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Microparticles migrate in response to gradients in solute concentration through diffusio-
phoresis and diffusioosmosis. Merging streams of fluid with distinct solute concentrations
is a common strategy for producing a steady concentration gradient with continuous flow
in microfluidic devices; the solute concentration gradient and consequent diffusiophoresis
are primarily normal to the background flow. This is particularly useful in separation and
filtration processes, as it results in regions of particle accrual and depletion in continuous
flows. Such systems have been examined in several classic papers on diffusiophoresis,
with a focus on the particle dynamics far from boundaries. We show, through experiments,
simulations, and theory, that diffusioosmotic flow along certain boundaries can result in
significant changes in particle dynamics and particle focusing in near-wall regions. The
nonzero velocity at charged surfaces draws solute and particles along the boundary until
the flow ultimately recirculates. These convection rolls, which result in the spanwise
migration of polystyrene particles close to boundaries, are apparent near a glass surface
but vanish when the surface is coated with gold. The three-dimensional nature of the
dynamics could have implications for the design of microfluidic devices: Channel materials
can be selected to enhance or suppress near-wall flows. Additionally, we demonstrate the
importance of considering solute concentration-dependent models for diffusiophoretic and
diffusioosmotic mobility in capturing the dynamics of particles, particularly in regions of
low solute concentration.

DOI: 10.1103/PhysRevFluids.8.114201

I. INTRODUCTION

Diffusiophoresis, the spontaneous migration of particles in response to a solute concentration
gradient, is commonly observed or applied in systems with particles on the order of tens or hundreds
of nanometers [1–14] to several micrometers [3,7,13,15–28] in diameter. Diffusioosmosis, a closely
related phenomenon, results in the spontaneous development of a slip velocity along charged
surfaces in the presence of a solute concentration gradient [29]. The mechanism of diffusiophoresis
and diffusioosmosis is shown in Fig. 1; particle migration or flow along a surface is a result of
both an osmotic pressure gradient and an electric field that develops to maintain neutrality when
charged species would otherwise diffuse at different rates if they were neutral [29]. First described
in the mid-20th century [30,31] with refined models and experimental validation in subsequent
decades [4,32–34], diffusiophoresis and diffusioosmosis have received considerable attention in
recent years. This increase in interest coincides largely with the growth of the field of microfluidics:
Diffusiophoresis and diffusioosmosis allow for the controlled motion of species in a flow through
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FIG. 1. Mechanisms of diffusiophoresis and diffusioosmosis. Diffusiophoresis is the motion of a particle
in response to a solute concentration gradient. Diffusioosmosis, a closely related phenomenon, occurs along a
surface. In both cases, there is a slip flow along the surface that results from an osmotic pressure gradient and a
spontaneous electric field that develops to maintain electroneutrality. The direction of motion is dependent on
the particle or surface material and the species present in the flow. The species and the Debye length κ−1 are
not shown to scale.

the manipulation of solute concentration gradients rather than the application of an external field.
This makes the phenomena highly relevant to various problems in microfluidic contexts, such as
enhanced transport relative to diffusion in dead-end pores [5–8,14,15,18,22,24,27,35–37] or the
separation of species or development of an exclusion zone [2,3,12,13,16,17,20,21,25,38–40].

Geometries with merging streams of fluid of distinct solute concentrations (coflowing
solutions) are commonly used to produce solute concentration gradients in experiments
[2,13,16,28,29,41–43]. In such configurations, the concentration gradient is approximately perpen-
dicular to the flow, which results in the transverse migration of particles through diffusiophoresis
and, indirectly, diffusioosmosis. This feature is particularly useful in separation and filtration
processes, as it yields regions of particle accrual and depletion in continuous flows. This has
been examined in classic papers on diffusiophoresis, such as that by Abécassis et al. [2], which
comments on particle focusing and spreading through diffusiophoresis in a � channel, so named for
its three-inlet geometry that resembles the letter. Similar channel designs with two or three merging
inlet streams have been used in several studies [3,6,16,38,42,43]. Such works tend to focus on
particle migration at the center of the channel, far from boundaries, where the dominant mechanism
for transport is diffusiophoresis.

This assumption of motion in reduced dimensions is common throughout the literature on
diffusiophoresis and diffusioosmosis. Ault et al. [44], for instance, considered one-dimensional
diffusiophoretic motion to describe particle migration in pores. They later modeled the motion
of particles in quasi-one-dimensional pores of high aspect ratio with numerical simulations and
leading-order corrections to describe two-dimensional dynamics [45]. Even where two- or three-
dimensional particle motion is considered, such works often assume solute concentration gradients
are one-dimensional [46]. Several recent works, however, have considered solute and particle
dynamics in two or three dimensions. Migacz and Ault [47] described the two-dimensional dy-
namics of solutes and particles in a narrow channel, neglecting diffusioosmosis, and providing
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numerical results in three dimensions. A more recent work by Teng et al. [48] followed a similar
procedure to describe the effect of diffusioosmosis on solute diffusion, in two dimensions and in
cylindrical coordinates, absent background flow, and in a narrow channel. They showed that the
recirculating flow induced by the slip velocity at channel walls distorts the solute concentration
profile and affects the rate of diffusion in a manner analogous to Taylor dispersion. These are
complementary works that show how both diffusiophoresis (directly) and diffusioosmosis (indi-
rectly) affect particle dynamics in two and three dimensions. This has recently been explored in
dead-end pores: Alessio et al. [5] and Akdeniz et al. [36] considered the effect of diffusioosmotic
flow on three-dimensional particle dynamics in a dead-end pore. Other recent works have similarly
concluded that considerations of dynamics beyond one dimension are important. Chu et al. [49]
developed a macrotransport equation to approximate the dynamics of particles in a channel of
uniform, circular cross section by accounting for the effects of hydrodynamic dispersion, which
would not be relevant in one dimension. The dynamics arising from both diffusiophoresis and
diffusioosmosis in tandem have been explored in very recent work: Chakra et al. [42] examined
particle dynamics in a � channel, accounting for both diffusiophoresis and diffusioosmosis, in
work that was completed contemporaneously and independently; they commented on potential
applications in particle separations and characterizations. A focusing effect that is similar to the
one we demonstrate is also described in a recent work by Yang et al. [28], who demonstrated
distinct particle dynamics in the presence of a surfactant gradient and complexing polymer. Such
studies demonstrate the importance of considering the dynamics in multiple spatial dimensions and
accounting for boundaries. In this paper, we experimentally alter the surface charge of channels to
modulate the diffusioosmotic effects in a system of merging solute streams, as well as systematically
characterize these convection rolls via both theory and simulations.

Many simplifications beyond assumptions about solute or particle motion in reduced spatial
dimensions are common to studies of diffusiophoresis and diffusioosmosis. One common sim-
plification is an assumption that the diffusiophoretic or diffusioosmotic mobilities are constant.
This has been revisited in recent years [47,50] because it overlooks potentially significant sources
of variation; notable examples are the variation of zeta potential with conditions such as solute
concentration, temperature, and pH [51], and the role of size effects [7]. A recent work by Akdeniz
et al. [36] demonstrated that concentration-dependent zeta potentials have a significant effect on
particle dynamics in dead-end pore geometries where both diffusiophoresis and diffusioosmosis
are considered. Other recent works, such as that by Shim et al. [24], considered the effect of pH
gradients on diffusiophoretic motion and demonstrated the importance of accounting for the local
conditions when characterizing particle dynamics.

In this paper, we focus on the three-dimensional dynamics of particles and their importance in
through-flow systems, accounting for variable zeta potential, diffusiophoretic mobility, and diffu-
sioosmotic mobility. To examine the dynamics of particles near boundaries, we study polystyrene
(PS) particles in gradients of NaCl produced by merging streams of distinct concentration; these
are species common to numerous experimental studies of diffusiophoresis and diffusioosmosis
[3,5–7,9–12,15,18,21,22,26–28,36,52,53]. We consider the dynamics of particles near glass and
gold surfaces. Glass develops a surface charge in water through reactions at the surface [54]; gold is
a noble metal and does not react with water. Therefore, we anticipate that diffusioosmotic transport
is significant near glass but negligible near gold. In this context, we demonstrate that diffusioosmosis
is an important consideration where solute gradients are present in microfluidic devices fabricated
from glass or other materials of nonzero surface charge, which are common throughout the literature
on diffusiophoresis and related phenomena [5–7,9–13,16–28,36,55–59], and show that the particle
dynamics near glass and gold surfaces are distinct. Near the glass surface, fluid is drawn toward
the center of the channel, where it is advected away from the boundary, forming swirling regions
we call convection rolls. We demonstrate, through experiments and simulations, the relevance of
three-dimensional dynamics and solute concentration-dependent models for diffusiophoretic and
diffusioosmotic mobility. Additionally, we provide first-order velocity and solute concentration
profiles, along with sample particle trajectories, in Appendix A. The three-dimensional particle
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FIG. 2. (a) Geometry of the channel, viewed from the top. Each of the three inlets is 200 µm wide; the
channel is 600 µm wide after the inlet streams merge and approximately 85 µm deep (out of plane) throughout.
The outlet region is 2 cm from the point at which the streams merge at x∗ = 0. We introduce a 20 mM solution
of NaCl to A at 1 µL min−1 and deionized water with 0.01% particles by mass to B at 1 µL min−1. The flow
into A is split between two inlets. We add 0.1% TWEEN 80 by mass to B to inhibit particle adhesion to the
walls of the channel. The flow exits the channel at C. The large circular regions at each inlet and at the outlet
allow us to connect tubing to the device. (b) The microscopy setup used to capture images. We use standard
fluorescence microscopy techniques.

dynamics are particularly relevant to mixing processes; depending on the context, suppression or
enhancement of the convection-roll phenomenon may be desirable to researchers and engineers
working with microfluidic devices.

II. METHODS

We study the dynamics of fluid, solutes, and particles in � channels, depicted in Fig. 2(a),
where each of the three inlets is 200 µm wide and leads to a primary channel 2 cm in length and
600 µm in width. The height of the channel is approximately 85 µm throughout. For convenience,
we introduce the notation x = (2 cm)x∗, y = (600 µm)y∗, and z = (85 µm)z∗, with y∗ = z∗ = 0 in
the center of the channel and x∗ = 0 where the inlets merge, such that x∗ ∈ [0, 1], y∗ ∈ [−1/2, 1/2],
and z∗ ∈ [−1/2, 1/2]. We also define a velocity scale of U = 654 µm s−1, which is the mean flow
rate in the channel, to obtain a dimensionless velocity u∗ = u/U .

A. Experiments

We fabricate channels with conventional soft lithography techniques. The microchannel is
composed of polydimethylsiloxane (PDMS) on all but the bottom surface, which is either glass
or a 70-nm-thick layer of gold over a 30-nm-thick layer of chromium on glass. We use a plasma
cleaner to bond the PDMS to the bottom surface of the device. We use PS, carboxyl-functionalized
polystyrene (cPS), and amine-functionalized polystyrene (aPS) particles in experiments. We intro-
duce 20 mM NaCl to the distal inlets, shown at A in Fig. 2(a), and 0.01 % particles by mass to the
center inlet, shown at B in Fig. 2(a). The solutions are introduced to A and B, each at 1 µL min−1.
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TABLE I. Components used in experiments and their origins, where a is the radius of a particle. *Used in
zeta potentiometry experiments by V. S. Doan, University at Buffalo.

Component Origin

PS particles, a = 0.1 µm Thermo Fisher Scientific, Inc. Fluoro-Max red fluorescent (catalog No.
R200)

cPS particles, a = 0.5 µm Thermo Fisher Scientific, Inc. Invitrogen FluoSpheres red fluorescent
(catalog No. F8821)

cPS particles,* a = 0.1 µm Bangs Laboratories, Inc. green fluorescent (catalog No. FCDG003)
aPS particles, a = 0.5 µm Thermo Fisher Scientific, Inc. Invitrogen FluoSpheres yellow-green

fluorescent (catalog No. F8765)
PDMS Dow Silicones Corporation SYLGARD 184 silicone elastomer kit
Glass VWR microscope slides (catalog No. 48300–026)

The flow into A is split between two inlets. We also include TWEEN 80 in the particle solution at
0.1 % by mass to prevent the adhesion of particles to channel walls. It is a nonionic surfactant and
we expect the effect on the system dynamics is limited to a potential change in the magnitude of
zeta potentials due to the outward migration of the slipping plane caused by the accumulation of
surfactant at surfaces. The materials used in the experiments are described in Table I.

We capture experimental images using a Leica DMi8 microscope with a Leica K5 camera and
Leica EL6000 light source. The microscopy setup is shown in Fig. 2(b). We use an N PLAN L
20×/0.35 PH1 objective with 4×4 binning. In experiments with a glass bottom surface, we use
an exposure time of 100 ms and a frame rate of 10 fps; in experiments with a gold bottom surface,
we instead use an exposure of 40 ms with a framerate of 25 fps to account for changes in lighting.
The flow in the channel is driven by a Harvard Apparatus PHD ULTRA syringe pump with two
Hamilton 100 µL syringes. Notably, the flow into A is split across two inlets. We perform particle
image velocimetry (PIV) with PIVlab 2.56 [60,61] to determine the transverse velocity of particles
(in the x and y directions) near the top and bottom surfaces of the channel; the results include
particles over a depth (in the z direction) on the order of several micrometers. The electrophoretic
mobility of cPS particles was measured by Viet Sang Doan, University at Buffalo, with an Anton
Paar Litesizer 500.

B. Simulations

We model the structures observed in the particle concentration fields by performing finite volume
simulations of the system. Assuming density is constant and inertial effects are negligible, the
steady-state flow is governed by

∇ · u = 0 and (1)

∇p − μ∇2u = 0, (2)

where u is the fluid velocity, ρ is its density, and μ its viscosity, t is time, and p is pressure. We
assume the Stokes number of the particles is low, such that they would act as tracer particles for the
background flow in the absence of diffusiophoresis. We also assume that the presence of the particles
does not affect the background flow. Assuming diffusivity is constant and employing Eq. (1), the
steady-state solute and particle dynamics are governed by

−Dc∇2c + u · ∇c = 0 and (3)

−Dn∇2n + ∇ · [(u + M∇ ln c∗)n] = 0, (4)
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where c is the solute concentration; Dc is the ambipolar diffusivity of the solute [7],

Dc = 2D+D−
D+ + D−

, (5)

with cationic and anionic diffusivities D+ and D−, respectively; n is the particle concentration; Dn

is the particle diffusivity; and M is the diffusiophoretic mobility. We use the dimensionless solute
concentration c∗ = c/1M for notational convenience, though the choice is ultimately immaterial
because the scaling of c in ∇ ln c∗ = (∇c∗)/c∗ will cancel. We use the initial particle concentration
in the center of the channel to obtain a dimensionless particle concentration n∗; this makes regions of
particle accrual and depletion clearer in plots. We calculate the particle diffusivity with the Stokes-
Einstein relation [62]:

Dn = kBT

6πμa
. (6)

Here, kB is the Boltzmann constant, T is the absolute temperature, and a is the particle radius.
Equations (3) and (4) are advection–diffusion equations with an additional component of velocity
for diffusiophoresis of the particles. At boundaries, we impose

u|b =
{

udo = Mdo∇ ln c∗, if the surface is glass
0, otherwise, with u|b · n̂ = 0, (7)

where Mdo is the diffusioosmotic mobility and n̂ is a unit vector normal to the surface. This ensures
the diffusioosmotic velocity is in the plane of the boundary and there is no fluid flow through the
walls.

We implement a variable zeta potential for both the particles and glass surface. The zeta potential
of cPS particles is shown as a function of solute concentration in Appendix B; we have calculated
the particle zeta potential from experimental measurements of electrophoretic mobility. We use the
semianalytical model of Ohshima et al. [63], which accounts for convective ion migration [64], to
relate experimentally obtained electrophoretic mobility measurements to the particle zeta potential.
Using the zeta potential–concentration relationship we obtain, we propose a fit

ζ ≈ −α0 + α1 ln c∗ +
√

α2 + α3 ln c∗ + α4(ln c∗)2 or

ζb ≈ m log10 c∗ (8)

to data for the zeta potentials over the range of solute concentrations used in experiments. Here, ζ

and ζb are the zeta potentials of the particles and the boundary, respectively. We call the propor-
tionality constant in the model for the wall zeta potential, adapted from Kirby and Hasselbrink, Jr.
[65], m for convenience. At a given solute concentration and with all else constant, a larger value of
m indicates that the zeta potential at the bottom surface of the channel is larger in magnitude. The
constants αi, which we determine numerically, are given in Table II in Appendix B. We model [66]
the diffusiophoretic mobility as [67]

M = ε

μ

[
kBT

ze
	∗

1β
∗ζ + 1

8
	∗

2ζ
2 + O(ζ 3)

]
, (9)

where β∗ = D+−D−
D++D−

is the normalized diffusivity contrast, with the fits of Masliyah [68] to the
functions 	∗

1(λ∗) and 	∗
2(λ∗), where λ∗ is the ratio of the Debye length to the particle radius:

	∗
1(λ∗) ≈ 1 − 1

3 [1 + 0.07234(λ∗)−1.129]−1 and

	∗
2(λ∗) ≈ 1 − [1 + 0.085(λ∗)−1 + 0.02(λ∗)−0.1]−1. (10)

In the case of diffusioosmotic mobility, the surface is flat, so the radius a is infinite and the thickness
ratio λ∗ vanishes. Consequently, both 	∗

1 = 1 and 	∗
2 = 1 and the correction for finite Debye length
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is no longer relevant. Instead, we model the diffusioosmotic mobility as [7]

Mdo = ε

μ

(
kBT

ze

)2{ ze

kBT
β∗ζb + 4 ln

[
cosh

(
ze

4kBT
ζb

)]}
. (11)

This expression is valid where the Debye layer is thin relative to the channel dimensions [29], which
contributes to uncertainty in the dynamics of the system as c∗ → 0. We provide further details about
the models for zeta potential and mobility and compare with published values in Appendix B. If we
were to use models with constant mobility, we would similarly overpredict the diffusiophoretic
velocity at extreme solute concentrations and underpredict it at intermediate concentrations. We
would underpredict the diffusioosmotic velocity at low concentrations and overpredict at high
concentrations, as Eqs. (8) and (11) allow for an unbounded diffusioosmotic mobility that increases
as the solute concentration diminishes.

We perform simulations to determine the steady-state solute and particle concentration fields.
We use OpenFOAM [69] to simulate the flow with components from simpleFoam to calculate
the background flow described by Eqs. (1) and (2), scalarTransportFoam to determine solute and
particle concentrations according to Eqs. (3) and (4), and groovyBC (provided by swak4Foam) to
implement the boundary conditions in Eq. (7). We refine the mesh manually in regions where we
expect the solute concentration gradient to be large, including the interfaces between inlet streams
and near the top and bottom boundaries of the channel. In the center of the channel, we impose a
background solute concentration of 10−7M, which is a concentration Kirby [64] uses for deionized
water, contrasted with 20 mM salt in the side inlets. We impose zero-gradient conditions for the
solute and particle concentrations and the velocity at the outlet. We also fix the pressure at the outlet
as p∗ = 0 and set the inlet velocity to be consistent with the flow rate of the syringe pumps. At the
walls of the channel, we use zero-gradient conditions on the solute and particle concentrations and
the no-slip condition [except on the bottom surface, which is described by Eq. (7)] for the velocity.
We set the dimensionless particle concentration to 1 in the center inlet and 0 in the side inlets. More
details about the simulations and mesh design can be found in Appendix C.

We consider 200 nm particles in simulations. The Péclet number associated with particles of
diameter 1 µm—like those used in experiments with cPS particles—is large; by considering smaller
particles, we artificially enhance the particle diffusion relative to the experiments to improve the
stability and convergence of the solver. With larger particles, the particle concentration gradients be-
come prohibitively large and require an extremely fine grid to resolve. This does not affect the qual-
itative particle-focusing dynamics, and the primary consequence is that particle-focusing regimes
will be more diffuse in simulations than in experiments. The thickness ratio λ∗ is also affected; the
effect is a slightly diminished diffusiophoretic mobility for the 200 nm particles relative to the 1 µm
particles used in experiments. Once again, this does not change the qualitative particle dynamics.

III. RESULTS

Unless otherwise noted, all figures showing experimental results are made with images of the PS
particles on account of their smaller size relative to the other species, which yields smoother images.
Near the inlet of the channel, we observe an inward migration of particles toward y = 0—visible
in Fig. 3—near the bottom surface when it is glass; this migration vanishes in the case of the
gold surface, as shown in Fig. 4 (samples videos demonstrating particle dynamics are described
in Appendix D). We call the focal plane of the camera the near-wall region; the focus is adjusted
manually in each experiment, so this does not correspond to an exact offset from the channel
boundaries. The particle motion in this region is qualitatively consistent for PS, cPS, and aPS
particles. We demonstrate this in Fig. 5, which depicts the distinctive inward particle migration for
each species in the presence of a solute concentration gradient. In the absence of the concentration
gradient, we do not observe the inward migration. The near-surface particle motion, therefore,
is likely dependent on the properties of the boundary and is consistent with the direction and
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FIG. 3. Mean of images (false-color) from experiments for plain PS particles with a glass bottom surface.
Images are generated with the mean of experimental data and have been smoothed with a Savitsky-Golay filter
[70] to reduce the magnitude of deviations caused by particle adhesion and cropped manually. Inward particle
migration can be observed in the upstream region. In contrast, the particles downstream do not exhibit this
inward migration and instead accumulate only at the outer edge of the particle-rich region.

dependence on solute concentration gradients of diffusioosmotic transport, which are shown in the
analytical results presented in Appendix A.

Our experimental results for near-wall concentration profiles are qualitatively consistent with
published results [2,43] downstream, as shown in Fig. 6, and upstream in the case of the gold
surface, as shown in Fig. 7. There are slight differences that result from the proximity to the wall,
but the distinctive change in the location of the peak particle concentration, which we associate with
diffusioosmotic flow, is not seen near the gold surface or downstream near the glass surface. The
upstream concentration profiles near the glass surface, however, are distinct from those previously
reported by Abécassis et al. [2] and Singh et al. [43]; the peak particle concentration near the
glass surface is found at a position |y∗| < 1/6, which indicates that particles migrate inward in
the near-wall, near-inlet region. This is consistent with the dynamics described in recent work by
Chakra et al. [42]. Notably, there is considerably more noise in the results near the gold surface,
which is likely a result of particle adhesion. It is likely that adhesion is not as significant near glass
because both the PS particles and glass surface are negatively charged.

We provide numerical estimates for the near-wall particle profiles, analogous to Figs. 6 and 7,
in Fig. 8. Direct comparison between the experiments and simulations is not possible because of
the uncertainty in the diffusioosmotic mobility and differences in particle size; the consistency of
the experimental results in the near-inlet region, however, allows us to generalize and comment
about trends and features rather than trying to match an experimental case exactly. The effect
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FIG. 4. Demonstration of the dependence of the convection-roll structure, visualized with PS particles,
on the surface material. False-color images are generated with the mean of experimental data and have been
smoothed with a Savitsky-Golay filter and cropped manually. The convection rolls, which are visible near glass,
vanish when the surface is coated with gold.

of increasing the zeta potential and diffusioosmotic mobility by increasing m in ζb = m log10 c∗
(see Appendix B) is to move the location of the peak particle concentration inward toward y∗ = 0.
Another consequence is that there is focusing near the wall throughout the cross section: n∗(y∗ = 0)
increases with the value of m. This occurs because the diffusioosmotic flow draws solute inward
along the surface of the channel, which establishes a concentration gradient toward the boundary.
As the magnitude of the diffusioosmotic mobility is increased further, a third particle concentration
peak forms in the center of the channel because the solute entrained by the flow along the bottom
surface is advected away from the wall as it approaches y∗ = 0.

The convection rolls are also apparent in the velocity component in the y direction in our
experimental results and simulations. In Fig. 9, we show the near-wall velocity profile from PIV near

FIG. 5. Demonstration of consistency of convection-roll structure in the near-inlet region and its depen-
dence on the existence of a solute concentration gradient. Images (false color) are generated with the mean of
experimental data and have been smoothed with a Savitsky-Golay filter and cropped manually. The qualitative
particle-focusing behavior is consistent for the different particle species and dependent on the presence of a
solute concentration gradient. PS particles are 200 nm in size, while cPS and aPS particles are 1 µm.
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FIG. 6. Downstream, near-wall particle concentration profiles at x∗ = 0.99. The mean is shown as a line
and one standard deviation is shaded. The peak particle concentrations occur at |y∗| > 1/6 (shaded and
hatched), which is characteristic of particle transport driven by diffusiophoresis for this system; we expect
particles to migrate outward, toward regions of higher solute concentration. Our results are similar to those
given by Abécassis et al. [2] (cf. Fig. 3), with particle migration outward from the center of the channel. There
are minor differences attributable to near-wall confinement effects and differences in species, geometry, and
flow conditions.

the glass or gold surface. Near the glass surface, particles are drawn toward y∗ = 0; this structure
vanishes near the gold surface and the direction of net particle migration is instead outward from the
center of the channel. The value of m that is associated with the closest match to experimental results
is around 0.02 or 0.03 V, but the dynamics in the center of the channel are distinct in simulations
and experiments. Our simulations, shown in Fig. 10 for z∗ = −0.49, capture the inward particle

FIG. 7. Upstream, near-wall particle concentration profiles at x∗ = 0.01. The mean is shown as a line and
one standard deviation is shaded. Our results near the gold surface are similar to those given by Abécassis et al.
[2] (cf. Fig. 3), but the profile near the glass surface—with peak particle concentrations at |y∗| < 1/6 without
a change in solute or particle species or locations—was not seen by Abécassis et al. [2]. This migration of the
location of the peak particle concentration is consistent with recent results from Chakra et al. [42]. Near the
gold surface, the particle concentration peaks are at |y∗| > 1/6, as in Fig. 6. Near the glass surface, however,
the peak concentration occurs at |y∗| < 1/6, which suggests particle migration is directed inward.
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FIG. 8. Simulated particle concentration profiles at x∗ = 0.01 for increasing magnitudes of the diffusioos-
motic mobility. The profiles are shown as two-dimensional slices and one-dimensional profiles at z∗ = −0.49.
We show a line at y∗ = 1/6 to denote the region where particles are introduced to the channel. They have
moved outward through diffusion and diffusiophoresis and because the y component of u is nonzero. The
outward migration of particles is most significant at m = 0 V, in the absence of diffusioosmosis; at larger m,
the peak particle concentration moves toward y∗ = 0. The particle concentration in the center of the channel is
also affected: Solute is advected toward the center of the channel, where it is drawn upward, along the charged
surface. The resulting plume of solute yields a concentration gradient toward the center of the channel, affecting
the particle dynamics in turn.

migration qualitatively, though they overpredict the particle velocity near the inlet, which is apparent
when comparing Figs. 9 and 10. Where m = 0 V, particles migrate outward from y∗ = 0 because
of the combined influence of the background flow and diffusiophoresis, but the direction of motion
reverses when the diffusioosmotic velocity is sufficiently large to balance this outward migration.

We observe significant particle focusing at channel walls, even in the absence of diffusioosmosis.
This focusing occurs because the solute concentration profile near walls is more diffuse than in the
center of the channel, where the streamwise velocity is larger; that is, solute near boundaries has
longer to diffuse than solute in the center of the channel before reaching the same position in the
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FIG. 9. In-plane, dimensionless particle velocity in the y direction from experimental images, obtained
with PIV. The structure of the convection rolls is clearly visible near the glass surface; particles are drawn
inward toward y∗ = 0. This structure vanishes near the gold surface, and the direction of net particle migration
reverses. This reversal of the direction of particle migration is observed in simulations in Fig. 10.

x direction. As a result, there is a nonzero component of the solute concentration gradient—and,
consequently, of the diffusiophoretic velocity—that is directed toward the upper and lower walls.
We demonstrate that the focusing is significant in the two-dimensional profiles shown in Fig. 8,
which shows the particle concentration is largest at the wall, even where diffusioosmosis is neglected
(i.e., the case where m = 0 V). This can also be observed in analytical results given in Appendix A,
where particles migrate in the z direction even in cases where the diffusioosmotic mobility is zero.
The convection rolls, shown in Fig. 11, draw particles along the wall, where they are advected away
from z∗ = −1/2 in the center of the channel. This behavior is also captured by the first-order model
given in Appendix A. The strength of this effect increases with the magnitude of m, which sets the
magnitude of the diffusioosmotic mobility.

IV. DISCUSSION

Particle focusing toward the upper or lower walls can be significant even when the surfaces
are uncharged. We have previously commented on particle accrual near walls and corners through
diffusiophoresis in three-dimensional geometries [47], but we considered the deformation of a
plug of solute rather than merging streams with distinct concentrations. We observe the same
phenomenon where streams of distinct concentration merge. We demonstrate focusing near walls
in Fig. 8; in a system where M < 0, this focusing would instead be at the center of the channel.
Notably, in our system, the focusing of particles at channel walls is enhanced by the contrast between
inlet flow rates. The flow is faster in the center of the channel because the flow rates to A and B
in Fig. 2(a) are both 1 µL min−1, but the former is split across two inlets. Consequently, there is a
nonzero velocity component in the y direction, directed outward from y∗ = 0, exclusively due to the
background fluid flow. This enhances the component of the concentration gradient directed toward
the boundary. Chakra et al. [42] make a similar observation about the diffusiophoretic migration of
particles toward boundaries. It may be possible to reverse the direction of focusing or enhance the
effect by simply changing the inlet flow rates in our system.
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FIG. 10. In-plane, dimensionless particle velocity in the y direction from simulations with varying m.
Colors are given with a diverging logarithmic scale centered on 10−3 to enhance contrast in print and better
demonstrate the reversal of the direction of particle migration. When m = 0 V, particles migrate outward from
z∗ = 0 because of the background velocity profile and diffusiophoresis. As m increases, particle focusing at the
center of the channel becomes more significant. This reversal of the direction of particle migration is observed
experimentally in Fig. 9. Notably, the dynamics near the channel inlet are distinct and the diffusioosmotic
velocity is greater in the near-inlet region in simulations than in experiments.

The three-dimensional nature of the particle dynamics in channel flows is highly relevant to
mixing in microfluidic processes. The implications of diffusiophoresis on mixing at the microscale
have been examined in previous works; Deseigne et al. [1] comment, for example, on the impact
of solutes on the mixing of colloids in a channel with a staggered herringbone pattern. Our paper
demonstrates that diffusioosmotic flow can have a significant impact on particle dynamics in smooth
channels, absent obstacles, or patterns, provided solute concentration gradients are present at bound-
aries of nonzero surface charge. The choice of materials for microfluidic devices can impact the
dynamics of both solutes and particles in the presence of solute concentration gradients. Materials
with relatively high surface charge could be selected to maximize this mixing effect; materials with
low surface charge could be used to minimize it. The approximate solution for the fluid, solute,
and particle dynamics, given in Appendix A, can be used to estimate the effect of diffusioosmosis
and diffusiophoresis on solute and particle species without significant computational resources or
experiments; it can be readily adapted to work with other boundary conditions. The analytical
solution provides a good approximation to the dynamics of the convection rolls, which is apparent
from the similarity between Figs. 9 and 10 and Fig. 15 in the Appendices.

We neglected diffusioosmotic flow at the top of the channel in simulations because we were
interested in the dynamics near the bottom boundary, which is the only surface for which we
considered different materials in experiments. The PDMS has a nonzero surface charge, however,
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FIG. 11. Streamlines at a slice x∗ = 0.01 by m, showing in-plane particle trajectories. The dimensionless
particle speed as shown is stationary and includes both the background flow and diffusiophoresis. The sense of
the convection rolls is clockwise in all images. We have neglected the out-of-plane velocity to better show the
shape of the convection rolls. As m increases, the particle velocity increases and the convection rolls grow in
size. The scale of the convection rolls can be significant relative to the channel depth when the surface is highly
charged.

and convection rolls develop near the top of the channel in all experiments; this is readily apparent in
Fig. 3, in which the particle concentration peaks near the center of the channel can be seen near both
the top and bottom surfaces in the near-inlet region. Notably, diffusioosmotic flow at the side walls of
the channel is negligible because there is not a significant variation in solute concentration near those
walls. Considering the effects of multiple boundaries with nonzero charge could be an interesting
area of further research. Another avenue of further study is to consider additional particle species
with distinct diffusiophoretic mobility. The PS species we use may have similar diffusiophoretic
mobilities, which is apparent in the comparison of mobility estimates for various PS species in
NaCl gradients shown in Fig. 20 in the Appendices. Indeed, Fig. 12 shows that particle migration
at low concentrations is in the same direction, and of similar magnitude, for our PS, cPS, and aPS
particles. Particles with M < 0 would migrate in the same direction through both diffusiophoresis
and the effect of diffusioosmosis in this system, which would likely enhance the velocity in the y
direction and increase the strength of the convection rolls. Another potentially interesting area of
further research is the interaction of the diffusioosmosis-driven particle focusing with phenomena
such as the focusing of particles in the presence of a surfactant gradient and complexing polymer,
recently explored by Yang et al. [28].

Empirical models for particle properties may contribute to uncertainty in our results; the models
for zeta potential as a function of ln c∗, for instance, have linear asymptotes and are unbounded.
Extrapolation to concentrations not considered with zeta potentiometry could yield erroneous
results for particle migration. This is particularly relevant at low concentrations, where solution
conductivity is minimal and measurement of electrophoretic mobility through conventional means
is difficult. Additionally, the model for the zeta potential of the particles is only appropriate when
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FIG. 12. Approximate net near-wall mobility and the trend for diffusioosmotic mobility. To obtain an
estimate for the net mobility, we compare experimental velocities and numerical values of ∇ ln c∗—interpolated
to the same 100×100 grid with x∗ ∈ [0.005, 0.015] and y∗ ∈ [0.017, 0.3]—in the absence of diffusioosmosis.
We show a moving average over 100 values of the effective mobility to smooth the curves. The approximated
diffusioosmotic mobility is the difference between the net mobilities of PS particles with glass and gold
boundaries, denoted (a) and (d).

the Debye length is small relative to the particle size [64], which is a further source of uncertainty
at low solute concentrations. We have also neglected variations in other quantities. One example of
such a quantity is the pH, which may be affected by the intrusion of CO2 or other gaseous species
through the gas-permeable PDMS walls [13,17,19,25]. This is unlikely to affect the dynamics near
the glass or gold surfaces but may warrant further study for other materials commonly used in
microfluidic devices. We have also neglected variation in density and other fluid properties along
solute concentration gradients. Gua et al. [71] and Williams et al. [72] show that such variations
can result in buoyancy-driven flows with a magnitude that is dependent on channel geometry and
solute species. They consider more significant concentration gradients, however, and variations in
the properties of NaCl solutions at or below approximately 20 mM are negligible. This is apparent
from the near symmetry across the xy plane in Fig. 3; the direction of particle migration is the same
on the top and bottom surface, which we expect to have similar surface charges, and this symmetry
would be broken if convection were the dominant transport mechanism (cf. Fig. 2 of Ref. [72]).

Our experimental observations support the use of models of variable diffusiophoretic and dif-
fusioosmotic mobilities. To demonstrate the importance of variable-mobility models, we plot an
effective near-wall mobility in Fig. 12, noting that both diffusioosmosis and diffusiophoresis have
a logarithmic dependence on the solute concentration gradient and are additive very close to the
wall. The plot shows the quotient of (uPIV − u) · êy and (∇ ln c∗) · êy, where êy is the unit vector
in the y direction. We interpolate experimental and numerical values to the same 100×100 grid
over x∗ ∈ [0.005, 0.015] and y∗ ∈ [0.017, 0.3] for comparison and show a moving average over 100
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values to smooth the result. Here, we find the velocity uPIV from the experimental results with PIV,
while we determine u and c∗ from a simulation without diffusioosmosis. This provides a rough
estimate, provided the effect of diffusioosmosis on the solute concentration field is small and the
focal plane of the microscope is close to the channel surface, for the effective mobility, which
includes the effects of both diffusiophoresis and diffusioosmosis. If we were to consider the effects
of diffusioosmosis on the solute concentration profile, we might expect a slight increase in the
magnitude of the effective mobility and a shift in the location of its maximum, but the trend for the
effective and diffusioosmotic mobilities would be similar because the concentration gradient would
have the same sign and a similar magnitude. As we expect based on the results presented earlier, we
observe outward particle migration near the gold surface. The direction changes, however, near the
glass surface, which indicates that the effect of diffusioosmosis is to draw particles toward y∗ = 0
along the glass boundary. Notably, the particles move inward in the case of the glass surface, but
there are visible inflection points where the effective mobility begins to decrease in magnitude.
In the case of the 1 µm cPS particles, the mobility changes signs within the concentration range
we consider, indicating that the motion of particles near the surface is now directed outward from
y∗ = 0. The dynamics of the particles in the inlet and outlet regions, therefore, can be distinct;
a change in the magnitude of the solute concentration can have a significant impact on near-wall
velocity, even when the direction of the gradient is constant, as a result of concentration-dependent
diffusiophoretic and diffusioosmotic mobilities. This supports the conclusions of Akdeniz et al.
[36], who have recently found that models of zeta potential as a function of solute concentration are
important to accurately describe particle motion in a pore over long times.

Our experimental results for the effective mobility contradict the model we use for the wall
zeta potential and diffusioosmotic mobility using published data for silica. With the model we use,
the mobility is unbounded and continues to increase as the solute concentration is lowered. We
observe that the effective mobility diminishes in magnitude at low concentration and because the
diffusiophoretic mobility decreases as c∗ is lowered (see Figs. 18 and 19 or the near-wall mobility
in the case of the gold surface in Fig. 12), the experimental results are consistent only with a similar
decay in diffusioosmotic mobility at low concentrations. This is also apparent when comparing
Figs. 9 and 10; the behavior in the near-inlet region, where the solute concentration is lowest, is
not described accurately by the model, which otherwise provides estimates for velocity that are
both qualitatively consistent with experiments and appropriate in magnitude. This difference could
be attributable, in part, to differences in surface chemistry arising from either properties of the
material itself or surface treatments such as plasma cleaning. Indeed, the diffusioosmotic mobility
is a significant source of uncertainty in our calculations, and estimation is further complicated
by electrokinetic lift [73], which may also account for the lack of a third particle peak at y∗ = 0
in Fig. 3 when it is seen in simulated particle profiles like those shown in Fig. 8. The velocity
in the z direction would not be as significant at the center of the channel if the diffusioosmotic
velocity were to decay at low solute concentrations. The surface zeta potential may also be time
dependent, which is something we have not considered; for some materials, such as PDMS [74],
surface fouling over time may be an important consideration. Further characterization of the zeta
potential and diffusioosmotic mobility with optical techniques is a potentially interesting topic of
further research; iterative methods for determining diffusioosmotic mobility by minimizing the error
between simulated and experimental velocity profiles could yield further insights, but it is outside
of the scope of this paper. The diffusiophoretic mobility is likely reasonable: Keh and Wei [67]
comment that the model agrees well with previously published results “up to [a zeta potential ζ

of] 50 mV,” which is consistent with the order of magnitude of ζ we consider (see Fig. 18 in the
Appendix).

V. CONCLUSION

We have described the three-dimensional dynamics of solute and particles in merging streams of
distinct solute concentration experimentally, numerically, and analytically. Near walls of nonzero
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surface charge, diffusioosmosis results in the migration of particles along the boundary; this does
not occur near an uncharged surface. This phenomenon could have implications for microfluidic
devices for which mixing processes are relevant, as near-wall flows can be exploited to enhance
or suppress mixing. Additionally, we contend that the change from inward to outward particle
migration we observe near the boundary can be described by solute concentration-dependent models
of diffusiophoretic and diffusioosmotic mobility, which is direct evidence to support recent trends
toward the adoption of variable-mobility models in studies of diffusiophoresis and diffusioosmosis.
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APPENDIX A: APPROXIMATE SOLUTION

Note that all variables in this section are dimensionless; the notation differs from the main text.
We study the convection-roll phenomenon in a simplified system, where the initial concentration
profile is Gaussian. This allows us to consider the solute concentration in a similarity regime, unlike
cases where the initial solute profile is a step, as in the main text. The depth of the channel in the
z direction is �3; the x and y dimensions are infinite. The problem we consider here is similar to
the numerical work of Chakra et al. [42], though the inlet solute concentration and the semi-infinite
channel geometry are distinct. An example of the system is shown in Fig. 13 with the zeroth-order
solute concentration and first-order velocity in yz planes.

FIG. 13. Example of (a) zeroth-order solute concentration and (b) streamlines of first-order, in-plane
velocity for a case where  < 1 and αp = 0. The concentration is bounded by  and ch = (1 − )/

√
π + .

The maximum particle speed U1 is affected by α and . In cases where  > 1, the concentration at y = 0 is
lower than the concentration as y → ∞ and the direction of motion is reversed relative to the system depicted
here.
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The dimensionless continuity equation is
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (A1)

where we have used a characteristic scale for velocity U in the x direction, V = Dc
�2

in the y direction,

and W = Dc�3

�2
2

in the z direction. The length scale in the y direction, �2, is fixed by the width of the
inlet solute profile. The value �1, which provides a length scale in the x direction, is related to �2

through the diffusion equation. The flow in the channel is governed by the Stokes equation, which
gives

0 = − pc
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∂x2
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2
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∂2w
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]
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in the x, y, and z directions, respectively. Here, pc is a characteristic pressure. Intuitively, we expect
that the dominant terms are the pressure gradient in the x direction and the viscous ∂2u

∂z2 term, which

must balance. Therefore, we choose a pressure scale pc = μU�1

�2
3

, which gives

0 = −∂ p

∂x
+ ε2

Pe

∂2u

∂x2
+ ε2 ∂2u

∂y2
+ ∂2u

∂z2
, (A5)

0 = −Pe
∂ p

∂y
+ ε2

Pe

∂2v

∂x2
+ ε2 ∂2v

∂y2
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, and (A6)

0 = −Pe
∂ p

∂z
+ ε4

Pe

∂2w

∂x2
+ ε4 ∂2w

∂y2
+ ε2 ∂2w

∂z2
, (A7)

where Pe = U�1/Dc is the Péclet number and ε = �3/�2 is the channel aspect ratio. At the walls at
z = ±1/2, we impose slip boundary conditions to account for diffusioosmosis; these are

u(x, y,±1/2) = − 1

Pe

Mdo

Dc

∂ ln c

∂x
, v(x, y,±1/2) = −Mdo

Dc

∂ ln c

∂y
, and w(x, y,±1/2) = 0.

(A8)

The boundary conditions can be modified to account for different channel materials. At the inlet of
the channel, the velocity is

u(0, y, z) = 3
2 (1 − 4z2), v(0, y, z) = 0, and w(0, y, z) = 0. (A9)

The dimensionless advection–diffusion equation for the solute is

U
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u
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�2
2
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which we simplify to write

ε2

(
u
∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z

)
= ε2

Pe

∂2c

∂x2
+ ε2 ∂2c

∂y2
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. (A11)

We consider small parameters α = Mdo
Dc

, β = 1
Pe = Dc

U�1
, ε2 = �2

3

�2
2
, and αp = M

Dc
. To simplify

notation, we use Ai jk to denote the term of the expansion of A at O(αiβ jε2k ). This gives the series

A = A000 + ε2A001 + ε4A002 + βA010 + βε2A011 + β2A020

+ αA100 + αε2A101 + αβA110 + α2A200 + · · · (A12)
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for each variable A. As a result of the one-way coupling of the particle dynamics to the solute
dynamics, the velocity, pressure, and solute concentration are independent of αp. We use the
similarity solution to the one-dimensional diffusion equation in an infinite domain, where we use
position x as a substitute for time, for the leading-order solute profile. This is

c000 = 1 − √
4πx + π

exp

(
− y2

4x + 1

)
+ , (A13)

where  sets the solute contrast. This is similar to solutions for the solute concentration given by
Teng et al. [48] and Gupta et al. [75]. When  > 1, the solute concentration is largest at |y| → ∞
and smallest at y = 0; when  < 1, the concentration is largest at y = 0.

1. Solute dynamics

The solute concentration profile and the velocity profile are coupled as a result of diffusioosmo-
sis. The leading-order velocity and pressure are, from Poiseuille flow,

u000 = 3
2 (1 − 4z2), (A14)

v000 = 0, (A15)

w000 = 0, and (A16)

p000 = −12x. (A17)

Deviation from this background flow is a result of diffusioosmosis at boundaries. We first note that
the z-momentum equation at O(α) yields ∂ p100

∂z = 0, so p100 is independent of z. To leading order,
the governing equations are now

∂u100

∂x
+ ∂v100

∂y
+ ∂w100

∂z
= 0 (continuity), (A18)

−∂ p100

∂x
+ ∂2u100

∂z2
= 0 (x momentum), (A19)

∂ p100

∂y
= 0 (y momentum), (A20)

∂ p101

∂z
= 0 (z momentum), and (A21)

−∂2c000

∂y2
+ 3(1 − 4z2)

2

∂c000

∂x
− ∂2c001

∂z2
= 0 (advection–diffusion). (A22)

Equations (A20) and (A21) suggest that p100 is a function only of x and p101 is a function of x and
y. At the next order, the y- and z-momentum equations are, respectively,

∂ p110

∂y
− ∂2v100

∂z2
= 0 and (A23)

∂ p111

∂z
− ∂2w100

∂z2
= 0. (A24)

Equation (A19) can be solved to yield

u100 = k1 + k2z + z2

2

dp100

dx
, (A25)

where k1 and k2 are fixed by the leading-order boundary conditions:

k1 + k2

2
+ 1

8

dp100

dx
= 0 and (A26)

k1 − k2

2
+ 1

8

dp100

dx
= 0. (A27)
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Equations (A26) and (A27) yield

k1 = −1

8

(
4k2 − dp100

dx

)
and (A28)

k2 = 0. (A29)

The correction to the velocity in the x direction is then

u100 = 4z2 − 1

8

dp100

dx
; (A30)

note, however, that the integral of higher-order terms over a cross section must be zero to con-
serve mass. This requires constant p100. Consequently, the velocity correction is u100 = 0 and
the first-order correction to the velocity field from diffusioosmotic flow includes only transverse
components, with no correction for streamwise velocity. The y-momentum equation is now, to
leading order:

∂ p110

∂y
− ∂2v100

∂z2
= 0. (A31)

Solving Eq. (A31) yields

v100 = j1 + j2z + z2

2

∂ p110

∂y
; (A32)

the solution in the same manner as the last order gives the functions

j1 = − j2
2

− 1

c000

∂c000

∂y
− 1

8

∂ p110

∂y
and (A33)

j2 = 0, (A34)

so

v100 = − 1
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8
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. (A35)

The continuity equation is now

8
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− 8
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and can be solved to find

w100 = r + 1
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3
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000
∂2 p110
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(
8
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Applying the boundary condition at z = 1/2, we find

r = 1

24c2
000

[
12

(
∂c000

∂y

)2

− 12c000
∂2c000

∂y2
− c2

000
∂2 p110

∂y2

]
; (A38)

similarly, applying the boundary condition at z = −1/2 yields

p110 = h1 + h2y − 12 ln c000. (A39)
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FIG. 14. Example of first-order velocity correction at x = 0 with  = 10. The convection rolls draw fluid
toward y = 0 at the boundaries when α > 0; the velocity is largest at the boundaries, where diffusioosmosis
occurs. The velocity profile is symmetric about y = 0 and is similar to profiles observed in numerical
simulations. The presence of a second roll at z = 1/2 is a result of the fact that we consider a case with
uniform diffusioosmotic mobilities at both the upper and lower walls.

To conserve mass, h2 must be zero. The velocity components are now

v100 = 1 − 12z2

2c000

∂c000

∂y
and (A40)

w100 = 4z3 − z

2c2
000

[
−

(
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)2

+ c000
∂2c000

∂y2

]
. (A41)

Equation (A22) can be solved to find

c001 = m1 + m2z − z2

2

∂2c000

∂y2
+ 3z2

4

∂c000

∂x
− z4

2

∂c000

∂x
, (A42)

with m2 = 0 from the no-flux boundary condition. The function m1 does not affect the leading-order
particle dynamics.

The corrections u100, v100, and w100 give the first-order velocity profile that results from dif-
fusioosmosis at the boundaries of the channel and allow for the visualization of the structure of
the convection rolls. We show an example in Fig. 14, which shows the characteristic structure of
the convection rolls with the largest velocity at the boundary. In the example, particles are drawn
inward toward y = 0 along the wall, where they are advected away from the boundary and are
drawn outward by the recirculating flow. We show another example of the structure in Fig. 15,
which is reminiscent of Figs. 9 and 10 from experiments and simulations, respectively. It shows the
transverse, in-plane velocity that draws solute and particles toward the center of the channel near
the boundary.
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FIG. 15. Velocity in the y direction at z = 0.99 with  = 10 and α = αp = 50. The velocity profile is
similar to that seen in Figs. 9 and 10, which indicates the solution is capturing the relevant dynamics. Solute
and particles near the boundary are drawn inward toward y = 0.

2. Particle dynamics

To visualize the effects of diffusiophoresis and diffusioosmosis on the particle dynamics, we
calculate particle trajectories for individual particles with a position xp = (xp, yp, zp). The nondi-
mensional particle position is governed by

dxp

dt
= u + αpβ

d ln c

dx
, (A43)

dyp

dt
= v + αp

d ln c

dy
, and (A44)

dzp

dt
= w + αp

ε2

d ln c

dz
; (A45)

to first order, this is
dxp

dt
= u000, (A46)

dyp

dt
= αv100 + αp

c000

∂c000

∂y
, and (A47)

dzp

dt
= αw100 + αp

c000

∂c001

∂z
. (A48)

We show example trajectories for large α and αp in Fig. 16. While the theory is strictly valid
for small parameters, here we use large α and αp so the trajectories demonstrate the effects
of diffusiophoresis and diffusioosmosis on particles. Large values of α and αp are necessary to
visualize the structures because the concentration gradient is not steep, as it is in the near-inlet
region of the channel, with the initial concentration profile defined in Eq. (A13). In this example,
 = 10, which corresponds to an initial solute profile that is largest at large y and smallest at
y = 0. When αp < 0, particles migrate down the solute concentration gradient and focus in the
center of the channel. When αp > 0, they migrate up the solute concentration gradient, away
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FIG. 16. Example particle trajectories with large values of α and αp. Here,  = 10 and the solute concen-
tration is lowest in the center of the channel. The theory is valid for small parameters, but we use large values
to demonstrate the effects of diffusiophoresis and diffusioosmosis on particle trajectories. When αp < 0, the
particles migrate toward the center of the channel, where the solute concentration is lowest; when αp > 0, the
particles migrate outward toward higher solute concentration. The particles migrate in the z direction because
of the effects of walls on the solute concentration profile. When α < 0, particles are drawn outward along the
wall because of diffusioosmosis; they are drawn toward the center of the channel along the wall when α > 0.
Particle paths are colored by initial z position.
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FIG. 17. Example particle trajectories with large α. Here,  = 10 and the solute concentration is lowest in
the center of the channel. The model is valid for small α, but we use a large value for visualization. Particle
paths are colored by initial z position.

from y = 0. Notably, the particles migrate in the z direction even in the absence of diffusioos-
mosis because the presence of walls affects the solute profile. When α < 0, diffusioosmosis
draws particles outward from y = 0 along the wall. Particles near z = 0 migrate toward y = 0
because of the recirculation of the fluid. The opposite occurs when α > 0: particles at the wall
are drawn inward toward y = 0, while particles near z = 0 are drawn outward by the recirculating
flow.

We show an extreme case, where α = 50, in Fig. 17 to better demonstrate the convection rolls.
Once again, though the theory is valid for small α, we choose a large value to demonstrate the effect.
The particles trace the velocity profile and demonstrate the existence of a vortex, where particles
are drawn toward y = 0 along the wall by the slip flow and outward from y = 0 by the recirculating
flow. The strength of the convection roll decays as x increases because the solute diffuses and the
concentration gradient diminishes.
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FIG. 18. Zeta potential as a function of solute concentration. The particle zeta potential (pink) was
calculated using electrophoretic mobility measurements obtained by V. S. Doan, University at Buffalo, and
is for 196 nm cPS particles. Error bars indicate the standard deviation. We fit a line passing through the origin
to experimental results for silica (note that the data shown on the plot may be truncated), as in the work of
Kirby and Hasselbrink, Jr. [51]. We fit a hyperbola to the zeta potential of the particles.

APPENDIX B: MODELS FOR ZETA POTENTIAL AND MOBILITY

We implement a model with variable zeta potential, diffusiophoretic mobility, and diffusioos-
motic mobility. First, we use electrophoretic mobility measurements of cPS particles (V. S. Doan,

TABLE II. Constants associated with the fit to the cal-
culated zeta potential as a function of solute concentration,
described by Eqs. (8).

Symbol Value

α0 5.94×10−2 V
α1 3.21×10−3 V
α2 5.26×10−3 V2

α3 1.84×10−3 V2

α4 1.63×10−4 V2

114201-25



MIGACZ, DUREY, AND AULT

FIG. 19. Diffusiophoretic and diffusioosmotic mobilities as a function of solute concentration. Note that
the scale of the ordinate differs for each. The zeta potential of the wall is unbounded; this yields a significant
diffusioosmotic mobility at low solute concentration. Consequently, we expect diffusioosmotic transport may
be most significant at low solute concentration, which is consistent with our observations of convection rolls
near the channel inlets and within |y∗| < 1/6.

University at Buffalo) to calculate the particle zeta potential with the model of Ohshima et al.
[63], as given by Kirby [64]. The result is shown in Fig. 18. Notably, the magnitude of the particle
zeta potential diminishes at low solute concentration, which is behavior not observed in published
measurements of the zeta potential of silica [76–78], for which there is a monotonic increase
with decreasing solute concentration (also shown in Fig. 18). Within the range of concentrations
considered in experiments, it appears that there are two regimes for the particle zeta potential:
At high concentration, the behavior is similar to that of glass, and the zeta potential decreases
in magnitude with increasing concentration. At low concentration, the zeta potential increases in
magnitude with increasing concentration. The two regimes appear approximately linear in ln c∗,
and we fit a hyperbola to obtain a continuous, empirical zeta potential, described in Eqs. (8). The
constants associated with the fit to the particle zeta potential are given in Table II. The conductivity
of a solution with c∗ ≈ 0 cannot be measured by the Litesizer, which introduces uncertainty in
the modeled zeta potential at low solute concentrations. We use a model for the boundary zeta
potential where ζb = m log10 c∗, which is consistent with reported zeta potentials of silica [65],
as shown in Fig. 18, and vary the constant m because of uncertainty about the diffusioosmotic
mobility at the glass surface. The maximum value of m associated with published results for the zeta
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FIG. 20. Various (nonexhaustive) estimates for diffusiophoretic mobility of particles in a solution of NaCl
at concentration c. Ultimately, the mobility takes a similar form, reaching a maximum at a particular solute
concentration and decaying at higher or lower concentrations. *Some details of particle species, such as
fluorescent coatings, are neglected. †Calculated with the expression given by the authors, which is analogous
to Eq. (11).

potential–solute concentration relationship of silica, as shown in Fig. 18, is approximately 0.05 V;
this informs the range we use in simulations.

We now calculate the diffusiophoretic mobility M using the empirical fits to the zeta potential
while accounting for finite-Debye length effects in diffusiophoresis. We use the model of Keh and
Wei [67], given in Eq. (9), for the mobility of the particles because it is valid for arbitrary values of
the thickness ratio λ∗ = (κa)−1, where

κ =
√

z2e2σc∗

εkBT
(B1)

is the inverse of the Debye length. Here, the valence is z, the fundamental charge is e, and the
permittivity is ε; with a characteristic concentration of 1 M, the constant is σ ≈ 1.204×1027 / m3 .
Other models, such as that given by Prieve et al. [33], are valid only for λ∗ 	 1, which is violated
at low solute concentrations, where the Debye length is comparable to the particle size.
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FIG. 21. The mesh used for simulations, shown from the top in (a) and the side in (b). We have manually
refined regions with large gradients in solute and particle concentrations, shown in (c).

The resulting mobilities are shown in Fig. 19. The diffusiophoretic mobility appears to have a
maximum; at higher or lower solute concentrations, it is diminished. In effect, models with constant
diffusiophoretic mobility tend to overpredict particle migration at low or high concentrations and
underpredict near the maximum mobility. Fits to the functions 	∗

i perform well over a wide range
of thickness ratios λ∗ and do not introduce significant errors to the model.

We compare our model for diffusiophoretic mobility to several that have been used in previous
works. Examples of models for the diffusiophoretic mobility of PS particle species in NaCl gradients
are shown in Fig. 20. Several authors consider a constant diffusiophoretic mobility, which is
shown as a horizontal line with endpoints defined by the lowest and highest solute concentrations
considered in experiments. Though the particles differ in size and surface chemistry, there is little
variation in the values of M—attributable, in part, to differences in thickness ratio λ∗—and the
models for concentration-dependent mobility demonstrate similar behavior and have maxima at
similar concentrations.

APPENDIX C: DETAILS OF SIMULATIONS

The mesh we use for simulations is shown in Fig. 21. We manually refined the mesh in regions
where the solute concentration gradient is significant, such as the interfaces between solute streams.
We do not simulate the full channel because it is computationally prohibitive; we simulate to x ≈
800 µm, which is about 4 % of the channel length.

APPENDIX D: SAMPLE VIDEOS

We provide sample videos to demonstrate particle dynamics in the near-wall region in the
Supplemental Material [79]. The videos demonstrate how the dynamics near glass and gold surfaces
are distinct.
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