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This paper reports on a numerical study of the reciprocating flow through a double
bifurcation. Its aim is to quantify the potential gas transport in flows similar to those in
the human airway during high-frequency ventilation, a medical ventilation technique that
uses fast, yet shallow, inflations to minimize pressure and volume variation in the lungs
and therefore protect lungs from ventilator-induced lung injury. The shallow inflations
mean that gas transport is not achieved by bulk advection and other mechanisms must be
used. Here we focus on nonlinear mean streaming and turbulent diffusion. We show that
both of these mechanisms are driven by the formation of Dean vortices due to centrifugal
instability in the curved sections of the bifurcation. We report the impact of the upstream
and downstream conditions on both of these during both inhalation and exhalation portions
of the reciprocating flow; in particular, we show that the development of turbulence in a
given airway vessel is influenced by downstream conditions and not simply by the local
flow conditions. This result highlights the importance of using a geometry of appropriate
complexity for the modeling of physiological flows, particularly if the results are to be
parameterised for use in larger-scale but lower-order models.
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I. INTRODUCTION

This paper reports on direct numerical simulations of the reciprocating flow through an in-
plane double bifurcating tube. The primary objective of this paper is to provide a generic model
of the flows and subsequent gas transport in the human airway at conditions that are typically
experienced during high-frequency ventilation (HFV) [1], a type of mechanical ventilation therapy
commonly used in the neonatal intensive care unit. HFV uses fast, low-tidal-volume inflations to
achieve adequate gas exchange while simultaneously reducing peak intralung pressures to minimize
overdistension and ventilator-induced injury. The low-tidal-volume inflations do not empty and
refill the “dead space” of the airway and the success of HFV—or lack thereof—is therefore
dependent on exploiting transport mechanisms other than bulk advection. Despite its extensive use
and importance, the process of deliberately manipulating and optimizing the subtle gas exchange
mechanisms involved in HFV are not completely understood [2].

Six such mechanisms are typically reported as operating during HFV [1,3]. Here we focus on
two of these mechanisms due to their likelihood to provide gas transport over a range of scales:
nonlinear mean streaming, the mean recirculation of fluid caused by a nonzero mean flow (noting
that this occurs while the mean flux is zero in a purely reciprocating flow), and turbulent diffusion.
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Further, we make a distinction between nonlinear mean streaming and mean drift or Lagrangian
transport, which can be conflated in the literature.

Quantifying and understanding these transport mechanisms requires measurement of the flow
field in geometries (and for flow parameters) that generate the flow structures that are responsible
for the transport. A number of recent studies, therefore, take the approach of deriving geometry
from medical imaging of selected regions of the airway, typically the large upper vessels which can
be most accurately imaged. Choi et al. [4] presented a study of convective mixing during HFV in
geometries derived from computed tomography (CT) of the first seven airway generations using
large-eddy simulation. Roth et al. [5] presented a highly resolved computational study of HFV
using geometry derived from magnetic resonance imaging of the first four airway generations, and
flow rates from infant lung function testing, which clearly shows all of the six reported transport
mechanisms for HFV operating in different regions of the airway. Jalal et al. [6] presented an
experimental study based on magnetic resonance velocimetry of both steady and oscillatory flows
(including at conditions relevant to HFV) in geometry derived from CT of the first three airway
generations of real patients, and one aspect of the subsequent analysis quantifies the transport due
to streaming.

Examples of imaging-derived geometry being used for airway modeling of non-HFV flows in
the upper airway include the computational study of Luo and Liu [7], the experimental studies
investigating steady and oscillatory flows in the upper airway of Banko et al. [8,9], and experimental
studies investigating airway injury during medical ventilation [10].

Drawbacks of physiologically realistic geometries are the complexity, which leads to large
computational models, and the fact that they are patient specific, which can make understanding
the general flow physics difficult. Therefore, a second approach is to use idealized geometries
which can be systematically studied and compared. The Weibel model [11] consisting of a series
of generations where each generation is marked by the division of each airway vessel into smaller
vessels is extensively employed. Recent computational studies of airway flows using this model
include the flow-path-ensemble methods of Nowak et al. [12], Walters and Luke [13], Kleinstreuer
and Zhang [14], which chain together a number of subunits consisting of only a small number
of generations each to build up a single large flow path. Notably, Jalal et al. [15,16] use this
geometry to conduct experimental flow studies at parameters relevant to HFV of an isolated double
bifurcation—a comparison with the work of the same authors in physiologically realistic geometries
shows many of the same qualitative flow features (noting that there is a quantitative difference in
the measured transport).

A number of earlier studies using various other idealized bifurcation models have been conducted
which are relevant to HFV; see the study Menon et al. [17] for high-frequency reciprocating flows
in a 1:3 bifurcation model investigating flow distribution between lobar bronchi, supported by the
early numerical study of Gatlin et al. [18] and the extensive combined numerical and experimental
study of Bauer et al. [2] comparing conventional and HFV.

All these studies of both physiologically realistic and idealized geometries highlight the impor-
tance of the formation of Dean vortices via centrifugal instability [19], which form downstream of
curved sections of the geometry and impact both the mean streaming and formation of turbulence.

With respect to mean streaming, these streamwise-oriented vortices can generate a strong sec-
ondary flow (i.e., a flow in the nonstreamwise directions), which is a function of the upstream
conditions. This Dean-vortex-generated secondary flow is the fundamental cause of nonlinear mean
streaming during a reciprocating flow; the secondary flow generated at a given location during
inhalation is not equal and opposite to that generated during exhalation, and the difference leads to
a nonzero mean. Our own previous work in a single bifurcation [20] clearly showed the difference
in Dean vortex structure leaving a bifurcation between an inhalation and exhalation flow. There does
not appear to be existing quantitative data on the amount of transport that can be generated by mean
streaming in bifurcating geometries as a function of the geometric and flow parameters.

With respect to turbulence, the presence of these vortices also fundamentally changes the stability
characteristics and the onset of turbulence in the flow when compared with the flow in a straight
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pipe. At high frequencies, reciprocating flows in straight pipes have recently been shown to become
unstable via bypass transition (which is a nonlinear phenomenon) [21], driven by the growth of
disturbances at the pipe wall in the Stokes layer [22–24], with turbulent bursts occurring at phases
of maximum deceleration (i.e., when the instantaneous flow rate is near zero for a sinusoidal
oscillation). Recent numerical studies in toroidal [25], helical [26], and bent [27] pipes have shown
linear processes can lead to instability due to the growth of perturbations of the streamwise vortices
caused by the curvature. Our own work studying the reciprocating flow in a single bifurcation [20]
shows a similar outcome; turbulent bursts occur in regions downstream of the bifurcation after the
appearance of Dean vortices and at times when the instantaneous flow rate is maximized (i.e., when
the bulk acceleration is near zero for a sinusoidal oscillation).

We note here that the difference between the inhalation and exhalation flow structure indicates
that the minimal geometry that can be used to quantify gas transport in a given airway vessel
consists of at least two generations. There needs to be a bifurcation both upstream and downstream
during both inhalation and exhalation. While single bifurcation studies can be used to elucidate
fundamental processes (see, for example, our previous work [20], and others including Pedley [28],
Jan et al. [29], and Heraty et al. [30]), they cannot capture the coupling between inhalation and
exhalation flows that is inherent in high-frequency reciprocating flows.

Therefore, this paper reports on direct numerical simulations of reciprocating flows in a double
bifurcation. The geometry used is self-similar, with a proportional reduction in the vessel diameter
and length at each generation, and follows the proportions outlined from physiological data by
Grotberg [31]. This assumption of self-similarity also means different generations of the overall
airway can be simulated by simply changing the bulk flow parameters (if it is assumed the
coupling between generations that are not direct neighbors is negligible). Further, the local bulk
flow parameters can be calculated at each generation once the parameters at the primary generation
are fixed. We have conducted simulations corresponding to the bulk flow conditions in the first nine
generations of the airway, taking our primary conditions as those used to ventilate a typical full-term
neonate at the extremes of the parameters typically used during HFV.

First, we show that mean streaming is significant for conditions modeling the first five generations
of the airway. We note that the experimental study in a similar double bifurcation model of Jalal
et al. [6] reported that the recirculating flow rate due to mean streaming is much less than the
peak bulk flow rate, leading the authors to conclude that mean streaming is not a significant
contributor to ventilation. Our results agree, however, our interpretation does not, as we show that
even this weak streaming can be enough to provide adequate oxygen to a patient, at least across
these first five generations. We note that this result is in qualitative agreement with our previous
single-bifurcation results [20] but is quantitatively more informative, as it captures the coupling
effect between generations.

Second, we show that, as indicated in our previous single-bifurcation study [20], conditional
turbulence arises in cases modeling the first three airway generations, at instants where the flow rate
is near its maximum and apparently via an instability of the streamwise Dean vortices. However,
the modification of the flow upstream and downstream due to the presence of other generations has
a strong impact on the onset and sustained production of turbulence.

A. Methodology

1. Flow domain and geometry configuration

The geometry employed throughout this paper is a 1:2:4 symmetric planar bifurcating pipe. The
human airway consists of 21 successively bifurcating generations [32,33], and the geometry of
these bifurcations is approximately geometrically similar, maintaining a constant ratio between the
diameters of a predecessor pipe Di and a successor pipe Di+1 of Di+1/Di = 0.79, and an included
angle between the bifurcated successor pipes around � = 64◦ [31]. Figure 1 shows a schematic of
the geometry employed. Pertinent to this geometry module, the branches from the top to bottom of
the hierarchy are referred to as the mother branch, daughter branches, and granddaughter branches.
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FIG. 1. Attributes of the bifurcation model used in the paper. (a) Dimensions of the planar 1:2:4 bifurcation.
(b) Three-dimensional CAD model of the 1:2:4 bifurcation. Note that the CAD model shown here is not
to scale and the actual computational domain has much longer inlet and outlet sections to minimize the
effect of boundary conditions on the flow generated by the bifurcation. D0 corresponds to the diameter of
the endotracheal tube of 3 mm.

Another aspect of the geometric similarity of the airway is the length of each branch section at
the generation level i being approximately 3.5Di, where Di is the diameter of the corresponding
branch section. While we have used this length for the intermediate (daughter) branches, we have
used very long inlet and outlet sections in our computational geometry to focus on the flow features
generated by bifurcating junctions and the intermediate generation without the influence of the
boundary conditions.

The centerline of the mother branch coincides with the z axis of the global coordinate system
and splits into the two centerlines of the daughter branches. Each of these two centerlines of the
daughter branches further splits into two, creating a total of four centerlines of the granddaughter
branches. These centerlines coincide with branch axes in the cylindrical parts of the domain. Each
axis of the successor branch is connected to its predecessor branch by a smooth linearly varying arc
(such that the radius of curvature of the outermost surface of the geometry is constant) to obtain
the centerlines of the bifurcating region. These centerlines, denoted by S, with subscripts u and
l indicating upper and lower branches, are used to identify streamwise locations of various cross
sections. In this context, the axial velocity of any arbitrary point in the fluid domain is defined as
the tangential component of the velocity vector to the closest centerline point. Therefore, the axial
velocity Uax is identical to the streamwise velocity of the point of interest. The transverse velocity
Utr is the projection of the velocity vector in a plane perpendicular to Uax.

2. Boundary conditions

Standard no-slip boundary conditions were applied at the rigid walls of the bifurcation, i.e., u = 0
and ∂ p/∂n = 0, where u is the flow velocity, p is the pressure, and n is the normal vector. Note
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that the use of rigid walls is somewhat justified physiologically, as the upper airway is cartilage-
reinforced and reasonably stiff [34].

The reciprocating flow with zero mean flux was driven by imposing a time-dependent boundary
condition at the inlet (the free end of the mother branch) for the velocity, which was the analytical
solution for the fully developed laminar reciprocating flow in an infinitely long straight pipe first
derived by Womersley [35]. A zero-normal-gradient condition (∂ p/∂n = 0) was imposed for the
pressure. We note that the use of ∂ p/∂n = 0 means this is not a one-dimensional solution of the
Navier-Stokes equations, however, a postiori checks show that this has a very small impact on the
flow, which relaxes to the Womersley solution within a few diameters of the boundary.

We use the term inhalation to refer to the flow moving from upper generations to lower genera-
tions (i.e., from the mother branch to daughter and granddaughter branches), and exhalation to refer
to the flow moving in the opposite direction.

At the free end of the granddaughter branches, a modified outflow condition was imposed. Here
a Dirichlet condition was imposed on the pressure (p = 0), while nominally a zero-normal-gradient
condition was imposed on the velocity (∂u/∂n = 0). However, an extra divergence term was added
to the velocity to prevent flow entering the domain through this boundary which numerically
stabilizes the solution. Locally, this means the mass conservation was not satisfied; however, the
impact of this was evident only within 3 − 4 diameters of the boundary, and the use of long
granddaughter sections means this did not pollute the simulation results near the bifurcation.

We have previously used these boundary conditions successfully in studies of the reciprocating
flow in a 1:2 bifurcation [20]. Further, the modified outflow boundary condition has previously been
used successfully in other biologically inspired oscillating flows in the same code [36].

3. Discretization and solver details

The three-dimensional incompressible Navier-Stokes equations were solved in the flow domain
described in Sec. I A 1 with the boundary conditions described in Sec. I A 2 using the spectral-
element code NEK5000 [37]. The code has previously been employed and validated for use in
oscillatory confined flows [38,39], including our own study of the reciprocating flow in a single
bifurcation [20]. Further implementation details can be found in Tufo and Fischer [40], while an
overview of the essential elements of the numerical scheme is provided below.

The code solves the incompressible Navier-Stokes equations in variational form, employing
high-order tensor-product Lagrange polynomials over each element as both trial and test func-
tions. Here, the order of the polynomials was used to control the resolution; for simulations of
turbulent flows, we employed 12th-order polynomials, whereas for laminar flows we employed
eighth-order polynomials for computational efficiency. These trial functions were associated with
Gauss-Legendre-Lobatto quadrature points in each hexahedral element, noting that these elements
could have curved faces to conform to the surface of the bifurcation geometry. A resolution study
was conducted (see Appendix for more details), settling on a macroelement mesh of 49 920
elements. With the employed 12th-order polynomials, this results in 66 443 520 node points. This
system was typically solved using 32 nodes, each containing two 16-core Intel Skylake CPUs for
a total of 1024 cores with wall times of around one week to resolve a full reciprocation cycle. The
first cycle was discarded to avoid the impact of any flow transient.

4. Simulation parameters

Since the geometry used is fixed, and the reciprocating flow employed is purely harmonic, the
flow can be shown to be a function of only two nondimensional groups. The first of these essentially
quantifies the amplitude of the reciprocating flow, which we define as a maximum Reynolds number,

Remax = ÛmaxD0/ν, (1)
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TABLE I. Summary of simulation parameters used for the nine cases simulated.

Case i−1Gi+1 Remax α2

0G2 9600 11.31
1G3 6076 7.06
2G4 3846 4.41
3G5 2434 2.75
4G6 1512 1.72
5G7 953 1.07
6G8 600 0.67
7G9 378 0.42
8G10 247 0.26

where ν is the kinematic viscosity. The second parameter quantifies the frequency, which can be
presented in terms of the square of the Womersley number,

α2 = 2π f D2
0

4ν
, (2)

where f is the frequency of oscillation.
To set these parameters to be clinically relevant, we start from a set of conditions of a typical

full-term neonate, which are volume per inflation per unit body weight of the infant 1 − 3 ml/kg
and the frequency of therapy in the range of 5 − 15 Hz [41]. The typical diameter of the endotracheal
tube employed is 3 mm. Assuming typical numbers of a body mass of 3kg and a ventilator frequency
of 12 Hz results in Remax = 9600 and α2 = 11.31 at the mother branch of the first generation,
referred to here as 0G2.

The maximum local Reynolds number decreases from the predecessor generation Rei to the suc-
cessive generation Rei+1 by a factor of Di/(2Di+1) ≈ 0.63 while the Womersley number decreases
from the predecessor generation αi to the successive generation αi+1 by a factor of Di+1/Di = 0.79.
This reduction of Rei and αi with increasing generation number i is caused by the reduction of the
local diameter in a given airway branch but an increase in the total area of each successive generation
leading to a reduction of the local maximum velocity.

We therefore characterize the airflow at a particular airway generation subjected to HFV as a
two-parameter problem in the Remax − α2 space. If coupling between generations more distant than
immediate neighbors is ignored, then the flow at a given generation is fully defined by these two
parameters. Table I outlines the Remax, α2 pairs used for the cases of this paper. We have used pairs
to run simulations matching the conditions of the first nine generations.

B. Results and discussion

1. Mean flow characteristics

The streaming velocity field is simply the cycle average of the velocity field, u, which is directly
calculated by averaging over the second cycle of the flow simulation. We excluded the first cycle
of the simulation to avoid any initial transient. We also note that any transient did not appear to
extend beyond this first cycle, with the statistics of the flow apparently settled from the second
cycle onward. In this context, the timescale of the oscillation of the flow cycle is much longer than
the advective timescale Ldom/U where Ldom is the length of the computational domain. Therefore,
we conclude that any transient appears in the flow has many advective time units to wash out of the
domain even in a single cycle of oscillation.

The streaming velocity field for cases 0G2, 1G3, 2G4, and 8G10 are shown in Fig. 2. This
figure presents contours of the streaming velocity component aligned with the local axial direction
(the tangential component of the velocity vector to the closest centerline point) Uax with positive Uax
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FIG. 2. Visualization of dimensionless mean streaming velocity Uax/Ûmax fields for (a) 0G2, (Remax =
9600, α = 3.36, L/a = 849); (b) 1G3, (Remax = 6076, α = 2.66, L/a = 861); (c) 2G4, (Remax = 3846, α =
2.1, L/a = 873); and (d) 8G10, (Remax = 247, α = 0.51, L/a = 950). The first panel of each case shows the
longitudinal symmetry plane along with several transverse planes. The second panel shows the same field
without the longitudinal symmetry plane.

designating inhalation. In each of the four cases, the first panel displays nine sections perpendicular
to the streamwise direction accompanied by a plane passing through centerlines of all the branches.
The second panel shows the same data without the latter center plane to clearly show the structure
on the perpendicular planes. Note that the integral of Uax over an arbitrary cross section is zero as
the Uax field is computed from the cycle average of the zero-net-mass-flux reciprocating flow.

Figures 3(a)–3(c) show the mean flow axial vorticity ωax. Its structure is qualitatively similar
between the 0G2, 1G3, and 2G4 cases. A general characteristic of these three cases is that along the
core of the mother branch there are eight counter-rotating vortices near the bifurcating junction,
decaying to four counter-rotating vortices away from the bifurcation. These eight counter-rotating
vortices appear as a consequence of merging four counter-rotating vortices from each of the
two daughter branches in the exhalation flow. Along the core of the daughter branches, there
are four counter-rotating vortices. Along the core of the granddaughter branches, there are four
counter-rotating vortices near the bifurcating junction and their strength decreases with the distance
measured from the bifurcating junction.

The vortex structure composed of four counter-rotating vortices observed in the mother branch
(at least at a short distance away from the bifurcation of Figs. 3(a)–3(c) is qualitatively similar
to thhe structure we have previously reported for the single bifurcation [20]. Further, the vortex
structure composed of two counter-rotating vortices observed in the granddaughter branches of
Figs. 3(a)–3(c) is qualitatively similar to the vortex structure in the daughter branches of a single
bifurcation [20]. The fact that the addition of an extra generation has only a minor impact on
the mean flow structure suggests that intergenerational coupling is likely to be weak beyond one
generation and the double bifurcation likely captures the essential qualities of the flow in the airway.
Therefore, the streaming flow in the intermediate vessel provides a good measure of the capacity
for gas transport between generations via mean streaming.

The structure of the streaming flow in the intermediate branches of the first three cases
[Figs. 2(a)–2(c)] is such that along the inner core there is a vertical semiannular region of inhalation
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FIG. 3. Visualization of dimensionless axial vorticity ωax/ωmax (where ωmax = Ûmax/D0), computed based
on the mean streaming velocity Uax fields for (a) 0G2, (Remax = 9600, α = 3.36, L/a = 849); (b) 1G3, (Remax =
6076, α = 2.66, L/a = 861); (c) 2G4, (Remax = 3846, α = 2.1, L/a = 873); and (d) 8G10, (Remax = 247, α =
0.51, L/a = 950).

streaming located along the wall at the outside of the turn, which is weakening in the direction of
section 5 to 6. Simultaneously, there is another circular region of inhalation streaming closer to
the wall at the inside of the turn, which is strengthening in the same direction. Concurrently, there
is a region of exhalation streaming that surrounds these two regions of inhalation streaming. This
exhalation streaming region eventually diffuses along the horizontal centreline from section 5 to
6. This streaming flow distribution can be ascribed to the evolving vortices shown by sections 5
and 6 of Figs. 3(a)–3(c). There are two strong counter-rotating vortices accompanied by another
two relatively weak counter-rotating vortices in section 5 and they adjust to approximately equal
strengths in section 6. The appearance of these vortices can be further ascribed to the formation
of two counter-rotating vortices in the inhalation flow and four counter-rotating vortices in the
exhalation flow pertaining to the evolution of the instantaneous axial vorticity as shown in Sec. I B 4.

While there is evidently a strong streaming flow in the upper generations, this is not the case in
the lower generations. Figure 3(d) shows case 8G10, and it is clear that in this case the streaming is
negligible (note that the color map range is 103 times smaller here).

These observations reveal the formation of longitudinal vortices. To further investigate this, Fig. 4
shows the secondary velocity vector field Utr superposed on contours of the streaming velocity
Uax on corresponding sample planes in the mother, daughter, and granddaughter branches. The
figure clearly shows that the lobes of high Uax coincide with recirculation regions in the secondary
flow.
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FIG. 4. Contours of dimensionless streaming velocity Uax/Ûmax fields on cross sections A-A′, B-B′, C-C′,
and D-D′ superposed with secondary flow vectors Utr . Note the vectors are uniform length, not scaled by
magnitude, and so indicate the flow direction only. Cross sections A-A′, B-B′, C-C′, and D-D′ are located at
the middle of the straight section at each generation level.

2. Recirculation and mean streaming

Here, the amount of flow recirculated is quantified by using the positive flux of the cycle-averaged
axial (streaming) velocity field Uax. Essentially, over an arbitrary plane of interest, the flux over the
portions where the flow is moving in one normal direction is equal and opposite to the flux over the
portions where the flow is in the opposite normal direction. This is due to the fact that the overall
mean flux must be zero across an arbitrary plane of interest in a zero-net-mass-flux reciprocating
flow. The amount of recirculating flux across a given plane of interest is computed by integrating
the positive portions of velocity across the area normal to that positive velocity profile, given by

Qr =
∫

A
Uax · n̂H (Uax · n̂) dA, (3)

where H is the Heaviside function and n is the unit normal vector along the positive flow direction.
This mean recirculating flux is then normalized by the maximum flow rate in the mother branch,
Qmax = πD2

0Ûmax/4. We performed the integration defined in Eq. (3) over a series of transverse
planes to quantify Qr as a function of the distance measured along the computational domain.

The most crucial measure of recirculation from the gas transport perspective is the amount of
recirculation flux that passes on to the consecutive generation, as this allows gas to be passed from
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FIG. 5. Dimensionless recirculating flux computed at the borderline between the bifurcating region 1
and intermediate (daughter) branch as a function of Remax for the first nine intermediate generations mod-
eling the airway. (a) The red curve shows a power law fit for the first five intermediate generations: Qr =
Qmax[0.0034(Remax)1/4 − 0.02]. (b) The geometric location of the measurements (referred to as location 1
hereafter).

one generation to the next. To qualify mean streaming as a primary, or even significant, mechanism
of gas transport in this context, the streaming needs to at least reach a few successive generation
levels in the upper airway. If that is the case, the streaming flow is capable of transporting gas by
virtue of a recirculation chain formed among these generation levels. In the simulation modeling
the first generation of the airway, i.e., 0G2, the recirculating flux measured at the boundary between
the mother and daughter branch is around 0.02Qmax, falling to around 0.005Qmax for the fourth
generation case 3G5. By the ninth generation 8G10, the recirculating flux is effectively zero. Qr

values measured at this location (the boundary between mother and daughter branch), pertinent to
the first five generation levels varies like Re1/4

max as shown in the Fig. 5(a). Figure 5(b) shows the
geometric location where measurements are obtained.

Similarly, the value of Qr measured at the borderline between the intermediate (daughter) branch
and bifurcating region 2, that is, effectively the amount of recirculation flux passes on to the
consecutive generation level as a function of Remax, is plotted in Fig. 6(a). Notably, the amount of
recirculating flux that passes on to the consecutive generation level in the 1G3 case is slightly higher
than that of the 0G2 case despite the fact that the highest Remax is associated with the latter case. Qr

0 2000 4000 6000 8000 10000
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FIG. 6. Dimensionless recirculating flux computed at the borderline between the intermediate (daughter)
branch and bifurcating region 2 as a function of Remax for the first nine intermediate generations model-
ing the airway. (a) The red curve shows a power law fit for the first five intermediate generations: Qr =
Qmax[0.0012(Remax)1/4 − 0.0072]. (b) The geometric location of the measurements (referred to as location
2 hereafter).
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FIG. 7. Strength of the recirculating flux measured at the start and end of the intermediate generation
level as a function of the generation number. Blue curves correspond to the strength of recirculating flux
directly measured at a location of interest in the computational domain. Orange curves correspond to the total
recirculating flux computed at each generation level. Dashed lines correspond to the measurements obtained at
the borderline between the bifurcating region 1 and intermediate branch (location 1) and solid lines correspond
to the measurements obtained at the borderline between the intermediate branch and bifurcating region 2
(location 2). The horizontal gray line corresponds to the flow rate required to meet the oxygen demand of
a neonate in the clinical conditions based on the data reported by Hill and Robinson [42].

values measured at this location, pertinent to first five intermediate generation levels modeling the
airway has been fitted to a power law of Re1/4

max as shown in the Fig. 6. There is a local maximum
in the data set which is smoothed out by this fit, however, the fit still seems to capture most of
the variation. Hereafter, the borderline between the bifurcating region 1 and intermediate branch is
referred to as location 1 and the borderline between the intermediate branch and bifurcating region
2 is referred as location 2 for brevity.

The recirculating flux data presented in Figs. 5 and 6 can also be presented in terms of generation
number. Figure 7 shows the effective strength of recirculating flux measured at the boundaries
of each generation level over the first nine generations. Blue curves correspond to the strength
of recirculating flux directly measured at a location of interest in the computational domain.
Orange curves correspond to the total recirculating flux computed by multiplying the data in our
computational domain—the blue curves—by a factor of 2n (where n is the generation number),
which represents the number of airway vessels in each generation to compute the total recirculating
flux at each generation level in the airway. Dashed lines correspond to the measurements obtained
at location 1 and solid lines correspond to the measurements obtained at location 2.

As shown by the orange curves, the amount of recirculating flux measured at location 1 is
approximately twice that of location 2 for the first six generations. This means the strength of
Qr along a particular generation decreases by ∼50%. Qr measured at location 1 increases from
generation 1 to 4 to arrive at the highest in the generation 4, and gradually decreases in successive
generations, whereas Qr measured at location 2 increases from generation 1 to 3 to arrive at the
highest in generation 3, and gradually decreases in successive generations. As a common feature for
both variations, Qr becomes negligible beyond generation 6.

The role of this streaming recirculation from the clinical perspective of HFV can be as-
sessed by comparing it to the oxygen requirement of a patient. Assuming a oxygen demand of
7 ml kg−1 min−1 for a neonate in the clinical conditions as reported by Hill and Robinson [42], the
amount of gas recirculation required to provide this can be calculated. This amount is marked by
the horizontal gray line in Fig. 7. This comparison shows that the amount of oxygen passed on to
the successive generation through the steady streaming phenomenon is potentially adequate to meet
with the demand down to generation 5.
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We note that the values of Qr reported here are less than those we have previously reported in the
single bifurcation [20]. This is due to the fact that longitudinal vortices only form downstream of a
bifurcation, so in the single bifurcation case, these vortices occur in one half cycle but not the other.
In the double bifurcation, there is a bifurcation at each end of the intermediate vessel, so vortices
appear in both half cycles. The asymmetry between the inhalation and exhalation flow is less when
longitudinal vortices are generated in both directions and is an outcome of the coupling between
generations. Despite the reduction in magnitude of Qr , the generation to which the streaming is
estimated to be able to provide gas exchange that is clinically relevant is similar between the single
and double bifurcation models.

The results presented here link the gas transport capacity of the streaming flow to the strength
of the Dean vortices formed. This suggests a potential strategy towards the optimization of HFV
and low-tidal-volume ventilation methods—finding reciprocation variations that maximize the
difference between the formation of Dean vortices during inhalation and exhalation may lead to
a maximum efficiency of the streaming flow to transport gas. Driving the zero-net-mass-flux flow
with an optimized frequency modulation that is set up to maximize the strength of the mean flow is
a potential path to optimization.

3. Instantaneous events impacting the mean structure

In Sec. I B 1, it was argued that the features observed in the streaming flow (cycle-averaged
velocity) field were driven by the presence of the longitudinal vortex system generated by Dean’s
mechanism. Here, we further investigate the evolution of vortical structures characteristic to the
flow, including how these structures become conditionally turbulent.

Concerning the 0G2 case, animations |lam_0G2.avi| and |vel_0G2.avi| provided in the
Supplemental Material [43] show the evolution of isosurfaces of λ2 vortical structures and the
evolution of velocity magnitude |U| respectively. Figure 8 shows nine panels of isosurfaces of
coherent structures generated based on the λ2 criterion, which defines vortex cores as any region
where λ2 � 0 [44]. Each panel illustrates isosurfaces of these vortical structures based on the
threshold value of λ2 = −0.0025. Three panels in the first row, Figs. 8(a1)–8(a3), correspond to
isosurfaces generated based on the streaming velocity field of 0G2, 1G3, and 2G4 cases, respectively.
Similarly, three panels in the second row, Figs. 8(b1)–8(b3), correspond to isosurfaces generated
based on the peak inhalation flow field of 0G2, 1G3, and 2G4 cases, respectively. Further, three
panels in the third row, Figs. 8(c1)–8(c3), correspond to isosurfaces generated based on the peak
exhalation flow field of 0G2, 1G3, and 2G4 cases, respectively.

Pertaining to the first row of Fig. 8, the streamwise vortical structures are more obvious in the
1G3 case (Fig. 8(a2)) than in the 0G2 case [Fig. 8(a1)]. This phenomenon seems to contradict with
the variation of recirculation flux Qr (as demonstrated in Fig. 7) where the strength of Qr is higher
in the case 0G2 than that of 1G3. This suggests there is a process—which we propose is conditional
turbulence as demonstrated in the following sections—that destroys the coherence of the mean
vortex structures in the 0G2 case such that they are not reliably detected using the λ2 criterion.

Evidence of this conditional turbulence is clear in the subsequent images in Fig. 8. The second
row of images shows the λ2 isosurfaces at peak inhalation. During the inhalation half cycle, vortical
structures progressively enlarge along each daughter and granddaughter branch along the flow di-
rection, which can be ascribed to the centrifugal instability in the curved section of each bifurcation.
These structures are clear in Figs. 8(b2) and 8(b3) for the 1G3 and 2G4 cases, respectively. However,
the 0G2 case shows a much more complex structure, with the region downstream of first bifurcation
being filled with small-scale turbulent eddies.

A similar process occurs during exhalation. Again, two counter-rotating vortices are formed from
the centrifugal instability induced by the curvature of the bifurcation where the flow is leaving
each granddaughter branch. This results in two counter-rotating vortex pairs, or four streamwise
vortices, entering each daughter branch. This four-vortex system is clearly apparent in the daughter
branches as shown in Fig. 8(c2) for the 1G3 case. Then, this four-vortex system from each daughter
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(b3)
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(b2) (b3)

(c3)(c2)

FIG. 8. Isosurfaces of λ2 vortical structures based on the threshold value of −0.0025. (a1), (a2), and
(a3) correspond to isosurfaces generated based on the streaming velocity field of 0G2, 1G3, and 2G4 cases,
respectively. Similarly, (b1), (b2), and (b3) correspond to isosurfaces generated based on the peak inhalation
flow field of 0G2, 1G3, and 2G4 cases, respectively. Further, (c1), (c2), and (c3) correspond to isosurfaces
generated based on the peak exhalation flow field of 0G2, 1G3, and 2G4 cases, respectively. The animation
|lam_0G2.avi| provided in the Supplemental Material shows the evolution of isosurfaces of λ2 vortical
structures pertinent to 0G2 case.

branch enters the mother branch and becomes an eight-vortex system near the first bifurcation and
rearranges to another four-vortex system away from the bifurcation. However, Fig. 8(c1) for the 0G2

case shows this structure breaking down into small-scale turbulent eddies that fill the entire mother
branch.

The appearance of turbulence coincides with the breakdown of the streamwise vortex structures,
and we conjecture that this turbulence occurs via an instability of this vortex system. This idea is
consistent with the data and we investigate the onset of this turbulent structure and its potential
mechanism of generation in the following sections.

4. Instantaneous evolution of the velocity field

Here, we investigate the evolution of the instantaneous velocity field u(x, t ) over a complete
flow cycle, focusing on the 0G2 and 1G3 cases, which have the highest Reynolds numbers and
are therefore the most susceptible for turbulence. Results are presented here at 12 instants and for
clarity and conciseness of flow visualizations, only one-half of the fluid domain is shown in each
panel. These velocity fields were indeed verified to be statistically symmetric around the z axis,
reflecting the symmetry of the local geometry. The overall conclusions of this section are similar to
those from our study of a single bifurcation [20]. There are some important differences, however,
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FIG. 9. Evolution of the instantaneous velocity magnitude, |U| for 0G2 (Remax = 9600, α = 3.36). The
dotted lines highlight areas where turbulent bursts have developed in the flow. The animation |vel_0G2.avi|

provided in the Supplemental Material shows the evolution of |U|.

regarding which cases (i.e., at which value of Remax) become turbulent, that indicate the presence of
turbulence can be influenced by changes in upstream and downstream conditions.

Figures 9 and 10 show contours of velocity magnitude |U| for 12 consecutive phases of the cycle
among cases 0G2 and 1G3. The first and last panels correspond to φ = 0 and φ = 11

6 π , respectively,
with an interval of phase angle 
φ = π

6 between each consecutive panel. The upper six panels
of each figure corresponds to the inhalation half cycle while the lower six panels correspond to
exhalation.

For the 0G2 case, during the first quarter of the cycle (acceleration phase during which the
inhalation flow rate increases with time), a high momentum region progressively develops in
the core of the mother branch and propagates along the inner walls of the daughter branches.
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FIG. 10. Evolution of the instantaneous velocity magnitude, |U| for 1G3 (Remax = 6076, α = 2.66).

Simultaneously, slightly weaker high momentum regions evolve in the core of daughter branches
and propagate downstream along the inner walls of the granddaughter branches. Near the bifurcating
regions, these high momentum regions progressively contrast with the slower moving air at the outer
wall. The stronger high momentum region developed at the inner walls of the daughter branches
breaks down to turbulence, approximately from 1.2D1, measured along the daughter branches (from
the origin of the first bifurcation) when φ = π/3. This turbulence rapidly convects downstream and
appears to be sustained for π

3 � φ � 2π
3 as depicted from Fig. 9. This turbulence is also sustained

in the granddaughter branches.
In the second quarter of the cycle (deceleration phase during which the inhalation flow rate

decreases with time), the turbulence decays when the flow velocity decreases below a critical value.
Eventually, the high momentum region depletes and the flow relaminarizes as shown in 2π

3 � φ �
5π
6 . At φ = 5π

6 , the flow velocity decreases to zero before alternating direction between inhalation
and exhalation phases.

In the third quarter of the cycle (acceleration phase during which the exhalation flow rate
increases with time), the flow progresses from granddaughter to daughter and daughter to mother
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branches. These flows merge to create jetlike high-momentum regions and these high-momentum
regions propagate along the core of the daughter and mother branches. As depicted from Fig. 9,
at φ = 7π

6 , the high-momentum region formed along the core of the mother branch breaks down
to turbulence, approximately from 5D0 measured along the mother branch. Simultaneously, jetlike
high-momentum regions formed along the core of the daughter branches undergo an instability,
leading to approximately periodic pulses that convect along the flow (this periodic pulsing is clear
in the animation |vel_0G2.avi| provided in the Supplemental Material). This pulsing process
repeats 15 times during an epoch around the peak exhalation flow rate and appears to cause the
generation of turbulence in the daughter branches. This turbulence, however, is not sustained and
disappears immediately once the pulse is convected. The discrete nature of the flow instability
generated here differentiates it from the classical fully developed turbulence.

In the final quarter of the cycle (deceleration phase during which the exhalation flow rate
decreases with time), the turbulence decays in both daughter and mother branches and the flow
relaminarizes while the high momentum region depletes gradually to facilitate the flow inversion
for the next cycle.

A comparison of Figs. 9 and 10 reveals that the corresponding cases 0G2 and 1G3 share
qualitatively similar basic flow features except that there is no turbulence observed in the latter
case. This is despite the fact that there is a correspondence between the bulk flow conditions in
different sections of each case, i.e., Remax and α in the daughter branch of the 0G2 case are the
same as in the mother branch of the 1G3 case. We also note that a single-bifurcation case with the
same Remax and α as the 1G3 case (i.e., a 1G2 case) presented in our previous study [20] displayed
turbulence during exhalation. There is an influence of geometry on the development of turbulence,
and this is further investigated in Sec. I B 5.

The results here confirm that the basic mechanism for the development of turbulence is the same
as in the single bifurcation case [20], where turbulence stems from an instability of the streamwise
Dean vortices generated as the flow passes through the curved sections of the bifurcation, once a
critical value of flow rate is exceeded.

Figure 11 shows time traces of the axial velocity Uax at the geometric center of each generation
(center of the cross sections A-A′, B-B′, C-C′, and D-D′ of Fig. 4). Three curves are shown in each
panel: the raw history of Uax is shown in black, the low-pass filtered Uax is shown in green, and high-
pass filtered Uax is shown in red, using a cutoff frequency of fthrD0/Ûmax = 0.05 (note the frequency
of the cycle for 0G2 case is f D0/Ûmax = 2α2/(πRemax) = 7.5 × 10−4). This decomposition enables
the quantification of the time duration for which turbulence prevails.

Figure 11 reveals the appearance of turbulent bursts at times near maximum flow rate in either
direction and in portions of the cycle where streamwise vortices are present (only during exhalation
in the mother branch, only during inhalation in the granddaughter branches, and during both
inhalation and exhalation in the daughter branch). We reaffirm the conclusion we reported for the
single bifurcation in Jacob et al. [20]; this breakdown to turbulence is distinctly different from the
process in a straight tube in which the turbulent bursts typically occur at epochs centered around
the peak deceleration [22,23]. The presence of curvature leading to Dean vortices is crucial to the
breakdown process in the bifurcation geometry.

Figure 11(b) also shows evidence of the periodic bursting process that occurs in the daughter
branch during exhalation. Further stability analysis is warranted to completely understand this
phenomenon.

5. Effect of upstream and downstream conditions on the development of turbulence

The previous sections have shown that the basic scenario for the appearance of conditional
turbulence in the double bifurcation is similar to that uncovered in the single bifurcation reported
in Jacob et al. [20], where turbulence occurs as a function of the local, and instantaneous, Reynolds
number. However, the data of the present paper allows this appearance to be studied in more detail
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FIG. 11. A decomposition of the time history of axial velocity Uax of the 0G2 case. (a) Decomposition
of temporal axial velocity (Uax) at the center of the cross section A-A′. (b) Decomposition of temporal axial
velocity (Uax) at the center of the cross section B-B′. (c) Decomposition of temporal axial velocity (Uax) at
the center of the cross section C-C′. (d) Decomposition of temporal axial velocity (Uax) at the center of the
cross section D-D′. These cross sections are shown in Fig. 4. Solid black line shows the measured temporal
data from the instantaneous velocity field; solid green line shows the velocity scale associated with the filtered
low-frequency components while the solid red line shows the velocity scale associated with the filtered high-
frequency components. The cutoff frequency for the low- and high-pass filters was fthrD0/Ûmax = 0.05.

by comparing flows with the same local and instantaneous parameters, but differing upstream and
downstream conditions.

In this section, we interrogate various simulation cases with equivalent local and instantaneous
conditions, i.e., the same Reynolds and Womersley numbers, but different upstream and downstream
conditions. For instance, the reciprocating flow through the lower bifurcating junctions of the 0G2

case (the two junctions between G1 and G2) shares the same local Reynolds number and Womersley
number combination with the flow through the upper bifurcating junction of the 1G3 case (the
junction between G1 and G2); however, they correspond to different upstream and downstream
conditions.

In fact, this comparison (lower junctions of the 0G2 case with the upper junction of the 1G3 case)
can be made qualitatively from the flow visualisations of the 0G2 case in Fig. 9 the 1G3 case in
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Fig. 10—it is clear that the flow characteristics during the inhalation are dependent on the upstream
conditions. The lower bifurcating junctions of the 0G2 case see turbulent bursts during an epoch
centered around peak inhalation flow rate, while the upper bifurcating junction of the 1G3 case does
not see such bursts. Apparently, the production of turbulence upstream is destabilising downstream
and this turbulence is convected and sustained into the lower generations.

This observation is further quantitatively examined by plotting the temporal variation of axial
velocity Uax of the 1G3 case in Fig. 12, sampled on the centreline in each generation. The locations
of the sampling are in a geometrically similar position to those used for the sampled velocity data
for the 0G2 case shown in Fig. 11.

So, the sample location B-B′ and the local Reynolds and Womersley numbers at this location in
the 0G2 case are equivalent to location A-A′ in the 1G3 case (the same equivalence occurs for C-
C′/D-D′ in the 0G2 case and B-B′ in the 1G3 case). Therefore, Figs. 11(b) and 11(d) can be compared
with Figs. 12(a) and 12(b)—the data have been sampled at geometrically similar locations, and the
bulk flow conditions are also similar. Such a comparison reveals significant differences in the time
history of axial velocity Uax, which can be ascribed to the differences in upstream and downstream
conditions among these cases.

The impact of this coupling between upstream and downstream generations is further investi-
gated by comparing the cases described above to the flow in an isolated 1:2 bifurcation which,
by design, removes the intergeneration coupling. Again, geometric and bulk dynamic similarity
is maintained. Further, the computational mesh of each bifurcation employed is identical—the
multigeneration meshes are constructed by connecting single generation meshes, thereby removing
mesh dependence as a reason for any difference between the results from each simulation. The
corresponding temporal evolution of axial velocity Uax is shown in Fig. 13.

The velocity traces produced are different from those from the multigeneration simulations
shown in Figs. 11 and 12 for both the inhalation and exhalation flow. For example, Fig. 11(b) with
the lower left panel of Fig. 13 compare the velocity trace in vessel generation 1 (the vessel beyond
the first bifurcation) for the multigeneration and single generation cases, respectively, with the same
Reynolds and Womersley numbers in the mother branch. During inhalation, the only difference
is the conditions downstream of the measurement point—the multigeneration mesh has another
bifurcation, the single generation mesh has a long straight section. The velocity trace over the
inhalation period (t/T < 0.5) is similar in that turbulence occurs near the peak flow rate, however,
the amplitude of this turbulent fluctuation is clearly larger in the multigeneration case.

An important conclusion of this comparison is that it is not only upstream conditions that
impact the production of turbulence; downstream conditions also need to be considered. We also
highlight that the upstream and downstream directions reverse as the cycle moves from inhalation
to exhalation.

This dependence on upstream and downstream conditions is further highlighted by visualizing
the flow passing through each vessel generation for various setups. Figure 14 shows the setups used
and the locations of planes used for comparative visualisation. The evolution of the instantaneous
velocity magnitude, |U| among cases with equal Reynolds and Womersley numbers, is shown on
these planes in Fig. 15. Figures 15(a1) and 15(a2) correspond to cross sections located at the
geometric center of the mother branch of the single bifurcation 1G2 case and the left daughter
branch (section B-B′ of Fig. 4) of the double bifurcation 0G2 case, respectively. Figures 15(b1) and
15(b2) correspond to the left daughter branch of the single bifurcation 1G2 case and the upper left
granddaughter branch (section D-D′ of Fig. 4) of the double bifurcation 0G2 case, respectively. Each
row contains 12 consecutive phases of the cycle and the first and last panels correspond to φ = 0
and φ = 11

6 π , respectively, with an interval of phase angle 
φ = π
6 between each consecutive panel.

The first six panels of each row correspond to the inhalation half cycle while the second six panels
correspond to exhalation.

Figure 15(a1) shows images from the first (mother) generation vessel of a single generation 1G2

case, whereas Fig. 15(a2) are taken from the intermediate generation vessel of a multigeneration
0G2 case.
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FIG. 12. A decomposition of the time history of axial velocity Uax of the 1G3 case. (a) Decomposition
of temporal axial velocity (Uax) at the center of the cross section A-A′. (b) Decomposition of temporal axial
velocity (Uax) at the center of the cross section B-B′. (c) Decomposition of temporal axial velocity (Uax) at the
center of the cross section C-C′. (d) Decomposition of temporal axial velocity (Uax) at the center of the cross
section D-D′. Solid black line shows the measured temporal data from the instantaneous velocity field; solid
green line shows the velocity scale associated with the filtered low-frequency components while the solid red
line shows the velocity scale associated with the filtered high-frequency components. The cutoff frequency for
the low- and high-pass filters was fthrD0/Ûmax = 0.05.

The upstream conditions during the inhalation period [shown in the first six images of
Figs. 15(a1) and 15(a2)] differ. The flow in the multigeneration case has already passed through
a bifurcation, generating Dean vortices that subsequently become turbulent. The flow in the single
generation case has only traversed the straight pipe section and presents an axisymmetric velocity
profile. This strong modification by the upstream curvature is not surprising.
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FIG. 13. A decomposition of the time history of axial velocity Uax of the single bifurcation 0G1 and 1G2

cases. 0G1 generation 0: Decomposition of Uax at the geometric center of the mother branch of 0G1 case.
0G1 generation 1: Decomposition of Uax at the geometric center of a daughter branch of 0G1 case. 1G2

generation 1: Decomposition of Uax at the geometric center of the mother branch of 1G2 case. 1G2 generation
2: Decomposition of Uax at the geometric center of a daughter branch of 1G2 case. Solid black line shows
the measured temporal data from the instantaneous velocity field; solid green line shows the velocity scale
associated with the filtered low-frequency components, while the solid red line shows the velocity scale
associated with the filtered high-frequency components. The cutoff frequency for the low- and high-pass filters
was fthrD0/Ûmax = 0.05.

The comparison of the exhalation period [shown in the second six images of Figs. 15(a1)
and 15(a2)] is less intuitive. During this exhalation period, the flow in the vessel shown is supplied
by a flow that has passed through one bifurcation in both cases. All that changes is the downstream
conditions—in the multigeneration case the vessel merges with another through a second bifur-
cation, whereas in the single generation case the vessel continues in a straight path. The images
show there is a significant difference in the flow generated. Notably, the multigeneration case
displays a turbulent (or at least a spatiotemporally complex) flow when the flow rate is maximum
near φ = 4π/3, whereas the single generation case shows well-defined vortices throughout the
exhalation period. The apparent conclusion is that the development of turbulence in this vessel
is linked to the change in downstream conditions.

Figures 15(b1) and 15(b2) show the flow at a location in the vessel at generation 2: Fig. 15(b1)
shows a cross section in the daughter branch of the single generation 1G2 case, whereas Fig. 15(b2)
shows a cross section in the granddaughter branch of the multigeneration 0G2 case.

The first six panels of Figs. 15(b1) and 15(b2) correspond to inhalation, and so the upstream
conditions between the two cases vary. Again, the flows are somewhat different to each other—the
combined effects of curvature and flow division at multiple bifurcating junctions in the multigener-
ation case accumulate. The Dean vortices produced in the vessel at generation 1 have some impact
on the Dean vortices produced in the vessel at generation 2, however, the basic flow structure still
appears to be dictated by these Dean vortices.

The second six panels of Figs. 15(b1) and 15(b2) correspond to exhalation, so only the down-
stream conditions vary. The flows generated in this case are qualitatively similar, the axisymmetric
velocity profiles generated through the straight inlet section of pipe do not appear to be impacted by
the downstream conditions.
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FIG. 14. Geometric locations compared in various simulation configurations shown in Fig. 15. (a1), (a2),
(b1), and (b2) are dynamically equivalent location pairs located at the geometric center of the mother branch
of 1G2 case, the left daughter branch (section B-B′ of Fig. 4) of 0G2 case, the left daughter branch of 1G2 case,
and the upper left granddaughter branch (section D-D′ of Fig. 4) of 0G1 case, respectively. The scaling factors
used to scale up each cross section to make them identical are shown.

Taken together, one intuitive conclusion is that the development of turbulence is a strong function
of the upstream conditions. Considering the fact that a preceding bifurcation generates a flow
containing Dean vortices and a strong secondary flow (i.e., the flow normal to the axis of the vessel),
whereas the flow in a straight section is purely parallel, this outcome is not surprising.

What is less intuitive is the dependence on downstream conditions that is not universal—for
example, the comparison of the exhalation flow in the vessel at generation 2 showed no dependence
on upstream conditions during exhalation, whereas the flow in the vessel at generation 1 does show
a dependence. This is possibly linked to the flow being supplied—the flow compared in generation
2 is essentially axisymmetric, whereas that compared at generation 1 contains Dean vortices. It
is possible that the deficit produced by the Dean vortices and secondary flow provide a feedback
mechanism, allowing the disturbance to the flow introduced by the second downstream bifurcation
to be communicated upstream and therefore destabilize the flow. Such a feedback mechanism is not
present in the purely parallel flow.
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FIG. 15. A comparison of the evolution of the instantaneous velocity magnitude, |U|, among dynamically
equivalent flow configurations shown in Fig. 14. Rows (a1), (a2), (b1), and (b2) display 12 snapshots of |U|
at cross sections located at the geometric center of the mother branch of 1G2 case, the left daughter branch
(section B-B′ of Fig. 4) of 0G2 case, the left daughter branch of 1G2 case, and the upper left granddaughter
branch (section D-D′ of Fig. 4) of 0G1 case, respectively. Note that the diameter of daughter and granddaughter
branches are scaled up by a factor of 0.79 and 0.792 to make them identical for comparison purposes. The top
panel shows the variation of flow rate as a function of time.

A more formal stability and sensitivity analysis of the flow is required to completely establish
this link, which we will pursue in a future study. What is clear is that the generation of turbulence
in the airway is not a completely “local” phenomenon, and that generational coupling needs to be
considered in both the upstream and downstream directions if the impact of turbulence is to be
understood.

C. CONCLUSION

The aim of the present paper is to quantify the nonlinear mean streaming and the generation of
turbulence in the reciprocating flow in a double bifurcation as a model flow for that in the human
airway during HFV.

The mean streaming measured in the double bifurcation is around 2% of the maximum flow
rate, which is less than the ∼5% we have previously reported in the single bifurcation [20]. The
reduction can be ascribed to the intergeneration coupling effects. However, these results suggest
that the amount of oxygen supplied through this phenomenon likely meets the anticipated oxygen
demand of a neonate in the first five generations of the airway.

As an important feature of the reciprocating flow, turbulent bursts are observed in the first three
generations of the airway when the flow speed exceeds a critical value. The flow relaminarizes
periodically when the flow speed decreases below the critical value. However, the results of
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FIG. 16. The mesh topology of a bifurcating junction used in the study. (a) Macro mesh topology of a
bifurcating junction. (b) Resulting mesh topology of hexahedral elements associated with Gauss-Legendre-
Lobatto quadrature points of eighth-order tensor-product Lagrange polynomials.

this paper show that this critical value is a function of the geometry. The onset, advection, and
sustenance of turbulence in a given vessel appears to be a function of the upstream and downstream
flow conditions. Multiple generations of the airway must be considered to fully understand this
phenomenon.
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APPENDIX: MESH RESOLUTION TESTS

Mesh resolution tests were conducted to ensure the dynamics were correctly resolved, especially
for the turbulent cases. Both local and global parameters were monitored as a function of spatial
resolution to determine an optimal spatial resolution for each flow regime. Generally, the spatial
resolution of spectral element simulations is changed by varying the interpolation polynomial order
(p refinement) or varying the number of elements in the macro mesh (h refinement). When these two
refinement approaches are coupled, it leads to a hybrid method known as h-p method [45]. However,
for the simplicity of implementation, varying the interpolation polynomial order (p refinement)
was adopted here, while keeping the macromesh layout the same. The macrostructure of the mesh
employed in each bifurcation is shown in Fig. 16.

The evolution of axial velocity component Uax measured at the geometric center of generation
1 (the intermediate generation coupled by upstream and downstream generations) was chosen to be
the local parameter and energy norm was chosen to be the global parameter. Note that the energy
norm is equivalent to the ensemble average of root-mean-squared velocity. Global parameters are
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FIG. 17. The variation of energy norm (Enorm) as the global indicator of convergence. (a) The temporal
evolution of Enorm over a portion of the reciprocating flow cycle, i.e., 0 � t � 2T

3 , where T is the reciprocation
period; for varying interpolation polynomial order, i.e., P = 8, 9, 10, 12. (b) The variation of maximum energy
norm max|Enorm| as a function of interpolation polynomial order P. The red curve shows an exponential
convergence of max|Enorm| as a function of P: max|Enorm| = 0.464 + 1.216

e0.441P .

sensitive to the changes in the entire domain as their computation accounts for all the grid points in
the domain securing the spectral accuracy.

The macromesh layout shown in Fig. 16 was used throughout the test with varying interpolation
polynomial order (P = 8, 9, 10, 12), resulting in meshes of different spatial resolutions. The evo-
lution of energy norm was monitored as the global indicator of convergence over a portion of the
reciprocating flow cycle (0 � t � 2T

3 , where T is the reciprocation period) for varying interpolation
polynomial order (P = 8, 9, 10, 12) and presented in Fig. 17.

It is evident from Fig. 17(a) that the curves representing the evolution of Enorm for varying P
are coincident with each other at the minimum flow rates. However, they show a discrepancy at
the maximum flow rate where the flow is unsteady and turbulent. They correspond to a percentage
discrepancy of 4.3% between P = 8 and P = 12. A clear trend of decreasing Enorm with increasing P
is observed at higher flow rates and this can be ascribed to the introduction of more and more (small)
dissipative scales to the simulation. According to the Kolmogorov hypothesis, the turbulent kinetic
energy dissipation of a viscous fluid flow takes place at a small scale known as the Kolmogorov
scale [46]. The smallest grid spacing of a mesh should be less than the Kolmogorov scale for a
given mesh to fully resolve the flow including these dissipative scales. The finer the mesh spacing
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FIG. 18. Frequency spectrum of the instantaneous axial (streamwise) velocity Uax time history. (a)–(c) Fre-
quency spectrum of the Uax time history measured at the geometric center of generation 1 (geometric center
of section B-B′) for P = 8, 10, 12. The cutoff frequency for the high-pass filter was fthrD0/Ûmax = 0.05. The
peak dimensionless oscillation frequency fmaxD0/Ûmax is marked with a red dashed line.

or higher the spatial resolution, the capability of resolving for these dissipative scales increases.
Consequently, the energy norm decreases with the increasing spatial resolution (increasing P order)
and converges to a fixed value.

The maximum energy norm (max|Enorm|) of each interpolation polynomial order (P) corresponds
to the grey vertical line of Fig. 17(a) and plotted in Fig. 17(b). The variation of max|Enorm| as a
function of P is given by the below exponential fit,

max|Enorm| = 0.464 + 1.216

e0.441P
, (A1)

and shown by the red curve. This means that an exponential convergence of energy norm (used as a
global convergence indicator) can be achieved by increasing the interpolation polynomial order. This
shows that as P → ∞, max|Enorm| → 0.464 and further indicates that the variation of max|Enorm|
for P = 12 is within 5% of the converged value.
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FIG. 19. A comparison of instantaneous velocity magnitude |U| and instantaneous axial vorticity ωax at the
peak flow rate indicated by the vertical grey line of Fig. 17(a) for varying interpolation polynomial order (P).
(a1)–(a3) Snapshots of |U| at the peak flow rate for P = 8, 9, 10, respectively. (b1)–(b3) Snapshots of ωax at
the peak flow rate for P = 8, 9, 10, respectively. All the snapshots are taken from the vertical plane passing
through the geometric center of generation 1 (section B-B′).

The grid convergence properties near the peak flow rate (where the discrepancy of max|Enorm|
is observed and the flow is most likely to be turbulent) were further investigated by considering
the frequency spectrum of the time history of instantaneous axial (streamwise) velocity Uax in
the shaded region of Fig. 17(a). The frequency spectrum near the peak flow rate pertaining to
each polynomial order is shown in Fig. 18 and the primary frequency observed in the spectrum
is annotated in each polynomial order case.

This spectrum is formed from the Fourier transform of the time history of the axial velocity
measured at the geometric center of generation 1 (geometric center of section B-B′) for each
polynomial order over the shaded region shown in Fig. 17(a). The peak frequencies observed in
the spectrum for P = 8, 10, 12 are fmaxD0/Ûmax = 0.220, 0.224, 0.226, respectively. The frequency
spectra are not identical—however, they share many qualitative similarities and the peak frequencies
are nearly identical. This leads to the hypothesis that the polynomial order P = 12 is capable of
capturing the essential physics of the flow.

Having investigated global and local quantitative measures of grid convergence, a local but
qualitative indicator is interrogated here. Snapshots of velocity magnitude |U| and axial vorticity
ωax for varying interpolation polynomial order (P) are visualized and compared at the peak flow
rate indicated by the vertical grey line of Fig. 17(a).

Snapshots of |U| and ωax shown in Fig. 19 share qualitatively similar flow structures. Note
that section B-B′ of Fig. 1(b) is visualized here. These visualizations share qualitatively similar
primary features, particularly the location and size of the vortices and shear layers. However,
some underresolved regions are observed in ωax contours pertaining to high-velocity gradients.
This under-resolved nature decreases with increasing interpolation polynomial order P and almost
disappears at P = 10. As further evidence from this flow visualization, it is preferable to have higher
P(� 10) in terms of accuracy and hence P = 12 is used for simulation cases that are likely to be
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turbulent. Therefore, it can be safely concluded that the interpolation polynomial order P = 12 is
capable of capturing the essential physics of the reciprocating flow.
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