direct comparisons with
previous classic results for idealized flows. Consequently, the effects of basic-flow variations and
ageostrophic motions on baroclinic instability are more easily seen. As will be shown, the flow of
multiple high-vertical-shear layers can support different types of unstable modes that have unique
features. The remainder of the article is organized as follows. Section II describes the basic flow
and the formulation of BIA based on the Boussinesq equation. A decomposition of the disturbance
growth rate is introduced to help understand the contributions of different physical terms. Different
types of unstable modes are identified whose nomenclature is discussed in Sec. III. The modes
are categorized following standard usage and are studied at length in Secs. IV and V. The roles
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FIG. 1. Bathymetry (m) contours, and the schematic of the main upper-layer currents (black arrows)
and middle-layer undercurrent system (dashed arrows) in the Western North Pacific [32]. MUC, Mindanao
Undercurrent; NEUC, North Equatorial Undercurrent; KC, Kuroshio Current; LUC, Luzon Undercurrent.

of horizontal shear and ageostrophic motions are also a focus. Finally, the work is summarized in
Sec. VI.

II. PROBLEM FORMULATION

A. Governing Boussinesq equation

We consider the dynamics of a nonhydrostatic rotating fluid in the Boussinesq limit on the f
plane ( f is the Coriolis frequency). The governing conservation equations are

D∗u∗

D∗t∗ + f ∗ez × u∗ = −∇∗ p∗ + b∗ez + ν∗�∗u∗, ∇∗ · u∗ = 0,
D∗b∗

D∗t∗ = κ∗�∗b∗, (3)

where the superscript ∗ denotes dimensional quantities; u is [u, v,w]T with u, v, and w as the
zonal, meridional, and vertical velocities, respectively; and ez is the vertical unit vector. Also p is
the pressure divided by a reference density ρ0, b∗ is the buoyancy, and ν and κ are the viscosity
and diffusivity. Though the viscous and diffusion terms are very small in mesoscale flows, they are
included because of their significance to the disturbance growth (see Sec. II D).

Nondimensional parameters are defined as

(x, y) = (x∗, y∗)

L∗ , z = z∗

H∗ , t = t∗U ∗
0

L∗ = t∗

t∗
0

, (u, v) = (u∗, v∗)

U ∗
0

,

w = w∗N̄∗2H∗

f ∗U ∗2
0

= w∗

w∗
0

, p = p∗

ρ∗
0 f ∗U ∗

0 L∗ , b = b∗H∗

f ∗U ∗
0 L∗ . (4)

Here L∗ and H∗ are the horizontal and vertical length scales, U ∗
0 is the characteristic velocity, and

N̄∗ is the spatially averaged Brünt-Väisälä frequency. Consequently, the nondimensional Rossby,
Froude, Reynolds, and Prandtl numbers, and the aspect ratio are obtained as

Ro = U ∗
0

L∗ f ∗ , Fr = U ∗
0

N̄∗H∗ , Re = U ∗
0 L∗

ν∗ , Pr = ν∗

κ∗ , AR = H∗

L∗ . (5)
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TABLE I. Dimensional parameters for the benchmark case.

L∗(km) H∗ (m) t∗
0 (day) w∗

0 (m/s) N̄∗ (1/s) ν∗ (m2/s) κ∗ (m2/s)

75.0 1500 2.89 6.00 × 10−4 2.00 × 10−3 2.24 × 10−3 2.24 × 10−3

Besides, a nondimensional parameter ε = Fr2/Ro is defined to simplify expressions, following
Molemaker et al. [13]. The resulting nondimensional form of Eq. (3) is

Ro

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ εw

∂

∂z

)
u − v + ∂ p

∂x
− Ro

ReA2
R

∂2u

∂z2
= 0,

Ro

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ εw

∂

∂z

)
v + u + ∂ p

∂y
− Ro

ReA2
R

∂2v

∂z2
= 0,

Fr2A2
R

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ εw

∂

∂z

)
w + ∂ p

∂z
− b = 0,

∂u

∂x
+ ∂v

∂y
+ ε

∂w

∂z
= 0,

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ εw

∂

∂z

)
b − 1

RePrA2
R

∂2b

∂z2
= 0. (6)

Here f = f ∗/ f ∗ = 1 is omitted in the nondimensional form and the horizontal viscosity and
diffusivity are neglected for the small AR considered [38] (see Sec. II B). For later use, Eq. (6) is
expressed in an operator form as L(q) = 0, where q = [u, v,w, b, p]T is the basic variable set. For
instability analysis, we decompose q into a mean part q̄ = [Ū , V̄ ,W̄ , B̄, P̄]T and a small-amplitude
disturbed part q̃′ = [ũ′, ṽ′, w̃′, b̃′, p̃′]T . The two parts are discussed separately below.

B. Computational parameters and basic flow

The parameters for the benchmark case are Ro = Fr = 0.1, AR = 0.02, Re = 107, and Pr = 1.
For reference, corresponding dimensional parameters are listed in Table I if U ∗

0 is set to 0.3 m/s and
the latitude is 16◦N. These parameters are order-of-magnitude estimates from the current system in
Fig. 1. Note that Ro will be varied in Sec. V for a parameter study; we keep Fr = Ro to simplify the
parameter space, so ε = Ro holds.

As mentioned in Sec. I, we consider meridional current and undercurrent (KC-LUC), i.e., y
is along-current and x is cross current. Due to the large Re, the viscous and diffusion terms are
neglected for the basic flow. In the 1D-LSA problem, V̄ = V̄ (z) and Ū = W̄ = 0 are assumed.
However, as will be shown below, the thermal-wind balance further restricts that V̄ (z) must be a
linear function V̄ = z + C2 instead of being arbitrarily selected (C2 is a constant), which limits the
application of 1D-LSA to realistic oceanic flows. This restriction is relaxed in the framework of BIA,
where the zonally nonuniform stratification resulting from a nonlinear V̄ can be accounted for in the
x − z plane, so V̄ can be an arbitrary 2D function V̄ (x, z) subject to appropriate boundary conditions.
To be specific, q̄(x, z) is assumed to be V̄ = V̄ (x, z), Ū = W̄ = 0, B̄ = B̄(x, z), P̄ = P̄(x, z), which
automatically satisfies the continuity and buoyancy equations. The other equations in Eq. (6) lead
to the thermal-wind balance as ∂V̄ /∂z = ∂B̄/∂x. Therefore, the buoyancy field for a given V̄ is
obtained as

B̄ =
∫

∂V̄

∂z
dx + Cz(z),

∂B̄

∂z
=

∫
∂2V̄

∂z2
dx + dCz(z)

dz
, (7)

where Cz is an arbitrary function of z. For the 1D-LSA problem, the basic-flow coefficient ∂B̄/∂z is
required to be independent of x, so ∂2V̄ /∂z2 = 0 is enforced. In a more general setup, Wang et al.
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(a) (b) (c)

FIG. 2. One-dimensional velocity case (rx = 0): Vertical distribution of the basic-flow (a) meridional
velocity and (b) buoyancy frequency (at x = 0) with different rz and the (c) buoyancy frequency contour in
the rz = 0.5 case.

[15] analyzed V̄ (z) in the shapes of hyperbolic tangent and double jets, but artificially ignoring
∂2V̄ /∂z2 could introduce additional errors. As will be shown in Sec. IV A, the above simplification
indeed causes a deviation in the disturbance growth rate for the case studied. For a given V̄ (x, z),
two requirements are posed when selecting Cz in Eq. (7). The first is that the spatial average of the
nondimensional, or the normalized N2 = N∗2/N̄∗2, needs to be 1:

1

	

∫∫
	

N2 dxdz = 1

	

∫∫
	

ε
∂B̄

∂z
dxdz = 1, (8)

where 	 is the domain area. The second is that N2 should be positive everywhere, ensuring
hydrostatic stability. A simple linear distribution Cz = cz is adopted with c determined from
Eq. (8).

An idealized analytical flow is considered in this work. The domain for the cross section is
x, z ∈ [0, 1] after nondimensionalization. For ease of comparing with previous 1D-LSA results,
the present analysis starts from the Eady-type 1D linear profile V̄lin(z) = z − 0.5. Afterwards, we
take two steps for a more realistic description of the current-undercurrent system. First, V̄lin is
gradually transitioned to a 1D sine type. Second, an increasingly strong zonal variation of V̄ is
allowed. We will focus on three aspects in particular, namely (i) the difference between 1D-LSA
and BIA results for the 1D case V̄ (z), (ii) different types of unstable modes when the shape
of V̄ is changed, and (iii) the relative importance of horizontal and vertical shear in inducing
instability.

Specific expressions of V̄ and B̄ are described below. First, in the 1D case V̄ (z), the eventual
sine-type velocity is designed to be V̄sin = V̄m sin(−2πz), with the constant V̄m controlling the mass
flux. For smooth transition from V̄lin to V̄sin, we adopt a simple linear combination as

V̄ (z; rz ) = V̄1D(z; rz ) = (1 − rz )V̄lin(z) + rzV̄sin(z), (9)

where rz ∈ [0, 1] is a varying weight coefficient. For variable control, V̄m is determined to be π/8, so
the absolute flow flux in the upper and lower layers,

∫ 1
0 |V̄1D| dz, remains unchanged as rz varies. For

demonstration, V̄ and N2 with different rz are plotted in Fig. 2. Note that it is a simplification that
V̄1D is designed to be an antisymmetric distribution about z = 0.5. In the rz > 0 case, the vertical
shear is not uniform, whose maximum rises as rz increases. At rz = 0.25, V̄ has small gradients
near two vertical boundaries, close to a free-slip flow. For the cases rz � 0.5, there appear to be two
high-shear regions of opposite signs of shear as that from V̄lin near the top and surface, as labeled in
the shaded area. These high-shear regions related to internal velocity peaks are more realistic for a
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FIG. 3. Two-dimensional velocity case: Contours of the basic-flow (a) meridional velocity, (b) buoyancy,
and (c) buoyancy frequency with rz = 0.5, rx = 0.4.

bottom boundary than for a surface one. In this sense, the latter is more artificial, so when discussing
the boundary high-shear region below (in Sec. V), we are referring to the bottom boundary. Due to
the nonzero ∂2V̄ /∂z2 when rz > 0, N2 experiences vertical and horizontal variations. As shown in
Fig. 2(c), N2 is unity along x = 0.5, and exhibits an antisymmetric distribution on the two sides.

Zonal variations of V̄ are further allowed, which is ubiquitous in realistic oceanic flows [31]. In
connection with Eq. (9), the velocity is designed to be

V̄ (x, z; rx, rz ) = V̄1D(z; rz )[1 + rx cos (2πx − π )], (10)

where rx ∈ [0, 1] is also a weight coefficient. When rx = 0, V̄ (x, z) = V̄1D and when rx = 1, V̄
diminishes to zero at x = 0, 1. The maximum V̄ is at x = 0.5 and increases as rx rises, but the
absolute flow flux

∫ 1
0

∫ 1
0 |V̄ | dz dx remains unchanged. The spatial distribution of V̄ , B̄, and N2 is

plotted in Fig. 3 for the case rz = 0.5 and rx = 0.4. As rx increases, the vertical shear along x = 0.5
is strengthened, and so is the horizontal tilting of B̄. In contrast, the vertical shear near the two zonal
boundaries diminishes.

C. Biglobal instability analysis

Contrary to 1D-LSA [Eq. (1)], no zonal Fourier decomposition is made in BIA, and the distur-
bance takes the form of q̃′ = q̂′(x, z) exp[i(−ωt + kyy)]. We consider a temporal instability problem,
so ω = ωr + iωi is complex with ωr the circular frequency and ωi the growth rate. The governing
equation for q̂′ is derived from L(q̄ + q̃′) − L(q̄) = 0 (defined in Sec. II A). After using Eq. (2) and
dropping the nonlinear terms of q̃′, the homogeneous system leads to an eigenvalue problem for ω:

iRokyV̄ û′ − v̂′ + ∂ p̂′

∂x
− Ro

ReA2
R

∂2û′

∂z2
= iRo ωû′,

iRokyV̄ v̂′ +
(

Ro
∂V̄

∂x
+ 1

)
û′ + εRo

∂V̄

∂z
ŵ′ + iky p̂′ − Ro

ReA2
R

∂2v̂′

∂z2
= iRo ωv̂′,

iFr2A2
RkyV̄ ŵ′ + ∂ p̂′

∂z
− b̂′ = iFr2A2

Rωŵ′,

ikyV̄ b̂′ + ∂B̄

∂x
û′ + N2ŵ′ − 1

RePrA2
R

∂2b̂′

∂z2
= iωb̂′,

∂ û′

∂x
+ ikyv̂

′ + ε
∂ŵ′

∂z
= 0. (11)
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After numerical discretization in the x and z directions, the matrix form of Eq. (11) is AQ̂
′ =

ωHQ̂
′
, where Q̂

′ = [q̂′
1,1, . . . , q̂′

i, j, . . . , q̂′
Nx,Nz

]T contains all the variables in the x − z plane with
Nx and Nz the grid numbers. The global matrices A and H are of dimensions (5NxNz )2, which
is N2

x times larger than the 1D-LSA counterpart. The significant rise in matrix dimensions
imposes a considerable challenge on the requirements of memory and computational time. To
reduce the grid numbers, spectral methods are adopted for the discretization in both directions.
Since the domain is finite and the basic flow is nonperiodic, the Chebyshev collocation point
method is adopted in both directions. The eigenvalue problem in Eq. (11) is solved using Mat-
lab in combination with sparse matrix techniques. The amplitude of q̂′ is arbitrary for linear
analysis and it is normalized by p̂ at its peak amplitude. The solver verification is detailed in
the Appendix.

Considering the large computational cost of BIA, we describe more of our practical im-
plementations. First, we calculate all the eigenvalues for a new basic flow on a coarse grid
(Nx, Nz = 20–40) to have an overview of the instability characteristics. Different types of unsta-
ble modes are then identified. Afterwards, Nx and Nz are increased to obtain grid-independent
results for specific modes. The grid-independence study is provided in the Appendix to deter-
mine the required grid density. Basically, Nx, Nz = 41–61 are adequate for most cases studied,
while for some cases in Sec. V, the required Nz is up to 101. Oscillating unphysical modes
may appear, which can be recognized and dismissed as they cannot converge with increasing
grid density [39]. The approach of growth-rate decomposition (see Sec. II E) also helps identify
physical modes.

D. Viscosity effects and boundary conditions

By definition, the ICL is at z = zc where k∗
y V̄ ∗(z∗

c ) − ω∗ = ± f ∗. For the inviscid problem, the
ICL acts as a singular point for neutral modes because the denominator of the shape function
tends to zero [40]. As a result, a very large Nz is required to obtain grid-independent eigenvalues
for ageostrophic modes with low growth rates [13,41]. It has long been recognized that viscosity
plays a significant role near the ICL to avoid the singularity [42], no matter how small they are.
Therefore, viscosity and diffusivity are taken into account for the disturbance to more easily obtain
grid-independent results.

A crucial problem accompanied is the treatment of boundary conditions (BCs). We consider
first the inviscid version of Eq. (11), i.e., ν = κ = 0 (Re → ∞). Following previous works [11],
ŵ′ is set to zero at the top and bottom boundaries (rigid-lid condition), which determines the
other vertical BCs. In the viscous case, we supplement the free-slip and adiabatic BCs, i.e.,
∂ û′/∂z = ∂ v̂′/∂z = ∂ b̂′/∂z = 0, to prevent the boundaries from being sources of momentum and
heat. Due to the large Re, the boundary layers can be too thin to be resolved. We follow Heifetz and
Farrell [43] to add top and bottom thin layers to the basic flow, within which ∂V̄ /∂z smoothly
drops to zero at the bottom and surface. In the Re → ∞ limit (ν → 0, not ν = 0), the thin
layers degenerate and behave like two delta functions in the basic flow. For the zonal direction,
a quasiperiodic BC is adopted in the 1D velocity case [V̄ (z)] to allow direct comparisons with
1D-LSA results and possible zonal extension of the domain. We term it “quasiperiodic” because q̂′

cannot be exactly zonally periodic due to the nonperiodicity of N2. Since posing only two zonal
BCs are adequate to close this problem, there are different combinations. Our option here is (1)
û′ and ∂ û′/∂x, i.e., û′|x=0 = û′|x=1, (∂ û′/∂x)|x=0 = (∂ û′/∂x)|x=1. To further justify, we have also
examined other four combinations, namely (2) p̂′, ∂ p̂′/∂x; (3) û′, p̂′; (4) û′, b̂′; and (5) û′, v̂′.
These five zonal BCs are not mathematically equivalent, but they slightly affect the results for the
present cases, as shown in Fig. 4. Here the case rz = 1 is selected, which has the strongest zonal
variation of N2 and hence is most affected by different zonal BCs. Two representative modes are
calculated, termed the Phillips- and Charney-type modes (to be defined in Sec. III), respectively.
Only a negligible difference in growth rate is observed in Fig. 4(a) for the Phillips mode. In
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(a) (b)

FIG. 4. Growth rates of the (a) Phillips and (b) Charney modes using different zonal BCs (rz = 1, rx = 0).
The two variables for each case in the legend denote those of equal values at x = 0 and 1 as zonal BCs.

Fig. 4(b), the difference is slightly larger, but the trends are qualitatively consistent. Also, only minor
differences exist in the disturbance shape functions among the five cases (not shown). Thereby,
different variable combinations as zonal BCs do not alter the main conclusions in this work, and
option (1) is adopted throughout. For the 2D velocity case [V̄ (x, z)], zonal BCs are less important
because the maximum V̄ is located in the middle (x = 0.5) and the disturbance tends to diminish
towards zonal boundaries (see Sec. IV C). Option (1) is also used for consistency with the 1D
velocity case.

To demonstrate the viscosity effects, the case with ageostrophic modes studied by Molemaker
et al. [13] is examined. Figure 5 compares the normal-mode spectrums from inviscid and viscous
calculations. As shown in Fig. 5(a), |ωi| in the inviscid case keeps decreasing as Nz rises. With Nz

up to 401 (Chebyshev method), the eigenvalues are still not grid independent. In fact, a maximum
of over 9000 points (finite difference scheme) were used by Molemaker et al. [13] to obtain
grid-independent unstable modes. In comparison, a series of grid-independent modes of leading
ωi are obtained with Nz of only 101 in the viscous calculation in Fig. 5(b), though the modes in

(a) (b)

FIG. 5. Normal-mode spectrums from (a) inviscid and (b) viscous (Re = 106, Pr = 1) calculations using
1D-LSA with different grid numbers. The basic flow is V̄lin(z) with N2 = 1, and the case parameters are from
Molemaker et al. [13] as Ro = Fr = 1/

√
2, AR = 1, kx = 0, and ky = 2 with kx the zonal wave number as in

Eq. (1).
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continuous branches are still not grid independent. The above comparison highlights the significance
of viscosity and diffusivity in LSA, especially when there are ICLs within the computational
domain.

E. Energy budget and growth rate decomposition

Energy budget analysis can help understand instability mechanisms and identify physical modes
from all the eigenmodes [19]. The total energy of the disturbance (TE, Ẽ ) comprises kinetic
energy (KE, K̃) and potential energy (PE, P̃E , distinguished from the notation of pressure), whose
dimensional and nondimensional forms are

Ẽ∗ = K̃∗ + P̃∗
E , K̃∗ = 1

2
(|ũ′∗|2 + |ṽ′∗|2 + |w̃′∗|2), P̃∗

E = |b̃′∗|2
2N∗2

,

2Ẽ = 2Ẽ∗

L∗2 f ∗2
= Ro2(ũ′†ũ′ + ṽ′†ṽ′) + Fr4A2

Rw̃′†w̃′ + Fr2

N2
b̃′†b̃′ ≡ q̂′†ME q̂′, (12)

where † denotes the complex conjugate and ME is a diagonal positive semidefinite matrix; MK and
MP for K̃ and P̃E are similarly defined, satisfying MK + MP = ME . Therefore, we can obtain the
TE (or KE, PE) budget equation after left-multiplying q̂′†ME (or q̂′†MK and q̂′†MP) to Eq. (11) and
adding the complex conjugate. Using Eq. (2), Ẽ and its material derivative are calculated as

2Ẽ = q̂′†ME q̂′ exp (2ωit ) ≡ 2Ê exp (2ωit ),
DẼ

Dt
= ∂Ẽ

∂t
+ V̄

∂Ẽ

∂y
= 2ωiẼ . (13)

The resulting energy budget equations for K̂ , P̂E , and Ê are

2ωiK̂ = (Px + Pz ) + � + C + F + V,

2ωiP̂E = Bx + Bz + D,

2ωiÊ = (Px + Pz ) + � + C + Bx + V + D. (14)

Here the work of Coriolis force is C = −Ro�(v̂′†û′ − û′†v̂′) = 0, and the expressions of other terms
are

Velocity shear production Px = −Ro2�
(

∂V̄

∂x
v̂′†û′

)
, Pz = −εRo2�

(
∂V̄

∂z
v̂′†ŵ′

)
,

Pressure work � = −Ro�
(

û′† ∂ p̂′

∂x
+ v̂′† ∂ p̂′

∂y
+ εŵ′† ∂ p̂′

∂z

)
,

Buoyancy flux F = Fr2�(ŵ′†b̂′),

Buoyancy production Bx = −Fr2

N2
�

(
∂B̄

∂x
b̂′†û′

)
, Bz = −Fr2�(b̂′†ŵ′) = −F ,

Viscous, diffusion terms V = Ro2

ReA2
R

�
(

û′† ∂2û′

∂z2
+ v̂′† ∂2v̂′

∂z2

)
,D = Fr2

RePrA2
RN2

�
(

b̂′† ∂2b̂′

∂z2

)
,

(15)

where �(·) denotes the real part of complex. As can be seen, the phases of the disturbance
components are also important for energy transfers. The terms P = Px + Pz and B = Bx + Bz

contain the products of the basic-flow gradient and the disturbance, so they represent direct energy
transfers between the basic flow and the disturbance. Besides, Px reflects the contribution from
barotropic instability through horizontal shear, so it can measure the departure from 1D-LSA (or
1D-QG-LSA) results.
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(a) (b)

FIG. 6. (a) Vertical distribution of the basic-flow potential vorticity (x = 0) and its gradient with different
rz, and (b) the global mode spectrum from BIA with Ro = 0.01 and no viscosity (ky = 4.0, rz = 0.5).

More importantly, Eq. (14) allows a decomposition of the mode growth rate, so the contribution
of each physical process to the disturbance growth can be quantified [26,44]. Taking the equation for
K̂ as an example, the decomposition is realized after a spatial integration of Eq. (14) over 	 as

ωi = σK,Px + σK,Pz + σK,� + σK,F + σK,V , (16)

where, e.g., σK,Px is the growth rate contributed by Px to K̂ , computed as

σK,Px =
(∫∫

	

Pxdxdz

)
/(2K̂int ), K̂int =

∫∫
	

K̂dxdz. (17)

Other terms in Eq. (16) are defined likewise. The contribution of the pressure work term is zero if
the flow is geostrophic and hydrostatic. For more general flows, Gauss’s theorem gives∫∫

	

�dxdz = −Ro�
[∮



(û′† p̂′) · dS
]
, (18)

where  denotes the domain boundaries and dS is the normal vector. Thereby, σ� is zero if the
boundary condition is no penetration or periodic.

III. MODE NOMENCLATURE

The classification of unstable baroclinic modes is discussed following standard usage [18,20].
Only the 1D velocity case [V̄ (z)] is considered here and the relative contribution from barotropic
instability is left for discussion in Sec. IV C. The CSP condition is employed first for an overview
in the QG limit. The dimensionless Ertel potential vorticity Q̄ is expressed using Ri as

Q̄ = Q̄∗

f ∗N̄∗2
= N2

(
1 + Ro

∂V̄

∂x
− 1

Ri

)
, Ri = Fr−2 N2

(∂V̄ /∂z)2
. (19)

Figure 6(a) plots Q̄ and its horizontal gradient for different cases. From the CSP condition, the
rz = 0 case supports the classic Eady-type mode, while the rz > 0 cases support two types. The
first is analogous to the Eady type. As the maximums of û′, v̂′, b̂′, and p̂′ for this mode move from
vertical boundaries to the interior (shown later in Sec. IV A) subject to the nonlinear vertical shear,
it is termed a Phillips-type mode hereinafter. The second is Charney-type modes which are surface
or bottom amplified.
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(a) (b)

FIG. 7. Growth rates of the Phillips mode (a) from BIA and (b) from both the approximate 1D-LSA (kx =
0) and BIA for varying rz cases. For 1D-LSA, the upper and lower growth-rate envelopes are shown with
xbase ∈ [0, 1].

For the rz = 0 case, the zero-frequency Eady mode is the only dominant one. There should be
a series of Eady modes in BIA, equivalent to the modes of different kx in 1D-LSA. Restricted by
the zonal boundaries, only the discrete modes with kx = 2nπ (n = 0, 1, . . . ) can exist in BIA. As
the Eady mode is quickly stabilized by rising kx, only a single unstable mode with kx = 0 appears.
For the rz > 0 case, the Phillips-type mode has a large growth rate, as shown in Fig. 6(b). For
ease of writing, the Eady mode in the rz = 0 case will be regarded as a Phillips counterpart below.
Besides, there exists a series of unsteady (ωr �= 0) Charney-type modes, with no counterparts in the
rz = 0 case, because of the multi-high-shear-layer structure (see Fig. 2). Note that the calculation
in Fig. 6(b) employs a smaller Ro = 0.01 and no viscosity temporarily only for this figure to better
match the QG limit in the CSP condition. The effects of Ro and viscosity will be discussed later.

IV. PHILLIPS-TYPE MODE

A. Comparison of BIA and 1D-LSA results

The results between BIA and 1D-LSA are compared for the 1D velocity case. There are two main
reasons for such comparisons. The first is to evaluate how much difference can be caused when 1D-
LSA neglects the x dependence of N2. The second is to regard the 1D-LSA results as an intermediate
step, so the effects of V̄ and N2 variations can be distinguished. As mentioned in Sec. II B, to make
1D-LSA applicable for a nonlinear V̄ (z), ∂2V̄ /∂z2 in Eq. (7) was discarded by, e.g., Wang et al.
[15], and then N2 was always one irrespective of the V̄ (z) distribution. Here we make a further
approximation to 1D-LSA that vertically varying N2 and V̄ at an arbitrary x in Fig. 2 (denoted as
xbase) can be used as the basic-flow for 1D-LSA. To be specific, the basic-flow coefficients in the
disturbance equation are taken as V̄ (z; xbase), N2(z; xbase), and (∂V̄ /∂z)(z; xbase). Local horizontal
homogeneity is assumed, and the x dependence of basic-flow coefficients is dismissed. We term it
“approximate 1D-LSA.” In fact, the approximate 1D-LSA result is quite close to that from 1D-QG-
LSA ( f plane) at small Ro. Though V̄ and N2 of arbitrary shapes can satisfy the QG basic-flow
equation, local horizontal homogeneity is also assumed for the disturbance equation.

The growth rates of the Phillips mode from BIA are displayed in Fig. 7(a) at different rz. A clear
trend is observed that with the rise of rz, the maximum growth rate increases, and the instability
regime extends to a larger ky. The growth-rate comparison between BIA and the approximate 1D-
LSA is displayed in Fig. 7(b). For the latter, we can use the basic flow at different xbase [same V̄ (z)
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(a) (b) (c)

FIG. 8. Growth rate contributions of different terms to the (a) KE, (b) PE, and (c) TE of the Phillips
mode (rz = 0.5). The symbols in the legend are defined in Eq. (15), namely P (velocity shear production),
� (pressure work), F (buoyancy flux), V and D (viscous and diffusion terms), and Bx and Bz (buoyancy
production).

but different N2(z)], leading to different growth rates. Thereby, the upper and lower envelopes of
the growth rates with xbase ∈ [0, 1] are plotted in Fig. 7(b) for each rz. The lower envelope is from
the uniform-N2 case (xbase = 0.5), while the upper one is from the basic flow at zonal boundaries
(xbase = 0, 1). Therefore, the vertical variation of N2 (higher average of 1/N2) is destabilizing with V̄
unaltered for the present flow, consistent with the estimation from local Eady scaling that ωi,Eady ∼
1/N after a vertical average. The 1D-LSA and BIA results match well in the small-ky region. This
is reasonable as seen from Eq. (11) that in the ky → 0 limit, û′ and ŵ′ are both suppressed, so the
terms related to B̄ and V̄ gradients tend to vanish. As a result, the disturbance is geostrophic and
hydrostatic. However, the difference between BIA and 1D-LSA gradually increases with the rise of
ky. The mode in BIA is more stable and covers a narrower unstable range of ky. Since the ωi by BIA
is smaller than the lower envelope of ωi from 1D-LSA, the simplification made in the approximate
1D-LSA leads to an overestimated growth rate and an underestimated spatial length scale, especially
in the short-wave range, though the maximum ωi does not vary much. As will be shown below, the
disturbance in BIA experiences a stronger zonal variation as ky increases, while the disturbance in
1D-LSA is always zonally uniform (kx = 0). Thereby, the lower growth rate in BIA is reasonable
because the increase of kx in 1D-LSA is stabilizing for the geostrophic mode. In summary, two
trends are shown in Fig. 7. The increase of the overall vertical shear has a destabilizing effect on the
Phillips mode, while the basic-flow horizontal inhomogeneity, resulting from the nonlinear V̄ (z),
is stabilizing. The growth-rate decomposition is utilized below to understand further the observed
trends.

B. Energy budget and disturbance structure

The moderate case rz = 0.5 is analyzed first, and the decomposition for KE, PE, and TE is plotted
in Fig. 8. The buoyancy flux is the only dominant contributor to the disturbance KE, confirming its
baroclinic nature. The pressure-work contribution is close to but not exactly zero because p̂′ and
the velocity components are not exactly zonally periodic (Sec. II D). The viscous term is negligible
and the production term has a small but increasing positive contribution with the increase of ky. For
PE, the growth-rate contribution mainly comes from two buoyancy production terms; Bx is a huge
energy source, while Bz is a strong energy sink, responsible for the energy transfer from PE to KE.
The above describes a classic route of energy transfer in baroclinically unstable flow [4].
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FIG. 9. Basic-flow (a) velocity and (e) its vertical gradient and [(b)–(d) and (f)–(h)] the contours of different
energy-budget terms for the most unstable mode (ky = 2.41) in the rz = 0.5 case: (b) KE, (c) F , (d) �, (f) PE,
(g) Bx , and (h) Bz. The terms are normalized by 2Êint [see Eq. (17)], and their symbols are the same as those in
Fig. 8.

The spatial structure of different energy budget terms is further investigated, focusing mainly on
the most unstable mode. The KE mainly concentrates around the peak amplitude of V̄ [Fig. 9(a)],
which also holds for other cases with different rz. In comparison, PE is restored primarily around the
centerline z = 0.5. The maximum amplitudes of ŵ′ (shown later), b̂′, and thus F are all located near
z = 0.5, where the energy transfer from PE to KE occurs intensively. Though σ� is negligible, � has
a relatively large amplitude throughout the domain, so its central role is redistributing disturbance
energy and hence determines the KE distribution. The spatial distribution of the two buoyancy
production terms [Figs. 9(g) and 9(h)] is closely related to the gradients of B̄. As a result, the large
PE near the centerline is primarily owing to the high vertical strain there. It is worth mentioning
that the spatial structure in Fig. 9 only slightly varies with ky within the unstable range. With ky

approaching zero, KE and PE tend to be more zonally uniform, as discussed in Sec. IV A.
The growth-rate decomposition results are further compared among different cases, as shown in

Fig. 10 (rz = 0, 0.5, and 1). The term Bx is the dominant contributor to the growth rate in each case
and thus responsible for the destabilizing effect. As shown in Fig. 9(e), Bx is primarily influenced
by the vertical strain, which is related to Ri [see Eq. (19)]. Therefore, the main reason for the rise
of σE ,Bx as rz increases is the stronger |∂V̄ /∂z|, or nondimensionally, the higher 1/Ri. This positive
correlation is consistent with the observation by Barth [25]. Meanwhile, the energy transfer from
PE to KE is strengthened as rz increases. In addition to Bx, there are noticeable differences for
other terms among different cases. In the rz = 0 case, all terms except σE ,Bx are zero throughout the
unstable regime, associated with the zero kx. As rz increases, P , V , and D have increasingly large
contributions to the growth rate in the short-wave regime. The rise of P indicates a more substantial
energy transfer to ageostrophic motions in the small-scale range. Furthermore, as P and V are both
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FIG. 10. Growth rate contributions of different terms to the TE of the Phillips mode in the cases (a) rz = 0,
(b) rz = 0.5, and (c) rz = 1.0. See Fig. 8 for the term symbols.

proportional to Ro, their increase indicates a more severe loss of geostrophic balance suggested by
Molemaker et al. [13].

In summary, the strong vertical shear between the current and undercurrent supports the Phillips-
type mode of a high growth rate. The mode is destabilized with a stronger vertical shear and thus
smaller Ri. Meanwhile, ageostrophic motions are strengthened in the short-wave range at higher
rz. If using 1D-LSA (and also 1D-QG-LSA), then the growth rate and the unstable ky range of this
mode can be overestimated in the short-wave region, though the maximum growth rate does not
vary much. Therefore, BIA is important for analyzing the flow of nonuniform vertical shear and
strong zonal inhomogeneity.

C. Contribution of horizontal shear

The 2D velocity case [V̄ (x, z) in Eq. (10)] is considered here. The moderate case rz = 0.5 is
adopted throughout this subsection, to be consistent with Sec. IV B. By conducting BIA, the zero-
frequency mode, analogous to the Phillips mode in Sec. IV A, still has a high growth rate, as shown
in Fig. 11 for different rx cases. The special focus here is on the relative contributions of vertical and

FIG. 11. Growth rate of the Phillips mode with different meridional wave numbers in different rx cases.
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FIG. 12. Growth rate contributions of different terms to the [(a)–(c)] KE and [(d)–(f)] TE of the unstable
mode in the cases [(a) and (d)] rx = 0.2, [(b) and (e)] rx = 0.6, and [(c) and (f)] rx = 1.0. See Fig. 8 and
Eq. (15) for the term symbols.

horizontal shear, so the 1D-LSA results are not provided. Compared with Fig. 7(a), the growth-rate
variation of the unstable mode with rx is much milder than that with rz. Meanwhile, the short-wave
cutoff becomes smaller, and no long-wave cutoff is present for all cases. Smith [45] also remarked
that the mesoscale zonally nonuniform flow induced higher eddy amplitudes than the uniform one
using a QG model, where the beta effect was the main origin.

The growth-rate decomposition is performed to identify the responsible physical term for desta-
bilization. The evolution of the contributing components to PE bears a strong resemblance to the 1D
velocity case [see Fig. 8(b)] and thus is not shown here. The decomposition results for KE, however,
exhibit distinct features, as shown in Fig. 12. The pressure work and viscous terms are not displayed
due to their negligible contributions. As one rises rx, P has an increasingly large contribution to
the growth rate and surpasses that of the buoyancy flux when rx = 1. The two components of P ,
namely Px and Pz, are both strengthened with the rise of rx, though their active ky ranges are rather
different. Therefore, the growth of KE is not dominated by the buoyancy flux alone (not mostly
transferred from PE). Instead, mean velocity gradients, including both horizontal and vertical shear,
have direct contributions. As P is proportional to Ro, the unstable mode in Fig. 12 is not pure
geostrophic but is a mixed barotropic and baroclinic type. Regarding KE, the long-wave range
is more barotropic-like, while the short-wave range is more baroclinic-like. Figures 12(d)–12(f)
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FIG. 13. Contours of the velocity components and KE of the modes at [(a)–(d)] ky = 1.3, [(e)–(h)] ky =
2.7, and [(i)–(l)] ky = 3.9 in the rx = 0.6 case: [(a), (e), and (i)] zonal velocity, [(b), (f), and (j)] meridional
velocity, [(c), (g), (k)] vertical velocity, and [(d), (h), and (l)] KE. The black dashed lines in [(d), (h), and (l)]
are the contours of V̄ (uniform levels hereinafter).

show the growth-rate decomposition for TE, where σP is lower compared to that for KE since the
denominator increases from K̂ to Ê [see Eq. (17)]. As a result, σP is basically lower than σBx within
the unstable regime. It is also conjectured that at a higher Ro, P will occupy a more significant
portion in supporting the mode growth. The above observation highlights the significance of using
BIA for realistic oceanic flows, in which way the coupling effects of different mechanisms can be
considered and the relative importance of different instabilities can be quantitatively distinguished.

The spatial structures of Px and Pz are further discussed. From Fig. 12, Px is more active at
small ky, while Pz has high amplitudes at large ky. Therefore, three representative ky = 1.3, 2.7,
and 3.9 are selected, as labeled in Fig. 12(b). The three velocity components and KE are depicted
in Fig. 13, where noticeable differences among these modes are observed. For the ky = 1.3 mode,
the velocities and KE are nearly symmetric relative to z = 0.5. From the meridional momentum
equation [see Eq. (11)], v̂′ is directly influenced by ∂V̄ /∂x. Owing to the large contribution of Px, v̂′
and KE are mainly located where the horizontal shear is the strongest. In comparison, |û′| clusters
around x = 0.5, same as V̄ . This spatial correlation of linearly growing û′ and v̂′ with the basic
flow is also noted by McWilliams et al. [24] for a frontally unstable flow. With the increase of ky,
the velocity contours are somewhat rotated anticlockwise with the peak locations moving toward
the domain center. This tendency is attributed to the increase of both F and Pz (see Fig. 12) and

123801-17



CHEN, GAN, AND MCWILLIAMS

is further explained below. The domain center has the strongest vertical shear, so, intuitively, it is
where Pz is the most active. Meanwhile, ∂B̄/∂ x̄ is also in high amplitude around the center and so
are the buoyancy production terms and the buoyancy flux. When ky = 3.9, the peak locations of v̂′
and KE shift to the domain center. As a side effect of this movement, Px diminishes because the
peak locations of ∂V̄ /∂x and v̂′ do not coincide, and the other way around, Pz increases. Compared
with other velocity components, ŵ′ is least affected by ky, located around the center for all the
modes here.

In summary, when the mode is more of a barotropic type (ky = 1.3 here), the disturbance KE
mainly concentrates around the region of strong horizontal shear. On the contrary, when the mode
is more of a baroclinic type (ky = 3.9), the KE is mainly induced where the vertical shear and hence
the horizontal buoyancy gradient are of large amplitudes. Furthermore, an implication is that the
basic flow of the current-undercurrent system needs to be accurately resolved in both horizontal and
vertical directions in order to predict better the disturbance behavior in a realistic configuration.

V. CHARNEY-TYPE MODE

As discussed in Sec. III, high-shear layers near the vertical boundary can also support geostrophic
modes, distinguished from the Phillips type. For example, Roullet et al. [46] obtained the linear
instability features of surface-amplified Charney modes by temporally solving the perturbation
equation. Meanwhile, bottom-amplified Charney modes were reported to exist widely in global
oceans [18]. Here BIA is utilized to reveal the features of the Charney-type modes over a wide
parameter space.

A. Basic features

We start again from the 1D velocity case. The rz = 1 case has the strongest vertical shear near the
boundary, so this case is studied first. Figure 14(a) provides the global mode spectrum at ky = 4.5.
Note that Ro is decreased to 0.01, and the calculation is inviscid here to better demonstrate the
modes’ geostrophic nature. The effects of Ro and viscosity will be discussed in Sec. V B. As can
be seen, there are a series of unsteady unstable modes in addition to the steady Phillips mode.
Meanwhile, the modes appear in pairs with opposite ωr , representing the modes near the upper
and lower vertical boundaries, respectively. The contours in Figs. 14(d)–14(i) are for the modes
of negative ωr , and those of positive ωr are located near the upper boundary in an antisymmetric
style about z = 0.5. As discussed in Sec. II B, the bottom-amplified mode is more realistic than
the surface-amplified one for the present flow, so we mainly focus on the former. The results of
growth-rate decomposition manifest that over 99 % (hence not shown here) of KE (and TE) of these
unsteady modes is contributed by F (and Bx), indicating their geostrophic nature. The three most
unstable bottom-amplified Charney modes are termed Cb-1, Cb-2, and Cb-3 modes, respectively,
in a descending order of growth rate. Their growth rates and phase velocities with different ky

are displayed in Figs. 14(b) and 14(c). The Cb-1 mode has a rather high growth rate, which is
comparable to the Phillips mode. This is reasonable because the vertical shear at z = 0 is as strong as
that at z = 0.5 in this case [Fig. 14(j)]. Meanwhile, the unstable regime of the Cb-1 mode covers an
extremely wide range of ky, with ky at the short-wave cutoff reaching approximately 24. Therefore,
the Charney mode can play a more crucial role in inducing small-scale motions, as also noted
by Roullet et al. [46] and Capet et al. [47]. From their spatial distribution, it is recognized that
different Charney modes represent the structures of different zonal wave numbers kx,Cb = 4nπ (n =
0, 1, . . . ), though there is no strict zonal periodicity due to the x dependence of N2. Furthermore, the
growth rate variations of different Charney modes are consistent with the Phillips mode in that the
maximum growth rate and the unstable range of ky gradually decrease as kx,Cb increases. Besides,
the Charney mode has an increasing phase velocity cr = ωr/ky with the rise of ky, whose range is
comparable to V̄ .
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FIG. 14. (a) Global mode spectrum at ky = 4.5, and the (b) growth rates, (c) phase velocities, and [(d)–(i)]
contours of the normalized vertical velocity (|ŵ′|/ max(|ŵ′|)) for different Charney modes (inviscid, Ro =
0.01, rz = 1, rx = 0). [(d) and (g)] For mode Cb-1, [(e)–(h)] for Cb-2, and [(f)–(i)] for Cb-3. V̄ (z) is shown in
(j) for reference.

For the long-wave Cb-1 and Cb-2 modes [e.g., the ky = 3 modes in Figs. 14(d) and 14(e)],
ŵ′ can occupy a large portion of the whole domain, though the maximum is located near the
lower boundary. As ky rises, the Charney modes are continuously compressed towards the bottom
boundary. The presence of a vertical boundary severely affects the behavior of the Charney mode.
For example, the maximum ŵ′ of the Phillips mode is located where the vertical shear is the
strongest (see Fig. 13). However, this correlation is destroyed by the enforced BC of ŵ′ = 0 at
z = 0, leading to a large vertical gradient of ŵ′. From the disturbance continuity equation, large
gradients of û′ and v̂′ are required to balance ∂ŵ′/∂z. The horizontal distribution of the Cb-1 mode
is rather uniform, i.e., ∂ û′/∂x is small, so high amplitudes of v̂′ and ky are needed. This can partially
explain its extremely wide unstable range of ky. Moreover, the confined spatial distribution leads to
a reduction effect in the aspect ratio, which also tends to enlarge the unstable range of ky [11,13].

B. Parameter study and viscosity effects

The effects of Ro and viscosity are investigated, which is important to make the results applicable
to a wider range of realistic flows. Figure 15(a) plots the growth rates of the Cb-1 mode for varying
Ro and rz. As rz decreases from 1 to 0.5, the Cb-1 mode is largely stabilized because of the
weakening of boundary vertical shear [Figs. 16(e) and 16(j)]. The Charney mode is damped with
rz further down to 0.25. Thereby, the Charney mode is more sensitive to rz than the Phillips mode
subject to the designed velocity distribution. The increase of Ro does not decrease the maximum
growth rate of the Cb-1 mode much but is severely stabilizing in the short-wave region. Similarly, the
top and bottom boundary layers due to viscosity and diffusivity strongly influence the short-wave
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FIG. 15. Growth rates of the Cb-1 mode in the cases (a) with different Ro (Fr = Ro holds) and rz (inviscid)
and (b) with and without viscosity (Ro = 0.1, rz = 1).

region, as shown in Fig. 15(b). They appear to be destabilizing, sustaining the modal growth at
ky > 14. These stabilizing and destabilizing effects will be explained later through the growth-rate
decomposition.

The KE and PE of the most unstable Cb-1 mode are depicted in Fig. 16 for the four cases in
Fig. 15(a). The peak amplitudes of KE and PE are all located at the vertical boundary with the
strongest vertical shear, consistent with that in high-resolution simulations [48]. A clear trend is
observed that as Ro and rz rise, the disturbance components gradually lose zonal uniformness and
the peaks move to a larger x, owing to the stronger horizontal variation of N2. From Eq. (8), N2 can
be expressed as N2 = 1 + ε

∫
∂2V̄ /∂z2 dx, so ∂N2/∂x is positively correlated with Ro since ε = Ro

holds.

FIG. 16. Contours of [(a)–(d)] KE and [(f)–(i)] PE for the most unstable Cb-1 mode in the cases [(a) and
(f)] Ro = 0.01, rz = 0.5; [(b) and (g)] Ro = 0.01, rz = 1.0; [(c) and (h)] Ro = 0.1, rz = 0.5; and [(d) and
(i)] Ro = 0.1, rz = 1.0. The vertical direction is stretched for better illustration. Panels (e) and (j) give the
basic-flow velocity and its gradient for reference.
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FIG. 17. Growth-rate contributions of different terms to (a) KE, (b) PE, and (c) TE for the Cb-1 mode in
the benchmark case rz = 1. The term symbols in the legend are the same as those in Fig. 8.

The growth-rate decomposition is employed to quantify different terms in Fig. 15. The bench-
mark case (Ro = 0.1, Re = 107) with rz = 1 is selected, and the decomposition is shown in Fig. 17.
The terms F , Bx, and Bz are the dominating ones for KE and PE at ky < 12, so it is the increase of
Fr, i.e., weaker stratification, that is mainly responsible for the stabilizing effect in Fig. 16(a) rather
than the Ro increase. The terms V and D always contribute negatively to the growth rate, which
is guaranteed by the free-slip and adiabatic BCs at the surface and bottom (see, e.g., Ref. [38] for
proof). Nevertheless, the short waves in the viscous case remain unstable at ky > 14 and exhibit
higher growth rates than the inviscid case, which demonstrates the crucial differences between
ν → 0 and ν = 0. As shown in Fig. 14, the mode is more compressed towards the vertical boundary
(confined in smaller regions) with the increase of ky, so the inviscid short waves are stable due to
the diminishing ∂Q̄/∂x near the boundaries (see Fig. 6). In the viscous case, however, the locally
diminishing potential vorticity gradient is counteracted by the intense vertical transport within the
boundary layer, which support the mild disturbance growth. Nonetheless, the present result at very
high ky may not apply, since the small-scale motions can have complex interactions with boundary
processes not modelled in this work, such as the Ekman layer and surface turbulence.

Compared with Fig. 10, ageostrophic components play more essential roles in the growth of the
Charney mode, primarily due to the boundary constraint and enlarged instability regime extending
into the smaller-scale region. Consequently, the Charney mode is crucial in inducing submesoscale
motions and transferring interscale energy. It is also suggested that viscosity, diffusivity, and thus
boundary layers need to be included to accurately resolve the small-scale Charney modes.

C. Two-dimensional velocity case

The Charney modes also exist when V̄ is horizontally varied. Figure 18 provides an overview
in the case rz = rx = 1, which has the strongest vertical and horizontal shear. As in Sec. V A, the
three most unstable Charney modes are displayed. The basic characteristics of the growth rate and
phase velocity curves are quite similar to those in Fig. 14. A prominent feature is that the Cb-1
mode covers a wider unstable range of ky, and its maximum growth rate even surpasses that of
the Phillips mode. Meanwhile, ŵ′ of the Charney modes concentrates mainly around the centerline
x = 0.5 where V̄ peaks. As ky increases, the disturbance is more confined in the small region near
x = 0.5 and z = 1. Seen from Figs. 18(f)–18(h), the Cb-1 to Cb-3 modes have one to three |ŵ′|
peaks, respectively, in analogy to the modes of different kx,Cb in Fig. 14.
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FIG. 18. (a) Growth rates and (b) phase velocities at different ky, and [(c)–(h)] contours of the normalized
vertical velocity [|ŵ′|/ max(|ŵ′|)] for different Charney modes (ωr < 0) in the inviscid case (Ro = 0.01, rz =
rx = 1). [(c) and (f)] For mode Cb-1, [(d) and (g)] for mode Cb-2, and [(e) and (h)] for mode Cb-3.

Similarly to Fig. 16, the shape functions of the most unstable Cb-1 mode are depicted in Fig. 19
for different Ro. The maximums of p̂′, KE, and PE are all located at the vertical boundary as in
Fig. 16. From the V̄ contours in Fig. 19(c), the horizontal shear is relatively weak around x = 0.5

FIG. 19. Contours of [(a) and (e)] vertical velocity, [(b) and (f)] pressure, [(c) and (g)] KE, and [(d) and
(h)] PE for the most unstable Cb-1 mode in the case [(a)–(d)] Ro = 0.01 and [(e)–(h)] Ro = 0.1 (rz = rx = 1).
The vertical direction is stretched for better illustration. The black dashed lines in (c) and (g) are the contours
of V̄ .
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FIG. 20. Isosurfaces of the disturbance [(a) and (c)] meridional velocity and [(b) and (d)] buoyancy for the
most unstable [(a) and (b)] Phillips (ky = 2.74) and [(c) and (d)] Cb-1 mode (ky = 8.32) in the rz = rx = 1
case. The contours on y cross sections are the basic flow. The white dashed lines are the intersection of the
isosurfaces and plane contours.

where the Charney mode is active, so its contribution to the growth rate is small, different from
the Phillips mode. Therefore, the primary influence of the horizontal variation of V̄ on the Charney
mode is the concentration of spatial distribution to high-vertical-shear regions. As Ro increases, the
peaks of KE and PE are shifted towards a higher x, the same as in Fig. 16. Besides, the growth
rate decomposition is analyzed among different cases, which strongly resembles those in Fig. 17
(hence not shown). The horizontal shear (Px) mainly affects the long-wave region, but its overall
contribution is rather small because the horizontal shear is weak around the velocity maximum at
x = 0.5. As in Sec. V B, the surface and bottom boundary layers destabilize the short wave and
sustains the modal growth at ky > 15.

Finally, Fig. 20 provides a 3D view (q̃′) of the Phillips and Cb-1 modes above. Note that for the
Cb-1 mode, the shape functions of the two modes with ±ωr are combined to provide a full picture.
The staggered pattern of the Phillips and the Charney modes is demonstrated. More importantly,
the differences between the two modes are more easily seen, especially the different active areas
and meridional wave numbers. It is worth mentioning that the Phillips and Charney modes can act
simultaneously, but their potential interaction cannot be revealed in the framework of the linear
analysis and awaits nonlinear analysis for a deeper understanding.

VI. SUMMARY

In this work, baroclinic instability of a current-undercurrent system, where the water in the upper
and lower layers flows in opposite directions, is analyzed using the BIA. The flow parameters
selected are order-of-magnitude estimates from the Western North Pacific circulation system.
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Compared with the prevailing 1D-LSA, BIA can deal with the basic flow with nonuniform vertical
shear and strong zonal variations. As a result, the overall instability characteristics within flow cross
sections are analyzed. The Phillips-type geostrophic mode with a high growth rate is identified,
primarily due to the high vertical shear between the current and undercurrent. The high-shear regions
near vertical boundaries also support a series of Charney-type modes. Furthermore, the increasingly
important role of ageostrophic motions is demonstrated.

For the Phillips mode, a growth-rate decomposition confirms the classic route of energy transfer
for baroclinic instability. When the linear V̄ (z) is transitioned to a sine type with high vertical
shear in the middle and near vertical boundaries [at an increasing rz, see Eq. (9)], the Phillips
mode is destabilized and covers a wide unstable range of ky because of the stronger vertical
shear and thus smaller Ri. Comparisons with the 1D-LSA (and also f plane 1D-QG-LSA) re-
sults show that dismissing the horizontal basic-flow inhomogeneity, resulting from the nonlinear
V̄ (z), can lead to an overestimated growth rate and unstable range of ky, though the maximum
growth rate does not vary much. For the 2D velocity profile V̄ (x, z), the maximum growth rate
continues to increase with the rise of rx, i.e., larger V̄ in the middle and diminishing V̄ towards
zonal boundaries [see Eq. (10)]. Meanwhile, the zonal production term is the most significant
contributor to KE in the long-wave regime, reflecting the contribution from barotropic instability. In
comparison, 1D-LSA can only deal with the shear in one direction, so it cannot quantify the relative
importance of baroclinic and barotropic instabilities. The unstable mode is more of a barotropic
type in the long-wave range, with KE concentrating around the region of strong horizontal shear.
On the contrary, the mode is more of a baroclinic type in the short-wave range, and the KE is
mainly induced where the vertical shear and hence the horizontal buoyancy gradient are of large
amplitudes.

In addition, a series of Charney modes are identified in the small confined region near two vertical
boundaries. The most unstable bottom-amplified one, termed Cb-1 mode, is approximately zonally
uniform at small Ro in the 1D velocity case. This mode can reach a comparative growth rate to
the Phillips mode, and its unstable range of ky is significantly wider, extending deep into the small-
scale region. Meanwhile, ageostrophic components, including the shear production and viscous and
diffusion terms, are more active in the short-wave region. The top and bottom boundary layers due
to viscosity and diffusivity appear to be destabilizing for short waves and sustain the modal growth
at ky > 14. With an increasing horizontal variation of V̄ , the Charney mode is more destabilized
because of the stronger vertical shear near x = 0.5, while the horizontal shear has little influence.
Parameter studies are also conducted on the effects of Ro, Fr, and velocity shapes.

The present work demonstrates the advantages of employing BIA for complex flow systems,
in obtaining an overall picture of different types of modes, acquiring accurate growth rates and
resolving the disturbance structure subject to coupling geostrophic and ageostrophic mechanisms. In
addition, the present results demonstrate the significance of accurately resolving the basic flow both
vertically and horizontally in order to predict reasonably the disturbance behavior in the current-
undercurrent system. Ongoing and future works are the BIA on the mean flow extracted from actual
observations and simulations, as well as the nonlinear instability analysis when the disturbance is
of finite amplitude.
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APPENDIX: SOLVER VERIFICATION AND GRID-INDEPENDENCE STUDY

The 1D-LSA solver is verified first using an Eady-type case from a recent work [41]. The
following nondimensional parameters are under their definition, and the basic flow is Ū = z,
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(a) (b)

(d)(c)

FIG. 21. Upper row: Growth rates at different (a) aspect ratios (Ri = 0, ky = 0) and (b) meridional wave
numbers (Ri = 0.92, AR = 0) in the case by Zemskova et al. [41]. Lower row: (c) Growth rates with different
kx (0, 0.5, 1.0, 1.5, 2.0) and (d) the shape function of the kx = 2 mode (ky = 0.96) from BIA and 1D-LSA for
the rz = 0 case. Here  denotes the imaginary part of complex.

B̄ = z − y/Ri. The comparisons using 1D-LSA are shown in Fig. 21, where good agreement with
the reference data is obtained. The BIA solver is verified in Fig. 21 by comparing with 1D-LSA for
the modes of various zonal wave numbers. Note that the horizontal domain size is extended to 4π ,

TABLE II. Growth rates of three representative modes in Sec. IV using different grid numbers.

N = Nx = Nz ωi (rz = 0.5, ky = 2.41) ωi (rx = 1, ky = 2.42) ωi (rx = 1, ky = 3.85)

21 0.395287 0.511875 0.209495
31 0.395319 0.511586 0.114699
41 0.395323 0.511585 0.086017
51 0.395323 0.511584 0.085278
61 0.395323 0.511584 0.085275
71 0.395323 0.511584 0.085275
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so the available gap of kx is reduced to 0.5 to allow comparisons of more modes. Both the growth
rates and shape functions of various modes match well between the two solvers.

Due to the high cost of BIA, a grid-independence study is essential to determine the required
grid density. Table II summarizes the results for three representative modes in Sec. IV. The first is
the most unstable Phillips mode in the 1D rz = 0.5 case (see Fig. 8). Using N = Nx = Nz = 41 is
sufficient for a grid-independent growth rate with six significant digits. The second is for the 2D
velocity case rx = 1 (Fig. 11). The required grid number for the most unstable mode increases to
51 due to the strong zonal shear. When the mode approaches the short-wave cutoff, ageostrophic
terms begin to increase, so more grid points are needed. For the third mode in Table II, N = 61 is
required.
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