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In the presence of shear-enhanced diffusion (Taylor dispersion), flame propagation is
effectively anisotropic. This study focuses on the influence of the direction of a shear
flow relative to the direction of propagation on the diffusional-thermal instabilities of
premixed flames. The problem is addressed analytically using large activation energy
asymptotics, complemented by numerical simulations, in the framework of a constant
density two-dimensional model. The model, obtained by depth averaging of the governing
equations in a Hele-Shaw configuration, accounts for shear-enhanced diffusion. A linear
stability analysis is carried out analytically, leading to a dispersion relation involving
three parameters: the Lewis number Le; the Taylor-dispersion coefficient p, which is
proportional to the Péclet number; and the angle φ between the direction of propagation
of the unperturbed planar flame and the flow direction. Based on the dispersion relation,
stability diagrams are determined in terms of the parameters, along with bifurcations curves
identifying the nature of the instabilities observed. It is shown that cellular instabilities
expected when Le < 1 can now occur as a result of Taylor dispersion in Le > 1 mixtures,
provided the angle φ exceeds a critical value approximately equal to 75◦. In general, it is
found that an increase in φ from 0◦ to 90◦ has a stabilizing effect in subunity Lewis number
mixtures Le < 1 and a destabilizing effect when Le > 1. Particular attention is devoted
to the cellular long-wave instability encountered, which is found to be described by a
modified Kuramoto-Sivashinsky equation. The equation involves the three aforementioned
parameters and includes a dispersion term (a third-order spatial derivative) as well a drift
term (first-order derivative) whenever φ �= 0◦ and φ �= 90◦, which is whenever the direction
of the shear flow is neither parallel nor perpendicular to the direction of flame propagation.
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I. INTRODUCTION

The effect of shear-enhanced diffusion, or Taylor-Aris dispersion, on flame instabilities is a rich
research topic whose investigation has only been recently initiated. Background and reports on
related investigations can be found in [1–3] in the context of premixed combustion and in [4] in
the case of nonpremixed combustion. These investigations have focused on flame stability in two
special cases, for which the direction of the shear flow is either perpendicular [1,2] or parallel [3,4]
to an initially planar flame whose stability is under investigation.
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FIG. 1. Model configuration to investigate the diffusional-thermal instability of a planar flame propagating
in a channel in a direction making an angle φ with the direction of a shear flow. A unit vector in the direction of
the shear flow is is = ci − sj, where c = cos φ, s = sin φ, and i and j are unit vectors in the x and y directions,
respectively. In this study, φ is allowed to take arbitrary values in [0◦, 90◦], with φ = 0◦ and 90◦ corresponding
to flame propagation in directions parallel and perpendicular to the flow direction, respectively

The present study is focused on premixed flames, and more specifically on the influence of
the direction of a unidirectional shear flow on their well-known diffusional-thermal instabilities,
allowing the direction to be arbitrary with respect to the flame. The main motivation for our focus
is that thick flames propagating in shear flows, occurring, say, in narrow channels, are subject to
diffusion enhancement by Taylor dispersion as described in recent publications [5–7]. Since the
enhancement of diffusion occurs in the flow direction, and not in a transverse direction, this leads
to problems involving anisotropic diffusion. As a consequence of this anisotropy, the direction of
the flow with respect to the flame becomes a crucial factor when studying flame stability. The
present investigation is dedicated to elucidating the role such factor plays. Our goal is best achieved
by considering flame propagation and stability when the direction of propagation is arbitrary
with respect to that of the shear flow. Since our main concern is the coupling between Taylor
dispersion and the thermodiffusive flame instabilities [8,9], we adopt a simple model based on the
thermodiffusive approximation of constant density and constant transport properties.

As a convenient configuration for the investigation, we adopt a Hele-Shaw burner configuration
similar to that adopted in a variety of notable experimental and theoretical studies on flame instabil-
ities, such as [10–16]. An important additional aspect included in our configuration, however, is the
presence of a unidirectional shear flow. Specifically, we consider an idealized model corresponding
to flame propagation between two closely spaced parallel plates moving in opposite directions so
as to generate a shear Couette flow (with zero mean) of the reactive gas between them, as sketched
in Fig. 1. The plates are assumed to be adiabatic, and the direction of the shear flow is taken to
be arbitrary with respect to that of the initially planar unperturbed flame whose stability is being
investigated. The findings should therefore complement significantly those of [1–4], which did not
considered the effect of varying the angle φ, which is important in order to quantify the effect of
Taylor-dispersion-induced anisotropic diffusion on flame propagation and stability.

The paper is structured as follows. The model formulation is given in Sec. II within a Hele-
Shaw configuration involving a shear flow and includes two-dimensional depth-averaged governing
equations which explicitly account for Taylor dispersion and the angle φ. The problem is exam-
ined analytically in Secs. III–VI, using large activation energy asymptotics. A formula for the
propagation speed of the planar flame with arbitrary Lewis number and arbitrary direction of
propagation is derived in Sec. III. This is followed in Sec. IV by a reformulation of the problem
for nearly equidiffusional flames suitable for the linear stability analysis carried out in Sec. V.
The stability analysis leads to an explicit dispersion relation whose implications are examined in
detail in Sec. VI. The results include the determination of the stability and instability regions in the
parameter space, the characterization of the nature of the bifurcations involved, and the derivation
of a modified Kuramoto-Sivashinsky equation which explicitly accounts for Taylor dispersion, the
angle φ, and the Lewis number. The analytical findings are complemented by two-dimensional
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numerical computations for selected illustrative cases reported in Sec. VII. A summary of the main
findings and conclusions are provided in Sec. VIII.

II. MODEL

We begin by formulating the problem in a frame attached to the unperturbed planar flame front
shown in Fig. 1. The governing equations are two dimensional as they are obtained upon depth
averaging in the z direction, as done in [1], which may be consulted for details and background. The
equations are written in terms of the coordinates x and y, whose axes are as shown in the figure,
with the x axis making an angle φ with respect to the direction of the shear flow (assumed to be a
Couette flow with zero mean). Using the abbreviations c = cos φ and s = sin φ, the nondimensional
problem is given by

∂θ

∂t
+ U

∂θ

∂x
= (1 + p2c2)

∂2θ

∂x2
+ (1 + p2s2)

∂2θ

∂y2
− 2p2cs

∂2θ

∂x∂y
+ ω, (1a)

∂yF

∂t
+ U

∂yF

∂x
= 1

Le
(1 + p2c2Le2)

∂2yF

∂x2
+ 1

Le
(1 + p2s2Le2)

∂2yF

∂y2
− 2p2csLe

∂2yF

∂x∂y
− ω, (1b)

θ = 0, yF = 1 as x → −∞, (1c)

θx = 0, yF = 0 as x → +∞ (1d)

in terms of the scaled mass fraction of the fuel yF and the nondimensional temperature θ . Here U is
the nondimensional propagation speed of the unperturbed front with respect to the gas and ω is the
reaction rate given by

ω = β2

2Le
yF exp

(
β(θ − 1)

1 + αh(θ − 1)

)
,

involving the Zel’dovich number β, which is assumed to be large, and the heat-release parameter
αh ≈ 0.85. An important parameter appearing in the equations is the Taylor-dispersion coefficient
p2 ≡ γ Pe2, where Pe is the Péclet number and γ a numerical coefficient determined by the flow
profile [1]. For a Couette flow γ = 1

20 when the Péclet number is based on the maximum flow
amplitude and the channel half-width H . Another important parameter is of course the Lewis
number Le. For nondimensionalization, we have chosen SL as unit speed, δL as unit length, and
δL/SL as unit time, with SL and δL the laminar flame speed and its thickness (for β � 1) in the
absence of Taylor dispersion.

It is worth noting that Eqs. (1a) and (1b) imply the existence of two effective Lewis numbers in
the x and y directions given by

Lex = (1 + p2c2)Le

1 + p2c2Le2 , Ley = (1 + p2s2)Le

1 + p2s2Le2 . (2)

In the absence of shear flow p = 0, Lex = Ley = Le, that is to say, the effective Lewis numbers are
the same as the molecular Lewis number Le. However, when p �= 0, Lex, Ley, and Le assume in
general distinct values. In particular, when p � 1,

Lex = 1

Le
, Ley = Le for longitudinal propagation (c = 1, s = 0),

Lex = Le, Ley = 1

Le
for transverse propagation (c = 0, s = 1).

The fact that the effective Lewis numbers can assume values quite distinct from Le, in particular
its inverse value 1/Le, in the presence of Taylor dispersion, will have profound implications on the
diffusive-thermal flame instability, as will be confirmed below.
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III. THE PLANAR FLAME FOR ARBITRARY LEWIS NUMBER
AND DIRECTION OF PROPAGATION

The problem (1a)–(1d) admits one-dimensional stationary solutions independent of t and y,
which correspond to planar flames propagating with respect to the unburnt mixture with speed U .
The propagation speed U and the corresponding solutions are determined from the one-dimensional
eigen-boundary-value problem

U
dθ

dx
= (1 + p2c2)

d2θ

dx2
+ ω, (3a)

U
dyF

dx
= 1

Le
(1 + p2c2Le2)

d2yF

dx2
− ω, (3b)

θ = 0, yF = 1 as x → −∞, (3c)

θ = 1, yF = 0 as x → +∞ (3d)

The solution is given in the limit β → ∞ by

θ =
{

exp
(

Ux
1+p2c2

)
1,

yF =
{

1 − exp
(

LeUx
1+p2c2Le2

)
for x < 0

0 for x > 0,
(4)

with

U = 1 + p2c2

(1 + p2c2Le2)1/2
. (5)

A simple way to obtain these formulas is to note first that the problem reduces, when pc = 0,
to a classical problem whose solution is given by (4) and (5) with pc set to zero, which implies
in particular that U = 1. Next it can be checked that this classical problem is also recovered in
the general case with arbitrary values of pc if the problem (3) is written in terms of the primed
quantities

x′ = x

(1 + p2c2Le2)1/2
, U ′ = (1 + p2c2Le2)1/2U

1 + p2c2
, Le′ = (1 + p2)Le

1 + p2c2Le2 .

The solution in terms of the primed quantities is thus the classical one, in particular U ′ = 1;
returning to the nonprimed quantities, we have the solution given by (4) and (5).

IV. PROBLEM FORMULATION IN THE NEAR-EQUIDIFFUSIONAL FLAME APPROXIMATION

The analysis of the stability of the planar flame (depicted in Fig. 1) is most consistently carried
out analytically in the limit β → ∞ using the so-called near-equidiffusional flame approximation
based on the assumption that the Lewis number deviates little from unity. Within this approximation,
the reduced Lewis number l ≡ β(Le − 1) is O(1) and Eqs. (1a) and (1b) can be written in terms of
the leading-order temperature θ0 ∼ θ and h ∼ β(θ + yF − 1). The reformulated problem is given
by the equations

θ0
t + Uθ0

x = (1 + p2c2)θ0
xx + (1 + p2s2)θ0

yy − 2p2csθ0
xy, (6)

ht + Uhx = (1 + p2c2)hxx + (1 + p2s2)hyy − 2p2cshxy

+ l
[
(1 − p2c2)θ0

xx + (1 − p2s2)θ0
yy + 2p2csθ0

xy

]
, (7)
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which are applicable outside an infinitely thin reaction sheet, given by, say, x = f (y, t ), subject to
the boundary conditions

θ0 = 0, h = 0 as x → −∞, (8)

θ0 = 1, h has no exponential growth as x → +∞ (9)

and the jump conditions

�θ0� = 0, �h� = 0, (10a)

�hx� + 1 + f 2
y − p2(c + s fy)2

1 + f 2
y + p2(c + s fy)2

l
�
θ0

x

� = 0, (10b)

[
1 + f 2

y + p2(c + s fy)2
]1/2�

θ0
x

� = − exp

(
h

2

)
(10c)

applicable at x = f (y, t ). Here we have used the notation �ψ� = ψ (x = f +) − ψ (x = f −). The
reader is referred to [1] for a justification of the near-equidiffusional flame reformulation of the
problem incorporating Taylor dispersion, used herein with coordinates suitable for a rotated frame,
and to Appendix A for a justification of the jump conditions (10).

V. LINEAR STABILITY ANALYSIS

The planar flame solution (denoted by an overbar) whose stability is being investigated is
governed by Eqs. (6)–(10) with ∂/∂t = 0 and ∂/∂y = 0. The solution is

f̄ = 0, θ̄ =
{

exp
(

Ux
1+p2c2

)
1,

h̄ =
{

− l (1−p2c2 )Ux
(1+p2c2 )2 exp

(
Ux

1+p2c2

)
for x < 0

0 for x > 0,
(11)

where the propagation speed U is given by

U = (1 + p2c2)1/2. (12)

A normal-mode stability analysis can now be applied to the basic solution (11) by considering
perturbations of the form ⎡

⎣ f
θ0

h

⎤
⎦ =

⎡
⎣ f̄

θ̄ (x)
h̄(x)

⎤
⎦ + δeσ t+iky

⎡
⎣ f̂

θ̂ (x)
ĥ(x)

⎤
⎦, (13)

where δ is a small number representing the amplitude of the perturbation and k and σ are a real and a
complex numbers representing its wavelength and its growth rate, respectively. The stability analysis
leads, as shown in Appendix B, to a dispersion relation which is most conveniently expressed in
terms of the variables

σ̃ = σ + igk̃, k̃2 = k2 1 + p2

1 + p2c2
, g = p2cs√

1 + p2
. (14)

The dispersion relation reads

2�2(� − 1) + l

1 + p2c2

(
(� − 2σ̃ − 1)(1 − p2c2) + 4igk̃(� − 1) − 4p2k̃2

1 + p2
[1 − c2(p2 + 2)]

)

= 0, (15)
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FIG. 2. Bifurcation curves and stability and instability regions in the l-p [or more precisely l versus
p2/(1 + p2)] plane for selected values of the angle φ. Colored regions correspond to unstable flames and white
regions to stable ones. The color scale measures the magnitude of the scaled wave number k̃ corresponding
to the most unstable mode. The case φ = 0◦ corresponds to longitudinal flame propagation (i.e., propagation
parallel to the shear flow) and the case φ = 90◦ to transverse propagation. The labels I, II, and III on the curves
refer to the type of bifurcation following the terminology of [17], as explained in the text and in Fig. 5.

where � =
√

1 + 4σ̃ + 4k̃2. We note that the dispersion relation (15) reduces to that derived by
Sivashinsky [8] when p = 0 and to that derived by Daou [1] in the case of longitudinal propagation
corresponding to φ = 0◦.

VI. IMPLICATIONS OF THE DISPERSION RELATION

A. Instability domains and bifurcation curves

For given values of l , p, and φ, we can solve numerically Eq. (15) for σ̃ (k̃) or σ (k) (with
c = cos φ and s = sin φ), with instability being implied when Re(σ ) is positive. An extensive set
of results is thus obtained and is summarized in Figs. 2–4. For selected values of the angle φ,
bifurcation curves and stability and instability regions are determined in the l-p plane in Fig. 2 and
in the l-k plane in Fig. 3. Similarly, in Fig. 4 the stability and instability regions are determined
in the φ-p plane. Strictly speaking, in Figs. 2 and 4 we use instead of p the equivalent parameter
p2/(1 + p2), which increases monotonically from zero to one as p increases from zero to infinitely
large values. Furthermore, in these two figures we have labeled the bifurcation curves, separating
the stable and unstable regions, by roman numerals I, II, and III. These numerals refer to type-I, -II,
and -III bifurcations, respectively, following the terminology used in [17,18]. A type-I bifurcation
characterizes a finite-wavelength instability whose onset occurs at k = kc �= 0, while type-II and
-III bifurcations characterize long-wave instabilities whose onset corresponds to k = 0. These three
types are schematically illustrated in Fig. 5, where a brief explanation is provided in the caption.
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FIG. 3. Bifurcation curves and stability and instability regions in the l-k plane for selected values of the
angle φ and p. Here the shaded regions are stable.

Figures 2–4 demonstrate the significant combined influence of the Taylor-dispersion coefficient
p and the angle φ on the stability regions and identify the nature of the instability in the parameter
space. Several important conclusions can be inferred from the figures.

(i) In subunity Lewis-number mixtures, Le < 1 or l < 0, and in the presence of Taylor dispersion,
p �= 0, an increase of φ from 0◦ to 90◦ has a stabilizing effect on the cellular (long-wave type-II)
instability. This is seen, e.g., from the increase of the size of the white stable region in the negative-l
side of Fig. 2 and the top and middle rows in Fig. 4.

(ii) In mixtures with Le > 1 or l > 0, a cellular instability can emerge for p above a critical value,
if the angle φ is greater than approximately 75◦ (see analysis below). In general, an increase in φ

from 0◦ to 90◦ has a destabilizing effect, in contrast to the previous case corresponding to l < 0.
(iii) A point worth emphasizing is that the long-wave type-II instability, which is the classical

cellular instability encountered in subunity Lewis number mixtures and described by the celebrated
Kuramoto-Sivashinsky equation [19], is predicted now for both l < 0 and l > 0, provided p and φ

are chosen appropriately. Specifically, this instability is expected to occur as we cross the type-II
bifurcation curves identified in the figures, where the color scale indicates that k = 0 in the close
vicinity of these curves. In the following, we will focus on this long-wave type-II instability, which
leads to a modified Kuramoto-Sivashinsky equation, to be derived next.
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FIG. 4. Bifurcation curves and stability and instability regions in the φ-p [or more precisely φ versus
p2/(1 + p2)] plane for selected values of the reduced Lewis number l . Colored regions correspond to unstable
flames and white regions to stable ones. The color scale measures the magnitude of the scaled wave number k̃
corresponding to the most unstable mode. The labels I, II, and III on the curves refer to the type of bifurcation
following the terminology of [17], as explained in the text and in Fig. 5.

0 00

FIG. 5. Schematic illustration of the three types of bifurcation identified in Figs. 2 and 4, following the
terminology of [17]. Plotted is the growth rate Re(σ ) as a function of the wave number k near the instability
onset occurring at, say, k = kc. The curves move up as we cross from stable to unstable regions in the parameter
space. Type I is a finite-wavelength instability corresponding to kc �= 0, while types II and III are long-wave
instabilities with kc = 0. Note that in a type-II bifurcation Re(σ )(k = 0) remains equal to zero, while in a
type-III bifurcation Re(σ )(k = 0) changes sign from negative to positive as we cross from stable to unstable
regions in the parameter space. Mathematically, a type-II bifurcation requires the three conditions Re(σ ) = 0,
dRe(σ )/dk = 0, and d2Re(σ )/dk2 = 0 to be met at k = 0, as shown in the figure. Only the first two of these
conditions are required for type-I and type-III bifurcations to be satisfied at k = kc �= 0 and k = 0, respectively,
where d2Re(σ )/dk2 < 0.
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B. Long-wave instability and the modified Kuramoto-Sivashinsky equation

1. Derivation of an evolution equation in the weakly nonlinear regime

Note that the dispersion relation (15) has always one root σ̃ (k̃) such that σ̃ (0) = 0. It is the
presence of this root that is at the origin of the long-wave (type-II) instability under consideration.
The onset of this instability is determined by the condition d2σ̃ /dk̃2|k̃=0 = 0, which specifies the
critical values lc,

lc = −2(1 + p2)(1 + p2c2)

1 + (3c2 − 1)p2 + p4c2
, (16)

for the reduced Lewis number l . In the neighborhood of l = lc, the growth rate σ̃ can be expanded
in a Taylor series as

σ̃ = l − lc
lc

k̃2 − 2iglc
1 + p2c2

k̃3 − ak̃4 + · · · , (17)

where

a = 3 − lc(1 − p2c2)

2(1 + p2c2)
+ 4g2l2

c

(1 + p2c2)2
.

Since σ̃ = σ + igk̃, it then follows using (14) that

σ = −igαk + l − lc
lc

α2k2 − 2iglc
1 + p2c2

α3k3 − aα4k4 + · · · , (18)

where

α = (1 + p2)1/2

(1 + p2c2)1/2
. (19)

This expansion allows us to readily write down the linear part of a Kuramoto-Sivashinsky (KS)
type of equation suitable to describe the instability near onset. The ik and ik3 terms in this expansion
indicate the additional presence of a first-order spatial derivative fy (drift) and a third-order spatial
derivative fyyy (dispersion) in such a modified KS equation. The full modified KS equation includes
in fact a nonlinear term which is needed to saturate the instability near onset. The nonlinear term
can be derived using a semiheuristic kinematic argument as explained in [19] and as done below.
The resulting full equation reads

ft + α1 fy + α2 fyy + α3 fyyy + α4 fyyyy + α′ f 2
y = 0, (20)

where the coefficients are given by

α1 = gα ≡ p2cs

(1 + p2c2)1/2
, (21a)

α2 = l − lc
lc

α2, (21b)

α3 = − 2glc
1 + p2c2

α3, (21c)

α4 =
(

3 − lc(1 − p2c2)

2(1 + p2c2)
+ 4g2l2

c

(1 + p2c2)2

)
α4, (21d)

α′ = 1 + p2

2(1 + p2c2)3/2
, (21e)

with lc and α being as given in (16) and (19).
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The coefficients α1, α2, α3, and α4 of the linear terms in (20) are obtained directly from the
expansion (18) of the dispersion relation, as mentioned above, since the linear part of (20) is
equivalent to (18) in the case of normal modes f (y, t ) ∝ eσ t+iky. As for the coefficient α′ of the
nonlinear term, this can be determined by a simple analysis as follows. We start from the eikonal
equation (10) given in Appendix A, namely,

Ft + v · ∇F = SL(n)|∇F |. (22)

In this equation, the flame front is described by the relation F (x, t ) = x − f (y, t ) = 0, v is the flow
velocity, and SL(n) is the local burning speed of a quasiplanar front which depends on the local
normal unit vector n = ∇F/|∇F | = (i − fyj)/(1 + f 2

y )1/2. According to (A7) we have

SL(n) = [1 + p2(n · is)2]1/2. (23)

Also, since the frame of reference has been chosen to be attached to the unperturbed flame which is
moving with respect to the gas with speed −U i, the flow velocity in this frame is v = U i, where U =
(1 + p2c2)1/2 according to (12). It follows that (22) may be written as − ft + U = SL(n)(1 + f 2

y )1/2,
whence

ft = (1 + p2c2)1/2 − [1 + p2(n · is)2]1/2
(
1 + f 2

y

)1/2

= (1 + p2c2)1/2 −
(

1 + p2 (c + s fy)2

1 + f 2
y

)1/2(
1 + f 2

y

)1/2
.

A Taylor expansion of the right-hand side of the preceding equation for small values of fy implies
that

ft = −α1 fy − α′ f 2
y + · · · ,

where the coefficient α′ of the nonlinear term and also the coefficient α1 of fy are as given in (21),
which completes the derivation.

2. Comments on the modified Kuramoto-Sivashinsky equation

We close this section by noting that Eq. (20) reduces to the equation derived by Sivashinsky,
namely,

ft −
(

1 + l

2

)
fyy + 4 fyyyy + 1

2
f 2
y = 0

when p = 0, as it should. When φ = 0◦ and 90◦, it reduces, respectively, to

ft −
(

1 + l

2

)
fyy + 4 + 2p2

1 + p2
fyyyy + 1

2(1 + p2)1/2
f 2
y = 0,

ft −
(

1 + l (1 − p2)

2(1 + p2)

)
(1 + p2) fyy + 4 − 2p2

1 − p2
(1 + p2)2 fyyyy + 1

2
(1 + p2) f 2

y = 0.

Note that the coefficients α1 and α3 of the odd space derivatives in (20) include the coefficient
g, which is proportional to p2cs = p2 cos φ sin φ. Therefore, the first-order derivative fy term (rep-
resenting convection along the front associated with cross diffusion) and the third-order derivative
fyyy (dispersive term) only exist when the condition p2 cos φ sin φ �= 0 is satisfied; this requires the
presence of Taylor dispersion, p �= 0, and the planar flame to be in a direction which is neither
parallel nor perpendicular to that of the shear flow, φ �= 0◦ and φ �= 90◦.

For weakly unstable flames, a rescaling of y, t , and f in Eq. (20) leads to the simplified form

ft + δ1 fy + fyy + δ3 fyyy + fyyyy + 1
2 f 2

y = 0, (24)
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involving two free parameters δ1 and δ3 given by

δ1 = α1

α2
2

√
α2α4, δ3 = α3√

α2α4
.

We note that equations similar to (24), including the third-order derivative dispersive term, have been
found in a variety of studies in the literature, although not in combustion. Such equations are often
referred to as dispersive (or dispersively modified) KS equations; see, e.g., [20–22] and references
therein. These and related publications have mainly focused on assessing the effect of the dispersive
term on the overall dynamics which is, as in the case of the classical KS equation, quite rich and
comprises a variety of solutions including chaotic ones. In general, it is found that the dispersive
term typically leads to regularization (or laminarization) of the solutions if the magnitude of its
coefficient is large enough [20,21]. In this paper we do not purse a mathematical or computational
investigation of the solutions to Eq. (24). Suffice it to note that the coefficient δ3 of the dispersive
term in this equation may take both positive and negative values, as its sign is opposite to that
of the critical reduced Lewis number lc given by (16). This implies that the dynamics of weakly
unstable flames is expected to be affected differently by the dispersive term, depending on whether
the mixture Lewis number is greater or less than unity.

C. Long-wave instability domain based on the Kuramoto-Sivashinsky equation

The long-wave instability addressed in the preceding section corresponds to the coefficient of
fyy in (20) being positive, that is, to the inequality α2(l, p, φ) > 0, where α2 is given by (21b). For
this to be the case, it is necessary however that the coefficient α4 given by (21d) remains positive,1

which leads to a well-posed problem. The regions of stability and instability can thus be determined
in the l-p-φ parameter space. Representative results are shown in Fig. 6, where the stability and
instability regions are depicted in the l-p plane for selected values of the angle φ. The figure shows
that for −2 < l < 2 the long-wave instability does not occur, while for any other value of l , positive
or negative, the instability occurs provided φ and p are appropriately chosen. The blue asymptotes
in the figure correspond to p = p1 and p = p2, where p1 and p2 are positive real numbers such that

p2
1 = 1 − 3c2 −

√
(9c2 − 1)(c2 − 1)

2c2
, p2

2 = 1 − 3c2 +
√

(9c2 − 1)(c2 − 1)

2c2
. (25)

Since the argument of the square root in these expressions is negative for c2 > 1
9 , these asymptotes

only exist when c � 1
3 , that is, when the angle φ is in the range

90◦ > φ > arccos
(

1
3

) ≈ 70.53◦. (26)

The asymptotes are important in defining the long-wave instability domain in terms of the param-
eters. Specifically, when φ < 70.53◦ the long-wave instability can only occur in subunity Lewis
mixtures l < 0, whatever the value of p. In contrast, when φ > 70.53◦, the long-wave instability
can occur in mixtures with l > 0 for values of p exceeding p1 but less than p2, as well as in mixtures
with l < 0 for p < p1 and p > p2; see e.g. the case φ = 85◦ in Fig. 6. In all cases, as mentioned
above, a necessary condition for the occurrence of the long-wave instability predicted by Eq. (20)
is that α4 > 0, and this turns out to be the case, except in a small region in the φ-p plane which
is bounded by the rectangular domain [85.35◦, 90◦] × [1,

√
2]. This small region where α4 < 0

is shown colored in yellow in Fig. 7, along with the asymptotic values p1 and p2 given by (25)
and plotted as solid lines. According to the theoretical analysis of this section based on the KS
equation (20), the long-wave instability is predicted to occur in l > 0 mixtures for values of φ and p

1Note that a negative value of α4 would contradict the requirement for a type-II bifurcation to have the critical
wavenumber kc equal to zero at the onset of instability corresponding to α2 = 0.
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FIG. 6. Bifurcation curves and stability and instability regions in the l-p plane [based on the KS equa-
tion (20)] for selected values of the angle φ. The shaded regions are unstable. The blue dashed lines represent
the asymptotes p = p1 and p = p2 specified by (25) which appear when φ > arccos( 1

3 ) ≈ 70.53◦. The red
dotted lines delimit the region where α4 < 0, and therefore the KS equation (20) is not applicable; these appear
when φ > 85.35◦.

to the right of the blue C-shaped solid curve excluding the yellow region. In actuality, the long-wave
instability under consideration is overshadowed by other instabilities for values of φ and p lying in
the region between the solid C-shaped curve and the dashed C-shaped curve. The latter is based on
numerical calculations accounting for all roots of the dispersion relation, rather than the root leading
to the long-wave instability described by Eq. (20). Therefore, the actual region for the occurrence
of the long-wave instability in l > 0 mixtures is to the right of the dashed C-shaped curve excluding
the yellow region, which requires in particular the angle φ to exceed approximately 75◦ [instead of
the value 70.53 prescribed by (26)].

VII. NUMERICAL SIMULATIONS

In this section we present time-dependent simulations in order to illustrate the theoretical
findings, focusing mainly on the long-wave (type-II) instability and confirming in particular its
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φ

p

p1

p2

FIG. 7. The solid C-shaped curve represents the asymptotic values p1 and p2 given by (25) versus the angle
φ. The domain colored in yellow represents the region where α4 < 0. The long-wave instability is predicted by
the KS equation (20) to occur in l > 0 mixtures for values of φ and p lying to the right of the solid C-shaped
curve excluding the yellow region. In fact, the actual region of this instability in l > 0 mixtures is to the right of
the dashed C-shaped curve excluding the yellow region. The dashed C-shaped curve is computed by accounting
for all roots of the dispersion relation, rather than the root leading to Eq. (20).

occurrence for Le > 1. The simulations are based on the numerical solution of the time-dependent
problem (1) for finite value of β, β = 10, in contrast to the theoretical analysis above based on the
asymptotic limit β → ∞. As auxiliary conditions, we adopt periodic conditions in the y direction
and an initial condition corresponding to a steady, planar premixed flame solution, which is also
determined numerically. The computations are carried out using COMSOL MULTIPHYSICS software
as described in [2,7]. The domain sizes in the x and y directions are chosen to be 40

√
1 + p2c2 and

100
√

1 + p2s2, respectively. A nonuniform grid with typically 300 000 triangular elements is chosen
with local refinement around the reaction zone. A technical aspect to point out is that although U
in Eqs. (1) corresponds to the propagation speed of the unperturbed planar flame which is time
independent, it is considered in the computations as a time-dependent unknown parameter. This
parameter is determined at each time step so that the flame front remains inside the computational
domain. Specifically, U is chosen to be the instantaneous total burning rate per unit transverse flame
area UT given by

UT = 1

Ly

∫∫
ω dx dy, (27)

where Ly is the domain extent in the y direction.
Two values of the Lewis number Le are considered in the simulations, namely, Le = 0.7 in

Fig. 8 and Le = 1.6 in Fig. 9. Plotted in these figures are reaction rate fields at selected times. The
left panel in Fig. 8 provides a typical reference case illustrating the evolution of an initially planar
flame due to the cellular diffusive-thermal instability in the absence of Taylor dispersion, p = 0.
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FIG. 8. Reaction rate fields ω at selected times t for Le = 0.7, with p = 0 (left) and with p = 3 and φ = 60◦

(right). In all computations, the values β = 10 and αh = 0.85 are adopted, and the scales for the horizontal x
axis and vertical y axis are given in the bottom left corner of each panel.

The flame is seen to evolve into a cellular, apparently chaotic structure, as will be confirmed in
Fig. 10 by the plot of its corresponding instantaneous burning speed UT given by (27). Note in this
case that the front of the two-dimensional flame, which may be identified by the location of its thin
reaction zone, is characterized by (local) leading edges (parts most protruding towards the unburnt
gas, called tips in [23]) which are almost flat and separated by somewhat cusped parts pointing

FIG. 9. Reaction rate fields ω at selected times t for Le = 1.6 and p = 3 with φ = 90◦ (left) and φ = 80◦

(right).
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FIG. 10. Effective burning speed UT [computed according to (27)] versus time t for selected values of Le,
φ, and p.

towards the burnt gas, as found in the literature [23]. We turn now to the right panel in Fig. 10,
which illustrates the influence of Taylor dispersion on the instability of the planar flame when it is
oblique to the direction of the shear flow with φ = 60◦. A noticeable difference from the left panel
is that the leading edges are now sharply curved and have normal vectors which are not aligned with
the x direction. Furthermore, there is a clear convective motion in the y direction. For large times,
the flame evolves into an apparently steadily propagating structure, as will be confirmed in Fig. 10.

We now examine the Le = 1.6 cases presented in Fig. 9. The left panel pertains to φ = 90◦
(characterizing a flame initially aligned with the direction of the shear) and p = 3. The most
noticeable feature of the figure is the demonstration that a cellular instability appears in this case
for a Lewis number larger than unity. This is attributable to the fact that the effective Lewis number
in the y direction, which is the direction transverse to that of flame propagation, is less than unity
in this case. Indeed, the formulas for the effective Lewis numbers Lex and Ley given in Eq. (2)
imply that Lex = 1.6 and Ley = 0.67, using s = sin 90◦ = 1, c = cos 90◦ = 0, and p = 3. The fact
that it is the Lewis number in the transverse direction, Ley, which is mainly responsible for the
cellular diffusive-thermal instability is not surprising. Indeed, it is well known in the literature that
the cellular instability is primarily controlled by the relative magnitude of the heat and mass fluxes
transverse to the direction of flame propagation, that is, by Ley in our case. This point is well
explained for conventional flames, e.g., in [24] (see in particular Fig. 4.13 therein) and on pp. 78–79
in [9] (see in particular Fig. 2.8 therein).

Apart from the noticeable occurrence of the instability for Le > 1, the flame evolution is largely
similar to classical subunity Lewis number cases. We turn to the right panel of Fig. 9 pertaining to
φ = 80◦. Here the cellular instability also occurs, with the flame having leading edges less flat and
with an accompanying net motion in the y direction.

To close this section, we turn to Fig. 10, where the burning speed UT defined in (27) is plotted
versus time. The left panel pertains to Le = 0.7. The panel shows that the flame is unstable
irrespective of the values of p when φ = 60◦. On the other hand, when φ = 80◦, the flame is stable
for p = 3, but unstable for p = 0 and 10. This indicates stability for moderately large values of p and
instability for smaller and larger values, in agreement with the theoretical predictions represented in
Figs. 2 and 6 corresponding to φ = 80◦. As for the right panel, pertaining to Le = 1.6, it shows that
the flame is stable irrespective of φ when p = 0, as expected. When p = 3, the panel also shows
that the flame is stable when φ = 60◦ and unstable when φ = 80◦ and 90◦. This emphasizes the
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importance of the role played by the direction of flame propagation relative to the direction of the
shear, when analyzing flame stability.

VIII. CONCLUSION

We have investigated the diffusional-thermal instabilities of premixed flames, within a
two-dimensional constant density model accounting for the effect of Taylor dispersion. The
two-dimensional model is obtained upon depth averaging of the three-dimensional governing
equations in a configuration resembling that of a Hele-Shaw cell but comprising a shear flow. A
linear stability analysis has been carried out to determine the growth rate of perturbations, in terms
of the reduced Lewis number l [l = β(Le − 1)], the dispersion coefficient p (p ∝ Pe), and the
angle φ between the direction of flame propagation and the direction of the flow. Stability diagrams
characterizing the flame instabilities have been determined in terms of these parameters.

One of the key conclusions obtained is the occurrence of cellular instabilities in Le > 1 mixtures
if the Péclet number Pe is above a critical value and the angle φ � 75◦. In general, it is found that
an increase in φ from 0◦ to 90◦ has a stabilizing effect when Le < 1 and a destabilizing effect when
Le > 1. The analysis includes the derivation of a modified Kuramoto-Sivashinsky equation de-
scribing the onset of a long-wave cellular instability, for any angle φ of flame propagation. The
equation is found to include a drift term (a first-order spatial derivative) and a dispersion term
(a third-order spatial derivative) whenever φ �= 0◦ and φ �= 90◦. The study, which is primarily
analytical, is complemented by two-dimensional time-dependent numerical simulations. These
are based on the depth-averaged governing equations and performed for selected values of the
parameters to support and extend the theoretical findings.

There are no experimental studies in the literature which explore the effect of Taylor dispersion
and shear-flow direction on the flame instabilities, including the diffusive-thermal instabilities
addressed herein. It would be highly desirable if such studies could be undertaken, to confirm,
e.g., our prediction that a cellular instability induced by Taylor dispersion can arise for large Lewis
numbers and flames nearly aligned with the direction of the shear, φ � 75◦.
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APPENDIX A: JUSTIFICATION OF THE JUMP CONDITIONS

The main aim of this Appendix is to justify jump conditions (10) accounting for anisotropic
diffusion. To this end, we first note that these follow from the more general, coordinate-free, form

�θ0� = 0, �h� = 0, (A1a)

�hn� + 1 − p2(n · is)2

1 + p2(n · is)2
l
�
θ0

n

� = 0, (A1b)

[1 + p2(n · is)2]1/2
�
θ0

n

� = − exp

(
h

2

)
, (A1c)

applicable at the reaction sheet located at n = 0. Here is is a unit vector in the direction of the shear
flow, n a unit vector normal to the reaction sheet pointing towards the burnt gas, and n a coordinate
in the direction of n. The subscript n represents the partial derivative ∂/∂n = n · ∇ and the notation
�ψ� = ψ (n = 0+) − ψ (n = 0−) is used.

The fact that jump conditions (10) follow from (A1) can be checked by noting, with reference to
Fig. 1, that is = ci − sj (where c = cos φ and s = sin φ) and that the reaction sheet at x = f (y, t ) has
unit normal vector n = (i − fyj)/(1 + f 2

y )1/2 and unit tangential vector τ = ( fyi + j)/(1 + f 2
y )1/2.
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This implies that

∂

∂n
= n · ∇ = ∂x − fy∂y(

1 + f 2
y

)1/2 = (
1 + f 2

y

)1/2 ∂

∂x
− fy

∂

∂τ
,

where ∂/∂τ = τ · ∇ = ( fy∂x + ∂y)/(1 + f 2
y )1/2 denotes differentiation in the tangential direction.

The expression for ∂/∂n implies, for any quantity ψ such as θ0 or h which is continuous across the
reaction sheet, i.e., satisfying �ψ� = 0 and hence �∂ψ/∂τ� = ∂�ψ�/∂τ = 0, that

∂ψ

∂n
= (

1 + f 2
y

)1/2 ∂ψ

∂x
. (A2)

Using (A2) along with the relation

(n · is)2 = (c + s fy)2

1 + f 2
y

(A3)

in (A1) leads readily to jump conditions (10).
It remains to justify the coordinate-free form (A1) of the jump conditions. This form follows in

fact from the jump conditions fully derived in [1] in the particular case corresponding to φ = 0 in
Fig. 1 for which the x direction is chosen to coincide with the direction of the shear, i = is. In this
particular case and using the notation of the present paper, it is found that

�θ0� = 0, �h� = 0, (A4)

�hx� + 1 + f 2
y − p2

1 + f 2
y + p2

l
�
θ0

x

� = 0, (A5)

√
1 + f 2

y + p2
�
θ0

x

� = − exp

(
h

2

)
, (A6)

applicable at x = f (y, t ). Equation (A2) is still applicable in this case, φ = 0, and so is Eq. (A3)
with c = 1 and s = 0, which implies that 1 + f 2

y = 1/(n · is)2. These two equations allow us to
replace in (A5) and (A6) partial derivatives with respect to x with partial derivatives with respect to
n and to eliminate fy, which leads in a straightforward manner to the coordinate-free form (A1), as
required.

Using the jump conditions (A1), it is easy to show that the burning speed of a planar flame
propagating in the direction of the unit vector n is given by

SL(n) = [1 + p2(n · is)2]1/2 (A7)

in the equidiffusional flame approximation β(Le − 1) ∼ 1 as β → ∞. For arbitrary Lewis number,
this can be generalized to

SL(n) = 1 + p2(n · is)2

[1 + p2(n · is)2Le2]1/2
. (A8)

In fact, the formulas (A7) and (A8) are equivalent to the formulas (12) and (5) derived in this paper
(with U = SL).

For reference, we note that the kinematics of a quasiplanar flame with local burning speed SL(n)
in a fluid with local velocity v is governed by

(vflame − v) · n = −SL(n) (A9)

if vflame is the flame velocity and n is chosen to point towards the burnt gas. Thus, if the flame front
is described by the relation F (x, t ) = 0, then flame propagation is described by the eikonal equation

Ft + v · ∇F = SL(n)|∇F | (A10)
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which follows from (A9) by noting that for points x(t ) on the flame, we have Ft dt + dx · ∇F = 0
and hence Ft + (dx/dt ) · n|∇F | = 0 with vflame · n ≡ (dx/dt ) · n.

APPENDIX B: DERIVATION OF THE DISPERSION RELATION

In this Appendix we provide a derivation of the dispersion relation (15). The methodology used
is rather classical (see, e.g., [8]). We begin by substituting the perturbed solutions (13) into Eqs. (6)–
(10). This leads to an eigen-boundary-value problem for the functions θ̂ (x) and ĥ(x), which is given
by

(1 + p2c2)θ̂ ′′ − (U + 2ikp2cs)θ̂ ′ − [σ + (1 + p2s2)k2]θ̂ = 0, (B1)

(1 + p2c2)ĥ′′ − (U + 2ikp2cs)ĥ′ − [σ + (1 + p2s2)k2]ĥ

= −l[(1 − p2c2)θ̂ ′′ + 2ikp2csθ̂ ′ − (1 − p2s2)k2θ̂ ] (B2)

for x �= 0, subject to the boundary conditions

θ̂ = 0, ĥ = 0 as x → ±∞ (B3)

and the jump conditions

�θ̂� = f̂

U
, �ĥ� = − l (1 − p2c2) f̂

U 3
, (B4)

�ĥ′� + l (1 − p2c2)

U 2
�θ̂ ′� = − l (1 − p2c2) f̂

U 4
− 4ikl p2cs f̂

U 5
, (B5)

�θ̂ ′� = − ĥ(0+)

2U
+

(
1

U 2
+ ikp2cs

U 3

)
f̂ (B6)

at x = 0. We note that the jump conditions (10) at the reaction sheet x = f (y, t ) have been
transferred to x = 0, using Taylor expansions for small values of δ, since f = O(δ) according to
(13).

The solution of the linear differential equations (B1) and (B2) subject to all conditions except
(B5) is

θ̂ = − f̂

U

{
er+x

0,
ĥ = f̂

U
×

{[
1 − � + l

U 2 (1 − p2c2) + lχx
]
er+x for x < 0

(1 − �)er−x for x > 0,

where

r± = 1

2U
(1 + g′ ± �),

with g′ = 2ikp2cs
U , � =

√
(1 + g′)2 + 4σ + 4k2(1 + p2s2), and

χ = 1

U�
[(1 − p2c2)r+2 + 2ikp2csr+ − (1 − p2s2)k2]

= 1

U�

(
1 − p2c2

4U 2
(1 + g′ + �)2 + g′

2
(1 + g′ + �) − (1 − p2s2)k2

)
.

In deriving the solution above, unstable modes characterized by Re(σ ) � 0 are assumed, which
implies that Re(�) � 1 and hence Re(r+) � 0 and Re(r− � 0). Applying the condition (B5) to this
solution leads, after a few algebraic manipulations, to the dispersion relation

2�2(� − 1) + l

1 + p2c2
[(� − 1 − g′)(1 − p2c2 + 2g′) − 2σ (1 − p2c2) + 4k2 p2(c2 − s2)] = 0.

123202-18



PREMIXED FLAME STABILITY UNDER SHEAR-ENHANCED …

It is convenient to introduce, as in (14), the variables

σ̃ = σ + igk̃, k̃2 = k2 1 + p2

1 + p2c2
, g = p2cs√

1 + p2

in terms of which the dispersion relation takes the form of the dispersion relation (15).
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