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Shape of a frictional fluid finger
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Frictional fluid dynamics describes the displacement patterns that arise when a confined
mixture of liquid and grains are displaced by an immiscible fluid under pressures that
are too small to cause drainage into single pores. The flow, which is governed by solid
friction and capillary forces, thus bulldozes the grains into compaction fronts which give
rise to propagating fingers that eventually interact to create a range of patterns, including
labyrinthine ones. We derive an analytic description that successfully reproduces the
experimental results for the shape of a single finger as well as the compaction front profile.
The theory thus depends on only one fitting parameter.
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I. INTRODUCTION

Strikingly similar labyrinthine patterns arise in highly different contexts, ranging from those of
geology, physics, biology, and engineering. For instance, when a fluid displaces another containing a
granular medium in a Hele-Shaw cell, the resulting frictional fluid dynamics may create labyrinthine
patterns [1–6]. These patterns resemble those found on brain corals [7] as well as those found in
the cross section of maxilloturbinates in seal noses [8] or the buoyancy tank of cuttlefish [9], the
patterns left by magma intrusions in fractured rocks [10,11], or the structures formed by ferrofluids
in a Hele-Shaw cell subject to an external magnetic field [12]. In all of these processes some
principle of optimization is at work that governs the length scale and structure of the resulting
patterns: in the case of frictional fluid dynamics the power is minimized by the invading fingers
[3]. In the case of ferrofluids in a magnetic field, a pattern is formed that minimizes the free energy
[12], while in the biological cases the patterns are understood in terms of natural evolution towards
functional optimization [9,13]. The term frictional fluid dynamics [4] was coined to describe fluid
flow governed by the combined action of pressure, capillary forces, and solid friction; a typical
setup yielding such dynamics is illustrated in Fig. 1. The labyrinthine patterns resulting from
such dynamics are relatively well understood at the level of the pattern length scale [3–5,14,15].
At a constant extraction rate the minimization of the power amounts to finding the finger width
that minimizes the pressure needed to overcome the frictional and capillary forces. However, the
smaller scale dynamics that define the actual finger shape is much less understood. The purpose
of the present paper is to understand how the power minimization principle may be applied to
determine the structure of the fingers, which are responsible for the emerging patterns. Finding
quantitative agreement with experiments in the case of straight, steady state fingers we proceed in a
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FIG. 1. (a) Sketch of a cross section through the granular front. The air-liquid meniscus (blue line)
bulldozes a front of compacted grains of thickness L. The initial filling level ϕ is the ratio between the height of
the initial granular layer h and the cell gap b. The pressure of the invading fluid balances the combined action
of the capillary forces and the friction of the compacted front. (b) Experimental cell (horizontal) imaged from
below. Liquid is slowly drained from a hole at the right hand side and air invades from the open edge on the left
hand side. (c)–(e) Zoomed in view of different frictional fingers (rotated to point vertically) taken during active
growth. The granular compaction front can be seen as a dark band surrounding the internal finger meniscus.
The location of panel (e) is indicated with blue arrow in (b), while the (c) and (d) images are taken at other
times. This experiment had ϕ = 0.4, b = 0.5 mm, fluid withdrawal rate Q = 0.01 mL/min, and all scale bars
are 1 cm.

more qualitative way to identify the fluctuation based mechanisms that are responsible for meander-
ing and tip splitting.

Frictional fingers may be considered a granular analogy of the classical Saffman-Taylor finger
which forms when a fluid of less viscosity displaces another at a higher viscosity in a Hele-Shaw cell
[16,17], the difference being that in our case the viscous forces are replaced by solid friction. While
the solution for the Saffman-Taylor finger contains the finger width as an undetermined parameter,
the current solution fixes the finger width and shape via the ratio of a friction coefficient to the
effective surface tension, which is a fitting parameter in the present context, but measurable.

II. THEORETICAL DESCRIPTION

The equations that govern the shape of a displacement front are based on the concept of an
effective surface tension [1] γ that gives rise to a capillary pressure κγ , where κ is the in-plane
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FIG. 2. Geometry of the invading air finger in the reference frame of the finger.

curvature of the air-liquid interface and a frictional pressure contribution μL that is linear in the
thickness L of the packed front [see Fig. 1(a)] and a constant friction coefficient μ. In Ref. [1] it is
shown that the effective surface tension may be written

γ = γ0(a + ap cos αp), (1)

where the specific area a is the ratio of the air-liquid interface area to the total area of the granular
front that is exposed to the air, while ap is the corresponding quantity for the area that the particles
expose to the air along the front, γ0 is the normal air-liquid surface tension, and αp is the contact
angle between the air-liquid interface and the surface of the particles.

A friction law that is linear in L may arise in several ways [1]. First, it may result as a linear
approximation to the exponential law that describes the effect of Coloumb friction and jamming
at the front [3–5,14,15], by expanding it in small values of the Jansen coefficient that relates in
plane and out of plane stresses. Second, it may become a reasonable description when the granular
deformation and stretching removes sideways support for the force chains that cause jamming. In
this case jamming effects disappear and the resistance to front displacement should be proportional
to the number of particle contacts, i.e., to L.

Even though the fingers meander back and forth rather than keeping a straight course, and
frequently come to a halt, they exhibit periods of steady motion where the tip curvature and width
are approximately constant.

We therefore apply the frame of reference that follows the front tip and look for a steady state
solution of the finger shape and front width. The distance along the air-grain front from the fingertip
is denoted s and the angle between the velocity of the incoming grains and the front normal α;
see Fig. 2.

A rectangular volume of incompressible grains in the compacted front that is stretched in one
direction will contract in the other: let the normal side edges have length L and ds and the grains
move along the front by a velocity v(s). At any constant s value, the net volume flux over the
side edges of length L must be balanced by a corresponding growth of L, that is, during a time
dt , [L(s, t + dt ) − L(s, t )]ds = [L(s, t )v(s) − L(s + ds, t )v(s + ds)]dt . The change in L due to
the accumulation of grains that arrive at a velocity u cos α is dL = u cos α dtϕ/(1 − ϕ). Thus the
combination of stretching and grain accumulation at a front causes the finger front width L to evolve
with time t according to the equation

∂L

∂t
= −∂ (Lv)

∂s
+ ϕ

1 − ϕ
u cos α, (2)

where ϕ is the solid fraction (see Fig. 1), u is the grain velocity, and v is the velocity in the direction
along the front. In the laboratory frame of reference the compaction front only advances in its normal
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direction and so the force on the noncompacted outside region is in this normal direction as well.
Therefore, the forces only act to change the granular velocity in the normal direction and so the
tangential velocity is conserved. In the finger frame of reference this implies that v = u sin α. Our
main approximation is to assume that α describes the orientation both of the inner and outer part of
the compacted front—an approximation that is expected to break down at high ϕ values when the
front becomes thick.

The local curvature

κ = ∂α

∂s
(3)

determines the capillary pressure γ κ , which together with the linear frictional pressure μL gives the
total pressure drop

�P = μL + γ κ (4)

over the front. Note that, in addition to the capillary pressure γ κ , which is due to the in-plane
curvature, there is also the capillary pressure �Pw = 2γ0 cos αw/b, where b is the plate separation
and αw the contact angle at the plates. This pressure is due to the out-of-plane curvature, and
typically �Pw > γκ , but since �Pw is constant all along the finger front, it only amounts to a
fixed addition in the pressure drop and will therefore be ignored.

Using the derivative relation ∂/∂s = (∂α/∂s)∂/∂α = κ∂/∂α the steady state form of Eq. (2)
becomes

∂L

∂s
=

(
ϕ

1 − ϕ
− κL

)
cotan α, (5)

where u has canceled out.
Along the straight parts of the finger the curvature κ = 0 and L = L∞, so that �P = μL∞, which

allows us to write Eq. (4) as

κ = �P − μL

γ
= μ(L∞ − L)

γ
, (6)

which when inserted in Eq. (5) yields

∂L

∂s
=

(
ϕ

1 − ϕ
− μ

γ
(L∞ − L)L

)
cotan α. (7)

Since cotan α diverges at the fingertip where α = 0, the term in the parentheses must vanish in order
to yield a finite solution for L. Setting this prefactor to zero and solving for L∞ yields

L∞ = L0 + γ ϕ

μL0(1 − ϕ)
(8)

at s = 0 where L = L0.
The principle of minimum power at a constant air injection rate amounts to a requirement of

minimum pressure. In other words, the fingers must have a width W that minimizes �P = μL∞.
Since the width W = 2L∞/ϕ by mass conservation and L∞ is a function only of L0 (taking ϕ, γ , and
μ to be constants) this means that ∂L∞/∂L0 = 0. Doing the derivative and solving this equation for
L0 gives the front tip width

L0 =
√

γ ϕ

μ(1 − ϕ)
= L∞

2
(9)

by use of Eq. (8).
The L∞ = 2L0 relationship is a result of the linear friction law in Eq. (4). In the more general

case where an arbitrary friction law is assumed by replacing μL → μ(L)L in Eq. (4), Eq. (8) would
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be replaced by

μ(L∞)L∞ − μ(L0)L0 = γ
ϕ

L0(1 − ϕ)
, (10)

which in general would not give L∞ = 2L0. However, the right hand side of Eq. (10) is the capillary
pressure contribution at the tip and so corresponds to a tip curvature

κ0 = ϕ

L0(1 − ϕ)
, (11)

which is independent of the particular friction law that is assumed. In other words, any nonlinear
friction law will give rise to the same relationship between the tip curvature and front thickness.
This relationship is governed by the balance of front stretching and accumulation alone. In Ref. [1]
we assumed the front profile to be circular with a constant curvature κ0 (resulting in a discontinuity
at the point where the curved front connects with the straight side segments) and to have a constant
width L0. These assumptions yield the same curvature as in Eq. (11).

Returning to the linear friction law, using Eq. (9), and introducing �L = L − L0, Eq. (5) may be
written

∂�L

∂s
= μ�L2

γ
cotan α (12)

and, from Eqs. (3), (6), and (9), the equation for α

∂α

∂s
= μ(L0 − �L)

γ
, (13)

with the boundary conditions α(0) = 0 and �L(0) = 0.
In the small s limit where cotan α ≈ 1/α these equations are easily solved to yield α =

μL0s/γ and

�L = L0

L0/�L0 − ln(s/s0)
, (14)

where �L0 is the value at some other s0 � γ /(μL0). The divergence of the derivative of �L(s)
implies a cusp at the fingertip, which is an unphysical result of the assumption that α describes the
outer as well as the inner boundary of the compaction front. By a refined geometric treatment of
the outer boundary orientation, including its dependence on ∂L/∂s, it may be shown that �L ∝ s2

near the tip. However, as this treatment too relies on a small ϕ approximation, we will stay with the
original and simpler approximation.

Introducing the dimensionless quantity s′ = μL0s/γ and �L′ = �L(s′)/L0 all dimensional
quantities drop out in Eq. (12) and Eq. (13). The physical coordinates of the air interface x(s)
may also be nondimensionalized into x′(s′) = μL0x(s)/γ and likewise for the outer front boundary
x′

out (s
′), yielding the functional forms

x = γ

μL0
x′(s′), (15)

while the outer perimeter of the compacted region is given by

xout = x + n, L = γ

μL0
x′(s′) + L0n[1 + �L′(s′)], (16)

where n is the outwards unit normal and s′ may now be taken as an arbitrary parametrization of the
curve. Here the curves x′(s′) and �L′(s′) are independent of μ, γ , and ϕ.

The numerical integration of Eq. (12) and Eq. (13) is straightforward and relies on the centered
difference approximation of the derivatives. It starts from an initial point, where α ≈ π/2 and �L =
L0, that is at a straight segment of the front. Figure 3 shows the details of the logarithmic singularity
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FIG. 3. Closeup of the finger shape at the tip and the relative increment in the front width �L/L0 as a
function of the dimensionless s′ = sL0μ/γ when ϕ = 0.4.

of the front and how �L varies with the length from the tip along the air-grain interface. Note that
the singular behavior is expressed as a steep drop where �L varies only ∼20% of L0.

III. COMPARISON WITH EXPERIMENTS

The experimental setup, which is illustrated in Fig. 1, is described in Ref. [4]. A Hele-Shaw
channel with cell gap b = 0.5 mm is loaded with a 50% (by volume) mixture of water and glycerol
containing suspended polydisperse glass beads of mean diameter 75 μm [5]. The grains settle after
loading and form a layer of thickness h on the bottom plate (Fig. 1) such that the initial filling level
ϕ = h/b. The liquid is subsequently withdrawn using a syringe pump (Harvard Scientific, PHD
Ultra) at controlled withdrawal rate Q = 0.01 mL/min, which is set sufficiently low that viscous
forces can be neglected. A hole in the top plate is used for both the initial loading and the fluid
withdrawal. As the cell is slowly drained air at atmospheric pressure invades from the open edge
[left hand side in Fig. 1(b)] and eventually forms the labyrinthine pattern of frictional fingers as
shown in Fig. 1(b) (∼20 h after the start of the experiment). Individual fingers are cropped from
the images during phases of near steady state growth. Examples are shown in Figs. 1(c)–1(e).
The cropped images of individual fingers were then rotated and aligned before the x and xout

curves were identified manually by selecting the locations along the front of maximum grayscale
contrast.

Mass conservation relates the width W of the fingers to the front width L∞ = 2L0 so that
Eq. (9) may be used to set γ /μ = W 2ϕ(1 − ϕ)/16 for each experiment by measurement of the
average W . This is the only parameter that is fitted to the experiments. The packing fraction ϕ was
measured prior to the injection of the fluid grain mixture. In Fig. 4, which shows a comparison
between theory and experiments for ϕ = 0.23 and 0.4, good agreement is observed. For larger ϕ

values the tip growth happens without the steady sequences where the tip curvature/width remains
constant. Instead the tips typically start out pointed and evolve to a blunted shape via sideways
bulging.

As a consistency check it is interesting to use the experimental W values to estimate the relative
magnitude of the forces at play. Since L0 = L∞/2 the capillary pressure at the fingertip γ κ0 =
μ(L∞ − L0) = μL0, so that the frictional and capillary forces have the same order of magnitude.
Taking the last factor of Eq. (1) to be unity γ ≈ γ0 ≈ 0.05 N/m, the air water/glycerol surface
tension. Figures 4 indicate a radius of curvature 1/κ0 ≈ 5 mm, so that the capillary and frictional
pressures are both ∼10 Pa.

The experiments show a slightly blunter shape than what is predicted from the assumption of a
steady state force balance along the front. This effect is likely caused by the fluctuations in packing
density and granular structure along with fluctuations in the frictional force, both of which have been
ignored up to this point. Fluctuations in the packing density will cause fluctuations in L according
to Eq. (2), where it should be noted that the last term that describes accumulation goes as u cos α.

114302-6



SHAPE OF A FRICTIONAL FLUID FINGER

-5 0 5
x (mm)

0

5

10

15

y 
(m

m
)

-5 0 5 10
x (mm)

5

10

15

y 
(m

m
)

FIG. 4. Finger shapes for ϕ = 0.4 (top figure) and ϕ = 0.23 (lower figure). The theory of Eqs. (15) and
(16) is shown by the full red curves and experiments by stapled lines. The experimental fingers are all recorded
while moving.

This means that such fluctuations are more frequent at the tip. In addition, any velocity dependence
in μ will cause the largest pressure fluctuations at the tip where this velocity is largest. Thus the
fluctuations in the threshold stress required for front motion will both be larger and more frequent at
the tips. For this reason the front is more likely to stop its motion right at the tip, rather than on the
sides. Figure 5 shows how these effects lead to a blunting of the fingertips in the stopping process.
These mechanisms may also cause tip splitting in those cases where the bulging is not stopped by
friction, but continues as a new finger, as is often observed.

In conclusion, we have developed a simple analytic description of the frictional fluid finger
evolution. The agreement with experiments suggests that the finger width and structure are those
which minimize the power needed to form them as a balance is established between the pressure in
the invading fluid, capillary, and frictional forces. Compared to the Saffman-Taylor fingers, which
result from long range viscous forces, the frictional fluid fingers represent a distinct hydrodynamic
phenomenon that is entirely governed by short range forces.
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FIG. 5. (a) Snapshots of an advancing finger (frame 1) that takes on a bulbuous shape as the growth comes
to a halt (blue arrow, frame 2). Tip splitting (frame 3) causes a branching into two fingers (frame 4). (b) The
side bulge indicated by the green arrow remains static for a while, but eventually side branches to form a new
finger. The red arrow illustrates a bulge that will remain static as growth is blocked by a neighboring finger.
Scale bar: 1 cm.
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