
PHYSICAL REVIEW FLUIDS 8, 123701 (2023)

Subcritical transition to turbulence triggered by a magnetic dynamo
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It has recently been shown that a significant slowdown of many stars can be attributed to
the emergence of a strong magnetic field within the radiative region, where heat is trans-
ferred through radiation in a stably stratified layer. Here we describe how this transition
can be understood as a subcritical bifurcation to small-scale turbulence in linearly stable
flows. The turbulence is sustained by a nonlinear mean-field dynamo and can be observed
down to relatively small differential rotation, arbitrarily far from the linear onset of any
hydrodynamic instability. In this regime, turbulent fluctuations provide diffusivity-free
transfer of angular momentum that increases the transport generated by the magnetic
field triggering the turbulence. Finally, we present a simple nonlinear model that captures
this scenario and can be used as a general description of the transition to turbulence in
astrophysical flows, as long as it involves a competition between a large-scale dynamo and
a small-scale magnetic instability.

DOI: 10.1103/PhysRevFluids.8.123701

I. INTRODUCTION

Turbulence is one of the most ubiquitous phenomena in astrophysics, as the majority of astro-
physical bodies involve turbulent flows: convective stars [1], planetary cores [2], accretion disks
[3], or the interstellar medium [4] all exhibit turbulent features. But on the other hand, astrophysical
flows are sometimes subject to strong stabilizing effects, such as density stratification or global
rotation, which prevent, limit, or mediate the transition to turbulence.

The gas around accretion disks, for example, exhibits a Keplerian rotation known to be linearly
stable with respect to the centrifugal instability [5]. In the absence of such a simple primary instabil-
ity, it is therefore more difficult to clearly identify a route to turbulence, unlike other rotating systems
like Taylor-Couette flows. This situation has given rise to intense theoretical activity aimed at finding
an alternative destabilization in these systems, such as baroclinic instability [6], vertical convective
instability [7], or gravitational instability [8], to name a few. Understanding how the turbulence in
these disks is generated from one or another of these instabilities remains a long-standing problem in
astrophysical fluid dynamics. A similar situation is encountered in the radiative zones of stars, which
are regions where the strong density stratification is such that heat is transported by radiation rather
than by turbulent convective motions. These layers generally display differential rotation but the
stratification suppresses thermal convection and strongly delays the generation of shear instabilities
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[9]. As with accretion disks, this seems to contradict the observation of efficient transport of angular
momentum or chemical elements in these stably stratified regions, which can only be explained
with a more complex flow than simple axisymmetric differential rotation. Several hydrodynamical
mechanisms have been proposed to explain this paradox, among which one of the most popular is
the Goldreich-Schubert-Fricke (GSF) instability, in which the thermal diffusion somehow reduces
the stabilizing effect of the stratification [10] (see [11] for a review of shear instabilities in radiative
stars).

An alternative explanation for the destabilization of rotating flows is the role played by the mag-
netic field when the fluid is electrically conducting. With the so-called magnetorotational instability
(MRI), a centrifugally stable flow with a rotation profile decreasing outward (like Keplerian rotation)
becomes linearly unstable if the plasma is subjected to a magnetic field [12,13]. Another magnetic
destabilization is the Tayler instability, a pinch-type instability in which the toroidal axisymmetric
magnetic field generated inside a stellar radiative zone becomes unstable to nonaxisymmetric
perturbations when its magnitude is too large [14].

With or without a magnetic field, what happens to these instabilities far from their threshold
and how they can lead to turbulence remains a very active open question. The magnetic scenario
is particularly appealing, however, as it is well accepted that the nonlinear stage of MRI can lead
to fully developed turbulence [15]. On the other hand, dynamo theory, which describes the process
by which a conducting fluid maintains a magnetic field, suggests that turbulence is very efficient in
sustaining a magnetic field [16]. This complex interplay between turbulence and dynamo has led
several authors to postulate that a subcritical transition to turbulence [17,18] should be expected
when a magnetic dynamo is involved. Over the last few decades, this idea of a transition to
turbulence triggered subcritically by the presence of a magnetic field has therefore become very
popular, and this scenario has been reported in many different studies [19–21]. Among the many
other possible route to turbulence, this offers a simple general picture of the transition to turbulence
in conducting fluids: an initially stable flow becomes unstable due to a magnetic instability, which
amplifies the turbulence through some nonlinear processes. This turbulence then triggers a magnetic
dynamo, sustaining the magnetic energy that initially fuels the instability. Such a mechanism is
inevitably subcritical, as the generation of both magnetic field and turbulence depend on each other,
so that only a disturbance of finite amplitude can trigger this nonlinear amplification loop.

This search for the origin of magnetism or turbulence is intrinsically linked to the equally
important question of finding a mechanism for the transport of heat or chemical elements in
astrophysical systems. In rotating systems, angular momentum (AM) transport also plays a crucial
role: the enormous infall of gas and matter around accretion disks [3,22], or the massive slow down
of the inner part of radiative stellar layers [23,24], are the direct consequence of highly efficient
angular momentum transport. This transport can be achieved by many different processes, such
as meridional circulation [25] or the propagation of waves [26]. But the two most convincing
sources of AM transport remain the existence of turbulence and/or the generation of a magnetic
field, the former providing significant turbulent dissipation while the latter can produce a strong
magnetic torque. Naturally, very different predictions can be made for this transport [10,27,28],
depending on the underlying theory of the origin of the turbulence, or the magnitude of the magnetic
torque acting on the fluid. However, a certain degree of universality is expected. Several numerical
[29,30] and experimental [31–34] studies have predicted the existence of a nondissipative regime
for AM transport at a sufficiently large Reynolds number. Since astrophysical systems exhibit huge
Reynolds numbers [35], astrophysical flows are expected to follow such an asymptotic regime
independent of any molecular diffusion, which can be a very helpful guide towards building scaling
laws and theories for the turbulent transport of angular momentum in astrophysics.

A recent numerical study has partially addressed these various questions by modeling a radiative
stellar layer as a differentially rotating, electrically conducting, spherical Couette flow subject to
stable stratification [36]. It has been shown that, as expected, Tayler instability can generate complex
flow motions vigorous enough to amplify a magnetic dynamo of high magnitude. In this case, the
dynamo is subcritical, and the associated magnetic torque is strong enough to produce an efficient
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diffusionless transport of angular momentum and slow down the inner part of the star (see next
section for more details). It was also noted that during this transition, the flow bifurcates into a
highly fluctuating state. Using a numerical setup identical to that of [36], the present article aims
to study this bifurcation in more detail, focusing on the nature of the velocity fluctuations and the
exact conditions under which this transition is observed.

We show that a magnetic instability generates small-scale turbulence. This turbulence then ream-
plifies the large-scale magnetic field via a mean-field dynamo that ultimately sustains the turbulence.
In other words, we observe a subcritical bifurcation to a state characterized by turbulence, strong
magnetism, and efficient angular momentum transport in a flow that is linearly stable without a
magnetic field. A low-dimensional nonlinear dynamical system is proposed as a comprehensive
model that aligns with this mechanism and successfully explains our DNS. Remarkably, our model
unveils a simple and relatively universal framework for understanding the subcritical transition to
turbulence in astrophysical systems marked by the interplay of a large-scale dynamo, a hydrody-
namic transition, and a small-scale magnetic instability.

II. SUBCRITICAL TURBULENCE

The stellar radiative zone is modeled here as a spherical Couette flow in which an electrically
conducting fluid is confined between two spheres with radii ri and ro whose rotation rates �i =
� + �� and �o = � are kept fixed, with the indices i and o representing the inner and outer
spheres, respectively. This imposed global rotation is the simplest way to describe the differential
rotation observed in the stellar radiative zone. Our model therefore relies on a fixed shear, whereas
it can evolve over time in a real star. In particular, high angular momentum transport leads to a
flattening of the rotation profile in stars, which is not reproduced here. An important point of the
paper is therefore to elucidate the role of this shear on the flow dynamics. On the other hand, the
inner sphere can also be seen as a rough model of the boundary with the convective zone, which is
expected to rotate at a different angular velocity [36].

Stable stratification is ensured within the Boussinesq approximation by imposing a constant
temperature difference �T = To − Ti > 0 between the two spheres. All of our simulations are
conducted with the pseudo spectral code PaRoDy [37,38] using the Shtns library [39]. PaRoDy
uses a finite difference scheme in the radial direction and a poloidal-toroidal decomposition on a
spherical harmonics basis in the angular directions. Typical resolutions are 336 points in the radial
direction, and 150 and 60 in the maximum degree � and order m, respectively. It then solves the
following MHD Boussinesq equations:

∂u
∂t

+ (u · ∇)u = −∇�

ρ0
− 2� × u + ν�u + 1

ρ0μ0
(∇ × B) × B + αT 
g0(r/ro)er,

∂


∂t
+ (u · ∇)
 = κ�
 − (u · ∇)Ts, (1)

∂B
∂t

= ∇ × (u × B) + η�B, (2)

∇ · u = 0, ∇ · B = 0, (3)

where u, B, and � are, respectively, the fluid velocity, its magnetic field, and total pressure,
including the centrifugal force. 
 is the temperature perturbation, accounting for the variation of
density, and as in convection studies, Ts is the purely conductive temperature profile, solution of
�Ts = 0. ρ0 is the fluid density and ν, κ , η, and αT are, respectively, the kinematic viscosity, thermal
diffusivity, magnetic resistivity, and thermal expansion coefficient, all considered constant both in
time and in space. The gravity field has a linear radial profile g ∝ r such that g0 = g(ro) is the value
taken at the outer sphere. Such a profile is expected for a spherical object whose density is constant,
resulting from Gauss’ law for gravity [40]. No-slip conditions for the velocity field are imposed
on both spherical boundaries. The outer sphere is electrically insulating (both the radial current
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and the toroidal magnetic field are zero at ro), while the inner sphere represents the inner part of
the star and therefore corresponds to an electrically conducting boundary (with a conductivity σ

identical to that of the fluid). Three different types of initial conditions have been used throughout
the article. DNS are either initialized with an infinitesimal seed (10−5 in code units) of fields
with symmetric and antisymmetric components (toroidal � = 2, m = 0 and poloidal � = 1, m = 0,
respectively), restarted from a previously computed solution, or initialized with a very strong dipole
field. The condition used in practice for each run will be specified below. This system can be
described by six independent, dimensionless control parameters: the Rossby number Ro = ��/�

and the Ekman number Ek = ν/r2
o�, respectively, measure large-scale shear and viscous effects,

both compared to global rotation. Stratification is described by the ratio between Brunt-Väisälä
(or buoyancy) frequency and global rotation N/� = √

αT g0�T/(ro − ri )/�. Finally, the magnetic
Prandtl number Pm = ν/η and the thermal Prandtl number Pr = ν/κ describe the relative influence
of molecular diffusivities. For simplicity, the aspect ratio is kept fixed to χ = ri/ro = 0.35, typically
corresponding to a three-solar-mass star involving a convective core with a radiative envelope (see,
for example, [35]). Note that the kinetic and magnetic Reynolds numbers can be easily deduced from
these parameters, Re = χRo/Ek and Rm = RePm. Similarly, the output magnetic field is measured
by the Elsasser number � = 〈B〉2

μρη�
, which compares the magnetic force to the Coriolis force, with 〈〉

denoting a spatial average over the domain. For the computation of our various bifurcation diagrams
and scaling laws, the reported values are time-averaged over the saturated phase of the stationary
state, for at least one ohmic time tη = (ro − ri )2/η, and taken either locally or spatially averaged
where indicated.

Before discussing the dynamo results, we describe here the purely hydrodynamic results obtained
in the absence of a magnetic field. At sufficiently low Rossby number, the basic flow state is a
stratified axisymmetric flow, composed of a strong azimuthal Couette flow associated with a weak
poloidal recirculation. This velocity field is linearly stable until a critical value of the Rossby
number, Roh ≈ 0.35, is reached, marking the onset of hydrodynamic linear shear instability. The
flow then bifurcates to an m = 1 nonaxisymmetric pattern, which drifts in the azimuthal direction.
It is crucial to emphasize that Roh is the onset of a large-scale instability and does not correspond
to a transition to turbulence: for all values of Ro and Ek reported here and regardless of the
initial conditions, the flow remains laminar as long as there is no magnetic field, essentially due
to the stabilizing effect of stratification. In other words, we have never observed any subcritical or
supercritical transition to turbulence in the absence of a magnetic field. We do, however, expect such
a transition to occur at larger Rossby number, when shear is large enough to counteract the effect of
the stratification (see, for example, [10]).

Let us now switch to the simulations initialized with an infinitesimal magnetic field. The
axisymmetric laminar Couette flow below Roh is unable to generate a dynamo from this initial
magnetic field. For Ro > Roh, however, two types of magnetic field can be amplified and sustained.
The first solution is a viscously dominated magnetic field, which saturates at relatively low value.
This state, which we refer to as the weak dynamo, coexists with a laminar velocity field. It is
primarily generated by the action of the nonaxisymmetric m = 1 flow discussed above and appears
as a supercritical bifurcation when Ro is increased. It takes the form of a nearly axisymmetric
toroidal magnetic field associated with a smaller m = 1 perturbation. The second dynamo branch is
radically different and has been partly discussed in [36]. The appearance of this solution is strongly
correlated with the magnitude of the large-scale toroidal magnetic field Bφ in the simulation (see
Fig. 1 for a typical snapshot). Any large value of Bφ generated by the weak dynamo described
above triggers the so-called Tayler instability. This pinch-type instability is well known to the stellar
physics community, as it provides a simple means of destabilizing stably stratified stellar interiors.
It produces nonaxisymmetric perturbations when a toroidal axisymmetric magnetic field becomes
sufficiently strong. Linear theory of stratified Couette flows predicts that the Tayler instability of a
toroidal magnetic field should generate an m = 1 perturbation at low Reynolds numbers [41,42]. In
the DNS reported here, when Bφ reaches the onset of the Tayler instability, it instead produces large,
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FIG. 1. Bifurcation diagram of Elsasser number vs Rossby number for Ek = 10−5 and N/� = 1.24. Taking
advantage of the subcritical nature of the bifurcation, the dynamos at Ro < Roh have been obtained either by
restarting from the solution obtained at Pm = 1, or initialized with a dipolar magnetic field strong enough to
reach the basin of attraction of the corresponding solution (see text for details). Inset: Snapshot of the magnetic
field components Br and Bφ for the run Ro = 0.14, Pm = 2 at φ = 0.

chaotic, multiscale fluctuations in magnetic and velocity fields involving several wave numbers m.
Surprisingly, the appearance of these fluctuations coincides with a secondary amplification of the
magnetic field leading to the strong-field dynamo solution, following a scenario very similar to that
proposed by Spruit [28].

Following on the single bifurcation reported in [36], we have explored here the strong field
branch over a wide range of control parameters, including Pm. Figure 1 reports a bifurcation
diagram of the Elsasser number versus the Rossby number Ro for various simulations. It first
shows that the strong-field dynamo exhibits large values of the Elssaser number (� > 20). This
illustrates the magnetostrophic force balance achieved on this branch, in which the Lorentz force
is large enough to balance with the Coriolis force. More importantly, this dynamo solution is
highly subcritical, as it can be sustained to arbitrary small differential rotation, even below Roh. For
these simulations performed at Ro < Roh, the strong field solution is obtained either by restarting
a previous simulation already on the strong field branch (cases Pm = 0.5, Pm = 1, Pm = 2 and
Pm = 3), or by initializing the simulation with a strong dipolar field (cases Pm = 5 and Pm = 25).
This subcritical dynamo solution can thus be obtained for parameters where neither the weak field
dynamo nor the shear instability is present. In the last section, we will nevertheless discuss the
importance of the neighbourhood with these linear instabilities.

Figure 2 clarifies this surprising behavior. It shows the bifurcation of the velocity field fluctua-
tions measured in the dynamo region as a function of Ro, for the same set of simulations. In this
figure, these fluctuations are obtained by computing ũθ =√

〈(uθ−uθ )2〉t at r ≈ 0.55ro in the midplane,
normalized by the velocity of the inner core ��ri (In the following, X denotes an azimuthal average,
while X ∗ = X − X and 〈〉t corresponds to a time average.)

The cyan curve indicates the nonmagnetic case discussed previously, where the onset Roh of the
shear instability distinguishes a linearly stable flow with no perturbations from a linearly unstable
flow in which the amplitude of the laminar oscillations increases continuously as Ro (or Re) is
increased. Again, even at the largest Ro (corresponding to Re = 27 500), the strong stratification
keeps the flow laminar such that these fluctuations simply correspond to periodic oscillations related
to the shear instability. Because the weak dynamo is generated by this shear instability, it displays
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FIG. 2. Bifurcation of the velocity perturbations as a function of the Rossby number for Ek = 10−5 and
N/� = 1.24. For each run, ũθ =√

〈(uθ −uθ )2〉t is measured locally in the equatorial plane where the dynamo is
the strongest, at r = 0.55ro. Inset: Snapshot of the velocity field for the run Ro = 0.14, Pm = 2 at φ = 0.

similar oscillations (orange point). This is in strong contrast with the strong field branch, which
displays a high level of fluctuations, reaching up to 5% of the mean azimuthal Couette flow uφ .
The magnitude of these turbulent fluctuations remains relatively constant over the whole range of
explored parameters, although the Reynolds number is varied by almost three orders of magnitude.
This highly fluctuating state regenerates the magnetic field on which it feeds and can thus be
easily maintained below the onset Roh of the shear instability, at relatively low kinetic Reynolds
number. Figure 3 shows that these fluctuations on the strong branch exhibit a spectrum compatible
with a Kolmogorov K41 energy spectrum generally observed for isotropic three-dimensional MHD
turbulence [43], with an exponent k−5/3 for both velocity and magnetic energy. It is, however,
difficult to conclude on the exact value of this exponent, and many effects such as anisotropy due
to rotation or the presence of a large toroidal field can produce a different phenomenology (see
[37], for example, for a recent review of MHD spectra). Nevertheless, note that this spectrum is
considerably less abrupt than that observed on the low-field branch for smaller Pm, where the flow
is clearly laminar.

These simulations therefore describe a subcritical transition to turbulence (in terms of the Rossby
number Ro) triggered by its interaction with a magnetic dynamo. This subcritical transition is well
illustrated by Fig. 4 (left), which shows that our data can be rescaled if the saturated Elsasser is
plotted as a function of the magnetic Reynolds number Rm rather than Ro (for fixed Ek and N/�).
This seems to hold in a large range of Rm for large Pm but is somehow less true for the case
Pm = 0.5, although it also shows some rescaling, but in a reduced range. However, we argue that
our numerical setup is relevant for stellar interiors (Pm < 10−5), as this rescaling with Rm means
that the generation of the strong field dynamo is not necessarily related to the large values of Pm, but
rather relies on the generation of a high level of induction. It also means that the magnetic Reynolds
number Rm controls how far from the onset Roh the subcritical dynamo can be maintained. Data
from the DNS are very well fitted by the theoretical prediction (dashed line) of the model proposed
in the last section, and corresponding to the typical normal form of a subcritical bifurcation. This
bifurcation point Rmc is also associated with a critical value of the Elsasser number, below which
no dynamo can be observed (�c ∼ 20). This clearly reflects the need for the dynamo to be in
magnetostrophic equilibrium, and can indeed be seen as the main constraint for the Maxwell stress
scaling law recently proposed for such radiative stellar layers [36]. This rescaling also implies that
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FIG. 3. Power spectrum density for the run Ro = 0.14, Pm = 2, Ek = 10−5, N/� = 1.24, for both the
velocity and magnetic field, computed in the active dynamo region (0.4 < r/ro < 0.6) and time-averaged over
the saturated phase. Inset: PSD for two runs at the same Ro = 0.78, Ek = 10−5, N/� = 1.24, but for different
Pm (strong and weak branches).

the critical onset of the dynamo Rmc ∼ 7000 is independent of the kinetic Reynolds number or the
magnetic Prandtl number and is only controlled by the level of stratification and global rotation (see
inset). This is in sharp contrast with usual DNS of turbulent dynamos, which almost always display
an increase of the onset with the level of turbulence, followed or not by a saturation to constant
Rm at large Re [44,45]. This can be understood as a consequence of the subcritical nature of the
transition to turbulence, which necessarily implies that the small-scale velocity fluctuations provide
the induction mechanism for the large-scale field. In contrast, the coherence of the large-scale flow

FIG. 4. Left:
√

� as a function of Rm for different Pm. The normal form of the bifurcation is relatively
well fitted by the nonlinear model (dotted line) developed in Sec. IV. Inset: The critical magnetic Reynolds
number of the dynamo, computed for each Pm, is independent of the kinetic Reynolds number. Right: Critical
Rossby number for the dynamo, compared to Spruit’s prediction [28] (dashed line).
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is strongly affected by the turbulence, but apart from the provided shear, it is not directly involved
in the dynamo mechanism.

Incidentally, this regime results in turbulent flow at kinetic Reynolds numbers well below the
classical values expected for turbulence in such setups (see [46] for the particular case of unstratified
spherical Couette flow or [47] for the stratified case). More importantly, this turbulence can be
maintained orders of magnitude below the primary linear onset of the flow. It simply requires the
magnetic Reynolds number to be kept above some critical value Rmc so the strong field dynamo is
maintained. At Pm = 25, for instance, the critical Rossby number for dynamo action is Roc = 8 ×
10−3, which is 45 times smaller than the critical onset Roh for linear shear instability. This illustrates
Spruit’s minimum level of differential rotation required to sustain the dynamo [28]. Indeed, Eq. (27)
in [28] predicts a minimum shear rate required to obtain dynamo action, which, translated into our
dimensionless parameters, reads Roc = (N/�)3/2(Pr3Ek)1/4/Pm. As shown in Fig. 4 (right), this
prediction is extremely well satisfied in our simulations.

A final comment can be made on the existence of this critical magnetic Reynolds number for
the dynamo: for numerical convenience, the global differential rotation between the two spheres
is imposed in our setup, while the angular velocity profile in real stellar radiative zones can be
extremely flat (see, for instance, [48] for the sun or [24] for bigger stars). As the reported dynamo
is very efficient to transport angular momentum, it is expected to flatten the rotation profile [36].
The fact that dynamo can be obtained for such low values of differential rotation is therefore an
important finding of our simulations, because we can expect angular momentum transport to be
sustained until nearly solid body rotation is achieved, provided that the magnetic Reynolds number
remains above some critical value (Rmc ∼ 7000 in the present simulations).

III. ANGULAR MOMENTUM TRANSPORT

During the last decades, several predictions have been made for the angular momentum (AM)
transport in stellar radiative interiors, depending on the mechanism involved in the destabilization
of the stably stratified shear flow. Internal waves, GSF instability, or the Tayler-Spruit dynamo can
all contribute significantly to the AM transport, and generally lead to several different theoretical
scaling laws. In the classical picture of the Tayler-Spruit mechanism [28], the dynamo arises when
the axisymmetric toroidal magnetic field Bφ is large enough to trigger the Tayler instability [14],
for which the linear theory predicts a nonaxisymmetric m = 1 perturbation in the flow [49]. This
perturbed motion then re-amplifies the initial magnetic field and closes the loop for an exponential
amplification of the toroidal field. This naive picture was initially criticized by Zahn [50], because
of the impossibility of regenerating an axisymmetric toroidal magnetic field using perturbations due
to the Tayler instability, which are essentially nonaxisymmetric. Our results show a quite different
story and resolve this controversy without rejecting the Tayler-Spruit picture: at large values of
the magnetic Reynolds number, the Tayler instability generates fluctuations of the magnetic field
b∗ much more complex than the simple m = 1 perturbation predicted by the linear theory. The
corresponding chaotic structure, involving a large range of different length scales, is well illustrated
by the snapshot shown in Fig. 1. In the magnetostrophic regime, these magnetic fluctuations
induce chaotic fluid motions u∗ through the Lorentz force, which produce a turbulent spectrum
characterized by many wave numbers m and an effective Tayler length scale located in the middle
of the inertial range (see Fig. 3 or snapshot in Fig. 2). This small-scale turbulence then generates
a mean electromotive force E = 〈u∗ × b∗〉 which reamplifies the axisymmetric toroidal field and
closes the loop.

This picture requires large kinetic and/or magnetic Reynolds numbers and local generation
of small-scale turbulence independent of boundary conditions, a situation encountered in most
astrophysical flows. In this case, as described in the introduction, AM transport is expected to
depend only weakly on the molecular diffusion. In the simplest possible model of a radiative stellar
interior in which molecular coefficients are ignored, the Reynolds stress u∗

r u∗
φ then depends on only

the typical velocity scale u0, the typical integral length scale r, the buoyancy frequency N , and the
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FIG. 5. Scaling law for the dimensionless Reynolds stress u∗
r u∗

φ/u2
0. This Reynolds stress is measured in the

dynamo region, for π/4 < θ < 3π/4 and 0.45 < r/r0 < 0.55. Here we show simulations only for Pm � 1, as
they correspond to simulations with the highest Reynolds number, relevant for astrophysical applications (see
discussion).

rotation rate �. Dimensional analysis yields a simple prediction of the form u∗
r u∗

φ/u2
0 = Roa(�/N )b,

and most theories proposed in the literature fit within this prediction with a and b depending on the
destabilization mechanism.

Figure 5 shows that our turbulent simulations are well described by such a scaling law:

u∗
r u∗

φ

u2
0

∼ Ro

√
�

N
, (4)

where u0 ≈ 5 × 10−2(r��) is the bulk velocity in the dynamo region and is only a fraction of
the large-scale shear due to the presence of Ekman boundary layers [36]. It can be rewritten as

ρu∗
r u∗

φ ∼ ρu3
0

�r

√
�/N , an expression very close to the one proposed for AM transport by internal

waves at the base of the solar convection zone [51,52]. Following Press and Zahn, we interpret
ρu3

0 as the mechanical energy flux of the large-scale shear flow, part of which is drained off to
the kinetic energy flux of small-scale fluctuations. The magnitude of this conversion is related to
some impedance matching depending on the �/N ratio, so that strongly stratified flows display a
small-scale energy flux much less than ρu3

0. In this respect, it should be noted that this scaling law
could be modified for very large values of N/� relevant to stellar applications (see the Discussion
for more details).

IV. NONLINEAR MODEL

The scenario described here joins a long list of mechanisms proposed to explain the origin of
turbulence and magnetic fields in astrophysics, and relying on a finite amplitude magnetic field.
These include the generation of turbulence in accretion disks by the magneto-rotational instability
[3], the generation of a strong magnetic field by nonlinear processes in radiative stellar layers
[13,27,53], or instabilities in convective stellar layers driven by magnetic buoyancy, for instance
[54]. Despite significant differences between these models, the amplification loop that sustains both
magnetic field and turbulence can often be summarized by the diagram in Fig. 6. In this picture,
the large-scale magnetic field undergoes a magnetic instability (MRI, Tayler instability, magnetic
buoyancy, etc.) producing small-scale velocity fluctuations which then regenerate the initial large-
scale field through dynamo action. Keeping in mind that many astrophysical dynamos and turbulent
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FIG. 6. Diagram illustrating the mechanism described by the model in Eqs. (9)–(11): a large-scale magnetic
field B is destabilized through some linear MHD instability, generating small-scale perturbations. At large
Rm, Re, these perturbations are chaotic and drive turbulent velocity fluctuations, which then regenerate the
initial large-scale field through a mean-field dynamo.

flows do not rely on a subcritical mechanism, this process provides a simple explanation for the
joint amplification of magnetic field and velocity fluctuations.

Our simulations of the fluctuating Tayler-Spruit dynamo are consistent with this picture, but also
show that the transition is highly subcritical and systematically associated with a mean-field dynamo
sustained by turbulent motions. The aim of this final section is to propose a simple nonlinear model
capturing this scenario, and general enough to be applied to other systems. We start by recalling the
classical equations generally used to describe a mean-field dynamo [16]:

∂t BT = s(BP · ∇)
U

s
+ ∇ × (αBP ) + η∇2BT , (5)

∂t A = αBT + η∇2A, (6)

where BT (respectively BP = ∇ × Aeφ) describes the toroidal (resp. poloidal) component of the
large-scale field, U is the large-scale azimuthal axisymmetric shear flow, and s is the cylindrical
radius s = r sin θ . Several types of magnetic amplification can be produced depending on the terms
involved in the process. The first term of the right-hand side of Eq. (5) is the most important: this ω

effect describes the amplification of the toroidal magnetic field by the winding of the poloidal field
lines by the large-scale shear. On the other hand, the poloidal magnetic field can be regenerated
from the toroidal field due to the α term in Eq. (6), which represents the electromotive force due to
the average contributions of small-scale flow motions. In some cases, the toroidal field can also be
amplified through the alpha effect represented by the second term of the right-hand side of Eq. (5).

Figure 7 shows the time-averaged maps of Bφ , sBP · ∇(U/s), and Br , and indicates that the first
two are strongly correlated, i.e., that the dynamics of our stellar layers relies on an ω effect, similarly
to classical α-ω dynamos [55].

But in the presence of a subcritical transition, turbulence is in fact directly constrained by
the magnetic field, so that α depends on the magnetic modes and Eqs. (5)–(6) become strongly
nonlinear. Rather than using a model based on α parametrization, a general model for the subcritical
transition to turbulence in magnetized flows requires explicit treatment of the small-scale velocity
and magnetic modes as dynamic variables. In the following, we therefore construct a nonlinear
model for the evolution of both magnetic and velocity modes involved in the dynamics. Interestingly,
the dynamics reported in our DNS can be very well captured by reducing the governing equations to
a nonlinear dynamical system involving only a few of these modes.
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FIG. 7. From left to right: (a) map of Bφ , averaged in time and in the azimuthal direction. (b) Same for the
ω effect, BP · ∇U . (c) Same for Br . All the maps are computed on the saturated phase for Ro = 0.78, Pm =
1, Ek = 10−5, N/� = 1.24.

Let us first decompose the fields into axisymmetric and nonaxisymmetric parts:

B(r, t ) = B(t )Baxi(r) +
(∑

m

Pm(t )bm(r) + c.c.

)
, (7)

u(r, t ) =
∑

m

Vm(t )um(r) + c.c., (8)

where Baxi is now the spatial structure of the axisymmetric component of the magnetic field
and B its (real) amplitude (without distinction between the poloidal or toroidal component). Its
nonaxisymmetric component is described by a complete spectrum of complex amplitudes Pm(t )
corresponding to different azimuthal wave numbers m, and c.c. designates the complex conjugate
of the previous expression. The phase of Pm then describes the angle of the corresponding pattern
in the equatorial plane. A similar decomposition is used for the nonaxisymmetric velocity field.
Only a small number of these modes are expected to be involved in the dynamics. In principle, to
identify these modes, one could perform a weakly nonlinear perturbative expansion of the complete
equations [56]. Instead, we follow here the usual approach for pattern-forming systems [57,58], in
which the amplitude equations are determined by symmetry arguments and by the general properties
of the underlying physical problem.

In the Tayler-Spruit theory, the dynamo pattern is a combination of m = 1 nonaxisymmetric
magnetic and velocity fields (the linear eigenmodes of the Tayler instability) coupled to a large-scale
toroidal field. Our model must therefore, at the very least, reproduce this interaction between a
nonaxisymmetric magnetic mode P, a nonaxisymmetric velocity mode V (corresponding to the
same wave number m as P), and the large-scale magnetic field B such that ∂t B = f (V, B, P),
∂t P = g(V, B, P), and ∂tV = h(V, B, P). This does not mean that the other modes are unimportant
or necessarily stable, but rather that they can be adiabatically eliminated without profoundly altering
the dynamics of the large-scale fields which display slow dynamics. This choice also provides the
minimal ingredients needed to capture the mechanism illustrated in Fig. 6. Note that although the
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m = 1 mode is the most natural, the derivation below is in fact independent of the wave number
chosen, so the model applies to any value of m.

Next, as our model aims to represent a weakly nonlinear expansion of the complete equations,
f , g, and h can be written as a power series expansion around the origin B = P = V = 0. Most of
the possible terms of the series, however, are precluded by the symmetries of the problem. So, using
the rotational invariance V → Veimχ , P → Peimχ , the fundamental symmetry (B, P) → (−B,−P)
of the induction equation, and the requirement that the velocity mode be subject to a pitchfork
bifurcation when no magnetic field is present, only a few terms remain. By limiting the expansion
to cubic terms at most, we finally obtain a simple system of equations of amplitude:

Ḃ = (−μ + c1|V |2)B − α1B3, (9)

Ṗ = (−ν + β2B2)P + c2V B − β1|P|2P, (10)

V̇ = λV + γ BP − c3|V |2V. (11)

Based solely on the symmetries and general properties of the original problem, these three
coupled equations represent the simplest model for capturing the nonlinear dynamics between a
large-scale magnetic dynamo and a smaller-scale MHD instability. Except for the signs of the
parameters and the choice of saturation terms (suggested by DNS), no other assumptions were
made to obtain this model. As we show below, however, it perfectly reproduces the phenomenology
described in Fig. 6. and in the DNS.

The first equation describes the generation of a large-scale field B by the small-scale velocity
field V . In the absence of this nonaxisymmetric flow (V = 0), the large-scale magnetic field B must
decay, hence the (minus) term −μ. Note that this first equation for B can also be rigorously derived
from the mean-field equations (5)–(6): the parameter μ describes the combined action of shear and
magnetic diffusivity on the large-scale field, providing a linear amplification (or attenuation) of this
field. In particular, this means that large-scale flow dynamics are not explicitly described, but rather
incorporated into the model parameters. On the other hand, a mean-field dynamo generally involves
an α term related to the kinetic helicity u∗ · ∇ × u∗. The V 2B term can therefore be considered
as a crude model of the electromotive force produced by the small-scale turbulence. Note that a
saturation term P2B, allowed by the symmetries, has been discarded such that the equation is only
saturated by the classical and simpler B3 term.

The second equation describes the dynamics of the nonaxisymmetric magnetic mode. In the case
of the Tayler-Spruit dynamo, this may be one of the unstable modes of the Tayler instability. More
generally, P represents a small-scale mode generated by any instability of the large-scale magnetic
field. It is therefore important to note that our set of equations is valid for any wave number m,
provided that P and V correspond to similar wave numbers. This mode P is zero if B = 0, but
can be linearly amplified by the term B2P above a critical value of the mean field, if B2 > |ν|/β.
This explicitly describes the Tayler instability, the MRI instability, or any linear magnetic instability
involved in the cycle illustrated in Fig. 6. The term V B is the lowest-order term compatible with the
symmetries and describing magnetic induction by the nonaxisymmetric velocity. In particular, in the
case where m represents rotational symmetry, this last term guarantees that an exponential growth
of axisymmetric B is necessarily associated with a growth of nonaxisymmetric P, as predicted by
Cowling’s theorem for nearly axisymmetric flows. More generally, the two terms V B and V 2B
describe the part of the cycle in Fig. 6 corresponding to the generation of the mean-field dynamo.

The subcritical nature of the bifurcation observed on the DNS leads us to explicitly write an
equation for the velocity mode. This equation describes the linear instability of this small-scale
mode and can be related to any hydrodynamic instability (at B = 0) of the flow, typically the shear
instability observed in our simulations, such that λ ∝ (Ro − Roh). The PB term is the lowest order
term representing the feedback of the quadratic Lorentz force on the flow (we ignore higher order
magnetic terms B2V and P2V ). This term describes how perturbations of the magnetic field P can
induce turbulent fluctuations V , which is essential for capturing a subcritical transition to turbulence.
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FIG. 8. Time series from our DNS at Ek = 10−5, N/� = 1.24, Ro = 0.78 (left) compared to the ones
from the model derived here (right) for the weak (top, Pm = 0.42) and the strong (bottom, Pm = 1) dynamo
branches. The horizontal dashed lines correspond to Tayler instability threshold, computed locally as in [36].
For DNS, we plot

√
� for the magnetic field, and

√
Ekin for the velocity field, where Ekin is obtained by

averaging the full kinetic energy on the whole volume on the saturated phase. Equations (9)–(11) of the
nonlinear model are integrated using the Odeint module of Python, with μ = 2, α1 = 0.05, c1 = 100, ν = 7,
β1 = 0.1, β2 = 0.025, c2 = 5, c3 = 100, γ = 0.06, using λ = 2.05 (weak) or λ = 2.15 (strong).

Finally, note that negative signs are used for the terms B3, |V |2V and |P|2P, so these cubic terms
provide field saturation, as usual.

The equations for B and V with P = 0 describe the close competition between a hydrodynamic
instability (involving only V ) and a dynamo instability (involving only B). Although the nonlinear
terms are different, this system is therefore relatively close to the normal form for a codimension-2
bifurcation point, which has been studied in detail by many authors (e.g., in [56]). This type of model
is well known for describing subcritical transitions due to the competition between two instabilities
occurring at the same point (in this case, λ = μ = 0), and has even been proposed in the context
of subcritical dynamo bifurcations [59,60]. The additional equation for P complicates the analysis
of the dynamical system, which deviates considerably from these previous models. Finally, note
that although P and V represent complex amplitudes, the parameters used are real, and no terms
involving complex conjugates are present. This means that the dynamic of the phase of the modes is
ignored, as it does not control the subcritical nature of the bifurcation. The new set of equations then
perfectly captures the dynamics observed in DNS: it models the additional competing instability of
the large-scale magnetic field generating small-scale magnetic perturbations P.

Figure 8 compares the time series obtained from the model with those observed in DNS.
Parameter values are shown in the legend, but it should be noted that similar behaviors can be
obtained for a wide range of parameter values. On the other hand, different behaviors can also
be observed for other parameters. Only a thorough perturbative expansion of the initial governing
equations can provide the exact parameter values corresponding to the case simulated in DNS.
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FIG. 9. Bifurcation diagram for the amplitude of each mode as λ varies. The parameters values are μ = 2,
α1 = 0.2, c1 = 1, ν = 7, β1 = 0.1, β2 = 0.1, c2 = 1, c3 = 1, γ = 1.2. The points correspond to stable solu-
tions that have been obtained by direct simulations of the system (9)–(11), while the dashed lines correspond
to unstable solutions that have been computed analytically.

But generally speaking, the model predicts two different magnetic dynamos depending on the
parameters. In the top right-hand corner, a first dynamo (B, P �= 0) grows for sufficiently large V ,
but saturates at relatively low values, so that the magnitude of the small-scale mode is only slightly
modified. This first solution is in very good agreement with the weak branch dynamo observed in
DNS (upper left corner). The strong branch is also reproduced by the model, as shown in Fig. 8,
bottom right corner: the time series first starts with the weak field dynamo, until B2 reaches the
critical value ν/β, producing a secondary amplification up to very large values, thus profoundly
modifying the saturation of the velocity mode. Here again, the agreement with DNS is very good:
this secondary amplification is also observed as soon as the toroidal field reaches the threshold of the
Tayler instability (lower left corner). Note also that during secondary amplification of B, the value
of the small-scale mode V is increased. Our model therefore predicts an increase in the amplitude of
V as the magnetic instability sets in. In our DNS, only velocity modes with azimuthal wave numbers
m > 4 exhibit such behavior, with m < 4 modes decreasing as the large-scale field is reamplified.
The exact wave number involved in these dynamics may vary from simulation to simulation (see
[47]). However, small-scale structures with larger wave numbers are expected to adiabatically follow
the dynamics of the leading mode, so V may hopefully provides an adequate tracer of the dynamics
of small-scale turbulence. Note that the parameters in Fig. 8 have been chosen so that the reduced
model has mode amplitudes comparable to those of DNS, which facilitates comparison between the
two systems.

Figure 9 shows the bifurcation diagram obtained in the model, which reproduces the bistability
between a weak laminar dynamo on one hand, and a strong large-scale dynamo associated with
small-scale velocity fluctuations on the other hand. As expected, the weak dynamo can only be
generated above the hydrodynamic threshold λ ∝ (Ro − Roh) > 0 and displays a supercritical
pitchfork bifurcation. In contrast, the strong branch is subcritical: it is associated with much larger
values of the magnetic field B and the small-scale fluctuations V can be maintained well below
the linear threshold λ < 0. Thus, the model reproduces fairly well turbulence and magnetic field
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generation in a linearly stable region, far from any linear shear instability. For comparison, we
have superimposed in Fig. 4 (black dots) the solution of our dynamical system by rescaling the
amplitudes of the modes and using numerical values indicated in Fig. 9 with λ ∝ (Rm − Rmc).
As shown in Fig. 9, the subcritical nature of the strong-field branch also produces a large gap in
the value of the axisymmetric field B between the subcritical solution, characterized by a very
strong field, and the supercritical solution associated with a much lower magnitude. This leads to the
generation of a forbidden gap very similar to the so-called magnetic desert that has been observed
for intermediate-mass stars [61].

V. DISCUSSION AND CONCLUSION

By focusing solely on the angular momentum transported by the mean magnetic field, the nature
of the turbulence generated in stellar interiors is often overlooked. The results presented here
illustrate how magnetism and turbulence are deeply intercorrelated, and clarify in particular how
turbulence can arise in stably stratified radiative stellar layers. We can thus see that the paradox
usually mentioned for the Tayler-Spruit model [50], of a nonaxisymmetric instability regenerating
a m = 0 poloidal field, naturally disappears if dynamo is associated with a transition to fully
developed turbulence: turbulent fluctuations generate an electromotive force whose axisymmetric
component is large enough to regenerate the original axisymmetric poloidal magnetic field, as
predicted by classical mean-field theory. Our simple nonlinear model shows that this necessarily
implies a subcritical transition to turbulence, which is assured as long as Rm and Re are sufficiently
large.

Taking this turbulence into account also modifies the predictions for AM transport, as the
Reynolds stress due to turbulent velocity fluctuations produces an additional transport given by
the relation (4). A comparison between the turbulent transport described here and that achieved by
the large-scale magnetic field, BrBφ/(μρ) ∼ √

r(u0�)3/2/N (see [36]), shows that the ratio between

the former and the latter scales as
√

Ro3 N
�

. In agreement with previous studies based on different
arguments [27], this suggests that transport due to turbulence should, in the vast majority of cases, be
smaller than that due to the mean Maxwell stress. In the case of rapid rotators, however, fluctuations
can make a significant difference. For some subgiants and red giants as the one reported in [24], the
Rossby number is around 10 and N/� ≈ 103, so the angular momentum transport due to turbulence
could be one order of magnitude larger that the one produced by the Maxwell stress, assuming
that our value u0 ≈ 5 × 10−2r�� inferred from the data can be adequately transposed to local
stellar rotation rates. However, this simple extrapolation to astrophysical regimes must be treated
with some caution. Our highly stratified simulations, N/� = 25 and N/� = 50, display a Maxwell
stress relatively identical to the other simulations [36] but have a much lower Reynolds stress and do
not align with the scaling law (4). These simulations are indeed characterized by very large values of
Q = Pr( N

�
)2, known to control the geometry of the flow [62,63]. With Q = 62.5 and Q = 250, they

correspond to a shellular rotation profile very different from the other runs, which have Q ∼ 1. A
full test of our scaling law would therefore require simulations at large N/� and small Pr, a situation
extremely difficult to achieve with current numerical resources.

As discussed above, the scenario observed in our simulations shares many similarities with other
theories discussed in the literature. Perhaps the most striking similarity concerns the MRI-driven
dynamo (see [64], for instance), in which a large-scale dynamo field is supposed to develop from
a nonaxisymmetric m = 1 instability of the azimuthal magnetic field, the so-called azimuthal MRI
(AMRI). In fact, it has been shown that in some cases it is relatively difficult to distinguish Tayler
instability (TI) from AMRI [42,65], which would make the latter an equally valid interpretation of
our DNS. In particular, since our simulations display a typical shear flow Uφ of the same order
as the Alfvén velocity vA = Bφ/

√
μρ, the dominant energies that the instability taps into are

comparable. However, several arguments suggest that the Tayler-Spruit dynamo remains the most
convincing explanation: first, nonaxisymmetric perturbations occur systematically near the inner
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sphere, where the magnetic field increases outwards, unlike AMRI, which is unstable in regions
where the azimuthal magnetic field decreases outwards. The critical value of Bφ for the appearance
of this instability is also in agreement with Tayler’s predictions. Another strong argument in favor of
TI is the onset of our Fig. 4, which shows that the critical magnetic Reynolds number of the dynamo
is independent of Pm, which aligns perfectly with Spruit’s prediction (as discussed in Sec. II),
again supporting a Tayler-Spruit dynamo. That said, the proximity between the two theories clearly
suggests that such an AMRI dynamo could be at work in other simulations, or even within real stars.
With this in mind, it is important to conclude this paper by discussing the relevance of our nonlinear
model to different mechanisms. Relatively universal, it seems that our low-dimensional model can
be applied to both mechanisms, as long as they remain based on the B, P,V interaction. In fact, only
the value of the coefficients in Eqs. (9)–(11) reflects the physical details of the underlying system.
A full exploration of the model’s dynamics as a function of these coefficients is naturally beyond
the scope of this paper, but may help in the future to distinguish the behavior predicted by these two
different theories and describe the transition from one regime to the other.

Note also that since their derivation is mainly based on general symmetry arguments,
Eqs. (9)–(11) could just as well apply to any instability-breaking translational symmetry which
makes it applicable to other mechanisms not necessarily based on the breaking of the rotational
symmetry. But the small number of assumptions made to derive the model and the fact that
the subcritical transition is observed over a wide range of these parameters suggests a certain
universality in the scenario described here: any instability of a large-scale magnetic field occurring
in a linearly stable flow at large Rm and Re may be subject to a subcritical transition to turbulence.
The excellent agreement between our turbulent DNS and the low-dimensional {B,V, P} dynamics
confirms that the latter can drive complex turbulent systems. It helps to understand the nonlinearities
involved in the universal dynamics that could be displayed by a number of other physical systems.
In particular, the dynamics of the model is related to the coexistence of a hydrodynamic instability
and a magnetic instability, interacting through dynamo action. Interestingly, many astrophysical
situations have been identified as involving this feature: for instance, it has been proposed that the
dynamics of convective stars rely on the coexistence of a Kelvin-Helmoltz hydrodynamic instability
and magnetic buoyancy instability [54]. In protoplanetary disks, the concept of dynamo-MRI also
fits this description [12], with a dynamo generated by perturbations driven by the magneto-rotational
instability in the vicinity of the (stable) centrifugal instability. A more recent example is the close
interaction between saturation of the Tayler magnetic instability and the shear instability in radiative
stars [13]. All these different examples could well exhibit dynamics similar to those predicted by
our model, underlining the relatively universal character of a subcritical transition to magnetized
turbulence. Finally, it is worth noting that this model has three modes with quadratic and cubic
nonlinearities. It can thus exhibit very rich dynamics, ranging from periodic solutions to chaotic
behavior that would be interesting to compare with recent astrophysical observations ([66], for
instance).
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