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The wing structure of several insects, including dragonflies, is not smooth, but corru-
gated; its vertical cross section consists of a connected series of line segments. Some
previous studies have reported that corrugated wings exhibit better aerodynamic perfor-
mance than flat wings at low Reynolds numbers [Re � O(103)]. However, the mechanism
remains unclear because of the complex wing structure and flow characteristics. A corru-
gated structure modifies the formation and behavior of aerodynamic flow features arising
during unsteady wing motion, such as the leading-edge vortex (LEV). These modifications
can be key to lift enhancement in many insects, though the details of these benefits remain
imperfectly understood. In this study, we analyzed the flow around a two-dimensional cor-
rugated wing model that started impulsively by direct numerical simulations. We focused
on the period between the initial generation of LEVs and subsequent interactions before
detachment. For the flat wing, it is known that a secondary vortex with a sign opposite
to that of the LEV, the λ vortex, develops and erupts to discourage lift enhancement. For
corrugated wings, such an eruption of the λ vortex can be suppressed by the corrugation
structure, which enhances the lift. The detailed mechanism and its dependence on the angle
of attack are also discussed.

DOI: 10.1103/PhysRevFluids.8.123101

I. INTRODUCTION

Flying animals and vehicles vary significantly in their size and flow properties. The cord-based
Reynolds number (Re) for a forward flight ranges from O(100) (e.g., thrips) to O(106) (e.g., passen-
ger planes) [1]. As a result, the wing shapes also vary significantly. Typical wings of the high-Re
flyers, such as passenger planes, have smooth surfaces because the surface roughness reduces the lift
coefficients [2]. However, the wing surfaces of many insects such as dragonflies, cicadas, and bees
are not smooth, and their Reynolds number is in the range of O(102) to O(104) (low-Re regime).
Their wings are composed of nerves and membranes, and their cross-section shapes consist of
vertices (nerves) and line segments (membranes). The geometry of the shape can be regarded as
a connection of objects with a V shape or other shapes. This type of wing is known as a corrugated
wing [3].

Aerodynamic studies on corrugated wings have contributed to their application in small flying
robots, drones, and windmills, which are useful in the low-Re regime [4–8]. Because insects have
low muscular strength, corrugated structures are expected to possess aerodynamic advantages [9].

We focused on the aerodynamic advantages of corrugated wings in the low-Re regime, wherein
dynamic lift generation owing to flapping and the generation of leading-edge vortices are important,
particularly for many insects, to achieve flight against their weight [1,10–15]. Other unsteady lift
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enhancement mechanisms for insects have been reported, such as delayed (or absence of) stall, wake
capture, and the clap-and-fling mechanism [12–14,16,17], wherein unsteady vortex generation due
to flapping and its interaction with the wing play central roles. Most previous studies on unsteady lift
enhancement mechanisms assumed a smooth wing. Our fundamental motivation was the effect of
corrugation on such unsteady lift enhancement mechanisms. Previous studies on corrugated wings
have not fully investigated this problem.

Many previous aerodynamic studies on corrugated wings focused on fixed wings in uniform flow
at angles of attack (AoA) smaller than 20◦, which may be related to the gliding flight [18–27]. The
two mechanisms are described in the following two paragraphs.

The lift enhancement mechanism owing to the corrugated structure was discussed by Newman
et al. [28] for Re = O(104), which is relatively high in this regime. They used a model wing with
two parts: a corrugated part on the leading-edge side and a smoothed curved part on the trailing-edge
side. They suggested that the V shapes in the corrugated wings acted as turbulators, provoking an
early transition to turbulent flow to reduce the size of the separation bubble. This type of flow
produces high lift [29]. Levy et al. [21] used the same model as Ref. [28] and performed two-
dimensional numerical simulation at the smaller Re (2000 � Re � 8000) to determine the vortex
separations from the corrugations to reattach and reported a drag reduction and increased flight
performance.

Vargas et al. [19] performed two-dimensional numerical simulation with one of the corrugated
models taken from a dragonfly (“profile 2” in Ref. [30]) in a uniform flow at smaller AoA in the
range [0◦, 10◦], for Re < 10 000 and concluded that the aerodynamic performance of the corrugated
wing model was equivalent to or better than that of the wing with the envelope of the corrugated
wing (profiled wing). They also reported a trap of vortices in the valleys of the V shapes to make
the overall flow resemble that around the profiled wings. Similar vortex traps have been observed in
other experiments [31,32] and in two- and three-dimensional numerical simulations [26,27].

The following studies were performed for a corrugated wing model in a uniform flow with a
wide range of AoA. Rees [31] used a hoverfly-based corrugated wing model, and measured its lift
coefficient CL and the drag coefficient CD for Re = 450, 800, and 900 over a range of AoA spanning
from −22◦ to 50◦. They reported that a corrugated wing yielded a larger CL for Re = 800 than the
profiled wing. They also reported that the flow around the wing behaved as if the wing had an
envelope profile. Kesel [30] used corrugated wing models based on the cross sections of a dragonfly
wing for Re = 7800 and 10 000 over a range of AoA spanning from −25◦ to 40◦. The results show
that CL for the corrugated wing model is larger than that of the flat plate for some AoA.

Herein, we note that wings in unsteady motion can generate higher lifts at greater AoA.
Dickinson et al. [11] analyzed impulsively started flat wings and reported higher lifts over time
(the maximum lift was recorded at AoA = 45◦). The leading-edge vortex (LEV) dynamics are
particularly important [12]. An LEV is generated when a flat wing starts its translational motion
from rest [1]. The LEV increases in size and circulation by feeding the vortex sheet separated from
the leading edge [33,34]. During this process, a stagnation point on the upper surface of the wing,
generated because of the flow toward the wing surface by the LEV, slides towards the trailing edge
as the LEV moves toward the trailing edge with growth. Then, the direction of the flow on the
wing surface between the stagnation point and the leading edge is reversed toward the leading edge,
creating a secondary vortex of the opposite sign to the LEV, between the leading edge and the
LEV. The shape of this secondary vortex resembles the greek character “λ” and is referred to as a
λ vortex in this paper [1,35]. The LEV detaches from the wing after the stagnation point reaches
its trailing edge. The λ vortex also grows and is responsible for detaching the LEV from the wing
during eruptions [34,36]. After the LEV is released, the next LEV is generated.

In the case of corrugated wings, some studies have focused on dynamic performance. Luo
and Sun [37] performed three-dimensional numerical simulations of revolving corrugated wing
models. They concluded that the corrugated and flat wings exhibited almost the same performance.
Bomphrey et al. [27] performed three-dimensional numerical simulations of a flapping wing. They
reported that the pressure in the V-shaped region of the corrugated wing was lower and concluded
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that this low-pressure region was related to vortex formation in the V-shaped region and to the wide
distribution of the negative-pressure area on the corrugated wing. However, vortex dynamics due to
corrugation have not been fully examined. In particular, there are few studies on how the dynamics
among vortices separated from the corrugation structures, LEV, and trailing-edge vortex work on
the lift and drag production.

The theory of corrugated wings is also different from the steady-state aerodynamic theory which
requires uniform flow and circulation of the wing alone (Kutta-Joukowski theorem) [38] and the
unsteady-flapping flight mechanisms used by insects, such as delayed stall (LEV-wing interaction),
rotation lift (circulation of wing owing to rotation), and wake capture (interaction among vortices
generated from the edges). Unsteady flight mechanisms have been extensively studied [14,39];
however, corrugation alternates or modifies such mechanisms.

Real-life dragonflies flap their wings at high AoA during most flapping periods [40]. Thus, vortex
dynamics among LEVs and other vortices are critical for aerodynamic performance. However, in the
case of corrugated wings, it is challenging to determine whether the generated vortex motion is due
to the wing structure or wing motion. Therefore, to discuss the dynamic aspects of the performance
improvement of a corrugated wing, it is necessary to simplify the wing motion.

The purpose of this study was to understand the relationship between a corrugated wing structure
and vortex motions. For this purpose, we considered a two-dimensional corrugated wing model.
Furthermore, we simplified the wing motion and focused on unsteady lift generation by translating
from rest. Translational motion is a principal component of wing motion, in addition to pitching
and rotation [1,41]. This analysis expands our knowledge of the nonstationary mechanisms that
dragonflies use during flight [11]. While our assumptions may exclude certain aspects of three-
dimensionality and the complexity of real flapping motion, they still capture crucial vortex dynamics
associated with corrugation. These dynamics include vortex generation from sharp corrugation
edges, the leading edge, and the trailing edge. This aspect has been somewhat overlooked in
previous research. The typical vortex interactions and lift generation discussed in this paper will
prove valuable when investigating specific aspects of dragonfly wing structure and flapping motion.
A similar approach has been applied to analyze flat wings [11,42–44]; however, this approach has
not been performed intensively for corrugated wings. We previously investigated the aerodynamic
properties of rapidly departing corrugated wings and found that λ-vortex collapse may improve
the wing performance [35]. In the present study, we conducted a more detailed investigation. The
corrugated wing exhibited a larger lift than the flat wing in the large-AoA regime. Moreover, the lift
generation was closely related to the eruption of the λ vortex. The suppression of eruptions is key
to evaluating and classifying dynamic lift enhancement.

The remainder of this paper is organized as follows. In Sec. II, the simulation method and
its validation are discussed in detail. The results are presented and discussed in Sec. III. The
lift-generation process is divided into two time periods. The vortex interaction stage, in which
vortices grow sufficiently to detach and interact with each other, is discussed with a particular focus
on the effect of the λ vortex. The results are summarized in Sec. IV.

II. METHOD

A. Corrugated wing model

A two-dimensional model of a corrugated wing was constructed using the real-life dragonfly
wing (Aeshna cyanea) (Ref. [30], profile 1). The wing model was based on a cross section of
the wing approximately 30% from the wing base. The structure of the model consists of deeper
corrugated structures on their leading-edge side and less deep (flatter) structures on the trailing-edge
side. This characteristic pattern shares its characteristics among real-life flying insects’ corrugated
wings.

The wing model was approximated using N line segments. The wing model was generated by
adding thickness. We define the set of positions of the vertices and end points as A = {(xk, yk ) | k =
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FIG. 1. Wing model descriptions. (a) Vertices (xk, yk ), adjacent displacement vectors Lk , and angles θk .
(b) Line segments and thickness w of the wing model. (c) Flat wing model (α = 0). (d) Corrugated wing
model (α = 1). (e) Spectral elements around corrugated wing model (φ = 35◦).

1, . . . , N + 1} [Fig. 1(a)]. Subsequently, a set of displacement vectors is defined as B = {Lk | Lk =
(xk+1 − xk, yk+1 − yk ); k = 1, . . . , N}. The core shape of the corrugated wing model is determined
using the set C consisting of the line segment lengths and angles between adjacent displacement vec-
tors, that is, C = {Lk | Lk = |Lk|; k = 1, . . . , N} ∩ {θk+1 | θk+1 = cos−1[〈Lk, Lk+1〉/(LkLk+1)]; k =
1, . . . , N − 1}, where 〈a, b〉 is the inner product of the vectors a and b. We defined θ1 as the angle
between the x axis and L1 [Fig. 1(a)].

After the set C is determined, a family of corrugated wing shapes is characterized by introducing
a shape parameter α; the shape is obtained by replacing θk with αθk in the set C. In this study, we
analyzed two cases, α = 0 and 1, which corresponded to a flat plate wing (flat wing) and corrugated
wing, respectively.

The core shape of the corrugated wing model was rescaled isotropically, such that the wing chord
length c is 2, where c = |Lall|, and Lall = ∑N

k=1 Lk . We note that the rescaling does not change the
shape of the corrugation pattern. The thickness w of the wing was determined such that the relative
thickness w/c is 0.04. Both ends of the wing core were semicircular [Fig. 1(b)]. Figures 1(c) and
1(d) show the wing models for α = 0 and 1, respectively. The AoA φ is defined as the angle between
Lall and the x axis, which is parallel to the uniform flow, as shown in Figs. 1(c) and 1(d).

We also discuss the time variations in the pressure and vorticity distributions in a region near
the upper surface. This region is characterized by a distribution along the line segment, which is a
shifted vector of Lall by ξ, where ξ ⊥ Lall [Figs. 1(c) and 1(d)]. The position on the line segment is
defined by s (0 � s � 2); s = 0 and 2 correspond to the leading and trailing edges when ξ = (0, 0),
respectively. The amount of shift |ξ| and s are nondimensionalized by the wing chord length, that is,
ξ ∗ = |ξ|

c , s∗ = s
c . According to our definition, ξ ∗ = 0.02 coincides with the upper surface of the flat

wing model (α = 0).
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FIG. 2. Convergence of calculations for corrugated wing (α = 1): (a) CL (1, 20◦; t∗) and (b) CL (1, 35◦; t∗).

B. Numerical simulation

The dimensionless two-dimensional incompressible Navier-Stokes equations

∂u
∂t

+ (u · ∇)u = 1

ρ
∇p + ν
u, ∇ · u = 0, (1)

were used to calculate the flow, where u = (u, v) is the velocity, p is the pressure, ρ is the air
density, and ν is the kinematic viscosity. For the numerical calculations, we used the spectral
element method, in which the computational domain was divided into a set of elements, and the
physical quantities in each element were independently represented by a polynomial function with
C0 continuity across element boundaries [45]. As a result, the spectral element method balanced
the exponential (spectral) convergence of errors associated with global collocation methods such as
pseudospectral methods with the geometric flexibility of traditional low-order finite element meth-
ods [46]. The computational solver Semtex [46] was used to calculate Eq. (1). The computational
domain was [−30, 30] × [−30, 30], and the center of the wing model was placed at (0,0) [Fig. 1(c)].

The boundary conditions of the outer sides of the computational domain, except for the right side
(x = 30,−30 � y � 30), were set as the inflow, with u = U (t∗), where U (t∗) = (0, 0) (t∗ < 0)
and U (t∗) = (0, 0) (t∗ > 0). We note that the acceleration of flow is infinite at t∗ = 0. The robust
outflow conditions proposed in Ref. [47] with a smoothness parameter of 0.1 were applied to the
right side. In this study, we set ν = 5 × 10−4 such that the Reynolds number was Re = 4000, based
on the chord length c. At the Reynolds number Re = 1500, 4000, the qualitative trends remain the
same [35]. We set ρ = 1, but the value of ρ does not give any differences on the nondimensionalized
results. The time step 
t was set to 4.0 × 10−5, and the calculations were performed in the range
0 � t∗ � 4, where t∗ is dimensionless time, t∗ = |U |t/c.

Figure 1(e) shows the spectral elements around the corrugated wing model (φ = 35◦). The total
number of spectral elements, N , was 2960, and each spectral element was discretized by Np × Np

meshes [46]. Therefore, Np is the number of points along the edge of each element. As Np increases,
the total number of meshes increases.

The calculations were verified for the corrugated wing model (α = 1) at φ = 20◦ and 35◦. The
time series of the lift coefficient CL(α, φ, t∗) = L/[(1/2)ρc|U |2], where L represents the lift, is
shown in Figs. 2(a) and 2(b). A convergence is demonstrated for Np with values of 7, 15, 19, and
21 using 
t = 4.0 × 105. Similarly, convergence is observed for 
t with values of 1.0 × 10−4,
4.0 × 10−4, and 3.0 × 10−4 when Np = 19. The time-series data obtained with higher values of Np

and smaller 
t exhibited good agreement with each other.
To characterize the time ranges, we defined the maximum and mean lift coefficients in the time

interval [a, b], CL,max(α, φ) and CL,mean(α, φ), respectively, as follows:

CL,max(α, φ) = max
a�t�b

CL(α, φ; t ), CL,mean(α, φ) = 1

b − a

∫ b

a
CL(α, φ; t )dt, (2)
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TABLE I. Convergence of CL and CL,mean for the corrugated wing (α = 1) when 
t = 4.0 × 10−5.

φ = 20◦ φ = 35◦

Np CL,mean ‖CL (1, φ)‖(Np,21) CL,mean ‖CL (1, φ)‖(Np,21)

21 1.5880 – 2.2147 –
19 1.5877 5.595 × 10−4 2.2151 2.809 × 10−3

15 1.5869 3.059 × 10−3 2.2173 1.591 × 10−2

7 1.7128 1.443 × 10−1 2.1901 9.703 × 10−2

and similar definitions for CD,mean. The relative difference in CL,max between the corrugated wing
and the flat wing, 
max, is defined as follows:


max(φ) = CL,max(1, φ) − CL,max(0, φ)

CL,max(0, φ)
, (3)

and similar definition for 
mean(φ).
These values were used to characterize the aerodynamic wing performance, and we discussed

the relationship between these values and the flow field, that is, the pressure field, vorticity field,
and flow speed field. The pressure was evaluated using the pressure coefficient, Cp = p−p∞

(1/2)ρc|U |2 ,
where p is the pressure and p∞ is the inflow pressure (at positions x = −30). The flow speed was
normalized by a uniform flow, u∗ = |u|

|U | , where |u| is the flow speed.
The quantitative verification of the time averages of CL,CL,mean [Eq. (2)] for the corrugated wing

(α = 1) is shown in Table I. Herein, the time interval (a, b) = (0.5, 3.25), corresponding to the
intervals in Sec. III, was chosen. The convergence of CL(1, φ; t ) for Np was also quantitatively

confirmed using the norm ‖A‖(N1,N2 ) = 1
b−a

∫ b
a |A(N1 )(t ) − A(N2 )(t )|dt , (a, b) = (0.5, 3.25), where

A(N ) represents the calculation under the condition Np = N . The case A = CL(1, φ) is listed in
Table I. Clear convergence of CL and CL,mean is observed for Np in both cases of φ = 20◦ and 35◦.

In the following sections, (Np,
t ) = (19, 4.0 × 10−5) was used for all calculations.
Lastly, we compared our simulation scheme with the immersed boundary method [44] under

the following conditions: α = 0 (flag wing), φ = 30◦ for two Reynolds numbers, Re = 500 and
1000. We have taken the value of CL,max. In the case of Re = 1000, CL,max � 2.28 in Ref. [44]
(scanned value) and CL,max = 2.36 in our calculation. For Re = 500, CL,max � 2.26 in Ref. [44] and
CL,max = 2.33 in our calculation. Both values agree reasonably well.

III. RESULT

The aerodynamic wing performance was evaluated using the lift coefficient CL(α, φ, t∗) and
drag coefficient CD(α, φ, t∗) = D/[(1/2)ρc|U |2], where D is the drag. Figures 3(a) and 3(b) show
CL(α, φ, t∗) in the range 20◦ � φ � 40◦ for the flat wing (α = 0) and corrugated (α = 1) wing,
respectively.

In the initial range (0 < t∗ � 0.50), CL(α, φ, t∗) shows a rapid change owing to the singularity
of motion over a short period [inset of Fig. 3(a)]. Subsequently, the growth of the vortex separated
from the leading and trailing edges, as well as the vertices of the corrugated structure, is observed.
The LEV on the corrugated wing leaves the first V-shaped region and begins its motion on the
wing around t∗ = 0.5. Figures 4(a) and 4(b) show the normalized vorticity fields of the flat and
corrugated wings, respectively (φ = 35◦ at t∗ = 0.50). Herein, the vorticity ωz = ∂v/∂x − ∂u/∂y
was normalized as ω∗

z = ωzc
|U | .

In the vortex interaction range (0.50 < t∗ < 3.25), CL(α, φ, t∗) exhibited irregular oscillations
for the corrugated wing (α = 1). This range corresponded to the development of the LEV and
secondary vortices generated on the upper wing surface, including vortex breakups and interactions
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FIG. 3. Time series of the lift coefficient, CL (α, φ; t∗) (20◦ < φ < 40◦). (a) Flat wing (α = 0). (b) Corru-
gated wing (α = 1).

among the vortices, before leaving the vortices in the vicinity of the wing. The end of the range
was determined by a decrease in CL(α, 35◦, t∗) [Fig. 3 and Figs. 4(c) and 4(d)]; however, this range
included the maximum lift time for the other cases during computation. We did not extend the range
beyond this, as we were interested in the transient effects before the eventual limit cycle.

The major developments and interactions of the vortices were observed in the vortex interaction
range (0.50 < t∗ < 3.25). Therefore, in the following (a, b) = (0.5, 3.25) in Eqs. (2). When b is
fixed to 3.25, there are no qualitative dependencies on a in the range 0.02 � a � 1.1. When a is

FIG. 4. Normalized vorticity fields for (a) a flat wing (α = 0) for φ = 35◦ at t∗ = 0.50, (b) a corrugated
wing (α = 1) for φ = 35◦ at t∗ = 0.50, (c) a flat wing (α = 0) for φ = 35◦ at t∗ = 3.25, and (d) a corrugated
wing (α = 1) for φ = 35◦ at t∗ = 3.25.
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FIG. 5. (a) CL,max during 0.5 < t∗ < 3.25 for the flat wing (blue, α = 0) and corrugated wing (red, α = 1).
(b) CL,mean during 0.5 < t∗ < 3.25 for the flat wing (blue, α = 0) and corrugated wing (red, α = 1). (c) 
max

and 
mean during 0.5 < t∗ < 3.25. Vertical axis is in a percentage form. The dashed lines indicate 0% and 5%.
(d) CD,mean during 0.5 < t∗ < 3.25 for the flat wing (blue, α = 0) and corrugated wing (red, α = 1).

fixed to 0.5, there is also no significant dependence on b in the range 2.5 � b � 4.0. Thus, the
results presented below are not sensitive to the detailed selection of the time interval.

A. Wing performance

Figures 5(a) and 5(b) show that the values of CL,max and CL,mean for the corrugated wing are
smaller than those of the flat wing when φ < 30◦. However, the values of CL,max and CL,mean for the
corrugated wing are larger than those of the flat wing when φ > 30◦. These graphs suggest that the
lift coefficients of the corrugated and flat wings interchange at a critical value φ � 30◦. In particular,
the performance of the corrugated wing clearly improves when 30◦ < φ (�45◦); the mean value of

max over this range is 0.14 and the mean value of 
mean over this range is 0.05. Because the mean
value of 
mean over the deteriorated case (20◦ �) φ < 30◦ was −0.14, the improvement between
these cases is 22.1% ( 1+0.05

1−0.14 = 122.09).
In Fig. 5(d), CD,mean is plotted against φ. No clear transitions are observed. When φ > 35◦, the

values of CD,mean for the corrugated and flat wings are almost the same, whereas CD,mean for the
corrugated wing is smaller than that for the flat plate wing at φ < 35◦. Therefore, the qualitative
tendency of the lift-to-drag ratio L/D is similar to that of CL. Therefore, we discuss CL as wing
performance hereafter.

The sign of 
max and 
mean can be related to the pressure fields above the wing, as discussed
below. Figure 6 shows the spatiotemporal distributions of the pressure on (t∗, s∗) (0 � t∗ � 4, 0 �
s∗ � 1) for ξ ∗ = 0.15. The parameter ξ ∗ = 0.15 is chosen as a position where the vortex motion can
be observed well without interfering with the model. The leftmost column shows the distributions
of the flat wing cases in φ = 20◦, 25◦, 30◦, 35◦, and 40◦. The five columns on the right show the
distributions for the corrugated wing in 20◦ � φ � 44◦.

When wing performance is improved (30◦ � φ; cf. Fig. 6), low-pressure regions appear near
the leading-edge side periodically with a period of about 0.6. Such periodic regions are absent in
corrugated wings without improved wing performance and in flat wings. Additionally, low-pressure
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FIG. 6. Spatiotemporal distributions of Cp. ξ ∗ = 0.15. s∗ axis and t∗ axis are the horizontal and vertical
axes, respectively.
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FIG. 7. (a) Time series of lift coefficient (blue, flat wing (α = 0); red, corrugated wing (α = 1); φ = 35◦).
(b) Snapshots of the pressure field around the wings at t∗ = t∗

max.

regions appear periodically on the trailing-edge side (0.5 � s∗) during 2 < t∗ < 3.25. This trend is
also observed for ξ ∗ = 0.2 (data not shown); it is insensitive to ξ ∗.

B. Lift enhancement case: Instantaneous pressure and flow field

We selected the case φ = 35◦ as the typical case for the improvement of corrugated wing
performance because the values of CL,max, and CL,mean were similar for 33◦ � φ � 43◦ [Figs. 5(a)
and 5(b)]. Therefore, the vortex dynamics described below can be considered a typical mechanism
of dynamic lift enhancement.

Figure 7(a) shows the lift coefficients CL(α, 35◦; t∗) for the flat wing (α = 0) and corrugated wing
(α = 1). A single maximum is recorded at t∗ � 1.89 for the flat wing, whereas multiple maxima
are recorded for the corrugated wing owing to an oscillation around the curve of CL(0, 35◦; t∗)
[Fig. 7(a)]. The oscillations of CL(1, 35◦; t∗) suggest a complex interaction between the vortices
and the wing. For the following discussion, three major maxima, A, B, and C, are designated for
CL(1, 35◦; t∗). t∗

max is defined as the time that yields the greatest value of CL(α, 35◦; t∗), t∗
max =

1.89 for the flat wing (α = 0), and t∗
max = 2.21 for the corrugated wing (α = 1 corresponding to

maximum B).
Figure 7(b) shows the pressure fields at t∗ = t∗

max. On the upper surface of the wing, the low-
pressure regions of the corrugated wing are distributed over a wider range than those of the flat
wing (regions where Cp � − 24

11 are indicated by thick black lines). On the lower surface of the
wing, the corrugated wing has a wider high-pressure region than the flat wing, which is similar to
the initial range. Similar pressure distributions were observed at maxima A and C (data not shown).

C. Vortex dynamics of lift generation: Role of the λ vortex

The key vortex dynamics for the improving wing performance is as follows. Figure 8(a) shows
the vorticity fields around a flat wing (α = 0). Two snapshots at t = 1.00 and 1.70 are selected to
explain the vortex dynamics before t = tmax. At t = 1.00, two vortices with negative signs were
formed from the leading edge (labeled 1 and 2), and a secondary vortex with a positive sign was
sandwiched between them, as indicated by the arrow. The secondary vortex is called a λ vortex
[1,11,34].

Vortex 1 continues to grow by feeding a vorticity-containing mass [34] as the value of CL

continues to increase until CL records the maximum. During this period, these three vortices develop
without changing their relative configurations, moving the center of vortex 1 away from the wing.
Concurrently, the stagnation point owing to the flow pushing on the surface of the wing slides
downstream to approximately reach the trailing edge. This result is consistent with those of previous
studies [1,34]. In terms of pressure, the low-pressure region at the center of vortex 1 moved away
from the wing. Consequently, the lift-generation process is monotonic, and the (local) maximum
occurs only once in the vortex interaction range.
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FIG. 8. Snapshots of the normalized vorticity fields (φ = 35◦) for (a) the flat plate wing (t∗ = 1.00, t∗ =
1.70, and t∗ = tmax) and (b) the corrugated wing (t∗ = 1.00, t∗ = 1.70, and t∗ = tmax).

However, the behavior of the λ vortex on the corrugated wing is significantly different from that
of the flat wing because of the irregular surface structure; that is, the λ vortex collapses, splits into
several smaller vortices owing to the corrugated structures, and gets stuck in the V-shaped regions of
the wing [Fig. 8(b), t∗ = 1.70, indicated by arrows]. Consequently, the λ vortex behavior replaces
the unsteady vortex dynamics that characterize insect flight mechanisms, as described below.

Figure 8(b) shows the vorticity field around the corrugated wing (α = 1). At t∗ = 1.00, two
vortices with negative signs are formed near the leading edge (labeled 1 and 2). These vortices were
originally separated from the leading edge as in the case of a flat wing (α = 0). Here, vortex 1 is
detached from the vortex sheet connected to the leading edge, as is vortex 2 soon after t∗ = 1.70.
Therefore, vortices 1 and 2 act as independent vortices, which is a major difference from the case
of the flat wing. Consequently, the relative positions of the vortices at t∗ = tmax are significantly
different from that in the case of the flat wing [Fig. 8(b)].

Consequently, vortex 2, which is nearest to vortex 1, advects vortex 1 downward to the wing
surface. Unlike in the case of the flat wing, the λ vortex does not contribute to the motion of vortex
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FIG. 9. Typical snapshots of the normalized vorticity fields around the corrugated wing (α = 1, φ = 20◦):
(a) t∗ = 2.15, (b) t∗ = 2.45, and (c) t∗ = 2.81 = t∗

max.

1 owing to the collapse. The proximity of vortex 1 results in a wider high-pressure region at t∗ = t∗
max

(maximum B) [Fig. 8(b); cf. Fig. 7(b) for the pressure field].
We selected the case φ = 20◦ as the typical case for the nonimprovement of corrugated wing

performance because the values of 
mean were similar for 20◦ � φ � 28◦ [Fig. 5(c)]. Snapshots
of the vorticity field, in this case, are compared with the case φ = 35◦ (Fig. 8), where wing
performance is improved. When wing performance is not improved (φ � 30◦), the λ vortex grows
on the upper surface of the wing [Fig. 9(a)]. The λ vortex then stretches to interfere with the larger
LEV, preventing it from being pulled to the wing [Figs. 9(b) and 9(c)].

In both cases, with and without an improvement in the performance of the corrugated wing, the
vortex dynamics explained above were common. Figure 10 shows the spatiotemporal distribution
of vorticity on (t∗, s∗) (0 � t∗ � 4, 0 � s∗ � 1) for ξ ∗ = 0.15. The leftmost column shows the
distributions for the flat wing cases at φ = 20◦, 25◦, 30◦, 35◦, and 40◦. The remaining five columns
show the same for the corrugated wing at 20◦ � φ � 44◦.

The eruption of the λ vortex corresponds to a positively signed vortex recorded near t∗ = 2,
s∗ = 0.25 (cf. arrow in φ = 20◦ in Fig. 10). Subsequently, the eruption causes the vortex to move
toward the trailing edge with time (cf. Fig. 9). Therefore, the λ vortex expands from a certain time
when viewed on the s∗ axis, with vorticity of positive sign being recorded. In addition to this,
because of the background flow, the vorticity of positive sign moves in a positive direction on the s∗
axis over time. To quantify the vortex eruption, a vorticity field satisfying s∗ > 0.25, 1.5 < t∗ < 2.5,
and ω∗

z � 20 was extracted to perform linear fitting using the least-squares method. For example,
the extracted regions (magenta) and fitted lines for the corrugated wing at φ = 20◦ and 35◦ are
shown in Figs. 11(a) and 11(b), respectively. This method allowed detecting stretched vortices. The
mean squared error (MSE) of the fitting and slope of the regression line are plotted in Fig. 11(c).

In the case of no improvement in the wing performance [Fig. 11(c), red circle], the slope is
concentrated around 1 and the MSE is small and localized. This implies that the vortex with a
positive sign moves to the trailing edge, corresponding to a λ vortex eruption. When the wing
performance is improved [Fig. 11(c), green circles], the slope is small or the variation is large, and
the result depends on φ. No clear λ-vortex eruption is identified.

For the flat wing [Fig. 11(c), blue cross), the slope is concentrated in a range larger than 1.
This also indicates that a vortex with a positive sign has moved to the trailing edge in that region,
corresponding to a λ-vortex eruption.

For corrugated wings with 30◦ � φ, vortices with negative signs are periodically generated at
the leading-edge side, as shown in Fig. 10. This corresponds to the pressure-field results shown in
Fig. 6. This trend is also observed for ξ ∗ = 0.1; it is insensitive to ξ ∗.

D. Mean behavior

In this section, we focus on the mean flow behavior to discuss the lift enhancement mechanism
of the corrugated wing over the time interval of the vortex interaction range. We compared the
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FIG. 10. Spatiotemporal distributions of the vorticity field. ξ ∗ = 0.15. s∗ axis and t∗ axis are the horizontal
and vertical axes, respectively.
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FIG. 11. Extraction of λ vortex eruptions. (a) The corrugated wing (α = 1, φ = 20◦). (b) The corrugated
wing (α = 1, φ = 35◦). (c) Results of linear regression for the distribution of the λ vortex. Phase diagram of
slope and mean squared error.

following two cases: φ = 35◦ for the lift enhancement, and φ = 20◦ when the lift is not enhanced.
The mean pressure and vortex fields are shown in Fig. 12 (case φ = 35◦) and Fig. 13 (case φ = 20◦).
For the discussion below, we define the following two regions: the region on the upper side near the
leading edge (region 1) and that of the rest of the wing [region 2; insets of Figs. 12(b) and 13(b)].
Region 1 contains two V-shaped regions and the boundary is defined by (x5, y5).

We discuss the behaviors in regions 1 and 2 separately. In region 1, the negative-pressure region
on the corrugated wing was wider than that on the flat plate when φ = 35◦ [Figs. 12(a) and 12(b);
for example, the region where Cp � − 24

11 ]. This negative-pressure region corresponded to a round
vortex region with a positive sign stuck in the V-shaped region [Fig. 12(d)], which was caused by
the collapse of the λ vortex. The details are presented in Sec. III E. However, for the case φ = 20◦,
the negative-pressure distributions for both wings were similar in this region [Figs. 13(a) and 13(b)].
The stronger negative-pressure region (where Cp � − 24

11 ) did not cover the wing surface [Fig. 13(b)]
because the round vortex was smaller [Fig. 13(d), arrow].

In region 2, the pressure distributions on both wings were similar for φ = 35◦ [Figs. 12(a) and
12(b)]. The vorticity distribution formed a round shape for the corrugated wing, and the LEV
remained in this region for a certain time interval [Fig. 12(d)]. In contrast, the vorticity region for
the flat plate wing was elongated as a result of LEV development in a similar manner [Fig. 12(c)].

As for φ = 20◦, the negative-pressure region on the flat plate wing was wider than that on the
corrugated wing [Figs. 13(a) and 13(b)], which was consistent with the fact that the value of 
mean

was negative [cf. Fig. 5(c)]. For a corrugated wing, the round vorticity region observed in the case
φ = 35◦ shifted to the leading-edge side, and no distinct vorticity region was observed in this region
[Fig. 13(d)], which explained the narrow negative-pressure region [Fig. 13(b)]. In contrast, the
vorticity region for the flat plate was relatively close to the wing surface, and the negative-pressure
region was maintained [Fig. 13(a)].

In summary, the mean lift enhancement was analyzed by focusing on these two regions. On the
lower surface of the wing, the flow was almost steady and the “profiled wing” image was valid for all
the investigated φs, although previous studies have been limited to smaller AoA [19,21]. However,
on the upper surface, vortex dynamics played a decisive role in evaluating lift generation. When
the corrugated wing generated a larger lift, the LEV remained near the wing, which required the
elimination of interference by the λ vortex. The corrugation broke the λ vortex to become stuck in
V-shaped regions. However, the detailed dynamics near the leading edge require further discussion,
as discussed in the following section.
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FIG. 12. Mean pressure fields around (a) the flat wing (α = 0, φ = 35◦) and (b) the corrugated wing
(α = 1, φ = 35◦), and the definition of the region around the corrugated wing model for understanding the
flow characteristics. Mean normalized vorticity fields around (c) the flat wing (α = 0, φ = 35◦) and (d) the
corrugated wing (α = 1, φ = 35◦).

E. Vortex dynamics near the leading edge: How the low-pressure region is generated

In this section, we explain the generation of mean low pressure in the V-shaped region due to the
λ vortex collapse and LEV in the corrugated wing [Fig. 12(b)].

Let us compare the position of the low-pressure region at t = t∗
max [Figs. 7(b) and 7(c)] and in

the mean fields [Figs. 12(a) and 12(b)]. On the upper surface of the wing, the corrugated wing has a
strong negative-pressure area in the first V-shaped region counted from the leading edge [Fig. 12(b)].
This low-pressure area does not form in the second V-shaped region [Fig. 12(a)]. However, for the
flat wing, a strong negative-pressure area is present at a certain distance from the leading edge.
In both cases, the negative-pressure region on the wing owing to the proximity of the vortex [as
discussed in Sec. III B; Fig. 7(b)] did not appear in the mean field [Fig. 12(b)]. In contrast, the
negative-pressure region in the first V-shaped region remains a snapshot when the maximum lift is
recorded [Figs. 7(b) and 8].

Figure 14 shows the flow fields for a corrugated wing (α = 1) at t∗ = 1.80 and 2.15. These
particular times are chosen to evaluate wing performance near the leading edge in terms of the
mean flow field such that the two typical vortex dynamics explained below are clearly visible.

Figures 14(a) and 14(c) show the pressure and vorticity fields at t∗ = 1.80, respectively. A vortex
with a negative sign is formed from the leading edge, and a secondary vortex with a positive sign,
generated by the collapse of the λ vortex, is formed between the wing and the vortex [Fig. 14(c),
indicated by the arrow]. Accordingly, a negative-pressure region is formed in the first V-shaped
region [Fig. 14(a), indicated by the arrow].
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FIG. 13. Mean pressure fields around (a) the flat wing (α = 0, φ = 20◦) and (b) the corrugated wing
(α = 1, φ = 20◦), and the definition of the region around the corrugated wing model for understanding the
flow characteristics. Mean normalized vorticity fields around (c) the flat wing (α = 0, φ = 20◦) and (d) the
corrugated wing (α = 1, φ = 20◦).

Figures 14(b) and 14(d) show the pressure and vorticity, respectively, at t∗ = 2.15. Here, a vortex
with a positive sign is squashed [Fig. 14(d)]. Accordingly, the squashed region corresponds to the
low-speed region. A vortex with a positive sign in the leading-edge concavity forms a dead-water
region and is transmitted, and the negative pressure created by the LEV acts on the wing surface
[Fig. 14(b)].

As described above, the dynamics in the first V-shaped region is not stationary, but dynamic.
Nonetheless, a mean low-pressure region is generated because both round vortices exhibit positive
and negative signs, and they contribute to the low-pressure region. The periodic generation of
vortices with both signs is also observed in Figs. 6 and 10. This process persists after time averaging,
as shown in Fig. 12.

IV. CONCLUDING REMARKS

In this study, the flow around a two-dimensional corrugated wing was analyzed using direct
numerical calculations at Re = 4000, and the wing performance was compared with that of a flat
wing. The performance of the corrugated wing was better when the AoA was greater than 30◦.

The uneven structure of the corrugated wing generates an unsteady lift owing to complex flow
structures and vortex motions. Herein, we discuss several lift enhancement mechanisms owing to
the uneven structure of a single corrugated wing model of a dragonfly.

The first is the pressure reduction on the upper side of the corrugated wing owing to the
interactions of the vortices detached from the leading edge. The detachment and formation of
vortices result from the collapse of the λ vortex.
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FIG. 14. Typical snapshots of the flow field near the leading edge of the corrugated wing (α = 1, φ = 35◦).
Pressure fields at (a) t∗ = 1.80 and (b) t∗ = 2.15. Vorticity fields at (c) t∗ = 1.80 and (d) t∗ = 2.15.

The second is the dynamic generation of a mean low-pressure region in the V-shaped structure
near the leading edge on the upper side of the corrugated wing. Here, the collapsed λ vortices and
LEV stuck in the V-shaped region near the leading edge form a negative-pressure region, thereby
generating an averaged negative-pressure area. To the best of our knowledge, these mechanisms are
dynamic and have not been reported elsewhere. However, the explanation of the detailed dynamics,
including the period of the successive process, remains for a future work.

We have proposed some of the characteristic dynamics for the lift enhancement of the corrugated
wing based on the simplified corrugated wing and wing motion, because in a realistic situation
of dragonfly’s flapping wing, both the wing-shape details and the vortex motion are too complex
to understand. Our simplifications discard information intrinsic to the three-dimensionality, the
detailed flapping motion. Nevertheless, we believe that the proposed dynamics will be useful when
tackling more realistic models of a dragonfly’s corrugated wing, because they are based on the
fundamental dynamics related to the leading-edge vortex and uneven structures.

Such mechanisms can be used for novel wing shape designs, particularly in the low-Reynolds-
number regime corresponding to insect flight. This is similar to the passive drag reduction of
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turbulent flow; the drag can be reduced by approximately 8% by simply changing the surface shape
[48]. However, for further understanding, the relationship between wing shape and aerodynamic
performance should be studied in more detail. These mechanisms are used to analyze various
corrugation patterns and flows (for example, different Re). The authors also studied an inverted
corrugated wing model to obtain similar results [35]. Additional details will be reported elsewhere.

Additionally, the dependence on the Reynolds number is important. We have reported that the
qualitative trends remain broadly the same at Re = 1500 and 4000 [35]. However, as the Reynolds
number decreases, the vortex motion may differ from that shown here because of the viscous effects.
Further details will be reported elsewhere.

In this study, we considered two-dimensional models. However, this study focused on the
aerodynamics of insect flight, in which the flow is typically three dimensional. If these results
are expanded to a three-dimensional system, we expect to gain more practical knowledge for
understanding insect flight and its application in the industry. Investigations in three-dimensional
space will be the subject of future research. We can gain a clearer understanding by resolving these
issues.
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