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Ciliary flows are generated by a vast array of eukaryotic organisms, from unicellular
algae to mammals, and occur in a range of different geometrical configurations. We employ
a point torque—or “rotlet”—model to capture the time-averaged ciliary flow above a planar
rigid wall. We demonstrate the advantages (i.e., accuracy and computational efficiency)
of using this, arguably simpler, approach compared to other singularity-based models in
Stokes flows. Then, to model ciliary flows in confined spaces, we extend the point torque
solution to a bounded domain between two plane parallel no-slip walls. The flow field is
resolved using the method of images and Fourier transforms, and we analyze the role of
confinement by comparing the resultant fluid velocity to that of a rotlet near a single wall.
Our results suggest that the flow field of a single cilium is not changed significantly by the
confinement, even when the distance between the walls is commensurate with the cilium’s
length.

DOI: 10.1103/PhysRevFluids.8.123103

I. INTRODUCTION

Cilia are microscopic, hairlike appendages found in a diverse array of eukaryotic organisms
[1,2]. They are ubiquitous in nature, and perform a variety of functions, including fluid pumping
across cell surfaces [3], sensing of environmental signals in microswimmers [4], clearing respiratory
airways in mammals [5], and capturing food and microbes in aquatic species [6]. Underlining this
functional versatility is the ability of cilia to perform asymmetrical motions, which comprise cyclic
power-recovery strokes that interact with the surrounding fluid medium [1,7]. The characteristic
length scales of the resulting flows are small, with typical Reynolds numbers of order 10−6–10−4

[1,8,9], so they are well described by the Stokes equations [10]. Unsurprisingly, significant advances
in the understanding of ciliary hydrodynamics have been made using fundamental solutions of the
Stokes equations, including individual Stokeslets [11–13] or higher-order multipole expansions
[14]. Line distributions of Stokeslets have been used, for example, to mimic the interaction of a
single cilium with the surrounding fluid [11,12,15].

While the near-field time-dependent flow field caused by the deformation of individual cilia
and flagella has been the subject of intense theoretical and experimental investigation, there are
many situations in which the longer-range global flow is of primary interest, particularly in the
context of dense arrays and carpets of cilia and their collective motion, e.g., [16,17]. For large
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FIG. 1. Schematic illustration of models used for capturing time-averaged flow generated by an individual
cilium. (a) Colloidal rotor mimicking the motion of the ciliary or flagellar tip. (b) The rotlet model; (c) single-
Stokeslet model; (d) two-Stokeslet model; and (e) four-Stokeslet model. The black arrows in the Stokeslet- and
rotlet-based models denote the direction of qth point force f q and point torque � applied on the fluid domain,
respectively, while d and e govern the placement of the singularities with respect to the boundary.

arrays of cilia, present either on motile organisms such as Volvox [18] or Paramecium [19], or
on stationary tissues such as the respiratory tract or on corals [20], the envelope model [21,22]
has proved to be very useful for calculating the motion of individual swimmers [23] as well as
pairwise interactions and collective dynamics [24]. This approximates the ciliary array as a no-slip
boundary undergoing small-amplitude deformations and derives an effective slip velocity boundary
condition on a stationary substrate. The collective dynamics of ciliary beating has also been studied
using a minimal model [25–30], in which the ciliary tip is modeled as a sphere driven along
a circular trajectory [Fig. 1(a)], so that the flows due to individual cilia are resolved. With the
inclusion of either a phase-dependent driving force [31] or compliance in the trajectory shape due to
hydrodynamic disturbances [26], this model (also referred to as “colloidal rotor”) provides a good
understanding of the emergence of pairwise synchronization as well as metachronal waves [30,32],
and is in good agreement with experiments [28,30]. However, both the envelope model and the
colloidal rotor model have significant drawbacks when it comes to modeling time-averaged ciliary
flows.

The envelope model, for example, fails to resolve the vortical flows generated around individual
cilia, which play a crucial role in nutrient mixing and exchange [33]. However, employing the col-
loidal rotor for finding time-averaged flows of ciliary carpets can consume significant computational
time, because the model first solves for an unsteady flow field generated by an orbiting sphere, i.e.,
the flow field containing a time-evolving singularity, which must then be averaged over the period
of oscillations.

In the present study, we instead use steady singularities to capture the time-averaged flow field
generated by a cilium. This can easily be scaled up to ciliary carpets using superposition, enabling
the computationally efficient study of flow fields and the corresponding transport of dissolved or
particulate matter in different environments. To model this flow field, we take a complementary
approach to those of Brumley et al. [29] and Ramirez-San Juan et al. [33], but instead capture the
time-averaged flow using a point torque. The resulting flow field is thus described by a rotlet, and
we compare it to the fields approximated using multiple Stokeslets and the colloidal rotor model.
The latter has previously been shown to accurately predict the motion of passive tracers in the fluid
around a beating flagellum [18,29]. Thus, we use the flow field predicted by the colloidal rotor
model as the benchmark with which we compare our steady singularity solutions in this paper. We
demonstrate the advantages of our approach with respect to accuracy and computational efficiency,
compared to previous models and studies, and show that the near-field flow is captured accurately
with just one singularity solution.

Ciliary flows often occur in confined spaces, for example surrounding epithelial cells in the
fallopian tube [34], near actuated artificial cilia in microfluidic devices [35,36] and within the
mucociliary layer in airways [5,33]. The latter has been studied recently using Stokeslets [33],
demonstrating the need for adapting flow fields to the presence of parallel boundaries. Changes
to the Stokeslet solution by confinement are well documented and typically rely on extensive use
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of image singularities that can become quite complicated. For example, using Faxén’s technique
[37,38], De Mestre [39] modified the Stokeslet solution by placing the point force in the middle
of two parallel plates. Liron and Mochon [40] extended this to the case of a point force placed
at an arbitrary position in a channel, also using the method of images and Fourier transforms. An
alternative analytical form was derived more recently by Mathijssen et al. [13], using a recursive
series for the image system. In a related study, Hackborn [41] solved for the asymmetric flow caused
by a point torque oriented parallel to two rigid walls, while Van Der Woude et al. [42] explored the
two-dimensional flow field caused by a point torque in a finite rectangular cavity, so that the torque
orientation was parallel to the planar wall. Dauparas and Lauga [43] derived the far-field solution of
an arbitrarily oriented point torque placed between two rigid walls while investigating the flagellar
flows around bacterial swarms. Following Ref. [40], Fortune [44] derived the complete solution of
the flow field due to a point torque placed in a thin film. However, alterations to the complete rotlet
solution (i.e., capturing both the near- and far-field features) for arbitrary orientation of the point
torque between parallel rigid walls has not been explored yet. Thus, in this paper, we investigate the
influence that plane, parallel no-slip boundaries have on the rotlet solution in general, for arbitrary
orientation of the point torque.

This paper is organized as follows. In Sec. II, we present mathematical models for the time-
averaged flow field of a single cilium. By comparison with the minimal model involving a colloidal
rotor, and experimental data of Brumley et al. [29] and Pedley et al. [18], we demonstrate that
the rotlet-based (point torque) model is superior at capturing the resultant flow above a no-slip
wall compared to a range of Stokeslet-based models. By applying similar techniques to Liron and
Mochon [40], we then solve for the flow field generated by a point torque placed between two
parallel walls in Sec. III. Using this framework, we quantify the effects of geometric confinement
on the flow induced by individual cilia, and estimate the degree to which the classical rotlet solution
near a wall is affected by the (additional) upper boundary. Our conclusions are presented in Sec. IV.

II. MATHEMATICAL MODELS OF CILIARY FLOW NEAR A WALL

We start by presenting different (singularity-based) models implemented in this paper for captur-
ing the time-averaged flow generated by a cilium above a single, rigid no-slip wall. The fluid flows
are described by the Stokes equations [45]

μ∇2u + F = ∇p, (1a)

∇ · u = 0, (1b)

subject to the following boundary conditions on the wall, given by −∞ < x, y < ∞ and z = 0,

u = 0 at z = 0, (2)

where u = (u1, u2, u3) and p denote the fluid velocity and pressure, respectively, and F corresponds
to the forcing that mimics ciliary behavior. Although cilia execute complex changes in their
waveform throughout their beating cycle, the instantaneous flow field is well captured by a Stokeslet.
To mimic the asymmetry of the power and recovery strokes within a cycle of ciliary beating, we
consider several simplified models for the time-averaged flow. We examine the flow field above a
no-slip wall generated by a point torque, or a rotlet model [Fig. 1(b)], as well as a discrete set of
one, two, or four point forces, or Stokeslet-based models [Figs. 1(c)–1(e), respectively] positioned
along, and tangential to, a circular trajectory. Optimal values of model parameters for the rotlet
and Stokeslet-based models are obtained by comparing the resultant flows to the one found using
a colloidal rotor. The latter is the main quantitative benchmark used throughout this paper because
it is in agreement with the experimental data of Pedley et al. [18] as noted above. The comparison
with the colloidal rotor shows that the rotlet provides the best approximation for the time-averaged
flow generated by a cilium using the steady singularities approach.
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A. Colloidal rotor model

The colloidal rotor model assumes that the ciliary tip is a sphere of radius a translating in a
closed circular loop of radius r0 and driven by a constant angular velocity of magnitude ω pointing
into the page in Fig. 1(a). Hence, the model predicts a time-periodic ciliary flow. To compute the
time-averaged component of the velocity vector for the individual cilia at a position x = (x, y, z),
we apply the time averaging as

us
i = ω

2π

∫ 2π/ω

0

1

8πμ
Si j (X (t ), x)F j (t ) dt . (3)

Here, X (t ) = (xs(t ), ys(t ), zs(t )) = (r0 sin ωt, 0, h + r0 cos ωt ) is the trajectory of the sphere, and
the force exerted on the fluid of viscosity μ due to the moving sphere is Fj (t ) = γ jkX ′

k (t ) =
6πμa[δ jk + 9a

16zs (t ) (δ jk + δ j3)]X ′
k (t ), where δ jk is the Kronecker delta. Thus, F = F(t )δ[x − X (t )]

in Eq. (1a). Furthermore, Si j is the second-order Green’s tensor of the Stokes flow due to a point
force above the wall (i.e., a Stokeslet) [46], given by

Si j (X (t ), x) = δi j

r
+ rir j

r3
−

(
δi j

R
+ RiRj

R3

)
+ 2zs(t )ρ jk3

[
∂

∂Rk

(
zs(t )Ri

R3
−

[
δi3

R
+ RiR3

R3

])]
, (4)

where ρ jk3 = δ jαδαk − δ j3δ3k for α ∈ {1, 2}, x = (x, y, z), r = (r1, r2, r3) = (x − xs(t ), y −
ys(t ), z − zs(t )), R = (R1, R2, R3) = (x − xs(t ), y − ys(t ), z + zs(t )) and indices {i, j, k} ∈ {1, 2, 3}.

B. Stokeslet-based models

Next, we consider three models for capturing the time-averaged ciliary flow based on the
increasing number of point forces in a Stokes flow. This is designed to mimic the force applied
by the cilia at an increasing number of points throughout the beating cycle.

1. Single-Stokeslet model

We model the time-averaged ciliary flow as generated by a point force f 1 = | f |êx, of magnitude
| f | and orientation êx (where êϕ henceforth corresponds to the unit vector along the ϕ direction)
located at xs1 = (xs1 , ys1 , zs1 ) = (0, 0, d ) above the wall [see Fig. 1(c)], i.e., F = f 1δ(x − xs1 ) in
Eq. (1a). This acts as the power stroke pushing the fluid forward along the +x direction and is
designed to capture the part of the beating cycle with the strongest flow.

2. Two-Stokeslet model

In this model, we assume that the time-averaged ciliary flow corresponds to the flow generated
by two point forces f 1 = | f |êx and f 2 = −| f |êx of equal magnitude | f |, but acting in opposite
directions parallel to the wall. The forces are positioned at xs1 = (xs1 , ys1 , zs1 ) = (0, 0, d + e) and
xs2 = (xs2 , ys2 , zs2 ) = (0, 0, d − e), respectively, so that they are 2e apart and the midpoint between
them is at a distance d above the wall; see Fig. 1(d). The model, therefore, accounts for both the
power stroke (which pushes the fluid forward) and the recovery stroke (which pushes the fluid
backward), resulting in F = f 1δ(x − xs1 ) + f 2δ(x − xs2 ) in Eq. (1a). Although these two forces
are considered to have the same magnitude, the resulting fluid disturbance will not be the same,
owing to hydrodynamic screening due to the wall.

3. Four-Stokeslet model

Finally, the time-averaged ciliary flow is modeled by placing four point-forces f 1 = | f |êx, f 2 =
−| f |êx, f 3 = | f |êz and f 4 = −| f |êz of equal magnitude | f | at xs1 = (xs1 , ys1 , zs1 ) = (0, 0, d +
e), xs2 = (xs2 , ys2 , zs2 ) = (0, 0, d − e), xs3 = (xs3 , ys3 , zs3 ) = (−e, 0, d ) and xs4 = (xs4 , ys4 , zs4 ) =
(e, 0, d ), respectively, as shown in Fig. 1(e), so that F = ∑4

i=1 f iδ(x − xsi ) in Eq. (1a). The distance
between the horizontally and vertically aligned point forces is 2e, and the geometrical center of the
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force assembly is a distance d above the wall. The ciliary power strokes are captured by the point
forces oriented along the +x and +z directions (i.e., f 1 and f 3), whereas the recovery strokes are
captured by the point forces oriented along the −x and −z directions (i.e., f 2 and f 4).

The general expression for the fluid velocity component at x = (x, y, z) obtained using Stokeslet
models above is

ui = dxi

dt
= 1

8πμ

N∑
q=1

Si j
(
xsq , x

)
fq j, (5)

where N ∈ N denotes the number of point forces used in the model (i.e., N = 1, 2, or 4), xsq =
(xsq , ysq , zsq ) is the position of the qth point force f q of magnitude | f | and Si j (xsq , x) is the Green’s
tensor, which corresponds to the qth point force above the wall and is similar to Eq. (4), but does
not contain time-evolving variables,

Si j
(
xsq , x

) = δi j

r
+ rir j

r3
−

(
δi j

R
+ RiRj

R3

)
+ 2zsqρ jk3

[
∂

∂Rk

(
zsq Ri

R3
−

[
δi3

R
+ RiR3

R3

])]
. (6)

Here the vector r = (r1, r2, r3) = (x − xsq , y − ysq , z − zsq ), the vector R = (R1, R2, R3) = (x −
xsq , y − ysq , z + zsq ), and the remaining notation is the same as in Eqs. (3) and (4). Note that for
N > 1, the velocity of the fluid (5) is obtained by the superposition of velocities that correspond to
all Stokeslets in the domain.

C. Rotlet model

Finally, we model the time-averaged ciliary flow as generated by a point torque � = |�| êy

of magnitude |�| and orientation êy positioned at xr = (0, 0, d ), as shown in Fig. 1(b), so that
F = 4πμ∇ × [�δ(x − xr )] [45]. This generates a flow with velocity components given by

ui = dxi

dt
= 1

8πμ
Ai j (xr, x)
 j, (7)

where Ai j is the Green’s tensor due to a point torque (i.e., rotlet) above the wall in Stokes flow [47],
given by

Ai j (xr, x) = εi jkrk

r3
− εi jkRk

R3
+ 2dεk j3

(
δik

R3
− 3RiRk

R5

)
+ 6εk j3RiRkR3

R5
. (8)

Here x = (x, y, z), r = |r|, r = (r1, r2, r3) = (x, y, z − d ), R = (R1, R2, R3) = (x, y, z + d ), εi jk is
the Levi-Civita symbol; as before, μ is the fluid viscosity and the indices i, j, k ∈ {1, 2, 3}.

D. Model optimizations

The flow generated by a distribution of steady singularities as detailed above is optimized to best
capture the time-averaged flow field obtained using the colloidal rotor, i.e., Eq. (3), which accurately
mimics the behavior of a eukaryotic flagellum isolated from the colonial alga Volvox carteri [18].
These flagella, found in water with μ = 10−3 Pa s, are of average length 〈lc〉 = 19.9 µm and beat
with a period T ∼ 1/33 s, suggesting that the reference scales for length, velocity, force, and torque
in Eqs. (5)–(8) are lc, Ut = 2π lc/T , fr = μl2

c /T and 
r = fr lc, respectively. In the case of the
colloidal rotor, the experimental data for the Volvox flagellum is captured well for a/lc = 0.25,
h/lc = 0.5, and r0/lc = 0.25 [18]. We, therefore, optimize the steady singularity-based models by
adjusting d , e, | f | and |�| and comparing the resultant velocity field to that obtained from Eq. (3)
using the above parameter values for the colloidal rotor model. The numerical optimization is carried
out outside a semicircular region � of radius 2lc, chosen to mask the flow singularities. However,
we have found that the outcome of our optimization was qualitatively insensitive to this choice.
Thus, the fluid velocity remains regular within the optimization domain, while important near- and
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FIG. 2. The heat map of the mean relative difference 〈RD〉 (a) in (I
/
r, Id/lc ) plane for the rotlet model,
(b) in (Id/lc, If / fr ) plane for the single-Stokeslet model, (c) in (Id/lc, If / fr ) plane at e/lc = 0.059 for the
two-Stokeslet model, and (d) in (Id/lc, If / fr ) plane at e/lc = 0.054 for the four-Stokeslet model. The minimum
value in the heat map is indicated using the black cross. The map is generated using n
 = 100, nf = 100,
nd = 100, and ne = 50 points on the intervals I
/
r , If / fr , Id/lc shown in panels (a)–(d), and Ie/lc = [0, 0.25],
respectively.

far-field features of the ciliary flow are nonetheless still captured. For the remainder of this section,
we present the results in the plane y = 0.

We start by computing

RD =
∣∣∣∣U

s − U f

U s

∣∣∣∣, (9)

which we refer to as the relative difference, and then the global mean of this quantity

〈RD〉 = 1

m

∑
m

RD = 1

m

∑
m

∣∣∣∣U
s − U f

U s

∣∣∣∣, (10)

where m is the number of specified uniformly distributed grid points in the region of interest
x ∪ z ∈ [−L/2lc, L/2lc] ∪ [0, H/lc] = [−5, 5] ∪ [0, 10] and y = 0, but outside the region �; we
used a very fine mesh, so that m was up to 106 across all model comparisons [see also Fig. 3(b)].

FIG. 3. (a) The mean relative difference 〈RD〉 as a function of log10nd for different steady singularity
models. (b) The ratio of computational times taken to compute the time-averaged flow field using the steady
singularity models indicated with the legend (tfit ) and the colloidal rotor model (tmin) as a function of log10(m),
where m is the number of computational grid points.
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TABLE I. Results of the optimization procedure for different models.

Model type Optimal parameters values

Rotlet model d/lc = 0.629, |�|/
r = 0.271
Single-Stokeslet model d/lc = 1.111, | f |/ fr = 0.113
Two-Stokeslet model d/lc = 0.609, e/lc = 0.059, | f |/ fr = 1.098
Four-Stokeslet model d/lc = 0.609, e/lc = 0.054, | f |/ fr = 1.224

Here, U s = |us| =
√∑3

i=1(us
i )2 and U f = |u| =

√∑3
i=1 u2

i are the magnitudes of time-averaged
velocity field obtained using the colloidal rotor [i.e., Eq. (3)] and the particular steady singularity-
based model [i.e., Eq. (5) and (7)], respectively. The expression in Eq. (10) is minimized by
varying parameters d ∈ Id and |�| ∈ I
 for the rotlet model, and d ∈ Id , e ∈ Ie and | f | ∈ I f for
the Stokeslet-based models (in fact, in the case of the single-Stokeslet model, 〈RD〉 is only a
function of d and | f |). Thus, the rotlet and the single-Stokeslet models are the most straightforward
to optimize. The intervals Id , I
, I f , and Ie are selected using the reference scales above, so that
Id/lc, Ie/lc, I f /(μl2

c /T ), and I
/(μl3
c /T ) ∼ O(1), and d , e | f |, |�| are varied by taking nd , ne,

n f , n
 steps on these intervals, respectively. That is, the geometric parameters associated with the
singularity-based models are considered to be commensurate with those of the colloidal oscillator
model [18].

The results of this optimization procedure are illustrated in Fig. 2, where we show the computed
〈RD〉 using a heat map for different values of parameters on the optimization grid. For example,
the mean relative difference, Eq. (10), for the rotlet model, shown in Fig. 2(a), is plotted on the
(Id/lc, I
/
r ) plane. The minimum value of 〈RD〉 is attained at the point marked with a black cross
in Fig. 2(a) (and in the remaining panels of Fig. 2), and the corresponding parameter values are cited
in Table I. The optimization parameter space for the single-Stokeslet model is also two-dimensional;
the corresponding heat map of 〈RD〉 in (Id/lc, I f / fr ) plane is illustrated in Fig. 2(b). However, the
optimization parameter space for the two and four-Stokeslet models is three-dimensional, and so in
Figs. 2(c) and 2(d) we plot a cross-section of that space in the (Id/lc, I f / fr ) plane at a fixed value of
e = 0.059lc and e = 0.054lc, respectively, for which 〈RD〉 attains the minimum (optimal) value, see
Table I. Note that for these two models, we obtain the same optimal values of d due to the symmetry
of the Stokeslet spatial distribution.

The results presented in Table I are quite insensitive to the number of points chosen for the
optimization process, e.g., nd on Id . To illustrate this, in Fig. 3(a) we show how the minimal value
of 〈RD〉 evolves with the logarithm of nd . For all steady singularity-based models, the minimum of
〈RD〉 is approximately the same for nd � 50, and the location of this minimum in the optimization
parameter space is approximately the same. Also notable in Fig. 3(a) is that Stokeslet-based models
with fewer point forces result in a larger value of 〈RD〉 compared to the rotlet model, suggesting that
the latter outperforms them. However, adding additional point forces in the Stokeslet-based models
reduces the value of 〈RD〉.

We leave further accuracy comparison between these models to Sec. II E and focus instead on the
computational efficiency of obtaining the time-averaged flow. In Fig. 3(b), the relative computational
time for the steady singularity and the colloidal rotor models is plotted as a logarithm of the number
of grid points in the computational domain. The plot suggests that, depending on the number of grid
points, the time-averaged flow field is between 7 and 50 times faster to compute using the rotlet
model than the colloidal rotor model. Similarly, using the four-Stokeslet model is between 5 and
10 times faster than the colloidal rotor model. This is unsurprising, given that the colloidal rotor
computations involve evaluating and then averaging a time-periodic velocity field [see Eq. (3)].
Even more significant is the fact that the rotlet model requires fewer parameters to fit the time-
averaged flow as compared to the four-Stokeslet model, and is also up to 5 times quicker according
to Fig. 3(b).
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FIG. 4. The relative difference (RD) obtained using (a) the rotlet model, (b) the single-Stokeslet model,
(c) the two-Stokeslet model, and (d) the four-Stokeslet model in the window of length L/lc = 10 and height
H/lc = 10 at optimal parameters values listed in Table I. The red shaded semicircle in panels (a–d) corresponds
to the region � excluded from the calculations of RD.

E. Model comparisons

We continue the comparison between the different steady singularity-based models by plotting
the heat map of the relative difference RD [i.e., Eq. (9)] in the plane y = 0 for the optimal values
of the parameters listed in Table I. These spatial plots of RD are shown in Fig. 4. As evident from
Fig. 4, the Stokeslet-based models with a larger number of point forces outperform (on accuracy)
the single-Stokeslet model. The heat map of the relative difference for the rotlet model looks
similar to the four-Stokeslet model, and we find that the predictions for the time-averaged flow
field obtained with both models are much closer to those of the colloidal rotor. This observation is
further confirmed in Fig. 5, where the flow from the colloidal rotor [Fig. 5(a)] is shown alongside
the optimized flow fields for various singularity models [Figs. 5(b)–5(e)]. While the differences
between the models are less pronounced in the far field (z/lc � 7)—where the time-averaged
velocity decays as 1/r2 in all models—there are significant differences between the models in the
near-field (z/lc � 5), with the rotlet and four-Stokeslet models closely capturing the flow of the
colloidal oscillator.

FIG. 5. Streamlines and velocity magnitude associated with the (a) time-averaged colloidal rotor, (b) the
rotlet model, (c) the single-Stokeslet model, (d) the two-Stokeslet model, and (e) the four-Stokeslet model, all
shown in the window of length L/lc = 10 and height H/lc = 10 at optimal parameters values listed in Table I.
Streamlines are shown with lines that have arrows to indicate the flow direction.
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FIG. 6. (a) From Ref. [18]: a sequence of instantaneous shapes of an isolated eukaryotic flagellum held
by a micropipette (blue waveform); the resulting trajectories of passive microspheres are shown in black.
(b) Trajectories of passive tracers, initially positioned at x0/lc = −1.26 and z0/lc = 0.25, 2, 3, 4, 5, respec-
tively, obtained using the different singularity-based models in a window of length L/lc = 2.5 and height
H/lc = 7. As discussed in Sec. II D, the model parameters are chosen for comparison with Ref. [18].

Next, in Fig. 6 we also compare the flow field generated by the singularity-based models with
the experimental tracks of microspheres in the vicinity of a single eukaryotic flagellum [18]. As
illustrated in Fig. 6(a), the microspheres follow undulating trajectories due to the asymmetric
beating of the flagellum, with undulations increasing in amplitude closer to the flagellum. Similar
trajectories are computed using the colloidal rotor for various initial positions (x0, z0); see Fig. 6(b).
If the steady singularities-based models are employed instead, then the trajectory is nonoscillatory;
see also Fig. 6(b). It is evident that the time-averaged trajectories in both the near- and far-field
predicted using the Stokeslet-based models improve when additional point forces are used, the
closest agreement being for the four-Stokeslet case. However, the rotlet model accurately captures
the time-averaged trajectories of passive tracers with the smallest number of fitting parameters, and
is in close agreement with published experimental trajectories [18]. Taken together, these results
demonstrate that the simple representation of flagellar dynamics using a point torque accurately
captures the time-averaged flow in both the near- and far-field.

III. MODELING TIME-AVERAGED CILIARY FLOW BETWEEN
TWO PARALLEL RIGID WALLS

In this section, we consider the hydrodynamic effects of confining a point torque between two
plane parallel rigid walls. The goals of this are to determine the fluid flows generated by beating
cilia in confined geometries—for example, in biological tissues and microfluidic devices—but also
to determine the conditions under which confinement may be appropriately neglected.

A. Flow due to a point torque between two parallel rigid walls

The flow field generated by a point torque and given by Eq. (7) must be modified when situated in
a bounded flow domain. To derive a model for the time-averaged ciliary flow between two parallel
walls separated by a distance H (i.e., lying within the region −∞ < x, y < ∞ and z = 0, H , see
Fig. 7), we solve Eqs. (1) and (2) for F = 4πμ∇ × [�δ(x − x(0)

r )], where � = 
1êx + 
2êy +

3êz is a point torque positioned at xr = x(0)

r = (0, 0, d ), but with the additional no-slip boundary
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FIG. 7. Schematic diagram showing the point torque, �, situated between the two parallel walls at z = 0
and z = H , and its image system. The flow field is derived for arbitrary orientation of the point torque.

condition on the top wall located at z = H . That is,

u = 0 at z = H. (11)

We follow a parallel approach to that of Liron and Mochon [40], who solved the equivalent problem,
but for the flow generated by a point force. Unlike Hackborn [41], this method solves for the flow
field generated by a point torque of arbitrary orientation between the rigid walls. We commence
by introducing images of the point torque, located with respect to the parallel walls as shown
in Fig. 7, which, once the principle of superposition is applied, ensures that the no-penetration
boundary conditions are satisfied.

The images are built as follows: we reflect the solution for the flow induced by a point torque
of strength |�| in an unbounded domain with respect to the lower wall by placing the image at
X (0)

r = (0, 0,−d ) as was done when deriving the model in Sec. II C, and with respect to the upper
wall by placing an additional image at X (−1)

r = (0, 0, 2H − d ). However, these images then induce
a nonzero normal velocity component u3 on the opposite walls, so further reflections of the source
at x(0)

r and its images located at X (0)
r and X (−1)

r are needed with respect to both walls. Following the
same procedure as in the first step, we built a sequence of reflections by positioning point torques,
all of equal magnitudes, at the following positions:

x(n)
r = (0, 0, d − 2nH ) and X (n)

r = (0, 0,−d − 2nH ), for n ∈ Z. (12)

Here the superscripts n � 0 pertain to images below the lower wall, and superscripts n < 0 corre-
spond to the images above the upper wall. The resulting flow field is given by

ui = Si j
 j, (13)

where

Si j = εi jk

8πμ

∞∑
n=−∞

{
r (n)

k

(r (n) )3
− R(n)

k

(R(n) )3

}
(14)

is the singular Green’s kernel obtained by superposing the rotlet solution in an unbounded domain
located at x(0)

r and all of its images. Here, r (n) = |r(n)| and R(n) = |R(n)| denote the amplitudes
of vectors r(n) = x − x(n)

r = (x, y, z − d + 2nH ) and R(n) = x − X (n)
r = (x, y, z + d + 2nH ), where
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x = (x, y, z) is a general point in the flow domain between the two parallel walls, and, as before,
indices i, j, k ∈ {1, 2, 3} correspond to the x, y, z directions respectively. Using the definition of the
Lipschitz integral [40,48],

∫ ∞

0
J0(τλ) e−|θ |λ dλ = 1√

τ 2 + θ2
, (15)

where θ ∈ {z − d + 2nH, z + d + 2nH} and τ =
√

x2 + y2, we obtain the following expressions
for the geometric sum:

∞∑
n=−∞

{
1

r (n)
− 1

R(n)

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∫ ∞

0
J0(τλ)

sinh λ(H − d )

sinh λH
sinh λz dλ for z < d,

2
∫ ∞

0
J0(τλ)

sinh λd

sinh λH
sinh λ(H − z) dλ for z � d.

(16)

Here and elsewhere, Jν corresponds to the Bessel function of the first kind, where its order ν ∈
{0, 1}. The integral approximation for the infinite series in Eq. (14) can thus be found by taking the
derivative of Eq. (16) with respect to rk:

∞∑
n=−∞

{
r (n)

k

(r (n) )3
− R(n)

k

(R(n) )3

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δkα

rα

τ

∫ ∞

0
λJ1(τλ)

sinh λ(H − d )

sinh λH
sinh λz dλ

−2δk3

∫ ∞

0
λJ0(τλ)

sinh λ(H − d )

sinh λH
cosh λz dλ for z < d,

2δkα

rα

τ

∫ ∞

0
λJ1(τλ)

sinh λd

sinh λH
sinh λ(H − z) dλ

+2δk3

∫ ∞

0
λJ0(τλ)

sinh λd

sinh λH
cosh λ(H − z) dλ for z � d,

(17)

so that the kernel Si j in Eq. (13) can be rewritten as

Sαβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− εαβ3

4πμ

∫ ∞

0
λJ0(τλ)

sinh λ(H − d )

sinh λH
cosh λz dλ for z < d,

εαβ3

4πμ

∫ ∞

0
λJ0(τλ)

sinh λd

sinh λH
cosh λ(H − z)dλ for z � d,

(18a)

S3α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε3αβ

4πμ

rβ

τ

∫ ∞

0
λJ1(τλ)

sinh λ(H − d )

sinh λH
sinh λz dλ for z < d,

ε3αβ

4πμ

rβ

τ

∫ ∞

0
λJ1(τλ)

sinh λd

sinh λH
sinh λ(H − z)dλ for z � d,

(18b)

Si3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εi3α

4πμ

rα

τ

∫ ∞

0
λJ1(τλ)

sinh λ(H − d )

sinh λH
sinh λz dλ for z < d,

εi3α

4πμ

rα

τ

∫ ∞

0
λJ1(τλ)

sinh λd

sinh λH
sinh λ(H − z)dλ for z � d.

(18c)
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As before, the indices α, β ∈ {1, 2}. This implies that along the walls at z = 0, H , the singular
Green’s kernel Si j , given by Eq. (18), is equal to

Sαβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− εαβ3

4πμ

∫ ∞

0
λJ0(τλ)

sinh λ(H − d )

sinh λH
dλ for z = 0,

εαβ3

4πμ

∫ ∞

0
λJ0(τλ)

sinh λd

sinh λH
dλ for z = H,

(19a)

S3α = 0 and Si3 = 0 at z = 0, H, (19b)

containing only two nonzero components, S12 and S21. Therefore, by construction, the flow field due
to an arbitrary orientated point torque given by Eq. (13) in combination with Eq. (18), satisfies the
Stokes equations (1), and impermeability boundary conditions on both walls, i.e., u3 = 0 at z = 0
and z = H , but in general results in nonzero tangential velocity components u1 and u2 along the
boundaries for the point torque oriented parallel to these walls. However, when the point torque is
oriented perpendicular to the walls, the no-slip and impermeability conditions are satisfied. In this
case, the flow field [given by Eq. (18c) or equivalent series Eq. (14)] resembles the classical rotlet
solution in an unbounded domain [45], and decays as 1/r2 both in the near- and far-field everywhere
except near the walls, where it is exactly zero due to the superposition. To build a solution that
satisfies the no-slip boundary conditions for arbitrary orientation of a point torque, we once again
use the principle of superposition, and, as in Ref [40], introduce auxiliary kernels Fi j and Pj , such
that the flow field due to the point torque � between two parallel walls is given by

ui = (Si j + Fi j )
 j and p = Pj
 j . (20)

Substituting the above into Eq. (1) results in

(μ∇2Fi j − ∇iPj )
 j = 0, (21a)

∇iFi j
 j = 0, (21b)

because the singular solution Si j
 j satisfies Eq. (1). When � �= 0, the system of equations (21)
has a nontrivial solution if:

μ∇2Fi j = ∇iPj, (22a)

∇iFi j = 0. (22b)

These equations are subject to the boundary conditions

Fi j = −Si j at z = 0, H, (23)

which ensures that the flow field in Eq. (20) satisfies both the no-penetration and no-slip boundary
conditions on both walls, i.e., Eqs. (2) and (11). This also implies that the pressure kernel Pj , which
corresponds to the auxiliary solution, satisfies Laplace’s equation ∇2Pj = 0.

We solve for the auxiliary kernels Fi j and Pj by applying a two-dimensional Fourier transform of
the form

L̂i j =
∫ ∞

−∞

∫ ∞

−∞
Li je

i(ζ1x+ζ2y)dxdy, (24)

to Eq. (22) [13,40], which results in

−iζαδαiP̂j + δi3
∂P̂j

∂z
= μ

(
∂2

∂z2
− ζ 2

)
F̂i j, (25a)

−iζαF̂α j + ∂F̂3 j

∂z
= 0, (25b)
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where ζ = |ζ| =
√

ζ 2
1 + ζ 2

2 is the lateral distance of the point ζ = (ζ1, ζ2) from the point torque
in Fourier space. Similarly, the associated boundary conditions are obtained by taking the Fourier
transform of Eq. (23) combined with Eq. (19), resulting in

4πμF̂αβ = εαβ3
sinh ζ (H − d )

sinh ζH
at z = 0, (26a)

4πμF̂αβ = −εαβ3
sinh ζd

sinh ζH
at z = H, (26b)

4πμF̂3α = 0 and 4πμF̂3α = 0 at z = 0, H. (26c)

Solving the transformed Laplace’s equation for the pressure kernel, we obtain

P̂j = Dj sinh ζ (H − z) + Ej cosh ζ (H − z), (27)

where Dj and Ej are constant coefficients. Substituting this into Eq. (25a) allows us to determine
the transformed auxiliary kernel F̂i j :

μF̂i j = Bi j sinh ζ (H − z) + Ci j cosh ζ (H − z) +
{

Djδi3 + Ejδαi

(
iζα

ζ

)}
z sinh ζ (H − z)

+
{

Ejδi3 + Djδαi

(
iζα

ζ

)}
(z − H ) cosh ζ (H − z), (28)

where Bi j are Ci j are also constant coefficients. The relationships between the different coefficients
are obtained from the continuity equation, by substituting Eq. (28) into Eq. (25b), collecting the
coefficients of sinh ζ (H − z) and cosh ζ (H − z) and equating the two sets to zero:

Ej = ζHDj + ζB3 j + iζβCβ j, (29a)

Dj = −ζHEj + ζC3 j + iζβBβ j . (29b)

Finally, by combining the above with boundary conditions in Eq. (26), we are able to determine
all coefficients:

Bi j = εi j3

4π

cosh ζd

sinh ζH
+ δαi

(
iζiH

ζ

cosh ζH

sinh ζH

)
Dj + δi3

H cosh ζH

sinh ζH
Ej, (30a)

Ci j = −εi j3

4π

sinh ζd

sinh ζH
, (30b)

Di = iζ j εi j3

4π

ζH cosh ζ (H − d ) − cosh ζd sinh ζH

sinh2 ζH − (ζH )2
, (30c)

Ei = iζ j εi j3

4π

sinh ζd sinh ζH − ζH sinh ζ (H − d )

sinh2 ζH − (ζH )2
. (30d)

Implementing Eq. (30) fixes the transformed auxiliary solutions P̂j and F̂i j , and, once the inverse
Fourier transforms are taken, enables us to write the components of the auxiliary Green’s kernel for
velocity and pressure as

Fαβ = εkβ3

4πμ

[
δαk

∫ ∞

0
J0(τζ ) φ(ζ ) dζ −

[
δαk

τ
− rαrk

τ 3

] ∫ ∞

0
J1(τζ ) χ (ζ ) dζ

− rαrk

τ 2

∫ ∞

0
J ′

1(τζ ) χ (ζ ) dζ

]
, (31a)

F3α = εkα3

4πμ

rk

τ

∫ ∞

0
J1(τζ ) κ (ζ ) dζ , (31b)
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FIG. 8. Heat map of the fluid velocity magnitude |u|/Ut due to a point torque positioned at a distance
d = 0.629lc above the bottom wall. The top and bottom walls are separated by a distance of (a) H = 5lc, (b)
H = 4lc, (c) H = 3lc, (d) H = 2lc, and (e) H = 1.26lc. The point torque is oriented parallel to both walls
(� = |�|êy). The remaining parameters are listed in Table I. Streamlines are shown with lines that have arrows
to indicate the flow direction.

Fi3 = 0, (31c)

Pj = εk j3

4π

rk

τ

∫ ∞

0
J1(τζ ) ψ (ζ ) dζ , (31d)

where

φ(ζ ) = ζ sinh ζ (H − z − d )

sinh ζH
,

χ (ζ ) = −ζ

sinh2 ζH − (ζH )2

[
ζHz cosh ζ (d − z) − z sinh ζH cosh ζ (H − z − d )

− ζH2 cosh ζ (H − d ) sinh ζ z

sinh ζH
+ H cosh ζd sinh ζ z

]
,

κ (ζ ) = −ζ 2

sinh2 ζH − (ζH )2

[
ζHz sinh ζ (d − z) − z sinh ζH sinh ζ (H − z − d )

+ ζH2 sinh ζ (H − d ) sinh ζ z

sinh ζH
− H sinh ζd sinh ζ z

]
,

ψ (ζ ) = −ζ 2

sinh2 ζH − (ζH )2

[
ζH sinh ζ (H − z) − sinh ζH sinh ζ (H − z − d )

]
.

Superposing the above auxiliary kernel in Eq. (31) with the singular kernel Eq. (18) yields the flow
field due to a point torque located between parallel walls via Eq. (20).

B. Effects of confinement

We investigate the effect of confinement separately for the point torque oriented parallel or
perpendicular to rigid walls. First, we validate our findings with the analysis of Hackborn [41] for the
point torque oriented parallel to walls (� = |�|êy). Figure 8 displays the fluid velocity magnitude
and streamlines obtained using Eq. (20) in the y = 0 plane, for a range of distances H between
the parallel walls (calculations have been performed as discussed in Appendix A). In the vicinity
of the point torque, located at x = y = 0 and z = d/lc, fluid rotates clockwise in accordance with
the rotlet orientation. However, for sufficiently large H [H � 3.4lc, see also Figs. 8(a) and 8(b)], a
secondary counter-rotating weak vortex forms near the upper wall. As H decreases, the flow along
this wall increases gradually [Figs. 8(c) and 8(d)] until H = 2d (i.e., twice the distance between
point torque and the lower wall), where the point torque generates weak, secondary, counter-rotating
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FIG. 9. Variation of the scaled x component of the velocity vector, i.e., u1/Ut , with scaled z/lc in the y = 0
plane for various distances between parallel walls calculated at (a) x = 0.1lc, (b) x = 0.5lc, and (c) x = 0.75lc

from the position of the point torque at xr = yr = 0 and zr = d/lc (where d = 0.629lc) oriented parallel to
walls (� = |�|êy). Model parameters are listed in Table I.

vortices in the middle of the channel adjacent to and on either side of the strong, primary vortex [see
Fig. 8(e)]. These findings are in line with the flow field observed by Hackborn [41] for a point torque
parallel to the rigid walls.

Following Ref. [40], for the point torque oriented parallel to walls, we also investigate the role
of confinement on the profiles of the velocity components. Figure 9 shows the x component of the
velocity vector u1 as a function of z at three different x positions in the channel (all with y = 0), for
various values of H . There is surprisingly little change to the velocity profiles with varying levels
of confinement, with the maximum value of u1 shifting towards larger z and increasing overall for
larger H . As expected, the u1 profiles in the bounded domains (with finite H) approach the profile in
the semibounded domain as the value of H → ∞. [In Appendix B, we also check that the solution
in the semibounded domain can be derived from Eq. (20).]

While the corresponding z-component velocity profiles u3, shown in Fig. 10, are qualitatively
different from the profiles in Fig. 9, the same conclusions can be made about how they vary with
the height of the confinement. The greater the distance, H , between the parallel walls, the larger
the maximum value of |u3|, and the closer the profiles resemble the predictions in the semibounded
domain.

We quantify these observations by studying the percentage difference between the maxima found
for each of the two velocity components in the bounded and semibounded domains, respectively:

PD‖
x =

∣∣∣∣ |u1(x‖)|sb − |u1(ξ‖)|b
|u1(x‖)|sb

∣∣∣∣ × 100% and PD‖
z =

∣∣∣∣ |u3(x‖)|sb − |u3(ξ‖)|b
|u3(x‖)|sb

∣∣∣∣ × 100%, (32)

where ξ‖ and x‖ are the positions at which the magnitude of velocity components in the bounded do-
main (denoted by subscript “b”) and semibounded domain (denoted by subscript “sb”), respectively,
attain the maximum values at fixed x and H . The computed PD‖

x and PD‖
z are shown in Tables II

FIG. 10. The same profiles as in Fig. 9, but for the z component of the fluid velocity.
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TABLE II. Percentage difference (PD‖
x) between the maximum value of the fluid velocity x component in

the semibounded and the bounded domains found using Eq. (32) for different x and H . The corresponding
velocity profiles are shown in Fig. 9. Model parameters are given in Table I.

PD‖
x H/lc = 1.26 H/lc = 1.4 H/lc = 1.5 H/lc = 1.75 H/lc = 2

x/lc = 0.1 0.13 1.69 0.11 1.55 0.31
x/lc = 0.5 36.84 23.33 18.44 12.73 10.39
x/lc = 0.75 84 58.77 46.98 30.58 23.04

and III for the profiles in Figs. 9 and 10, respectively. These calculations confirm the earlier
observations about the role of the upper wall in changing the flow field of a point torque. The largest
percentage difference of 84% is calculated for H = 1.26lc at x = 0.75lc, but the resulting velocity
is 10−3 times Ut , which suggests that these effects would be difficult to measure in an experiment.
Nevertheless, the cumulative effect of flows due to multiple cilia between parallel walls is expected
to be more significant.

The fluid velocity is shown in Fig. 11 for the point torque oriented perpendicular to the rigid
walls (� = |�|êz) separated by distance H = 1.26lc. Results are shown for the three planes z =
d − lc/4, z = d , and z = d + lc/4. The streamlines resemble those of an unbounded rotlet solution
[47], which decays as 1/r2, with the exception that its magnitude decreases when it approaches
the walls. In contrast to Fig. 8(e), there are no secondary vortices for the point torque oriented
perpendicular to walls and positioned in the middle of the channel. Furthermore, no substantial
changes in the direction of the flow occur in the vicinity of the no-slip walls.

For the point torque aligned perpendicular to the rigid walls, we investigated how the components
of the fluid velocity are influenced by confinement. The x component of the velocity profile is
shown as a function of z in Fig. 12, at three different x positions throughout the channel (all with
y = 0.005lc), and for various values of H . The profiles behave in a manner similar to those shown
in Figs. 9 and 10, where the maximum speed, and coordinate at which it is attained, both increase
with H . In addition, the velocity profile u1 in the bounded domain approaches the profile in the
semibounded domain (H → ∞) for larger H .

To quantify the observations in Fig. 12, we follow the same method as given in Eq. (32) for
evaluating the percentage difference between the maxima of the velocity profiles u1 associated with
the semibounded and bounded domains,

PD⊥
x =

∣∣∣∣ |u1(x⊥)|sb − |u1(ξ⊥)|b
|u1(x⊥)|sb

∣∣∣∣ × 100%, (33)

where ξ⊥ and x⊥ are the positions at which the magnitude of velocity components in the bounded
domain and semibounded domain, respectively, attain the maximum values at fixed x and H .

Table IV shows the percentage difference (PD⊥
x ) calculated for the components u1 illustrated

in Fig. 12. The largest percentage difference observed is 11.80% at H = 1.26lc for x = 0.75lc.
However, this difference is relatively small compared to the percentage difference observed for the
point torque aligned parallel to the walls (Table II).

TABLE III. As in Table II, but for the z component of the fluid velocity shown in Fig. 10.

PD‖
z H/lc = 1.26 H/lc = 1.4 H/lc = 1.5 H/lc = 1.75 H/lc = 2

x/lc = 0.1 1.95 4.55 1.93 1.95 0.001
x/lc = 0.5 11.29 5.39 3.12 0.79 0.11
x/lc = 0.75 31.93 17.32 10.89 3.02 0.30
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FIG. 11. Heat map of the fluid velocity magnitude |u|/Ut and streamlines due to a point torque oriented
perpendicular to walls (� = |�|êz) separated by a distance of H = 1.26lc at (a) z = d − lc/4, (b) z = d, and
(c) z = d + lc/4 (where d = 0.629lc). The remaining parameters are listed in Table I.

IV. CONCLUSIONS

In this paper, we have used various steady singularity solutions of the Stokes equations to capture
the time-averaged flow generated by a cilium in both a semi-infinite domain, and a region confined
between two plane parallel walls.

In Sec. II we examined the flow fields associated with a point torque (rotlet), a single point force
(Stokeslet), two point forces (two-Stokeslet), and four point forces (four-Stokeslet). This approach
dramatically simplifies the time-varying and spatially dependent distribution of forces exerted by a
flagellum on the fluid, and is shown to accurately recreate the steady (i.e., time-averaged) flow across
multiple length scales. Specifically, we assessed the minimum relative error between the singularity
solutions for the velocity field, as compared to the widely studied colloidal rotor model. The rotlet
and four-Stokeslet models provided excellent agreement, with optimal configurations yielding just
2.2% and 1.9% fitting error for the average velocity in the fluid domain where the optimization
was performed, compared to the predictions of the colloidal rotor model. The single-Stokeslet and
two-Stokeslet models incurred larger fitting errors of 8.8% and 7.2%, respectively. Importantly,
however, the rotlet model had fewer fitting parameters (torque strength and position) compared to
the four-Stokeslet model, because the latter required four point forces to be independently applied
at distinct positions. Additionally, we have found that the streamlines predicted by the rotlet model
closely resemble those due to Volvox flagella computed using the colloidal rotor model, at distances
comparable to the length scale of individual flagella.

FIG. 12. Variation of the scaled x component of the velocity vector, i.e., u1/Ut , with scaled z/lc in the
y = 0.005lc plane for various distances between parallel walls calculated at (a) x = 0.1lc, (b) x = 0.5lc, and
(c) x = 0.75lc from the position of the point torque at xr = yr = 0 and zr = d/lc (where d = 0.629lc) oriented
perpendicular to walls (� = |�|êz). Model parameters are listed in Table I.
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TABLE IV. Percentage difference (PD⊥
x ) between the maximum value of the fluid velocity x component

in the semibounded and the bounded domains found using Eq. (33) for different x and H . The corresponding
velocity profiles are shown in Fig. 12. Model parameters are given in Table I.

PD⊥
x H/lc = 1.26 H/lc = 1.4 H/lc = 1.5 H/lc = 1.75 H/lc = 2

x/lc = 0.1 0.46 0.50 0.49 0.48 0.002
x/lc = 0.5 4.10 2.19 1.46 0.59 0.31
x/lc = 0.75 11.80 6.99 4.92 2.24 1.10

Notwithstanding the small temporal excursions due to the power and recovery strokes, the
rotlet model also provides excellent predictions for experimental particle paths in the vicinity of
the beating Volvox flagella [18]. It has recently been shown that weakly inertial effects around
beating Chlamydomonas flagella can give rise to small phase lags in the surrounding fluid and
a spatial decay which is more rapid than in the zero Reynolds number flow [1]. However, since
the time-averaged flow was shown to decay at the rate predicted in the limit of zero Reynolds
number, our approach circumvents problems associated with inertia. These effects would likely
come into play when considering the oscillatory flows relevant for synchronization, or the process
of particle capture. Despite the substantial differences in power-recovery strokes and its trajectory
(for example, circle [29] or arc [53]), the time-averaged flow field decays at the same rate in both
near- and far-field.

In Sec. III we derived analytical expressions for the flow field generated by a point torque, situ-
ated between two plane parallel no-slip walls. This was accomplished using the method of images
and Fourier transforms. Unlike previous papers on related topics [41–43], here we investigate the
influence that plane, parallel no-slip boundaries have on the rotlet solution in both near- and far-field,
for arbitrary orientation of the point torque. Predictably, the impact of the upper wall becomes less
significant as the distance between the parallel walls increases and the flow field approaches that of
a point torque located above a single no-slip wall. However, even when this distance is of the order
of several ciliary lengths, we find that changes to the flow field caused by the upper wall are very
small compared to the typical velocity scales of the ciliary tip.

The effect of hydrodynamic confinement was also shown to modify the structure of the resulting
flow field. For a point torque oriented parallel to the walls, secondary vortices exist either directly
above, or to the side of, the primary vortex, depending on the separation between the walls. While
the existence of these closed streamlines would in principle have implications for particle transport
within the flow, the consequences are likely to be minimal owing to the weak fluid velocity in
those regions, and Brownian motion is likely to be more consequential. For a point torque oriented
perpendicular to the walls, the counter-rotating secondary vortices do not exist, and the resulting
flow is represented by circular streamlines.

The collective flows generated by arrays of cilia and flagella underpin a range of processes
such as nutrient transport around corals [49] and mucociliary clearance in the respiratory tract
[33]. In general, calculating the flow fields of such ciliary ensembles in a way that captures the
near-field hydrodynamics can be computationally demanding [50]. The rotlet model presented in
this paper provides an appealing solution for the efficient calculation of collective flows of large
ciliary carpets. Because flows from individual cilia can be resolved, it would be straightforward to
include heterogeneity in the spatial distribution and properties of cilia in these calculations. The
expressions for the resulting fluid velocity can also be used to find the transport of dissolved organic
matter, or passive or active particles undergoing advection and shear-reorientation [51]. Thus, we
expect our model to be broadly utilized in calculations of three-dimensional flows around ciliary
carpets in both unbounded and confined geometries, and to be useful for investigating processes of
transport, mixing, and feeding.
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APPENDIX A

To solve for the flow field given by Eq. (20), we need to integrate Eqs. (18) and (31) for the
singular Si j and the auxiliary Fi j kernels, respectively. However, the integrands in these equations be-
come singular as variables λ → 0 and ζ → 0. To avoid the singularity, we employ the asymptotic
expansion to integrate the integrands in Eqs. (18) and (31) on intervals λ ∈ [0, ε1] and ζ ∈ [0, ε2],
respectively, where εα � 1, α ∈ {1, 2}. The remainders of Eqs. (18) and (31) are then calculated on
intervals λ ∈ [ε1, λ∞) and ζ ∈ [ε1, ζ∞), respectively, for sufficiently large parameters λ∞ and ζ∞,
by employing the midpoint rule [52].

The integrals for the singular Si j and auxiliary Fi j kernels are rewritten as follows:

∫ ∞

0
λJ0(τλ)

sinh λ(H − d )

sinh λH
cosh λz dλ = ε2

1

2

(
d

H
− 1

)
−

Pλ∑
p=1

λ(p)J0(τλ(p) )
sinh λ(p)(H − d )

sinh λ(p)H

× cosh (λ(p)z)�λ, (A1)

∫ ∞

0
λJ0(τλ)

sinh λd

sinh λH
cosh λ(H − z) dλ = ε2

1

2

d

H
−

Pλ∑
p=1

λ(p)J0(τλ(p) )
sinh λ(p)d

sinh λ(p)H

× cosh (λ(p)(H − z))�λ, (A2)

∫ ∞

0
λJ1(τλ)

sinh λd

sinh λH
sinh λ(H − z) dλ =

Pλ∑
p=1

λ(p)J1(τλ(p) )
sinh λ(p)(H − d )

sinh λ(p)H
sinh (λ(p)z)�λ,

(A3)

∫ ∞

0
J0(τζ )φ(ζ ) dζ =

(
1 − d

H
− z

H

)
ε2

2

2
+

Pζ∑
p=1

J0(τζ (p) )φ(ζ (p) )�ζ, (A4)

∫ ∞

0
J1(τζ )χ (ζ ) dζ =

Pζ∑
p=1

J1(τζ (p) )χ (ζ (p) )�ζ, (A5)

∫ ∞

0
J1(τζ )κ (ζ ) dζ =

Pζ∑
p=1

J1(τζ (p) )κ (ζ (p) )�ζ, (A6)

∫ ∞

0
J1(τζ )ψ (ζ ) dζ =

Pζ∑
p=1

J1(τζ (p) )ψ (ζ (p) )�ζ, (A7)

where Pλ and Pζ are the number of integration points in [ε1, λ∞) and [ε2, ζ∞), respectively,
�λ = (λ∞ − ε1)/Pλ and �ζ = (ζ∞ − ε2)/Pζ are the corresponding step sizes, λ(p) = 1

2 (λ(p−1) +
λ(p+1)) and ζ (p) = 1

2 (ζ (p−1) + ζ (p+1)) are the midpoints of pth sub-intervals [λ(p−1), λ(p+1)]
and [ζ (p−1), ζ (p+1)], respectively. Throughout the paper, we have used Pλ = Pζ = 150,
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ε1 = ε2 = 0.001d and λ∞ = ζ∞ = 300d , and checked that the results have numerically converged
by doubling the length of intervals and the number of integration points.

APPENDIX B

To validate the derivation in Sec. III A, we can compare the fluid velocity due to a point torque
between two parallel walls obtained in Eq. (20) to the existing theory on the fluid velocity due to
a point torque above a single wall [47]. This requires deriving the single wall approximation from
the solution Eq. (20), by assuming that the distance between the two walls becomes infinite (i.e.,
H → ∞). Taking H → ∞ in Eq. (20) modifies integrands in the singular kernel Si j [Eq. (18)] and
the auxiliary kernel Fi j [Eq. (31)] as follows:

lim
H→∞

[
λJ0(τλ)

sinh λ(H − d )

sinh λH
cosh λz

]
= λJ0(τλ) cosh λz e−λd , (B1a)

lim
H→∞

[
λJ0(τλ)

sinh λd

sinh λH
cosh λ(H − z)

]
= λJ0(τλ) sinh λd e−λz, (B1b)

lim
H→∞

[
λJ1(τλ)

sinh λ(H − d )

sinh λH
sinh λz

]
= λJ1(τλ) sinh λz e−λd , (B1c)

lim
H→∞

[
λJ1(τλ)

sinh λd

sinh λH
sinh λ(H − z)

]
= λJ1(τλ) sinh λd e−λz, (B1d)

lim
H→∞

J0(τζ )φ(ζ ) = zζJ0(τζ )e−ζ (d+z), (B1e)

lim
H→∞

J1(τζ )ψ (ζ ) = zζJ1(τζ )e−ζ (d+z), (B1f)

lim
H→∞

J ′
1(τζ )ψ (ζ ) = zζJ ′

1(τζ )e−ζ (d+z), (B1g)

lim
H→∞

J1(τζ )κ (ζ ) = zζ 2J1(τζ )e−ζ (d+z), (B1h)

so that the following expressions for the singular kernel

S∞
αβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− εαβ3

4πμ

∫ ∞

0
λJ0(τλ) cosh λz e−λd dλ for z < d,

εαβ3

4πμ

∫ ∞

0
λJ0(τλ) sinh λd e−λzdλ for z � d,

(B2a)

S∞
3α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε3αβ

4πμ

rβ

τ

∫ ∞

0
λJ1(τλ) sinh λz e−λd dλ for z < d,

ε3αβ

4πμ

rβ

τ

∫ ∞

0
λJ1(τλ) sinh λd e−λzdλ for z � d,

(B2b)

S∞
i3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εi3α

4πμ

rα

τ

∫ ∞

0
λJ1(τλ) sinh λz e−λd dλ for z < d,

εi3α

4πμ

rα

τ

∫ ∞

0
λJ1(τλ) sinh λd e−λzdλ for z � d,

(B2c)
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FIG. 13. Heat map of the fluid velocity magnitude |u|/Ut due to the rotlet above the wall lying along z = 0.
The associated contours compare the velocity magnitudes obtained using Eq. (B4) [black solid line] and Eq. (7)
[blue dashed line] using the model parameters listed in Table I. The displayed contour lines follow the sequence
|u|/Ut := 〈1/[1 + 100(� − 1)] : � ∈ N〉, with velocity decreasing away from the point torque.

and the auxiliary kernel

F∞
αβ = εkβ3

4πμ

[
δαk

∫ ∞

0
ζJ0(τζ ) e−ζ (d+z) dζ −

[
δαk

τ
− rαrk

τ 3

] ∫ ∞

0
ζ z J1(τζ ) e−ζ (d+z) dζ

− rαrk

τ 2

∫ ∞

0
ζ zJ ′

1(τζ )e−ζ (d+z) dζ

]
, (B3a)

F∞
3α = εkα3

4πμ

rk

τ

∫ ∞

0
ζ 2zJ1(τζ ) e−ζ (d+z) dζ , and F∞

i3 = 0 (B3b)

are obtained. Hence, the fluid velocity due to a point torque above the wall is

ui = (S∞
i j + F∞

i j )
 j . (B4)

This expression satisfies the appropriate boundary conditions on the wall (located at z = 0) and at
an infinite distance away from it: u(x, y, 0) = 0 and u(x, y,∞) = 0.

The expression in Eq. (B4) is compared to the classical result of Blake and Chwang [47] in
Fig. 13, where we plot the heat map of the fluid velocity magnitude and the associated contour
lines, obtained using Eqs. (B4) and (7), respectively, in the y = 0 plane centered around the position
of the point torque. The integration results are indistinguishable, suggesting that the flow field near a
wall derived here agrees with the classical solution by Ref. [47], for which the velocity field decays
as u ∼ 1/r2 in both the near- and far-field.
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