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Effect of temperature-dependent viscosity on pressure drop
in axisymmetric channel flows
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We investigate theoretically the influence of a temperature-dependent viscosity on the
pressure drop versus flow rate relationship in pipe flows for cases where the Reynolds
number is small, as expected for printing and other flows of highly viscous fluids. By
applying different temperature boundary conditions at the wall, the viscosity field is altered
under the same flow conditions and thus we can compare how this external heating affects
the pressure drop along the length of the pipe. We use analytical and similarity-solution
methods to solve for the temperature distribution under constant temperature and constant
heat flux boundary conditions, as well as assumed linear and other imposed polynomial
temperature versus distance (along the flow) boundary conditions at the wall. Also, for
the momentum and energy equations we use the lubrication and boundary-layer approx-
imations, respectively, which we expect to be typically appropriate for flows where the
pipe radius is much less than the pipe length. The reciprocal theorem is used to derive
an expression for the pressure drop across the channel for a viscosity field that depends
on temperature and spatially varies across and along the flow. Assuming the fractional
change in viscosity with temperature is small, we arrive at an analytical expression for the
pressure drop for a given flow rate. The results are reported as a function of the effective
Peclet number for each boundary condition and the numerical results are compared with
analytical predictions in the low- and high-Peclet-number limits.

DOI: 10.1103/PhysRevFluids.8.114101

I. INTRODUCTION

Viscosity gradients due to applied temperature fields in fluid flows are relevant to many natural,
environmental, and industrial applications. One example is the flow of magma on a cooler surface,
along which the average temperature of the fluid decreases and eventually affects the overall
propagation of the current [1–6]. Additionally, extracting heavy oils from offshore sites involves
pumping through the vast depths of the ocean where temperature-induced viscosity changes are
inevitable [7]. In colloidal science, it has been documented that introducing temperature-induced
viscosity variations in the neighborhood of the particle in a viscous fluid affects the diffusion
coefficient, force, and torque experienced by the particle [8–12]. Furthermore, heat exchangers,
glass fabrication, and injection molding are all examples where the working fluid experiences
temperature and viscosity gradients that influence the flow behavior [13–15]. In Table I we provide
a selective chronological list of previous work on pressure-driven flows in heated and/or cooled
axisymmetric and two-dimensional channels. Some of the studies itemized in Table I focused on
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TABLE I. Chronological selection of previous experimental, numerical, and theoretical works on the low-
Reynolds-number pressure-driven flows in heated and/or cooled two-dimensional and axisymmetric geometries
for Newtonian and non-Newtonian fluids.

Year Authors Source of heat considered Geometry Reported μ(T ) effect on

1975 Galili et al. [16] Isothermally heated walls Pipe Pressure drop-flow rate relation
and viscous heating

1977 Ockendon and Isothermally heated 2D channel Velocity and pressure fields
Ockendon [17] and cooled walls

1977 Pearson [19] Viscous heating 2D channel Temperature, velocity,
and pressure drop

1978 Ockendon [20] Viscous heating 2D channel Velocity, pressure fields
and boundary layer

1981 Denn [21] Viscous heating Pipe Pressure drop-flow rate relation
1986 Richardson [15] Isothermally heated walls 2D channel, Pressure drop-flow rate relation

pipe and disk
1987 Richardson [18] Isothermally heated walls 2D channel, Pressure drop-flow rate relation

pipe, and disk and thermal boundary layer
1988 Sun [22] Isothermally heated 2D channel Temperature and velocity fields

and cooled walls
with viscous heating

1991 Whitehead and Isothermally 1D and 2D Pressure drop
Helfrich [1] heated walls channel and flow stability

1993 Schäfer and Herwig [23] Constant flux at walls 2D channel Poisieulle flow stability
1995 Wylie and Lister [2] Isothermally heated walls 2D channel Pressure drop-flow rate relation

and flow stability
2002 Costa and Macedonio [4] Viscous heating 2D channel Flow stability
2005 Costa and Macedonio [5] Viscous heating 2D channel Flow stability

the pressure drop-flow rate relationship in channels with heated and/or cooled walls [1,2,15–18].
Perhaps surprisingly, studies pertaining to the effect of the type of applied heating (i.e., boundary
conditions at the wall) on the total pressure drop have been lacking. In this work, we report the
pressure drop as a function of an effective Peclet number for different applied temperature boundary
conditions for cases where the relative change in viscosity is small.

Various pressure drop-flow rate relations have been reported over the years. For example, for
small variations in viscosity with temperature and pressure in axisymmetric channel flows with
isothermal and adiabatic boundaries, the effects of viscous heating were derived in [16]. Also, steady
flows in heated and cooled channels driven by a constant mass flux were studied with a focus on the
temperature and velocity fields in the high viscosity variation limits for exponential and algebraic
viscosity dependence with temperature [17]. The study was extended to polymer melts flowing
through ducts with heated walls, where viscous heating effects were included [18]. Geophysical
applications involving magma motivate some work, such as the case where viscosity varied linearly
with temperature [1]. Also, the flow of hot viscous fluid on a cooled constant temperature wall was
studied by Wylie and Lister [2], who employed numerical techniques to determine the pressure drop-
flow rate relationship in the limit where viscosity variations are high and confirmed the bifurcations
previously reported by Whitehead and Helfrich [1]. Additionally, they investigated flow stability
and found that fingeringlike structures develop at high viscosity variations.

In this work, we present an analytical expression for the total pressure drop for a given flow rate
across an axisymmetric channel for various prescribed temperature boundary conditions at the wall.
Utilizing the Lorentz reciprocal theorem, we circumvent the coupled hydrodynamic-heat transfer
problem in the lubrication limit. Specifically, we linearize the viscosity distribution and obtain the
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EFFECT OF TEMPERATURE-DEPENDENT VISCOSITY ON …

FIG. 1. A fluid enters an axisymmetric channel with temperature T0 and viscosity μ0; ρ is the fluid density.
The temperature at the wall, Tw (z), is different from T0 and may vary along the length of the channel, resulting
in temperature and viscosity gradients throughout the fluid domain.

first-order correction to the total pressure drop. Previous studies have approached this problem
by applying isothermal heating or cooling conditions at the wall and solving the resultant total
pressure drop. However, in practice, wall temperatures never truly conform to isothermal conditions.
Therefore, we extend this approach by applying constant flux and linear boundary conditions (i.e.,
temperature as a function of downstream position) to the classical Graetz equation from which
we obtain analytical solutions for the temperature field. By rescaling the velocity field with the
average velocity thereby keeping the mass flux fixed, we elucidate the influence of the effective
Peclet number (defined in Sec. V) on the average temperature in the fluid domain. Furthermore,
we study the effect of the applied temperature conditions at the wall on the first-order pressure
drop correction as a function of effective Peclet number. When analyzing the high-Peclet-number
limit, we take advantage of the Lévêque equation to approximate the temperature field for different
boundary conditions and show that our results for the pressure drop obtained from the Lévêque
approach are in excellent agreement with the Graetz approximation. To our knowledge, we are not
aware of any approach that encapsulates the effect the nature of the applied heating has on the total
pressure drop in the form of a comparison as we aim to report in this study.

II. LUBRICATION SCALING OF MASS AND MOMENTUM EQUATIONS

We consider an incompressible steady flow of a Newtonian fluid in an axisymmetric channel
of radius r0 and length �, where r0 � �, as shown in Fig. 1. A temperature boundary condition is
applied at the walls of the channel (r = r0), which induces a viscosity distribution throughout the
fluid domain since viscosity is a function of temperature. The fluid motion is assumed to remain
laminar and is described by a velocity u = (uz, ur ) and a pressure distribution p due to an applied
flow rate q. Our main goal is to determine the overall pressure drop �p and how the thermal
boundary condition influences the results.

We start by outlining a lubrication-style description of the governing equations in the low-
Reynolds-number limit but allowing for convective effects in the thermal energy equation. In our
analysis, we neglect buoyancy-driven contributions, which may arise from density variations with
temperature, and thus change the flow field. Comparing the ratio of the characteristic velocity due
to buoyancy forces, O(�ρgr2

0/μ0), to the characteristic velocity that drives the flow, O(q/r2
0 ), we

find the ratio �ρgr4
0/qμ0 representing the relative importance of buoyancy effects, where �ρ is the

magnitude of density changes from the mean density ρ, and g is the acceleration of gravity in the
axial direction. When this ratio is small, �ρgr4

0/qμ0 � 1, the buoyancy has a negligible influence
on the flow field, and the temperature variations are incorporated only through the variation of the
viscosity. Under the above condition, the fluid motion is described by the continuity and Cauchy
momentum equations:

∇ · u = 0, ∇ · σ = 0, (1)

114101-3



LOUIS, BOYKO, AND STONE

where σ is the stress tensor for a Newtonian fluid, which takes the form

σ = −pI + 2μ(T )E. (2)

Here I is the identity tensor and E = (1/2)(∇u + (∇u)T ) is the rate-of-strain tensor. The stress
tensor involves a temperature-dependent viscosity, μ(T ), where the temperature field is a function
of r and z. Hence, we have

−∇p + ∇ · [μ(r, z)(∇u + ∇uT )] = 0, (3)

where we have neglected buoyancy-driven contributions as mentioned above.
To solve the mass and momentum equations, we impose no-slip and no-penetration boundary

conditions at r = r0 and apply an integral constraint for the flow rate, 2π
∫ r0

0 uzrdr = q, where we
have neglected volumetric variations due to density changes with temperature. For convenience, we
choose the characteristic velocity scale as Ū = q/(2πr2

0 ), which ensures that the nondimensional
integral constraint for volume flux is equal to one.

Therefore, we nondimensionalize the governing equations by applying lubrication theory and
using the dimensionless variables:

Z = z

�
, R = r

r0
, Ur = ur

εq/2πr2
0

, Uz = uz

q/2πr2
0

, P = p

μ0q�/2πr4
0

, M = μ(r, z)

μ0
, (4)

where ε = r0/� is the aspect ratio, which we assume to be small, ε � 1, and M(R, Z ) is the
dimensionless viscosity. Applying the rescaling to Eqs. (1) and (2), we arrive at

1

R

∂ (RUr )

∂R
+ ∂Uz

∂Z
= 0,

∂P

∂Z
= 1

R

∂

∂R

(
RM(R, Z )

∂Uz

∂R

)
+ O(ε2),

∂P

∂R
= O(ε2). (5)

From Eq. (5), it follows that P = P(Z ) + O(ε2), i.e., the pressure is independent of R up to O(ε2),
consistent with the classical lubrication approximation. We note that in the next sections, we bypass
using the lubrication equations (5) to solve the hydrodynamic and heat transfer problems and use
instead the reciprocal theorem.

III. RECIPROCAL THEOREM FOR FLOWS WITH NONUNIFORM VISCOSITY
IN AXISYMMETRIC NARROW CHANNELS

The Lorentz reciprocal theorem is a useful tool that can be applied to fluid dynamics and
transport phenomenon problems to calculate integral quantities, such as force, torque, pressure
drop, and flow rate, while bypassing detailed calculations of primary quantities [24]. We outline
a model problem by defining û and σ̂ as the velocity and stress fields that correspond to the case
in which there are no temperature variations in the system. In this model, the entrance viscosity,
μ0, remains constant over the entire fluid domain. Therefore, the respective mass and momentum
equations are

∇ · û = 0, ∇ · σ̂ = 0, where σ̂ = −p̂I + 2μ0Ê. (6)

Following standard steps, we arrive at the reciprocal theorem in the form∫
S0

n · σ · û dS +
∫

S�

n · σ · û dS −
∫

S0

n · σ̂ · u dS −
∫

S�

n · σ̂ · u dS = 2
∫

V
(μ(T ) − μ0)E : Ê dV,

(7)
where V is the fluid volume and n is the unit outward normal corresponding to the cross-sectional
surfaces at the beginning and end of the channel S0,�. We also take advantage of the no-slip
boundary conditions at the walls so that the surface integrals vanish there. Recently, a similar
approach has been used to calculate the pressure drop of non-Newtonian fluid flow in narrow
geometries [25,26].
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Next, we rescale the variables in the surface and volume integrals according to Eq. (4), using
similar definitions for the hat variables, and find

2(μ(T ) − μ0)E : Ê = q2μ0

4π2r6
0

[
(M − 1)

∂Uz

∂R

∂Ûz

∂R
+ O(ε2)

]
, (8a)

n · σ · û = ∓μ0q2�

4π2r6
0

[−PÛz + O(ε2)], (8b)

n · σ̂ · u = ∓μ0q2�

4π2r6
0

[−P̂Uz + O(ε2)], (8c)

where the minus and plus signs correspond to S0 and S�, respectively; recall that M is the
dimensionless viscosity. Combining terms and simplifying Eq. (7), we obtain∫ 1

0
(PÛz )R|Z=0dR −

∫ 1

0
(PÛz )R|Z=1dR −

∫ 1

0
(P̂Uz )R|Z=0dR +

∫ 1

0
(P̂Uz )R|Z=1dR

=
∫ 1

0

∫ 1

0
(M − 1)R

∂Uz

∂R

∂Ûz

∂R
dRdZ + O(ε2). (9)

Because of our choice for the velocity scale, then
∫ 1

0 UzR dR = ∫ 1
0 ÛzR dR = 1. Additionally,

we define the pressure drops �P = P(0) − P(1) and �P̂ = P̂(0) − P̂(1) so that, upon further
simplification, we obtain the expression for the pressure drop

�P − �P̂ =
∫ 1

0

∫ 1

0
(M − 1)R

∂Uz

∂R

∂Ûz

∂R
dRdZ + O(ε2). (10)

IV. LINEARIZATION OF THE VISCOSITY FIELD AND PERTURBATION ANALYSIS

In order to characterize an approximate variation in the viscosity, we expand the viscosity into a
Taylor series around the inlet temperature T0, corresponding to the viscosity μ0. We also introduce
a dimensionless variable for temperature, �(R, Z ) = (T (r, z) − T0)/�T , where �T is determined
by the boundary conditions. The corresponding expansion for the viscosity is

M = μ(T )

μ0
= 1 + �T

μ0

∂μ

∂T

∣∣∣∣
T0

�(R, Z ) + (�T )2

2μ0

∂2μ

∂T 2

∣∣∣∣
T0

[�(R, Z )]2 + · · · . (11)

We expect that ∂μ/∂T < 0, and so define the parameter β that represents the fractional change of
viscosity,

β = −�T

μ0

∂μ

∂T

∣∣∣∣
T0

. (12)

For β � 1, Eq. (11) becomes

M(�) ≈ 1 − β� + O(β2). (13)

Substituting Eq. (13) into Eq. (10), we obtain

�P = �P̂ − β

∫ 1

0

∫ 1

0
�R

∂Uz

∂R

∂Ûz

∂R
dRdZ + O(ε2, β2). (14)

To simplify further, we expand the pressure drop and velocity into perturbation series in the
dimensionless parameter β � 1 by defining Uz = Uz,0 + βUz,1 + O(β2) and �P = �P0 + β�P1 +
O(β2). Using the latter expansions and noting that �P̂ = �P0 and Ûz = Uz,0 = 4(1 − R2), we
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obtain the expression for the first-order pressure drop correction:

�P1 = −
∫ 1

0

∫ 1

0
�R

(
∂Ûz

∂R

)2

dRdZ = −64
∫ 1

0

∫ 1

0
�(R, Z )R3dRdZ. (15)

Equation (15) is the central result of this work, which allows the determination of the first-order
correction to the pressure drop of the heated channel, provided the temperature distribution �(R, Z )
is known. Particularly, Eq. (15) highlights that small changes in viscosity allow us to bypass the
coupled hydrodynamic heat transfer problem to calculate the leading-order pressure drop correction.
Instead, we can find the temperature distribution from the energy equation using the constant
viscosity velocity field and then use it to calculate the pressure drop using Eq. (15).

V. ENERGY EQUATION: LUBRICATION RESCALING AND SOLUTIONS

Next, we rescale the energy equation. At the leading order in β, the flow is unidirectional and
not a function of the axial direction. Thus, the vertical velocity is zero, i.e., Ur,0 ≡ 0. Similar to the
velocity and pressure drop, we expand the temperature as � = �0 + β�1 + O(β2) and obtain the
dimensionless energy equation at leading order:

εPe

(
Uz,0

∂�0

∂Z

)
= 1

R

∂

∂R

(
R

∂�0

∂R

)
+ ε2 ∂2�0

∂Z2
, (16)

where we define the Peclet number Pe = Ū r0/α with Ū = q/(2πr2
0 ) the characteristic velocity as

previously defined in Sec. II, and α the thermal diffusivity. We can neglect axial conduction, which
is O(ε2), as long as Pe � ε, consistent with the lubrication limit (ε � 1). We also introduce the
effective Peclet number, Peeff = εPe. Noting that Uz,0 = 4(1 − R2) and dropping the subscript 0 for
convenience, we thus consider the Graetz equation in the form

4Peeff (1 − R2)
∂�

∂Z
= 1

R

∂

∂R

(
R

∂�

∂R

)
, (17)

which was originally solved by Graetz [27,28] and later extended to include axial conduction
and viscous dissipation effects [29–31]. In this section, we solve Eq. (17) by applying boundary
conditions at the wall for constant temperature, constant thermal flux, and a linear temperature
variation in the axial direction. We obtain results for the temperature field for different effective
Peclet numbers. In Sec. V D, we will show how the Lévêque approximation [32] simplifies Eq. (17)
to yield a self-similar solution, which allows an analytical expression for the pressure drop for a
range of effective Peclet numbers.

A. Temperature field with Dirichlet boundary conditions applied at the wall

First, we solve Eq. (17) using Dirichlet boundary conditions at the wall, where T = Tw > T0, and
choose �T = Tw − T0. In dimensionless variables, the boundary conditions are �(R = 1, Z ) = 1,
�(R = 0, Z ) = finite and �(R, Z = 0) = 0, and we solve Eq. (17) for �, which leads to

�(R, Z ) = 1 −
∞∑

n=1

An exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR2

2

]
1F1

[
1

2
− λn

4
, 1, λnR2

]
, (18a)

Eigenvalue condition: 1F1

[
1

2
− λn

4
, 1, λn

]
= 0, (18b)

An =
∫ 1

0 R(1 − R2) exp
[− λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
]
dR∫ 1

0 R(1 − R2)
(

exp
[− λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR
. (18c)
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FIG. 2. Contour plot of the temperature distribution due to applied boundary condition �(R = 1, Z ) = 1:
(a) Peeff = 1 and (b) Peeff = 25.

Here 1F1[a, b, c] is the confluent hypergeometric function and λn are the eigenvalues that are
found by finding the zeros of Eq. (18b). The corresponding constants {An} are found using the
boundary condition at the inlet and orthogonality of the eigenfunctions, as shown in Eq. (18c).

Typical results for the temperature distribution, presented as contour plots of �(R, Z ), for
Peeff = 1 and Peeff = 25, are shown in Fig. 2. When Peeff � 1, we approach the limit where the
temperature at the wall has time to conduct throughout much of the fluid domain relative to the
advective timescale, which leaves only a small region at the inlet with a temperature different
from unity. In contrast, when Peeff � 1, the lower temperature fluid at the inlet is advected
effectively throughout the channel. Subsequently, a boundary layer develops near the wall where
the temperature varies from the bulk temperature. In this limit, the bulk fluid has a temperature,
� = 0, as shown in Fig. 2(b). As expected, the thickness of this boundary layer decreases as Peeff

increases.

B. Temperature field with a constant flux condition applied at the wall

Next, we apply a constant heat flux q0 as the boundary condition at the wall to solve Eq. (17). In
dimensionless terms, the boundary conditions become ∂�/∂R(R = 1, Z ) = 1, �(R = 0) = finite,
and �(Z = 0) = 0. In this case, �T = q0r0/k, where k is the thermal conductivity. Solving Eq. (17)
using similar techniques as in the previous subsection, we obtain

�(R, Z ) =
∞∑

n=1

Bn exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR2

2

]
1F1

[
1

2
− λn

4
, 1, λnR2

]
+ Z

Peeff
+

(
R2 − R4

4

)
,

(19a)

Eigenvalue condition: 2

(
1

2
− λn

4

)
1F1

[
3

2
− λn

4
, 2, λn

]
− 1F1

[
1

2
− λn

4
, 1, λn

]
= 0, (19b)

Bn =
∫ 1

0

(
1
4 R4 − R2

)
R(1 − R2) exp

[− λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
]
dR∫ 1

0 R(1 − R2)
(

exp
[− λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR
, (19c)

where the eigenvalues were found by calculating the zeros of Eq. (19b), and the corresponding
constants {Bn} are found by using the boundary condition at the inlet by applying the orthogonality
of the eigenfunctions, as shown in Eq. (19c).

Typical results for �(R, Z ) are shown in Fig. 3 in the form of a contour plot for Peeff = 1 and
Peeff = 25. Unlike the constant temperature boundary condition case, the constant flux boundary
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FIG. 3. Contour plot of the temperature distribution due to applied boundary condition ∂�

∂R (R = 1, Z ) = 1:
(a) Peeff = 1 and (b) Peeff = 25.

condition does not constrain a fixed temperature at the wall. In this case, Peeff affects both the wall
temperature (where the temperature in the fluid is maximum), and the boundary layer thickness,
which both influence the average temperature in the flow. When Peeff � 1, the maximum temper-
ature in the fluid domain is approximately zero, whereas when Peeff � 1, a constant wall heat flux
increases the average temperature in the flow field (and along the wall), as shown by the second term
in Eq. (19a). For example, in Fig. 3 the maximum temperature for Peeff = 25 is less than Peeff = 1,
in addition to the aforementioned boundary layer thickness-effective Peclet number relationship.
This unique coupling suggests a stronger correlation between the pressure drop correction term and
Peeff in the low and high-Peeff limit compared to other applied boundary conditions [see Fig. 7(a)].

C. Temperature field with linear boundary condition applied at the wall

We study yet another configuration by imposing a linear temperature variation at the wall: T (r =
r0, z) = Bz + T0. We rescale � such that �T = B�, where � is the length of the tube and B is the
slope of the linear profile. The rescaled boundary conditions are �(R = 1, Z ) = Z , �(0, Z ) = finite
and �(R, Z = 0) = 0. Using these boundary conditions, the solution of Eq. (17) for �(R, Z ) is

�(R, Z ) =
∞∑

n=1

Cn exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR2

2

]
1F1

[
1

2
− λn

4
, 1, λnR2

]
+Z+Peeff

4
(R4 − 4R2 + 3),

(20a)

Cn =
(

Peeff

4

)∫ 1
0 (4R2 − R4 − 3)R(1 − R2) exp

[− λnR2

2

]
1F

[
1
2 − λn

4 , 1, λnR2
]
dR∫ 1

0 R(1 − R2)
(

exp
[− λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR
. (20b)

The eigenvalues were found by calculating the zeros of Eq. (18b) shown previously and the
corresponding constants {Cn} are found by using the boundary condition at the inlet by applying
the orthogonality of the eigenfunctions, as shown in Eq. (20b).

In Figs. 4(a) and 4(b), we show the contours of the dimensionless temperature distribution
�(R, Z ) for (a) Peeff = 1 and (b) Peeff = 25. When conduction is dominant, Peeff � 1, there is
approximately a linear increase in temperature as a function of axial direction for all R, mimicking
the wall temperature. Therefore, the average temperature in the fluid domain will always be less than
the applied Dirichlet-boundary-condition case for a given Peeff . When Peeff � 1, the temperature
in the boundary layer monotonically increases with Z in accordance to the wall temperature, while
its thickness decreases with Peeff , as shown previously. Such a decreasing boundary-layer thickness
with increasing Peeff is consistent among the three boundary conditions we considered, motivating
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FIG. 4. Contour plot of the temperature distribution due to applied boundary condition �(R = 1) = Z:
(a) Peeff = 1 and (b) Peeff = 25.

us to investigate an approximation to Eq. (17) in the limit where the effective Peclet number is
sufficiently high.

D. Lévêque approximations in the high-effective-Peclet-number limit

For Peeff � 1, we identify a narrow boundary-layer region of thickness Y , where the temperature
is nonzero and the fluid has a lower viscosity, as shown in Fig. 5. Outside this narrow region, the fluid
has a temperature � = 0 and a higher viscosity. By letting R = 1 − Y, where Y � 1, the velocity
within the boundary layer can be expressed as Uz,0 = 4Y (2 + Y ) ≈ 8Y , so that the velocity profile
is approximately linear. Applying the latter result to Eq. (17), we obtain the well-known Lévêque
equation [32]

8PeeffY
∂�

∂Z
= ∂2�

∂Y 2
, (21)

which has a known similarity solution for Dirichlet boundary conditions. Here we apply the
boundary condition: �(R = 1) = Zα . Next, we seek a solution of the form �(η) = Zα f (η), where

η = 2Pe
1
3
effY/Z

1
3 . Substituting this ansatz into Eq. (21) yields the ordinary differential equa-

tion (ODE):

3 f ′′(η) + η2 f ′(η) − 3αη f (η) = 0. (22)

Equation (22) has a solution for different values of α as long as α � 0, subject to the conditions
f (η → ∞) = 0 and f (η = 0) = 1. For example, when α = 0 we find the following solution for
f (η):

f (η) = 

[

1
3 ,

η3

9

]



[
1
3

] = 1



[

1
3

] ∫ ∞

η3/9
t− 2

3 exp (−t )dt, (23)

where 
[.] is the Gamma function and 
[., .] is the incomplete Gamma function.
We also extend this approach by applying the constant flux condition, for which we substitute

�(η) = 1
2 Pe

− 1
3

eff Z
1
3 f (η) into Eq. (21), leading to the ODE,

3 f ′′(η) + η2 f ′(η) − η f (η) = 0, (24)
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FIG. 5. In the Peeff � 1 limit, a cooler fluid with higher viscosity is advected across the channel length,
leaving a small region of warmer-lower-viscosity fluid near the wall.

subject to f ′(η = 0) = −1 and f (η → ∞) = 0. The corresponding solution in this case is

f (η) = η

[− 1

3 ,
η3

9

]
3


[
2
3

] = η

3
[ 2
3 ]

∫ ∞

η3/9
t− 4

3 exp (−t )dt . (25)

From Eq. (25), we find the asymptotic expression for wall temperature distribution for Peeff � 1:

lim
η→0

[�(η)] = 3
2
3 Pe

− 1
3

eff Z
1
3

2

[

2
3

] . (26)

Having the solutions for � with the respective boundary conditions, we substitute them into Eq. (15)
and calculate the first-order correction to the pressure drop. In the next section, we compare the
first-order correction to the pressure drop obtained from the Lévêque approach to the predictions
for �P1 based on the numerical results for the temperature distribution found in the previous
section.

VI. FIRST-ORDER PRESSURE DROP CORRECTION FOR DIFFERENT
BOUNDARY CONDITIONS

Temperature and viscosity in our problem are both scaled with reference to the entrance temper-
ature T0 and viscosity μ0. We consider that the entrance temperature at Z = 0, T0, is lower than the
temperature at the wall, Tw. Consequently, the average viscosity of the fluid is highest at the inlet
and decreases as the fluid flows through the pipe. Therefore, we expect that any applied heating
will cause a decrease in fluid viscosity resulting in a reduction in the overall pressure drop. Recall
that the total pressure drop �P = �P0(1 + β�P1....), where β is a positive constant less than one.
We observe that �P1, shown in Fig. 6, is negative, thus confirming a decrease in total pressure
drop regardless of the nature of the applied heating investigated in this work. At small values
of effective Peclet number, radial conduction dominates, leading to higher average temperatures,
which correspond to lower average viscosities. In this regime, we observe the most significant
decrease in the pressure drop. For Peeff � 1, we have � ≈ 1 and � ≈ Z in the case of constant
and linear applied boundary conditions, respectively. Therefore, in this limit, from Eq. (15), we
expect the solution for �P1 to approach −1 and −1/2 asymptotes, as the Graetz solution curves
show in Fig. 6(a). Increasing the effective Peclet number corresponds to decreasing the thickness
of a thermal boundary layer as cooler fluid rapidly advects through the channel. As a result, the
average fluid temperature is lower and the average fluid viscosity is higher as compared to the small
effective Peclet number limit. This provides insight into why we observe that the reduction in the
total pressure drop is less at higher Peeff .

The applied linear boundary condition produces a lower average temperature field than that of
the corresponding Dirichlet boundary condition at the wall for a given Peeff . Thus, in Fig. 6(a), we
observe a smaller reduction in pressure drop for the linear boundary condition as compared to the
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FIG. 6. (a) Normalized first-order pressure drop correction versus effective Peclet number curves for
constant and linear applied boundary conditions. Dotted curves represent the results obtained from the Graetz
solution to the temperature field whereas circles represent the results obtained from the Lévêque approximation.
Gray dashed lines represent the low-Peeff asymptotes. (b) Normalized first-order pressure drop correction
versus effective Peclet number curves for different powers α of Zα obtained from the Lévêque approximation.

The black dashed line represents the high-Peeff scaling Pe
− 1

3
eff .

constant temperature boundary condition for the entire range of Peeff . Also, from Fig. 6(a), we can
ascertain that the Lévêque approximation converges well with the Graetz solution curves at high
values of Peeff , as expected. In particular, for Peeff � 25, the error is less than 7%, which provides
further validation to this simplified method. In Fig. 6(b), we present our results of the normalized
first-order pressure drop correction as a function of effective Peclet number for different powers
α of Zα using the Lévêque approach for constant, linear, quadratic, and cubic applied boundary
conditions at the wall. Consistent with our previous results, we observe that as α increases, the
average temperature in the flow field decreases, leading to a reduction in the normalized first-order
pressure drop correction for a given Peeff . Furthermore, it is evident from Fig. 6 that in the
Peeff � 1 limit, for all prescribed wall temperature conditions, the normalized first-order pressure

drop correction scales as �P1 = O(Pe
− 1

3
eff ). Since Eq. (15) implies �P1 = O(�Y ), and � = O(1)

at most near the wall, which gives �P1 = O(Y ) = O(Pe
− 1

3
eff ). This result is consistent with the

aforementioned idea that the boundary layer thickness, Y , sets the average temperature in the fluid,
which is directly related to the reduction in the pressure drop for the boundary conditions considered
in Fig. 6.

Moreover, for a constant flux boundary condition at the wall, the average temperature distribution
strongly depends on the value of the effective Peclet number since the wall temperature is not
prescribed but determined from the balance between axial advection and radial conduction, as
explained in Sec. V B. In Fig. 7(b) we show the wall temperature (where the temperature in the
fluid is maximum), as a function of wall position for different effective Peclet numbers. We see
that lower effective Peclet numbers yield higher wall temperatures and as Peeff is increased, the
Graetz solution for the wall temperature matches the Lévêque curve, Eq. (26), more closely, as
shown in Fig. 7(b). Accordingly, in Fig. 7(a), we observe that �P1 has a stronger dependence on
the effective Peclet number at lower values compared to the previously discussed cases of constant
and linear applied boundary conditions. In the high-Peeff limit, it is evident from Fig. 7(a) that the

normalized first-order pressure drop correction scales as �P1 = O(Pe
− 2

3
eff ). From Eq. (26), we can

ascertain that � = O(Y ), while from Eq. (15) it follows that �P1 = O(�Y ). Thus, we obtain that

�P1 = O(Y 2) = O(Pe
− 2

3
eff ) for Peeff � 1.
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FIG. 7. (a) Normalized first-order pressure drop versus effective Peclet number curves for constant flux
boundary condition at the wall. The solid curve represents the results obtained from the Graetz solution
to the temperature field, the circles represent the Lévêque approximation, and the black dashed line repre-

sents the high-Peeff scaling Pe
− 2

3
eff . (b) Wall temperature distribution for different effective Peclet numbers:

Peeff = 1, 10, 100. Solid curves represent the results obtained from the Graetz solution to the wall temperature,
whereas circles represent the Lévêque solution to the wall temperature from Eq. (26).

VII. CONCLUDING REMARKS

In this work, we provided a general method that relies on the Lorentz reciprocal theorem to
calculate the leading-order correction to the pressure drop for an axisymmetric channel flow with
viscosity gradients produced by heating along the boundary. Assuming the fractional change in
viscosity with temperature is small, we linearized the viscosity field and bypassed the complexity
of solving the coupled interaction between velocity and temperature fields. Specifically, we found
the temperature distribution and used it to find the leading-order correction to the pressure drop.
The presented results provide insight into how the nature of the applied boundary condition affects
the temperature-induced viscosity dependence on the pressure drop since, in many applications, the
temperature at a channel wall may be nonuniform.

Our theoretical approach is not limited to the case of axisymmetric configurations and can
be applied to rectangular geometries as well. As a future direction, it would be interesting to
combine the present approach with the work of Boyko and Stone [25] to calculate the pressure drop
dependence on effective Peclet number in heated, narrow channels of arbitrary shape. Finally, while
we considered Newtonian fluids, it would be interesting to extend this work to complex fluids, such
as polymer solutions and melts, where the interplay between viscous heating and non-Newtonian
rheology may bring forth new insights.
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