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Measuring scale-dependent shape anisotropy by coarse-graining:
Application to inhomogeneous Rayleigh-Taylor turbulence
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We generalize the “filtering spectrum” to probe scales along different directions by
spatial coarse-graining. This multidimensional filtering spectrum quantifies the spectral
content of flows that are not necessarily homogeneous. From multidimensional spectral
information, we propose a simple metric for shape anisotropy at various scales. The
method is applied to simulations of two-dimensional (2D) and 3D Rayleigh-Taylor (RT)
turbulence, which is inhomogeneous and anisotropic. We show that 3D RT has clear shape
anisotropy at large scales with approximately 4:3 vertical to horizontal aspect ratio but
tends toward isotropy at small scales as expected. In sharp contrast, we find that RT in
2D simulations, which are still the main modeling framework for many applications, is
isotropic at large scales and its shape anisotropy increases at smaller scales where structures
tend to be horizontally elongated. While this may be surprising, it is consistent with
recent results that large-scale isotropy in 2D RT is due to the generation of a large-scale
overturning circulation via an upscale cascade, while small-scale anisotropy is due to the
stable stratification resultant from such overturning and the inefficient mixing in 2D.

DOI: 10.1103/PhysRevFluids.8.114601

I. INTRODUCTION

Flows encountered in nature or engineering are often anisotropic. Anisotropy can arise from the
driving mechanisms, boundary conditions, or body forces that break rotational symmetry such as
those due to gravity, rotation, or magnetic fields. Examples range from the motion of polymer fluids
[1,2] and quantum superfluids [3,4] to flows in geophysics [5–9] and astrophysics [10–13], including
free shear flows such as jets and plumes [14] and bounded flows such as in a channel [15,16].

In this work, we are concerned with shape anisotropy and not with anisotropy due to the vector
components of a flow’s velocity. To distinguish the two notions of anisotropy, we shall call the latter
vector anisotropy. In the turbulence literature, these two notions of anisotropy are related to so-called
directional and polarization anisotropy, respectively [17–21]. We avoid this terminology since it is
suggestive of wave phenomena. Here we are motivated by more general flow structures that may be
spatially localized. Shape anisotropy and vector anisotropy are often correlated, although the former
can arise in scalar fields such as density or temperature. Shape anisotropy of the velocity field may
be diagnosed for each velocity component separately or by analyzing the flow’s kinetic energy (KE)
as we do below.

In canonical turbulence that may be described by Kolmogorov’s theory [22], any anisotropy
present at the large scales is expected to decrease at smaller scales at sufficiently high Reynolds

*dongxiaozhao@sjtu.edu.cn

2469-990X/2023/8(11)/114601(38) 114601-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6417-2440
https://orcid.org/0000-0003-3516-3697
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.114601&domain=pdf&date_stamp=2023-11-07
https://doi.org/10.1103/PhysRevFluids.8.114601


DONGXIAO ZHAO AND HUSSEIN ALUIE

numbers, where the flow is statistically isotropic [23]. However, this is not always the case, such as
in magnetohydrodynamic turbulence [24–27] where anisotropy is expected to be more pronounced
at smaller scales. For the objective testing of turbulence phenomenologies, and for understanding
and modeling complex flows such as those mentioned above, the community has relied on a variety
of metrics that quantify anisotropy at different scales.

The choice of anisotropy metrics depends on the scales of interest. Bulk turbulence (single-
point) anisotropy is traditionally quantified using invariants of the Reynolds stress tensor
[9,28–30]. At the smallest scales, anisotropy is often measured from the components of gradients
[31–33]. At intermediate (possibly inertial) scales, anisotropy is often characterized using two-point
statistics such as autocorrelation functions, Fourier spectra, or second-order structure functions
[20,21,32,34–43]. The power-law scaling of wavelet spectra has also been used to gauge anisotropy
[13,44]. Our motivation here is to quantify anisotropy over all scales and in flows that may be
inhomogeneous.

Fourier analysis is fraught with complications when applied to inhomogeneous fields [45].
Afterall, Fourier modes are not an eigenbasis for arbitrary domains and boundary conditions [46,47].
Measuring the spectrum via a Fourier transform of the autocorrelation function, sometimes known
as the Wiener-Khinchin theorem [46], is not justified in the presence of boundaries or if the field
is statistically inhomogeneous such as with a spatially varying mean or autocorrelation. In practical
applications, Fourier analysis of inhomogeneous fields (or nonstationary temporal signals) is often
performed [48,49] after removing the ensemble-mean [50], detrending [51,52], and/or tapering
(i.e., windowing) [53,54]. Doing so removes potentially important components of the dynamics.
An emblematic example is the global oceanic circulation, for which it had been asserted since the
advent of global satellite altimetry in the 1990s that its wave-number spectrum’s peak is at scales
O(100) km based on detrended and windowed Fourier analysis (e.g., Refs. [55–57]). It was recently
shown [58,59] that this is untrue and that the spectral peak is in fact at O(104) km. The spectral
peak and the existence of a power-law scaling over scales >103 km in the oceanic circulation could
not have been detected from windowed Fourier analysis because all scales larger than the window
size (typically taken to be a few hundred kilometers to avoid continental boundaries and curvature
effects) are implicitly removed. These limitations of Fourier analysis exist for many realistic flows,
including the Rayleigh-Taylor flows we consider here.

When removing the mean flow before using Fourier analysis, a starting assumption is that
identifying the statistical ensemble in an application is well posed. However, the choice of an
ensemble is seldom unique and can have important implications on the conclusions as discussed in
the case of thermal convection by Kraichnan [60]. For Earth systems applications, such in the case
of oceanic or atmospheric observations, we only have a single realization. Appealing to ergodicity
with respect to time to treat the temporal record as an ensemble is formally unjustified (although it
is often employed) due to a lack of statistical stationarity: The system is variable over a wide range
of timescales. Even if we overlook the difficulties in choosing an ensemble, and if fluctuations
about the ensemble-mean flow were assumed to be statistically homogeneous, then scales of the
ensemble-mean flow itself would remain inaccessible [61]. Often there is a lack of scale separation
between the mean and fluctuating flow components. In such systems, the ensemble-mean flow has
significant spatial (or temporal) variations at the same scales populated by the fluctuating field [59].
This necessitates a self-consistent scale analysis of both the mean and fluctuating contributions to
the full nonlinear dynamics.

Another tool for analyzing scales is the second-order structure function. It has been a valuable
phenomenological tool in turbulence theory, but it requires statistical averaging and is not a formal
scale decomposition of a field [62]. Unlike a spectrum, which when integrated yields total energy
(Parseval’s relation), a second-order structure function, S2(r), yields total energy in the limit1 of

1While the sum of the second-order structure function and the autocorrelation yields total energy, the
sum lacks scale information and is not a scale decomposition. If Fourier analysis is justified, such as for
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length scales r → 0 (e.g., Ref. [64]). At any scale r, S2(r) can have significant contributions
from all scales larger or smaller than r. This is unsurprising since for a field such as velocity
u(x), S2(r) = 〈|δu(x; r)|2〉 at scale r is constructed from increments δu(x; r) = u(x + r) − u(x) of
separation r before spatial averaging, 〈. . . 〉. Increments δu(r) can have contributions from all scales
larger or smaller than r depending on the regularity (or smoothness) of the field u(x) [65–67] (see
discussion following Eq. (4) in Ref. [68]). It is known that the power-law scaling of a second-order
structure function, S2(r) ∼ rα , is related to that of the Fourier spectrum, E (k) ∼ k−α−1, but only
if α < 2, i.e., the scaling relation breaks down if E (k) is steeper than k−3 as a function of wave
number k (e.g., Refs. [63,69]). Perhaps less well known is that the scaling relation between S2(r)
and E (k) also breaks down when α < 0, i.e., E (k) is shallower than k−1 [65,68,70]. Figures 24
and 25 in the Appendix provide a demonstration of these facts. Another obvious limitation, shared
with Fourier analysis, is that structure functions do not provide spatial information about various
scales.

Of relevance to results herein are KE spectra of variable density (VD) flows [71,72], character-
ized by significant variations in mass density ρ. When using Fourier analysis, structure functions, or
wavelets to analyze KE, ρ|u|2/2, as a function of scale, KE is often treated as quadratic to ensure the
spectrum (i.e., power spectral density) is positive. For example, the Fourier transform of an auxiliary
field w ≡ √

ρu is performed and then squared such that the spectrum is positive and integrates to
ρ|u|2/2 [73,74]. This approach, while being mathematically sound on its own, creates difficulties
when analyzing the scale-dependent equations governing such KE spectra as shown in Ref. [75].

Recently, the so-called filtering spectrum was proposed [45] to measure spectral content using
straightforward coarse-graining in physical space, which is closely related to the continuous wavelet
transform [76,77]. This permits its application to inhomogeneous flows with complex boundaries
and allows us to probe scales of both the mean and fluctuating fields concurrently [59]. The approach
has been recently adopted to measure the first global energy spectrum of the oceanic general
circulation [58].

The filtering spectrum can be regarded as a generalization of the Fourier spectrum to inhomo-
geneous fields. The filtering spectrum is an energy-preserving scale decomposition [45] and can
represent the nonquadratic KE content at different scales of VD flows as shown in Ref. [78]. If the
filtering kernel has a sufficient number of vanishing moments, then the filtering spectrum follows
any power-law scaling that the Fourier spectrum may have (assuming Fourier analysis is possible).
In fact, the filtering spectrum converges to the Fourier spectrum when using a kernel with an infinite
number of vanishing moments (e.g., the Dirichlet kernel), which is justified only for homogeneous
fields given the highly nonlocal nature of such kernels in x space (Fig. 15 in the Appendix).

In the appropriate domain, Fourier basis functions satisfy orthogonality, which is a highly prized
property. However, the sum of any finite number of these basis functions2 suffers from significant
spatial nonlocality.3 Such spatial nonlocality is not a concern when working with homogeneous
fields but presents significant challenges when working with inhomogeneous fields such as in
the presence of boundaries (see Fig. 15 and associated discussion in the Appendix). What has
been shown in previous work [45,58,59,78,80] is the possibility of performing a meaningful
scale decomposition of inhomogeneous fields and determine their spectra, satisfying both positive
semidefiniteness and energy conservation, without the need for orthogonality.

homogeneous flows, then it is possible to relate the second-order structure function, S2(r), to the Fourier
spectrum, E (k), but this follows directly from the Wiener-Khinchin relation and involves a weighted average
of E (k) over the entire k space, S2(r) = 2

∫ ∞
0 dk [1 − cos(k r)]E (k) (e.g., Refs. [23,63]).

2An equivalent statement can be made when Fourier modes are continuous.
3Nonlocality of the Dirichlet kernel in x space is a consequence of nonsmoothness of its Fourier transform

(the sharp-spectral cutoff) in k space, which is a consequence of what is sometimes known as the Paley-Wiener
theorem [47,79].
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The filtering spectrum as a method is especially valuable in permitting us to visualize (in physical
space) the flow at different scales in a self-consistent manner [59], along with any associated
anisotropy as we shall see below. A disadvantage of the filtering spectrum compared to the Fourier
spectrum is that it involves smoothing as a function of scale [45]. This is the price paid for
gaining spatially local information at different scales and generalizing the notion of a spectrum
to nonhomogeneous fields. Concurrently exact spatial and scale localization is forbidden by the
uncertainty principle [47,79].

Section II is a brief review of the 1D filtering spectrum proposed in Ref. [45]. In Sec. III, we
generalize the filtering spectrum to multiple dimensions and define simple metrics to quantify scale
anisotropy. In Sec. IV, we demonstrate our approach using illustrative examples and then apply it to
anisotropic inhomogeneous turbulence generated from the Rayleigh-Taylor (RT) instability in 2D
and in 3D. The paper closes with a brief summary and practical comments about the approach’s
usage.

II. ONE-DIMENSIONAL FILTERING SPECTRUM

For any field a(x), a coarse-grained or (low-pass) filtered version of this field, which contains
spatial variations at scales > �, is defined in n-dimensional Euclidean space4 as [65,82–84]

a�(x) =
∫

dnr G�(x − r) a(r). (1)

Kernel G�(r) = �−nG(r/�) is the dilated version of the “parent kernel” G(r), which is normalized.
G�(r) has its main support over a region of diameter �. Operation (1) may be interpreted as a
local space average in a region of size � centered at point x. It is, therefore, a scale decomposition
performed in x space that partitions length scales in the system into large (��), captured by a�, and
small (��), captured by the residual,

a′
� = a − a�. (2)

We assume G� is an even function such that
∫

r G�(r) dnr = 0, which ensures that local averaging
is symmetric and operation (1) can be rewritten as

a�(x) =
∫

dnr G�(r) a(x + r). (3)

Coarse-graining is a very general scale-analysis framework and includes Fourier analysis
(e.g., Refs. [85,86]) and wavelet analysis (e.g., Refs. [87,88]) as special cases with the appropriate
choice of kernel G�. See Ref. [45] for further discussion. Coarse-graining also lays the foundational
framework of large-eddy simulation (LES) [82–84,89,90]. For inhomogeneous flows such as in the
presence of boundaries, it is traditional in LES to filter only along the homogeneous directions
(e.g., Refs. [91,92]). This is to prevent commutation errors that arise when deforming the kernel
to avoid the boundary [93]. However, at least for the purpose of diagnosing scales, it was shown
recently that these considerations are moot if regions beyond boundaries are treated in a manner that
is consistent with the boundary conditions satisfied by the dynamics [59,75,80,94]. We will discuss
this point in greater detail when applying the method to data from Rayleigh-Taylor simulations.

Since spatial coarse-graining allows for extracting spatial information at varying length scales
�, it can be used for calculating the one-dimensional filtering spectrum [45]. As an example, the
filtering spectrum for the velocity field u is

E (k�) = d

dk�

{ |u�(x)|2
2

}
, (4)

4Coarse-graining on curved manifolds is more involved [81].
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where k� = L/� is a “filtering wave number,” L is a characteristic length scale (e.g., domain size), �

is the scale being probed, and {. . . } ≡ (Volume)−1
∫

(. . . )dnr is spatial averaging in n dimensions.
Equation (4) measures the energy density (per wave number) at scale � by varying it and probing
the associated variations in coarse KE, {|u�(x)|2}/2, which is the cumulative spectrum at all scales
larger than �. The main advantage of this method is that it does not rely on Fourier transforms
and, therefore, can be easily applied to nonperiodic or homogeneous data. In a periodic domain,
Fourier and filtering spectra agree if G� has sufficient vanishing moments. In fact, the two spectra
have an explicit relationship expressed by Eq. (16) in Ref. [45]. Another advantage to the filtering
spectrum is its ease of generalization to VD flows [45,78] where KE, ρ|u|2/2, is nonquadratic due
to variations in the mass density field, ρ. For VD flows, such as Rayleigh-Taylor flows considered
in this paper, the KE filtering spectrum is [45]

E (k�) ≡ d

dk�

{
1

2

|ρu�(x)|2
ρ�

}
, (5)

which reduces to Eq. (4) when ρ is constant. Energy spectra based on Fourier and wavelet
transforms, on the other hand, are constrained to quadratic quantities to ensure that the spectrum
is positive while also satisfying Parseval’s relation. Therefore, a Fourier or wavelet decomposition
usually treats kinetic energy as quadratic by transforming the auxillary field

√
ρu, even when this

treatment obscures the inertial-range dynamics [75]. In contrast, the filtering spectrum conserves
energy due to the fundamental theorem of calculus and is not constrained by Parseval’s relation.
Figure 5 in Ref. [78] shows the density, velocity, and kinetic energy filtering spectra of 2D and 3D
RT turbulence obtained with this new approach.

III. MULTIDIMENSIONAL FILTERING SPECTRA AND SCALE ANISOTROPY

While the filtering spectrum in Eqs. (4) and (5) can be applied to anisotropic fields as was done
in Ref. [78], it is a one-dimensional spectrum since it does not distinguish between scales along
different directions. The contribution from the most energetic scale direction dominates the value
of E (k�). In order to distinguish the spectral content in different directions, we generalize the above
definition to multiple dimensions by using anisotropic kernels.

This is most easily done when considering multidimensional filtering kernels that are separable.
For example in 3D with Cartesian coordinates,

G�(r) = G�(rx ) G�(ry) G�(rz ), (6)

where r = (rx, ry, rz ), which is the case for a Gaussian or Boxcar kernel. For separable kernels,
isotropic filtering in Eq. (3) reduces to filtering in each direction separately:

u�(x) =
∫

dr G�(r) u(x + r) =
∫

drx G�(rx )
∫

dry G�(ry)
∫

drz G�(rz ) u(x + r). (7)

Therefore, a natural generalization to anisotropic filtering is

u
� (x) =
∫

drx G�x (rx )
∫

dry G�y (ry)
∫

drz G�z (rz ) u(x + r). (8)

This definition makes it clear how we can probe length scales along different directions by utilizing
a vector of filtering scales, 
� = (�x, �y, �z ). The “cumulative spectrum”

E (k) ≡ 1

2

{
|ρu
�|2

ρ 
�

}
(9)

at filtering wave vector

k = (kx, ky, kz ) ≡ (L/�x, L/�y, L/�z ) (10)
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FIG. 1. Panel (a): Schematic of extracting the multidimensional “filtering spectrum.” Filtering is performed
in physical space to disentangle scales, without resorting to Fourier transforms. Filtering wave numbers
(kx, kz ) = (L/�x, L/�z ) are only a proxy for length scales but may be thought of as Fourier wave numbers
conceptually. The cumulative spectrum E (k1, k2) (shaded in blue) yields the energy content at all scales larger
than �1 in the x direction and larger than �2 in the z direction, such that ∂kz ∂kxE evaluated at (k1, k2) yields
the spectral energy (density) content at exactly those scales (�1, �2). It is a generalization of the traditional
multidimensional Fourier spectrum, 1

2 |̂u|2(k1, k2), and reduces to it when using a sharp-spectral filtering kernel.

(b) Shell (blue) in filtering wave-number space, |k| ∈ [k/
√

2,
√

2k]. It has logarithmic thickness ×2 [86]. Its
centroid (yellow star) based on the distribution of E

nD
(k) within the shell [Kshell (k) in Eq. (13)] gives a measure

of anisotropy at scale � = L/k from its proximity to the diagonal line (dashed orange).

yields the energy content at all scales larger than �i in the ith direction. Here L is a reference
scale common to all directions. Figure 1(a) illustrates the cumulative spectrum in two dimensions,
E (k1, k2), which is shaded in blue and accounts for all energy at filtering wave vectors |kx| < k1 and
|ky| < k2. Note that k in Eq. (10) occupies only the first quadrant, kx, ky, kz � 0. This is because
E (k) in Eq. (9) is invariant under rigid (Euclidean isometry) transformations of the fields ρ(x) and
u(x), which involve a sequence of rotations, translations, and reflections. Phase information, which
may seem lost in the definition of E (k), is easily retrieved from the spatial field 1

2 |ρu
�|2(x)/ρ 
�(x)
in Eq. (9) without spatial averaging, {. . . }.

From E (k), we can quantify the spectral energy density at any scale 
� in n dimensions by defining
the n-dimensional filtering spectrum as

E
nD

(k) ≡ ∂n

∂k1 . . . ∂kn
E (k). (11)

It satisfies energy conservation in a straightforward manner by the fundamental theorem of calculus,

1

2

{ |ρu
�0
|2

ρ 
�0

}
+

∫ ∞

k0

dnk E
nD

(k) = 1

2
{ρ|u|2}, (12)

where 
�0 = (L/k0, L/k0, L/k0) is the largest length scale at which the flow is filtered.

114601-6



MEASURING SCALE-DEPENDENT SHAPE ANISOTROPY BY …

FIG. 2. Anisotropic shapes and their corresponding anisotropy metric AR from Eqs. (14) and (A3).

Figure 1(a) illustrates the motivation for our definition (11) in 2D. The filtering spectrum
E

2D
(k1, k2) at filtering wave vector k = (k1, k2) quantifies the spectral energy density by mea-

suring the cumulative spectrum’s response, ∂kz∂kxE (k1, k2), to concurrent scale variations in all
directions, �kx and �kz, at (k1, k2). Here the filtering scale vector is (�1, �2) = (L/k1, L/k2). The
one-dimensional spectrum E (k�) in Eq. (5) is essentially an integral of E

2D
(k) at all filtering wave

vectors k = (kx, ky) within a thin shell of width �k, |
√

k2
x + k2

y − k�| < �k.

When mass density ρ is constant, E
nD

(k) is a generalization of the traditional Fourier spectrum,
1
2 |̂u|2(k), where û(k) is the Fourier transform of u(x). The filtering spectrum reduces to the Fourier
spectrum when using a sharp-spectral filtering (Dirichlet or Bessel) kernel in Eq. (8). However,
a main advantage of our multidimensional filtering spectrum in Eq. (11) is that it can diagnose
bounded or inhomogeneous flows in a straightforward manner. Moreover, as discussed in Sec. II, it
allows for measuring the spectrum of KE in VD flows while respecting its nonquadratic nature.

A. Scale-dependent metrics for shape anisotropy

The multi-D filtering spectrum allows us to quantify anisotropy as a function of length scale as
follows. For any filtering wave number k associated with length scale �, consider the logarithmic
shell |k| ∈ [k/

√
2,

√
2k] in filtering wave vector space shown in Fig. 1(b). Within the shell, the

normalized “scale-dependent centroid” (or first moment) of E
nD

is

Kshell(k) ≡
⎧⎨⎩

1
k

∫
|k|∈[k/

√
2,

√
2k] dnk k E

nD
(k)

/ ∫
|k|∈[k/

√
2,

√
2k] dnk E

nD
(k) ,

0 if
∫
|k|∈[k/

√
2,

√
2k] dnk E

nD
(k) < εnumeric.

(13)

Integration is performed in the first quadrant of k space. Definition (13) is dimensionless and is zero
if the shell is devoid of energy. We set εnumeric = 10−14 in this work to avoid numerical overflow
errors. When multiplied by wave number, k Kshell(k) is the centroid for the shell’s energy as shown
in Fig. 1(b). Note the shells [k/

√
2,

√
2k] in definition (13) have a width that is constant on a

logarithmic (not linear) scale. This is important to capture spatially localized structures at different
scales, sometimes called a Littlewood-Payley decomposition [86].

The centroid’s distance from the diagonal in Fig. 1(b) is one measure of anisotropy at each k,
which is equivalent to the contrast between different components, K shell

i , of Kshell. A convenient
measure for such contrast is what we call the scale-dependent anisotropy metric (AR) tensor,

ARshell
i j (k) ≡

(
K shell

i

)2 − (
K shell

j

)2(
K shell

i

)2 + (
K shell

j

)2 , for i, j = 1, . . . , n. (14)

If K shell
i = K shell

j = 0, then we define ARshell
i j ≡ 0. For example, ARshell

zx (k) > 0, indicates a dominant
concentration of energy within shell k at small kx and large kz. Therefore, ARshell

zx (k) > 0 indicates
structures that are horizontally elongated (along the x direction) at scale � ∼ k−1 as sketched in
Fig. 2. The converse is also true, where ARshell

zx (k) < 0 indicates vertically elongated structures at
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FIG. 3. Illustrative examples of anisotropic fields. Left panel shows the Gaussian scalar field in Eq. (15).
Right panel shows the magnitude of the Taylor-Green velocity in Eq. (16), where vortices are elongated along
the x direction.

scale � ∼ k−1. The anisotropy metric tensor is antisymmeteric, ARshell
i j = −ARshell

ji , and each of its
components lies within −1 � ARshell

i j � 1. We shall demonstrate these definitions numerically using
simple examples in the following section. In Appendix 2, we present a reduced (and less expensive)
scale analysis based on what we call marginal spectra and discuss their limitations.

IV. NUMERICAL IMPLEMENTATION

In this section, we measure scale anisotropy using illustrative examples as well as data from RT
turbulence simulations in 3D and 2D. RT turbulence is markedly anisotropic and inhomogeneous,
which makes it a good application for our method.

A. Illustrative examples

For illustrative purposes, we consider two examples in a 2D periodic domain: a Gaussian scalar
field and a Taylor-Green velocity field. Defining these in a periodic domain allows us to use a sharp
spectral filtering kernel in Fourier space for comparison. The Gaussian scalar field φ(x, z) is of the
form

φ(x, z) = 1√
2πσx

1√
2πσz

e
− (x−π )2

2σ2
x

− (z−π )2

2σ2
z ,

where (σx, σz ) = (π/32, π/8) and x, z ∈ [0, 2π ]. (15)

This Gaussian field is anisotropic, elongated in the z direction as shown in Fig. 3(a). It populates a
broad band of Fourier wave numbers (see Appendix Fig. 26).

The Taylor-Green velocity field

(ux, uz ) = (pz sin (pxx) cos (pzz),−px cos (pxx) sin (pzz)),

where (px, pz ) = (8, 32) and x, z ∈ [0, 2π ], (16)

is anisotropic and elongated in the x direction as shown in Fig. 3(b). It consists of only a single
Fourier wave vector (px, pz ). Both examples are discretized on a 512 × 512 grid.

1. Gaussian scalar field

Figure 4 demonstrates the filtering spectrum, E
2D

(kx, kz ), and how to quantify anisotropy for the
Gaussian scalar field, φ. The cumulative spectrum, E (kx, kz ), is calculated from Eq. (9) by setting

114601-8
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FIG. 4. Filtering spectra of the Gaussian scalar field [Eq. (15)] using Gaussian filters [Eq. (17)]. (a) The
cumulative spectrum in 2D filtering wave-number space. (b) The 2D filtering spectrum obtained via Eq. (11)
(note the logarithmic color bar). (c) The scale-dependent centroid obtained from integrating E

2D
within a shell

[Eq. (13)]. (d) The anisotropy metric from Eqs. (14).

ρ = 1 and replacing u with φ. In defining filtering wave number, k = L/�, we use the domain size
L = 2π . The filtering kernel in Eq. (8) is itself a normalized Gaussian of the form

G
�(rx, rz ) =
(

6

π�2
x

)1/2

e−6|rx/�x |2
(

6

π�2
z

)1/2

e−6|rz/�z |2 . (17)

Figure 4(a) shows the cumulative spectrum, E (kx, kz ), as a function of filtering wave vector
(kx, kz ) = (L/�x, L/�z ). It is clear from Fig. 4(a) that E (kx, kz ) is asymmetric with respect to the
diagonal line, kx = kz. E (kx, kz ) saturates more quickly with increasing kz than with increasing kx.
Equivalent, albeit more intuitive information is conveyed by the filtering spectrum, E

2D
(kx, kz ), in

Fig. 4(b). It shows that E
2D

(kx, kz ) is asymmetric with respect to the diagonal, kx = kz, with more
weight present at smaller kz (i.e., larger vertical length scales �z ∼ k−1

z ). This is consistent with the
elongated profile of φ along the z direction relative to the x direction. Note that the asymmetry
in Fig. 4(b) is only over an intermediate range of scales. Symmetry seems to be recovered in the
lower-left and upper-right corners of Fig. 4(b), which we shall now discuss.

Symmetry in the lower-left corner of Fig. 4(b) is consistent with isotropy at the largest scales,
comparable to the domain size, where filtering in Eq. (8) approaches a domain average, φ 
� → {φ} as
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FIG. 5. Scale-dependent anisotropy demonstrated through the low-pass (φ�) and high-pass (φ′
�) filtered

field in Eq. (15) [see Fig. 3(a)]. We use an isotropic Gaussian filtering kernel defined in Eq. (17), with �x =
�z = �. Note that φ is isotropic at very large scales and becomes increasingly anisotropic at smaller scales, with
the smallest scales in panel (d) exhibiting the most anisotropy among those shown here. These panels highlight
the advantages of coarse-graining over Fourier space analysis or structure functions.


� → (∞,∞). The spatial mean, {φ}, is uniform and, thus, trivially isotropic. Figure 5 demonstrates
this in physical space, which also highlights the advantages of coarse-graining. It may be helpful
to think of a length-scale decomposition as an operation analogous to removing one’s eyeglasses,
blurring an image isotropically. If the blurring is only slight (small � in filtering kernel G�) as
in Fig. 5(b), then one can still detect any anisotropy present at the large scales. However, such
anisotropy is undetectable if the blurring is severe (� → ∞) as in Fig. 5(a). Figures 5(c) and 5(d)
show how anisotropy of the field φ in Eq. (5) persists at smaller scales, which is explained by simple
analysis in Appendix 9. How can this be reconciled with the seeming symmetry in the upper-right
corner of Fig. 4(b)?

Symmetry in the upper-right corner of Fig. 4(b) is merely due to the finite grid resolution, which
precludes fully resolving shells beyond a certain wave number. Indeed, the closer we approach
the upper-right corner along the diagonal kx = kz, the less of the shell is resolved on either side
of the diagonal. This is related to having isotropic numerical grid cells at the smallest scales. The
analytical (nondiscretized) φ exhibits persistent anisotropy to arbitrarily small scales as explained
in Appendix 9.

Figure 4(c) evaluates centroid components K shell
x (k) and K shell

z (k) from Eq. (13). It shows that
K shell

z � K shell
x over the entire range of k, which implies that the field is elongated along the z
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FIG. 6. Same as in Fig. 4 but filtering is done with a sharp-spectral kernel in Fourier space.

direction at all scales. This is also expressed by the anisotropy metric in Fig. 4(d), where ARshell
zx � 0

at all scales. As we discussed above, at the largest length scales (k → 0), we see that K shell
z ≈ K shell

x

and ARshell
zx ≈ 0, indicating isotropy at very large scales. A similar behavior occurs as k → ∞, but

this is due to numerical resolution limits.
Figure 6 displays similar results as in Fig. 4 but using a sharp spectral filter. This is defined in

Fourier space as

Ŝinc 
kc
(kx, kz ) =

{
1, if |kx| < kc,x and |kz| < kc,z,

0, otherwise,
(18)

which is straightforward to use due the domain’s periodicity in our example. In Eq. (18), 
kc is the
wave-vector filtering cutoff. Ŝinc 
kc

can be written in x space as a product of Dirichlet kernels [95]
(see Appendix Fig. 15).

Comparing Figs. 4 and 6 shows that the results are broadly consistent. Some notable differences
are that plots in Fig. 6 are (i) sharper as a function of k and (ii) decay more rapidly at large k.

Differences in (i) sharpness arise from the filtering spectrum E (k�) being essentially a weighted
average of the Fourier spectrum E (k) over a range of Fourier wave numbers k centered around k�

[45],

E (k�) =
∫ ∞

0
d p

[
d

dk�

∣∣∣∣Ĝ(
p

k�

)∣∣∣∣2
]

E (p). (19)
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Here Ĝ is the Fourier transform of filtering kernel G. For a sharp spectral filtering kernel, the
factor in square brackets in Eq. (19) is a delta function, yielding E = E . Therefore, a comparison
between Figs. 6 and 4 highlights that spatially localized filtering kernels such as the Gaussian
are not strictly local in k space compared to a sharp-spectral filter, which can lead to additional
smoothing as a function of scale. This is a necessary price for gaining spatially local information
(e.g., Fig. 5, showing the field in x space at different scales), since concurrently exact spatial and
scale localization is forbidden by the uncertainty principle.

The difference in (ii) the decay rate at large k between Figs. 6 and 4 was discussed in detail in
Ref. [45] and is a consequence of Eq. (19). It is due to using the first-order kernel in Eq. (17) (using
the terminology of Ref. [45]) to calculate the filtering spectrum, which precludes E (k�) decaying
faster than k−3

� as k� → ∞. In contrast, the Fourier spectrum decays rapidly, E (k) ∼ e−k2σ 2
, for the

Gaussian field φ in Eq. (15) (see Appendix 9). The slower k−3
� decay is not a limitation of the filtering

spectrum method but of the filtering kernel itself. Faster decay rates can be captured by using higher-
order kernels [45] (Appendix Fig. 21). Further discussion of this issue along with a comparison
between Fourier and filtering spectra are provided in Appendix 9. Despite differences in the decay
rate, we see that anisotropy inferred from spatial filtering in Fig. 4 is consistent with that in Fig. 6
from Fourier analysis. Therefore, even when using a first-order kernel, the underlying anisotropy is
still detected from the filtering spectrum E

nD
(kx, kz ), although it may be underestimated.

2. Taylor-Green

Figure 7 shows the filtering spectrum, E
2D

(kx, kz ), and anisotropy for the Taylor-Green flow
[Eq. (16)]. For clarity, we use the sharp spectral kernel [Eq. (18)] for filtering since the flow is
localized at a single Fourier wave vector. We provide a corresponding Fig. 29 in the Appendix using
the Gaussian filter for completeness.

In Fig. 7(a), the cumulative spectrum, E (kx, kz ) from Eq. (9), is calculated by setting ρ = 1. In
defining filtering wave number, k = L/�, we use the domain size L = 2π . It is clear from Figs. 7(a)
and 7(b) that E (kx, kz ) and E

2D
(kx, kz ) are asymmetric with respect to the diagonal line, kx = kz,

with more weight toward smaller kx and larger kz. In fact, E
2D

(kx, kz ) is zero everywhere except at
(kx, kz ) = (8, 32) as defined in Eq. (16).

Figure 7(c) evaluates the normalized centroid Kshell from Eq. (13). Note that unlike in Eq. (13),
here we use thin bands |k| ∈ (k, k + 1] for clarity, since our field comprises of nonlocalized
plane waves. For completeness, Fig. 28 in the Appendix uses the dyadic bands as in Eq. (13).
Figure 7(c) shows a spike in Kshell at k = 31 with K shell

x = 0.23K shell
z as expected, where the field is

elongated along the x direction. This is also expressed by the anisotropy metric in Fig. 7(d), where
ARshell

zx (31) = 0.90.

B. Rayleigh-Taylor turbulence

Our method is now applied to a fluid dynamics problem, that of RT turbulence simulated in both
2D and 3D. RT turbulence occurs when a heavy fluid is supported from below by a light fluid in
the presence of gravity or an equivalent acceleration field. An initial small perturbation at the fluid
interface grows due to the buoyancy-driven RT instability. It is a fluid dynamics problem that is of
both fundamental interest and practical importance in many fields. For example, RT instability plays
a leading role in the propagation of the thermonuclear flame front in supernova explosions [96] and
is a main obstacle degrading energy yields in inertial confinement fusion (ICF) [97].

It may be apparent to many fluid dynamics experts that modeling RT unstable 3D systems
using 2D simulations is inferior to using 3D simulations. Yet such propositions remain vague and
speculative without clearly identifying the precise aspects of the dynamics that are misrepresented
in a 2D simulation. This is necessary to convince and guide practitioners who are focused on global
system modeling while facing finite computational resources. For example, ICF modelers aim to
predict or postdict results from several shots (i.e., experiments) per day in the laboratory. Conducting

114601-12



MEASURING SCALE-DEPENDENT SHAPE ANISOTROPY BY …

FIG. 7. Similar to Fig. 4 but analyzing the Taylor-Green velocity [Eq. (16)] using a sharp-spectral filter in
Fourier space. The only Fourier mode present is (kx, kz ) = (8, 32), seen in panel (b). Panels (c) and (d) show the
centroid [Eqs. (13) and (A2)] but with the integrals in Eqs. (13) and (A2) done over thin bands k < |k| � k + 1
to highlight the precise wave-number locations. A complementary Fig. 28 in the Appendix shows integrals
over dyadic bands (k/

√
2,

√
2k] as in Eqs. (13) and (A2).

a single 3D simulation can take several weeks on today’s high-end supercomputers, even without
incorporating important system components such as the hohlraum and laser physics [98,99]. The
trade-off ICF modelers face is between including more physical processes in simulations at the
expense of conducting them in 2D, despite the recognition that 3D modeling is preferable. To many,
trade-offs between 2D and 3D flow physics are not as clear as trade-offs between whether or not
to include components that are critical to the system’s evolution such laser deposition, hohlraum
physics, or resolving small-scale effects such as from the tent or stalk-mount [100]. This is why in
ICF, 2D simulations are still the main “work horse” for experimental design [101–103] as routine
3D simulations are prohibitively expensive. In the hope of improving 2D modeling, we shall present
clear evidence of the stark differences in the fundamental RT scale physics between 2D and 3D
models.

At high Reynolds numbers and at sufficiently late times, the system will develop into turbulence
[30,72,104]. RT turbulence is inhomogeneous, anisotropic, and unsteady. Since RT turbulence
is inhomogeneous in the vertical z direction (along gravity), it is a good representative of the
challenges faced when analyzing scales in inhomogeneous flows. Previous work had been restricted
to analyzing scales in the horizontal directions, which are homogeneous [30,104]. An important
exception is the work of Soulard and Griffond [50], who developed a successful theory for the
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FIG. 8. Visualizations of the density field from 2D (left) and 3D (right) Rayleigh-Taylor turbulence.
Adapted from Fig. 2 of Ref. [78], with permission from Cambridge University Press.

anisotropic spectral scaling in the inertial range of RT flows. They employed Fourier analysis on
the fluctuations in all directions, including the inhomogeneous direction, after removing Reynolds
averages. The Soulard-Griffond RT theory applies to scales that are sufficiently small such that the
nonlinear term dominates over buoyancy and anisotropy can be regarded as a perturbation around a
Kolmogorov-Obukhov equilibrium spectrum [39,105]. Soulard and Griffond [50] tested their theory
using direct numerical simulations of RT and calculated Fourier transforms of the fluctuating fields
along all directions, including the inhomogeneous vertical direction [61].

While we agree with [50] that Fourier analysis can be well posed for a component of the
RT flow (at times when mixing zone is sufficiently small such that the fluctuating fields are at
sufficiently small scales relative to the vertical domain size), our goal here is to demonstrate an
approach that generalizes Fourier analysis and can be used to diagnose scales of the entire RT
flow, including the Reynolds mean fields. As mentioned in the Introduction, there is often a lack
of scale separation between the mean and fluctuating fields [59,78], necessitating a characterization
of spectral information for both. Moreover, Fourier analysis, due to its associated Dirichlet kernel
that is highly nonlocal in x space (Fig. 15 in the Appendix) presents additional difficulties to scale
analysis of inhomogeneous flows. Scales have to be limited to sufficiently large Fourier wave
numbers k in the vertical and to sufficiently early times in the RT mixing layer growth to avoid
domain boundary artifacts [50].

Recently, Ref. [78] measured the one-dimensional filtering spectra (see Fig. 23 below) for RT
turbulence, including scales in the vertical inhomogeneous direction, but did not distinguish the
spectral contribution from different directions. Here we examine shape anisotropy as a function
of scale. In addition, Ref. [78] showed the limitation of 2D RT simulations as surrogates for 3D
configurations from the perspective of energy transfer across scales. Here we shall extend the
comparison between 2D and 3D RT from the perspective of scale-dependent anisotropy.

Visualizations of the simulated flow in 2D and 3D are shown in Fig. 8. They convey qualitatively
the turbulent nature of these flows (see Ref. [78]). The simulations are of the fully compressible
Navier-Stokes equation with an ideal gas equation of state. The governing equations are solved in
2D and 3D rectangular domains in Cartesian coordinates. The boundary conditions are periodic in
the horizontal directions and no-slip rigid walls in the vertical z direction. The equations are solved
using a hybrid solver, which uses the pseudospectral scheme in the horizontal and a sixth-order
compact finite difference scheme in the vertical. Here we use data from simulations 3D1024 and
2D4096 described in Table 1 in Ref. [78], with the Atwood number 0.5 and the domain-size-based
Reynolds number 13 854 and 44 562 for 3D1024 and 2D4096, respectively. More details can be
found in Ref. [78].
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As discussed in Appendix 2, extracting the three-dimensional cumulative spectrum, E (k) in
Eq. (9), can be computationally expensive. For expediency when analyzing the 3D RT data, we
probe the following two-dimensional scale subspaces, (�x, 0, �z ) and (�x, �y, 0), separately. For ex-
ample, analyzing (�x, 0, �z ) is accomplished by convolving with kernel G
�(x) = G�x (x) δ(y) G�z (z).
In this case, no scale decomposition is performed in the y direction, but the convolution is done at
every location (x, y, z) in 3D physical space.

In this section, we use the Gaussian kernel in Eq. (17). For the definition of filtering wave
numbers, k = L/�, we use L = 3.2, which is the domain size along the horizontal direction. In
simulations with nonperiodic boundary conditions, such as our RT flows with rigid walls at the
top and bottom, filtering near the boundary requires a choice for the fields beyond the boundary.
Following past work [75,78,94], we extend the domain beyond the physical boundaries in a manner
consistent with the boundary conditions. For our RT problem, velocity is kept zero beyond the
walls, density field is kept constant (zero normal gradient), and the extended pressure field satisfies
the hydrostatic condition dP/dz = −ρg. The coarse-graining operation (3) can then be performed
at every point in the flow domain.

1. 3D RT

To quantify scale anisotropy in 3D RT, we first calculate E (kx,∞, kz ) and E
2D

(kx, kz ) in filtering
wave-number subspace (kx, kz ). These are shown in Fig. 9. The asymmetry relative to the diagonal
kz = kx is especially clear from E

2D
in Fig. 9(b) at wave numbers smaller than ≈20, where

E
2D

(kx, kz ) is skewed toward smaller kz (i.e., larger vertical length scales �z ∼ k−1
z ). This indicates

that the flow is elongated in the vertical, which is consistent with the notion of large-scale vertically
interpenetrating bubbles and spikes. Further evidence for large-scale anisotropy is derived from
Fig. 10, where vertically elongated shapes are visually obvious in Figs. 10(a)–10(c) showing the flow
at scales larger than � = L/10. Figure 10 underscores the utility of the coarse-graining approach to
analyzing anisotropy in a natural and intuitive manner.

The asymmetry relative to the diagonal is less clear at higher wave numbers in Fig. 9(b). Indeed,
visualizing the corresponding small scales in physical space in Fig. 10(d) suggests that they are
in approximate isotropy. The quantity shown in Fig. 10(d) is energy at scales smaller than � and
defined as

E
<
� = 1

2

{
(ρ|u|2)
� − |ρu
�|2

ρ 
�

}
, (20)

which is positive semidefinite as proved in Ref. [45].
Figures 9(c) and 9(d) provide a more quantitative measure of anisotropy. Discrepancy between

K shell
x and K shell

z is clear around k = 5, where their ratio reaches ≈4/3. This discrepancy is better
captured by the anisotropy metric ARshell

zx (k) in Fig. 9(d), which has an extremum of ARshell
zx (5) =

−0.27. ARshell
zx (k) trends toward zero at higher k, which indicates approximate isotropy field at

smaller length scales, although it never reaches zero over the dynamic range of scales we resolve
in the simulation. This is consistent with the presence of residual small-scale vector anisotropy
observed in Livescu et al. [29] and Zhao et al. [106]. It is also consistent with anisotropic (or
“directional”) spectra of the velocity fluctuations in Soulard and Griffond [50] (Figs. 6 and 7 in
Ref. [50]). We are unsure if this residual anisotropy at high k in Figs. 9(c) and 9(d) would persist
in the limit of higher Reynolds numbers. Appendix Figs. 21 and 22 repeat the anisotropy analysis
using a Boxcar and a third-order filtering kernel, which in some sense is more similar to a truncated
Dirichlet kernel [107], showing that our results are insensitive to the Gaussian kernel we are using.

Panels 9(c) and 9(d) show that at scales � approaching the horizontal domain size L (k = 1),
we have K shell

x (1) = K shell
z (1) and ARshell

zx (1) ≈ 0 indicating isotropy. At first glance, this may seem
surprising since we expect RT flows to be highly anisotropic at large scales [29,50,104]. However,
note that scale � = L (k = 1) is much larger than the largest bubble or spike in Fig. 8. As the coarse-
graining scale 
� approaches that of the domain size, spatially local KE, 1/2|ρu
�|2/ρ 
�, approaches
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FIG. 9. 3D-RT filtering spectra of KE along the x-z directions using Gaussian kernels [Eq. (17)]. Panel (a) is
the cumulative spectrum [Eq. (9)] in filtering wave-number subspace (kx, kz ). Panel (b) is the associated 2D
filtering spectrum obtained via Eq. (11) (note the logarithmic color bar). Panel (c) shows the scale-dependent
centroid obtained from integrating E

2D
within a shell [Eq. (13)]. Panel (d) shows the anisotropy metric from

Eq. (14). Note the asymmetry relative to the diagonal in panels (a) and (b), associated with vertically elongated
flow structures at large scales (small k). The asymmetry seems to become less at smaller scales (larger k),
which is made clear in panel (c) where the centroid moves closer to the diagonal at high k (Kx ≈ Kz). This is
also reflected in the anisotropy metric in (d), where AR → 0 as k → ∞.

that of a domain average, 1/2|{ρu}|2/{ρ}. A domain average has trivial shape isotropy because it is
spatially constant. We saw this in our illustrative example of an anisotropic Gaussian in Fig. 3(a),
which is isotropic at scales comparable to the domain size as shown in Fig. 5. For 3D-RT, we have
a similar situation in Fig. 9(d) where ARshell(k = 1) ≈ 0. This can be seen from the visualization of
coarse KE at k = 1 in Fig. 20 of the Appendix.

In contrast to Fig. 9, comparing scales in the two horizontal (xy) directions in Fig. 11 shows
almost perfect isotropy, consistent with physical expectations. We see that E (kx, ky,∞) and

E
2D

(kx, ky ) are symmetric relative to the diagonal ky = kx, and ARshell
yx = 0 for all k.

2. 2D RT

To quantify scale anisotropy in 2D RT, we calculate E (kx,∞, kz ) and E
2D

(kx, kz ), shown in
Fig. 12. From Figs. 12(a) and 12(b), the asymmetry relative to the diagonal kz = kx seems absent
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FIG. 10. 3D-RT at different scales. Visualizations show a 2D slice at the midplane y = L/2, where L is
the domain extent in the horizontal direction. Panels (a) and (b) show the coarse-grained density, ρ� in (a),
and kinetic energy, E (kx, kz ) in (b), at scale kx = kz = L/� = 10. The filtering kernel is a Gaussian [Eq. (17)]
with �x = �z = �. Panel (c) shows ρ� from panel (a) in the background and the streamlines based on the
coarse-grained velocity field ((ρ ux )�/ρ�, (ρ uz )�/ρ�) with filtering as in panels (a) and (b) at k = 10. (d) The
small-scale (or fine) KE, E<
� defined in Eq. (20), with kx = kz = 100. Anisotropy at large scales is evident in
panels (a)–(c) while small scales seem to regain a semblance of isotropy.

at small filtering wave numbers but becomes discernible at k � 50, where E
2D

(kx, kz ) is skewed
slightly toward smaller kx (i.e., larger horizontal length scales �x ∼ k−1

x ). This indicates that the
flow is elongated in the horizontal, which may be surprising for Rayleigh-Taylor flows where it
is expected that the flow would be elongated in the vertical due to buoyancy forcing [30,71,108],
similarly to what we observed in Sec. IV B 1 in 3D-RT.

Figures 12(c) and 12(d) provide a more quantitative measure of anisotropy. We see that
K shell

x (1) = K shell
z (1) at the smallest wave numbers. The discrepancy between K shell

x and K shell
z

becomes discernible at k > 10. This is also captured by ARshell
zx (k) in Fig. 12(d), which is positive

and increases at larger k, indicating that the flow is elongated in the horizontal and becomes
increasingly anisotropic at those smaller length scales.
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FIG. 11. Same as in Fig. 9 but in the horizontal x-y directions for 3D-RT. The flow is isotropic at all scales
as expected.

Isotropy at large scales and increasing anisotropy at small scales in 2D RT is consistent
with recent results in Ref. [78]. In that work, it was shown that 2D RT is characterized by
the emergence of a large-scale overturning circulation, which isotropizes the 2D flow. This is
in contrast to the picture of vertically rising bubbles and sinking spikes often invoked for RT
flows, which nevertheless seems consistent with 3D-RT. Direct evidence for the existence of a
large-scale overturning circulation in 2D RT is provided in Figs. 13 and 14. The overturning
circulation in Fig. 13(c) is quasi-isotropic and is absent at the same large scales (>� = L/10) in
3D RT shown in Fig. 10(c), which are clearly anisotropic. Figure 14 shows even larger scales
(>� = L/3) in 2D RT, where the large-scale isotropic overturning circulation is clearer. In the
Appendix Fig. 19, we calculate the anisotropy metrics at different locations along the vertical
direction.

It was shown in Ref. [78] that 2D RT does not cascade energy to smaller scales, resulting in
weaker small inertial scales relative to 3D-RT. Weaker inertial scales and an associated suppressed
molecular mixing was also discussed in several previous studies [104,109–111].

Therefore, our results in Fig. 12 indicate that the combination of a large-scale overturning and
suppressed small-scale mixing in 2D-RT yields strong stable stratification at small scales. Such
stratification leads to a flow that is elongated in the horizontal as quantified by the anisotropy metrics
in Figs. 12(c) and 12(d). Direct visual evidence for the anisotropic flow at small scales is provided
in Fig. 13(d), which should be contrasted to the corresponding Fig. 10(d) in 3D RT.
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FIG. 12. 2D-RT filtering spectra of KE as in Fig. 9. Note in panels (a) and (b) the symmetry relative
to the diagonal at large scales (small k), associated with a quasi-isotropic overturning circulation. However,
asymmetry emerges at smaller scales (larger k), which is made clear in panel (c) where the centroid moves
away from the diagonal at high k (Kx < Kz), associated with horizontal layering due to stable stratification.
This is also reflected in the anisotropy metric in (d), where AR > 0 as k → ∞.

V. CONCLUSIONS

This work establishes how spatial coarse-graining can be used to quantify anisotropy at different
length scales. It is based on generalization of ideas from Ref. [45], which we demonstrated via
simple illustrative examples and an application to Rayleigh-Taylor turbulence.

In addition to the method, a main result of this work showed that anisotropy of Rayleigh-
Taylor turbulence in 2D is fundamentally different from that of 3D-RT. We showed that 2D-RT
is characterized by enhanced anisotropy at small scales in a manner that was perhaps unexpected,
but in hindsight is consistent with recent work [78]. A clear identification of how 2D modeling
of applications involving RT can misrepresent the actual 3D hydrodynamics is a necessary step to
develop new modeling strategies without having to conduct fully 3D simulations. This is because
3D hydrodynamics modeling remains prohibitively expensive in many applications such as ICF as
discussed above.

We envisage that our method for quantifying shape anisotropy would be especially valuable in
flows that are inhomogeneous, where established methods such as Fourier analysis cannot be used in
a straightforward manner. In this regard, it is important to be aware of limitations of filtering spectra.
In particular, it was shown in Ref. [45] that when using first-order kernels such as a Gaussian,
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FIG. 13. 2D-RT at different scales, as in Fig. 10. Panels (a)–(c) are filtered at scale kx = kz = L/� = 10
using a Gaussian kernel. Panel (d) shows small-scale KE at kx = kz = 100. Large-scale flow in panels (a)–(c) is
approximately isotropic, which is especially clear in the large-scale overturning circulation in panel (c). In
contrast, the small-scale flow in (d) shows a tendency for horizontal layering due to the stable stratification that
results from overturning.

filtering spectra do not decay faster than k−3 as k → ∞, even if there is little or no energy at
those small scales when probed with more complex (higher-order) kernels. Therefore, determining
whether energy conveyed by filtering spectra is physical or a spurious artifact of the kernel being
used requires using higher-order kernels if a k−3 scaling is observed. Regarding anisotropy, the
potential for “locking” in at a k−3 scaling when using first-order filtering kernels would still allow
us to detect anisotropy using the metrics, Kshell (k) and ARshell

i j (k), although the level of anisotropy
may be underestimated.
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FIG. 14. 2D-RT has a quasi-isotropic large-scale overturning circulation due to an upscale cascade [78],
which is absent in 3D-RT. Panels (a) and (b) are similar to those in Fig. 13 but filtered at scale kx = kz = L/�= 3.
Panel (c) demonstrates clearly the large-scale overturning circulation.
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APPENDIX

1. Filtering kernels and Fourier analysis

Figure 15 shows three example kernels that can be used to calculate the filtering spectrum. When
using the Dirichlet kernel, the filtering spectrum is exactly the same as the Fourier spectrum. The
Dirichlet is highly nonlocal and decays as 1/|x − x0| away from the center at x0, where the filtered
field u(x0) is being evaluated. Therefore, the filtered field at location x0 has contributions from
spatial locations x far away from x0. This is in comparison to filtering with a more localized kernel,
such as a Gaussian or Boxcar, which is practically (or exactly) zero beyond a distance ∼�/2 away
from x0.

Therefore, in a bounded domain, regions outside the boundaries can make non-negligible (pos-
sibly spurious) contributions to the Fourier scale analysis (equivalent to filtering with a Dirichlet
kernel) even in regions that are presumably far from the boundaries. When using a more compact
kernel, such as the Gaussian or Boxcar, the “domain of dependence” is localized to be within ∼�/2
from the location being analyzed. This makes it feasible to extend the fields beyond the domain
boundaries (in a manner satisfying the boundary conditions) to analyze scales near those boundaries.
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FIG. 15. Left: Comparing the Gaussian (G�), Boxcar (H�), and Dirichlet (Sinc�) kernels in physical space,
with the filter width � = Lx/8 = 0.4. The Boxcar is exactly zero beyond a distance �/2 from the center, the
Gaussian decays faster than exponentially, while the Dirichlet is highly nonlocal and decays as 1/|x − x0| away
from the center x0 = 0. Right: The same kernels shown in Fourier k space.

2. Marginal filtering spectra

The cumulative spectrum, E , or, equivalently, the filtering spectrum, E
nD

, evaluated over the
entire scale grid [Fig. 1(a)] contains all information about the energy content of spatial scales in
different directions. However, E can be computationally expensive to calculate using data on Nn

grid points in n dimensions since it relies on spatial filtering via convolutions. Scanning the entire
range of scales in each direction requires nominally O(Nn) different scale vectors (�1, . . . , �n), each
of which can cost of O(N2n) operations for the convolution. Therefore, in three dimensions, the
cost can be as high as O(N9). While there are several algorithmic optimizations to reduce the cost
[58,59,112], such as subsampling the scale grid (especially at high k), the computational cost can
still be considerable.

It is possible to quantify anisotropy by sampling a much smaller subset of the scale grid but at
the cost of accuracy and sensitivity. Figure 16(a) sketches what we call the “marginal spectra,” in
analogy to the marginal probability distribution. A scale decomposition via filtering is performed
along each direction separately rather than concurrently. The marginal spectra along different
directions are defined as

E
mar
x (k) ≡ ∂

∂kx
E (kx,∞,∞)|kx=k, (A1a)

E
mar
y (k) ≡ ∂

∂ky
E (∞, ky,∞)|kx=k, (A1b)

E
mar
z (k) ≡ ∂

∂kz
E (∞,∞, kz )|kz=k . (A1c)

Here ∞ denotes the absence of filtering (� = L/k = 0) along the corresponding direction, thereby
retaining the contribution from all scales along that direction. The marginal spectrum E

mar
x (k), for

example, is obtained from u�x,0,0(x) by convolving with kernel G�x (rx )δ(ry)δ(rz ) in Eq. (8), where
the delta function δ(r) = G�=0(r).

Comparing Emar
x (k), Emar

y (k), and Emar
z (k) gives us a gauge of anisotropy at different scales.

However, it is important to be mindful of what information is conveyed in Eq. (A1) and its
limitations. When integrated over k, all three quantities yield the same total energy. Therefore, if
Emar

z (k1) > Emar
x (k1) at k1, then it is guaranteed that Emar

x (k2) > Emar
z (k2) for some other k2. In

comparison, E
nD

has no similar constraint.
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FIG. 16. (a) Similar to Fig. 1(a) but for “marginal spectra” ∂kxE and ∂kzE . We see that ∂kxE (k1, ∞) (in red)
accounts for field variations at scale �1 = L/k1 in the x direction, but contains all scales in the z direction.
Similarly, ∂kzE (in green) accounts for variations in the z direction. (b) Similar to Fig. 1(b) but for the marginal
centroid [Kmar (k) in Eq. (A2)], depicted as a star. It is based on E

mar
(k), which is more easily computed than

E
shell

(k) but at the expense of accuracy since it incorporates all scales in other directions. The restriction on
Kmar (k) to reside where the two (red and green) strips overlap also makes it a less sensitive gauge of anisotropy.

Similarly to Eq. (13), the normalized scale-dependent centroid of marginal spectra within 1D
shells are

Kmar
i (k) ≡

⎧⎨⎩
1
k

∫ √
2k

k/
√

2 dq q E
mar
i (q)

/ ∫ √
2k

k/
√

2 dq E
mar
i (q), for i = 1, . . . , n,

0 if
∫ √

2k
k/

√
2 dq E

mar
i (q) < εnumeric.

(A2)

We set εnumeric = 10−14 below. Since E
mar
i incorporates all scales in other directions as shown in

Fig. 16(a), the marginal centroid, Kmar, is a less accurate gauge of anisotropy at any one scale.
Moreover, its restriction to reside where the two (red and green) strips overlap in Fig. 16(b) also
makes it a less sensitive gauge of anisotropy.

Similarly to Eq. (14), we define the anisotropy metric associated with marginal spectra as

ARmar
i j (k) ≡

(
Kmar

i

)2 − (
Kmar

j

)2(
Kmar

i

)2 + (
Kmar

j

)2 , for i, j = 1, . . . , n. (A3)

It has an interpretation similar to that in Eq. (14), as sketched in Fig. 2. However, the anisotropy
metrics ARshell and ARmar can be differ quantitatively due to restrictions on Kmar explained in
Fig. 16.

Below we provide numerical examples to demonstrate how these metrics quantify anisotropy and
to highlight their limitations relative to shell-based metrics presented in the main text.

3. Centroids and anisotropic metric associated with marginal spectra

The anisotropy metric based on the marginal spectra is shown in Fig. 17 for the two illustrative
examples, and in Fig. 18 for the 2D and 3D Rayleigh-Taylor fields.

Figure 17(a) plots Kmar
x (k) and Kmar

z (k) from Eq. (A2) for the Gaussian data using Gaussian
filters. Consistent with their Kshell analog shown in Fig. 4(c), it shows that Kmar

z � Kmar
x over the

entire range of k, which implies that the field is elongated along the z direction at all scales. We
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FIG. 17. Marginal spectra averaged centroid [Eq. (A2)] and anisotropic metric [Eq. (A3)] of the Gaussian
scalar field using Gaussian filters in panels (a) and (b), of the Gaussian scalar using the sharp spectral filter in
panels (c) and (d), and of the Taylor-Green vortex using the sharp spectral filter in panels (e) and (f).
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FIG. 18. Marginal spectra based centroid [Eq. (A2)] and anisotropic metric [Eq. (A3)] of the 3D Rayleigh-
Taylor kinetic energy along the x-z directions in panels (a) and (b), of 3D RT KE along x-y directions in panels
(c) and (d), and of kinetic energy of 2D RT in panels (e) and (f).

see that Kmar
z ≈ Kmar

x in the limits of k → 0 and k → ∞. The anisotropy metric ARmar
zx (k) in panel

(b) from Eq. (A3) reflects this behavior and is qualitatively consistent with its analog ARshell
zx (k)

in Fig. 4(d), although with seemingly lower sensitivity. This is not surprising given that Kmar(k)
is derived from a highly reduced spectral representation as discussed in Sec. A 2 (see also Fig. 1).
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FIG. 19. The centroids (a)–(c) and anisotropy metrics (d)–(f) of 2D RT associated with different vertical
regions within z ∈ [0, Lz]. Panels (a) and (d), (b) and (e), and (c) and (f) are associated with regions 0 < z �
Lz/3, Lz/3 < z � 2Lz/3, and 2Lz/3 < z � Lz, respectively.

The sharp spectral filtering results shown in Figs. 17(c) and 17(d) are similar to the Gaussian kernel
results in Figs. 17(a) and 17(b).

Figures 17(e) and 17(f) show for the Taylor-Green data the centroid Kmar based on marginal
spectra, which exhibits a spike in Kmar

x at k = 7 and a spike in Kmar
z at k = 31. This is because E

mar
x

and E
mar
z spike at those respective wave numbers. However, they highlight a limitation of marginal

spectra we mentioned; since E
mar
x and E

mar
z have to yield the same total energy when integrated, if

E
mar
x (k1) > E

mar
z (k1) at k1, then we necessarily have E

mar
x (k2) < E

mar
z (k2) at another wave number

k2. This is also expressed by the anisotropy metric ARmar
i j (k) in Fig. 17(f), where ARmar

zx (7) = −1
and ARmar

zx (31) = 1.
The marginal spectra based centroids and anisotropy metrics for the 2D and 3D RT data are

shown in Fig. 18. For the shape anisotropy along the x-z directions for 3D RT, metrics based on
marginal spectra in Figs. 18(a) and 18(b) show qualitatively consistent results as the shell-based
results in Figs. 9(c) and 9(d), albeit with a much weaker anisotropic signal. This is consistent
with our earlier remarks about their lower sensitivity to anisotropy (Fig. 1). After all, E

mar
has

significantly less scale information than E
2D

.
The marginal spectra based shape anisotropy for 3D RT along the x-y direction in Fig. 18(d) is

zero, indicating the flow is isotropy among the horizontal directions as expected. For 2D RT data in
Figs. 18(e) and 18(f), metrics based on marginal spectra fail to capture the small-scale anisotropy
compared to the shell-based results in Figs. 12(c) and 13(d), due to their lower sensitivity discussed
in the main text.

4. Local measurement of shape anisotropy

One advantage of our filtering approach is that we can measure the anisotropy associated with
local subregions of the flow in addition to the whole domain. Figure 19 shows the centroids of
the 2D RT corresponding to three different subregions along vertical direction. The results indicate
that the three subregions are qualitatively similar but exhibit slight quantitative differences in their
anisotropy. We defer further analysis to future work.
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FIG. 20. Visualization from 3D-RT of coarse KE 1
2 ρ |̃u|2 filtered at � = Lx , corresponding to k = 1.

5. Isotropy of 3D-RT at the domain-size scales

As we discuss in the main text, at the largest possible scales, coarse-grained fields approach the
spatial mean, which is trivially isotropic. Specifically, φ 
� → {φ} as 
� → (∞,∞). The spatial mean,
{φ}, is uniform and, thus, trivially isotropic. This can be easily seen from the illustrative example of
an anisotropic Gaussian in Fig. 3(a), which is isotropic at scales comparable to the domain size as
shown in Fig. 5. This is why the anisotropic metric ARshell

zx ≈ 0 at k = 1 in Fig. 4(d).
For 3D-RT, we have a similar situation in Fig. 9(d) where ARshell ≈ 0 at the horizontal domain

scale k = 1 (i.e., � = L, where L = 3.2 is the domain size along the x direction). This can be seen
from the visualization of coarse KE at k = 1 in Fig. 20. Coarse KE is isotropic because the filter
width is comparable to the horizontal domain size, such that the coarse-grained fields approache the
spatial mean, which is trivially isotropic. Note that these large scales (k = 1) where isotropy exists
are larger than the size of biggest bubble or spike in 3D-RT seen in Figs. 8 and 10.

6. Insensitivity of our results to filtering kernels

To verify that our results are not sensitive to the particular filtering kernel adopted in the paper,
which is a first-order Gaussian [45], we repeat our analysis with a Boxcar kernel and with a third-
order modified Gaussian filter. The expression of the third-order kernel GI

�(x) with filtering size � is

GI
�(x) = c G�(x, �) − c′ G�′ (x − x0) − c′ G�′ (x + x0), (A4)

where x is the spatial variable, G�(x, �) =
√

6
π�2 e− 6x2

�2 is the first-order Gaussian kernel as in

Eq. (17), c = 1.1, c′ = 0.05, �′ = 0.5�, and x0 =
√

43
48� are parameters to satisfy the third-order

kernel constraints
∫

GI
� dx = 0 and

∫
x3GI

� dx = 0. This higher-order kernel is, in some sense,
more similar to a truncated Dirichlet kernel [107] than a Guassian. The shapes of the first- and the
third-order Gaussian, as well as the Boxcar, kernels are shown in Fig. 21.

For convenience, we sample an x-z slice from the 3D Rayleigh-Taylor data and perform the
anisotropy metrics using the above three kernels. Figures 22 and 23(b) show the centroids, the
anisotropic metrics, and the shell-averaged 1D filtering spectra of KE, in which both the qualitative
trends and the quantitative values are similar. Thus our shape anisotropy results for RT are not
sensitive to the particular filtering kernel we have chosen.
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FIG. 21. The Boxcar and first- and third-order Gaussian filtering kernels of width � = Lx/8 = 0.4.

7. Structure function scalings of 1D fields

Here we present the scaling of structure functions associated with periodic 1D field data φ(x)
whose Fourier spectra follows a power-law scaling Eφ (k) ∼ k−α for a few different α values. The
field φ(x) is defined in a periodic domain x ∈ [0, 2π ), discretized on a uniform numerical grid of
32 768 points. φ(x) and its associated Fourier spectra are shown in Fig. 24. The corresponding
second-order structure function S2(r) = 〈[u(x + r) − u(x)]2〉, where the spatial average 〈. . . 〉 is
over x ∈ [0, 2π ), is shown in Fig. 25 for 1D fields with Fourier spectra ranging from k−4 to k0.
Figure 25(a) demonstrates that power-law scaling of a second-order structure function, S2(r) ∼
rα−1, is related to scaling of the Fourier spectrum E (k) ∼ k−α (legend in Fig. 25) but only when
1 < α < 3. We see from Fig. 25(a) that the scaling of S2(r) is no longer related to that of the
Fourier spectrum when E (k) is steeper than k−3 (purple) or shallower than k−1 (blue).

Figure 25(b) shows filtering spectra E (k�) using a Gaussian (first-order) filtering kernel applied
to the same data used in Fig. 25(a). We see that the filtering spectrum has the same scaling as the
Fourier spectrum, E (k) ∼ E (k) ∼ k−α , for α < 3. Specifically, it can correctly capture power-law
scaling that is shallower than k−1 (blue) but fails for power-law scaling steeper than k−3 (purple)
since the Gaussian kernel we are using to calculate E (k�) is a first-order kernel. It is possible for
E (k�) to correctly capture power-laws steeper than k−3 by using a higher-order kernel [45].

8. Fourier spectrum of a Gaussian

For a one-dimensional Gaussian function with zero mean and standard deviation σ ,

φ(x) = 1√
2πσ

e− x2

2σ2 , (A5)

defined over the periodic domain x ∈ [−π, π ], its Fourier transform when σ 
 π is

φ̂(k) = 1

2π

∫ π

−π

e−ikx 1√
2πσ

e− x2

2σ2 dx = 1

2π
e− 1

2 k2σ 2
. (A6)

The factor 1/2π in the Fourier transform definition ensures that φ̂(0) yields the domain average.
Equation (A6) is an elementary textbook result. Thus, the Fourier spectrum of a Gaussian is

E (k) = |φ̂|2(k) + |φ̂|2(−k) = 1

2π2
e−k2σ 2

. (A7)

We drop the factor 1/2 in defining E (k) in the Appendix for convenience. It is straightforward
to verify that Parseval’s theorem,

∫ ∞
0 E (k)dk = 1

2π

∫ π

−π
φ(x)2dx, is satisfied for σ 
 π . Figure 26

compares the Fourier spectra of Gaussians with σ = π/8 and σ = π/32, showing that the narrower
Gaussian (σ = π/32) extends to higher k.
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FIG. 22. Centroid [Eq. (A2)] and anisotropic metric [Eq. (A3)] of the 3D Rayleigh-Taylor kinetic energy
within a x-z slice. Panels (a) and (b) are for first-order kernels adopted in the main paper, panels (c) and (d) are
the results of top-hat or boxcar filter, while panels (c) and (d) are obtained with third-order kernel of Eq. (A4).

In our Eq. (15) example of the 2D anisotropic Gaussian, we had

φ(x, z) = 1√
2πσx

1√
2πσz

e
− x2

2σ2
x

− z2

2σ2
z ,

where (σx, σz ) = (π/32, π/8) and x, z ∈ [−π, π ]. (A8)

114601-29



DONGXIAO ZHAO AND HUSSEIN ALUIE

FIG. 23. Left panel: The shell-integrated [or 1D spetrum in Eq. (5)] kinetic energy spectra associated with
the 2D and 3D RT data used in the paper. Right panel: From 3D-RT data, we show the shell-integrated kinetic
energy spectra using three different filtering kernels: first- and third-order Gaussian and a boxcar filter. A k−5/3

and a k−3 scaling is included in each figure.

Its two-dimensional Fourier transform follows from Eq. (A6),

φ̂(kx, kz ) = 1

(2π )2
e− 1

2 k2
x σ 2

x e− 1
2 k2

z σ 2
z , (A9)

FIG. 24. One-dimensional fields in a periodic domain [0, 2π ) whose Fourier spectra scale as E (k) ∼ k0

(top row) and E (k) ∼ k−3 (bottom row).
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FIG. 25. Left panel: Power-law scaling of a second-order structure function, S2(r) ∼ rα−1, is related to
scaling of the Fourier spectrum E (k) ∼ k−α (legend) but only when 1 < α < 3. We see that the scaling of
S2(r) is no longer related to that of the Fourier spectrum when E (k) is steeper than k−3 (purple) or shallower
than k−1 (blue). The fields analyzed here are 1D periodic data similar to those shown in Fig. 24. Right panel:
Filtering spectra E (k�) using a Gaussian kernel applied to the same data used in the left panel. We see that the
filtering spectrum has the same scaling as the Fourier spectrum, E (k) ∼ E (k) ∼ k−α , for α < 3. Specifically, it
can correctly capture power-law scaling that is shallower than k−1 (blue) but fails for power-law scaling steeper
than k−3 (purple) since the Gaussian kernel we are using to calculate E (k�) is a first-order kernel. It is possible
for E (k�) to correctly capture power-laws steeper than k−3 by using a higher-order kernel [45].

and its 2D Fourier spectrum is, therefore,

E2D(kx, kz ) = 4

(2π )4
e−k2

x σ 2
x e−k2

z σ 2
z . (A10)

9. Filtering spectrum of a Gaussian

To obtain the analytical expression for the filtering spectrum of a 1D Gaussian function φ(x) =
1√

2πσ
e− x2

2σ2 , using the filtering kernel G�(x) = 1√
π�

e− x2

�2 , we first evaluate the filtered quantity φ�,

then obtain {φ2
�}, before calculating the filtering spectrum E (k) = d

dk {φ2
�}, with k = L/� and L =

2π . We now show the details.

FIG. 26. Fourier spectra of Gaussians with standard deviations σ = π/8 and σ = π/32.
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FIG. 27. Filtering spectra of Gaussians with standard deviations σ = π/8 and σ = π/32.

The filtered Gaussian φ� is

φ� = 1√
π�

1√
2πσ

∫ ∞

−∞
dξ e− (x−ξ )2

�2 e− 1
2 ( ξ

σ
)2
. (A11)

Note that in a domain [−L/2, L/2) that is periodic, φ� is calculated in Fourier space. This ensures
that Eq. (A11) is evaluated correctly when � → L, since the filtering kernel e−x2/�2

extends beyond
[−L/2, L/2) for large �. Doing so is equivalent to extending the domain periodically in x space
beyond its boundaries.

The cumulative spectrum is

{
φ

2
�

} = 1

L

∫ L/2

−L/2
dx

1

π�2

1

2πσ 2

∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2 e− (x−ξ1 )2

�2 − (x−ξ2 )2

�2 e− ξ2
1 +ξ2

2
2σ2

= 1

L
√

2π
√

�2 + 2σ 2
= 1

L
√

2π
√

L2k−2 + 2σ 2
, (A12)

where the second line assumes σ 
 L when evaluating integrals involving Gaussians. The assump-
tion is only for the convenience of obtaining an analytical expression. Finally, the filtering spectrum
is

E (k) = d

dk

{
φ

2
�

} = 1√
2π

k−3

L2(k−2 + 2σ 2/L2)3/2
, (A13)

which is plotted in Fig. 27 for two different values of σ . In the limit k → ∞, we see that E (k) ∼ k−3.
As discussed in Ref. [45], this “locking” at k−3 scaling overestimates the energy at large k and occurs
when calculating the filtering spectrum using a first-order kernel such as the Gaussian kernel used
here. In comparison, the Fourier spectrum E (k) decays faster than k−3 as shown in Eq. (A6) and
Fig. 26. For the filtering spectrum to be meaningful, one has to use a kernel with at least p vanishing
moments when analyzing a function whose Fourier spectrum decays as E (k) ∼ k−α with α < p + 2.
In practice, when Fourier transforms are difficult to perform, one calculates the filtering spectrum
using a first-order kernel then decides if a higher-order kernel is required based on whether or not
E (k) may be exhibiting a locked k−3 scaling. See Ref. [45] for a detailed discussion.

Note that even with a first-order kernel, anisotropy is still detected using filtering spectra. This
can be seen from the filtering spectra of the two Gaussians in Fig. 27, which shows differences in
energy at different k. However, the differences are less than those in Fig. 26 for the Fourier spectra,
i.e., the level of anisotropy can be underestimated when using a first-order kernel.
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FIG. 28. Similar to Fig. 7 for the Taylor-Green velocity [Eq. (16)] with a sharp-spectral filter in Fourier
space but using the dyadic bands k ∈ [k/

√
2,

√
2k]. Unlike Fig. 7, no shift of the lines is performed.

10. Taylor-Green using the dyadic bands

Figure 28 shows centroid and anisotropy metric for the Taylor-Green example using sharp-
spectral filter in Fourier space as in Fig. 7 but with dyadic bands k ∈ [k/

√
2,

√
2k].

FIG. 29. Similar to Fig. 7 for the Taylor-Green velocity field but using the Gaussian filtering kernel. Panels
(c) and (d) use bands k < |k| � k + 1 as in Fig. 7.
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11. Taylor-Green using Gaussian filter

Figure 29 shows filtering spectra for the Taylor-Green example using a Gaussian kernel. In
defining filtering wave number, k = L/�, we use the domain size L = 2π .
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