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Linear stability of thermocapillary flow in a droplet attached
to a hot or cold substrate
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The symmetry-breaking instability of the steady axisymmetric thermocapillary flow in a
nonvolatile sessile droplet on a hot or cold substrate under zero gravity conditions is inves-
tigated by linear stability analysis. The dependence of the critical Marangoni number on the
contact angle and the Prandtl number is computed, and the structures of the most dangerous
perturbation modes are analyzed. For a small contact angle and a high-Prandtl-number
droplet with Pr = 16.36 (corresponding to 1 cSt silicone oil) on a hot wall, we find classical
Marangoni instabilities near the center of the droplet. In contrast, no instability is observed
for small-contact-angle droplets on a cold wall. For large contact angles with α > 90◦

either on a hot or a cold wall, the first instability of the basic axisymmetric toroidal vortex is
inertial for low Prandtl numbers and of hydrothermal-wave type for high Prandtl numbers.

DOI: 10.1103/PhysRevFluids.8.114003

I. INTRODUCTION

Thermocapillary convection in sessile droplets has many applications. These range from art [1] to
soldering [2], forensic science [3,4], epidemiological risk assessment [5], inkjet [6,7] and microelec-
tronic [8,9] printing, and medical diagnostics [10–13]. Related to many of these fields, the nonuni-
form deposition of suspended particles during evaporation, known as coffee-stain effect [14,15],
is of fundamental interest. The physics behind the coffee-stain effect has been recently reviewed
by Wilson and D’Ambrosio [16], while Zang et al. [17] provide a comprehensive review of its
applications.

The flow in sessile droplets is mainly driven by temperature gradients which can arise due
to the latent heat release during evaporation, or if the substrate and the ambient atmosphere are
at different temperatures. For weak flow and a perfect axisymmetric geometry, the flow is also
axisymmetric. However, if the driving force is sufficiently strong, then symmetry-breaking hydro-
dynamic instabilities may lead to three-dimensional flow. These include Marangoni instabilities
caused by a temperature gradient perpendicular to the interface [18] and thermocapillary instabilities
when the temperature varies mainly tangentially to the interface, like hydrothermal waves [19] or
radial convection rolls [20–22]. For large droplets, buoyancy forces may also play a role [23–25].
A recently discovered interesting phenomenon in thermocapillary-driven flow in droplets is the
clustering of small particles in form of dynamic particle accumulation structures when the flow
arises as a hydrothermal wave [26].

The present investigation is concerned with the flow instabilities in sessile thermocapillary liquid
droplets when the ambient temperature differs from the wall temperature. The heat transfer to or
from droplets involves temperature gradients that have both a normal and a tangential component.
The individual instability mechanisms which are potentially relevant for sessile droplets are best
explained for plane layers when only one of the components of the temperature gradient is present.
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In the classical Marangoni instability [18] of a quiescent liquid layer bounded by a wall and a free
surface, the temperature gradient is perpendicular to the interface. In this case, a local perturbation
of the free-surface temperature creates a tangential surface flow which, by continuity, involves an
advection of temperature normal to the interface. When ∇T is perpendicular and directed into the
liquid phase (if the liquid is cooled from the gas phase) there exists a critical temperature gradient
when advection dominates diffusion, such that the surface temperature perturbation is amplified.
Otherwise, it is damped. The critical perturbations arise as steady convection rolls which organize
themselves by nonlinear mechanism and/or geometric constraints into regular flow patterns. In the
case of hexagonal or square cells in a liquid layer, the perturbation flow at the center of a cell is
directed towards the free surface [27]. If buoyancy assists the mechanism (heating from below),
then the instability is also called Bénard-Marangoni instability.

Contrary to the classical Marangoni instability of a quiescent liquid layer, a temperature gradient
tangent to the free surface always causes a flow. In plane layers, the resulting plane shear flows can
become unstable to hydrothermal waves [19,28] which propagate at a certain angle with respect
to the direction of the temperature gradient, depending on the Prandtl number of the liquid. These
waves can be inertial for small Prandtl numbers, or thermal for high Prandtl numbers. High-Prandtl-
number hydrothermal waves also arise in thermocapillary liquid bridges [29] or cavities [30] and
annular liquid pools [[31–33], and others]. They are characterized by strong internal perturbation
temperature extrema which are amplified by a relatively weak thermocapillary perturbation flow
acting on the internal basic-state temperature gradients.

When the temperature gradient on the free surface is oblique, but dominated by the normal
component, the horizontal flow induced by the tangential part can advect the cellular patterns
induced by the dominant normal part of the temperature gradient (Marangoni cells). The cells are
typically transported from hot to cold surface regions, leading to traveling (Bénard-)Marangoni cells
[34]. Zhu and Shi [22] emphasized that these traveling Marangoni cells must not be confused with
hydrothermal waves, which travel in the opposite direction from cold to hot surface regions for high
Prandtl numbers.

Bénard-Marangoni cells are typically observed near the center of a droplet [35] or near the
contact line of a shallow droplet [22]. In both cases, the primary component of the temperature
gradient and the acceleration of gravity are perpendicular to the interface. When the dominant
component of the temperature gradient is parallel to the interface, it can drive a significant steady
axisymmetric flow in droplets [25]. Associated with this are internal temperature gradients on which
hydrothermal waves can grow by a coupling of strong internal temperature perturbations to weak
ones on the free surface by a weak perturbation flow. Hydrothermal waves can be expected in
droplets with larger contact angles [36]. The influence of buoyancy on the axisymmetric transport
has been investigated by Masoudi and Kuhlmann [25] for single-component fluids and by Refs. [23],
[24], and [37] for binary droplets.

Flow instabilities in nonisothermal liquid droplets are strongly affected by the confinement of the
system, the shape of the interface, and evaporation. While evaporating droplets have been studied by
several authors [e.g., Refs. [22,38,39]], only a few investigations considered the flow in nonvolatile
droplets driven by the temperature difference between the substrate and the ambient gas [35,36]
which is the subject of this work.

The instability of the flow in nonisothermal liquid droplets is governed by many parameters,
the main ones being the thermocapillary Reynolds number, the contact angle, the Prandtl number,
the Biot number, the Grashof number, and the Bond number. Therefore, a full characterization of
the instabilities is still lacking. In the present investigation, we aim at a systematic investigation of
the influence of the contact angle and the Prandtl number on the symmetry-breaking instabilities of
the flow in nonisothermal droplets. These instabilities are expected to arise at a critical temperature
difference between the wall and the ambiance, corresponding to a critical thermocapillary Reynolds
number. To that end, a linear stability analysis is carried out of the steady axisymmetric flow in
nonvolatile droplets adhering to a heated or cooled wall. To make possible a quasi-continuous
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FIG. 1. Sketch of a sessile droplet with a spherical free surface (blue), radius R, and height H . The origin of
the cylindrical coordinate system (r, ϕ, z) is located at the center of the droplet base (red). The surface normal
and tangent vectors are n, t , and eϕ .

parameter variation we consider zero gravity conditions and a uniform heat transfer coefficient
along the free surface.

II. PROBLEM FORMULATION

We consider a droplet of a nonvolatile incompressible Newtonian liquid with density ρ, kinematic
viscosity ν, thermal conductivity k, thermal diffusivity κ , and thermal expansion coefficient β =
−ρ−1∂T ρ. The droplet is adhering to the plane end surface of a cylindrical support of radius R
such that the contact line is fixed by the sharp circular edge of the support rod. Under zero gravity
conditions and in the absence of temperature gradients the equilibrium shape of the interface is a
spherical cap of base-to-apex height H , depending on the contact angle α (Fig. 1).

A wall temperature Tw of a perfectly conducting substrate which differs from the ambient
temperature with a uniform far-field Ta �= Tw leads to a nonuniform temperature distribution on
the liquid-gas interface. Approximating the temperature dependence of the surface tension to
linear order by σ (T ) = σ0 − γ (T − T0), where T0 is the reference temperature, σ0 the reference
surface tension and γ > 0 the thermal surface tension coefficient, an interfacial flow is driven by
the thermocapillary effect [40]. Here we select the reference temperature T0 = Ta and define the
temperature difference �T = |Tw − Ta|.

A. Governing equations

Several approximations are made to simplify the numerical analysis such that parametric studies
become feasible. To that end, we consider small droplets such that buoyancy forces, quantified by
the dynamic Bond number

Bd = ρgβH2

γ
, (1)

where g is the acceleration of gravity, can be neglected. The influence of weak buoyancy will
be considered, however, for a single representative case within the framework of the Boussinesq
approximation. Furthermore, we take the limit of dominating mean surface tension σ0 in which the
Capillary number Ca = γ�T/σ0 → 0 and the static Bond number Bo = ρgH2/σ0 → 0 vanish. In
this limit, the shape of the interface is not affected by the flow and remains spherical. Its shape is
only characterized by the aspect ratio

� = H

R
= tan (α − π/2) + 1

cos (α − π/2)
, (2)
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which can also be expressed by the contact angle α. To model the heat transfer across the free surface
we employ Newton’s law of heat transfer in which the heat transfer coefficient h is assumed constant
[for the spatial variation of the heat flux when the ambient atmosphere is taken into account, see,
e.g., Refs. [41,42]] and in which the radiative heat transfer is neglected. The effect of radiation is
considered in Appendix A. Owing to the low dynamic viscosity of gases at atmospheric pressure
the viscous shear stress from the gas acting on the free surface is neglected as well. Except for
the surface tension, all other thermophysical properties are assumed constant. The production and
consumption of heat by mechanical work are neglected, as well as the effect of the internal energy
of the free surface on the interfacial heat transfer [43].

Under the above approximations the flow is governed by the nondimensional incompressible
Navier-Stokes equations

(∂t + u · ∇)u = −∇p + ∇2u + Bd Re

�2
θez, (3a)

∇ · u = 0, (3b)

and the energy equation

(∂t + u · ∇)θ = 1

Pr
∇2θ, (3c)

where Pr = ν/κ is the Prandtl number and Bd > 0 (Bd < 0) corresponds to a sessile (pendant)
droplet of a fluid with β > 0. In Eq. (3) the length x, velocity u, pressure p and time t have been
made dimensionless using viscous scales R, ν/R, ρ(ν/R)2 and R2/ν, respectively. The reduced
temperature θ = (T − Ta)/�T ranges in θ ∈ [0, 1] in case of a hot wall and in θ ∈ [−1, 0] for a
cold wall.

Using polar coordinates (r, ϕ, z) centered on the wall, and u = uer + veϕ + wez, the no-slip and
constant temperature boundary conditions on the wall at z = 0 and the uniqueness condition on the
axis r = 0 require

u = θ ∓ 1 = 0 on z = 0, (4a)

∂ϕu = ∂ϕ p = ∂ϕθ = 0 on r = 0, (4b)

where the ∓ sign indicates the wall being kept either hot or cold. On the spherical liquid-gas
interface, denoted �s, no-penetration and thermocapillary stress conditions are imposed

n · u = 0 on �s, (4c)

t · S · n = −Re t · ∇θ on �s, (4d)

eϕ · S · n = −Re eϕ · ∇θ on �s, (4e)

where S = [∇u + (∇u)T] is the nondimensional viscous stress tensor, eϕ the azimuthal unit vector,
n the outward unit vector normal to the interface, and t the tangential unit vector in a plane ϕ =
const. as sketched in Fig. 1. The thermocapillary Reynolds number is defined as

Re = γ�T R

ρν2
. (4f)

Finally, the heat transfer across the liquid-gas interface is modeled by Newton’s law of cooling

n · ∇θ = −Bi θ on �s, (4g)

in which the Biot number Bi = (hcR)/k is defined using an effective constant (lump) heat transfer
coefficient hc. To reduce the parameter space we consider only two physically realistic values of
the Biot number, Bi = 0.236 and 0.4. With the Biot number kept constant the solution to Eq. (3)
depends on the thermocapillary Reynolds number Re, the Prandtl number Pr, and the contact angle
α. Instead of the Reynolds number, the Marangoni number Ma = RePr may be employed as a
control parameter when Pr �= 0.
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To allow a comparison of the results obtained for shallow droplets with those for plane layers it
is useful to define an alternative Marangoni number. In an infinitely extended plane layer, the basic
flow is quiescent and conductive. In this case, the free-surface temperature is [44]

Ts = Tw + BiH Ta

1 + BiH
, (5)

where the Biot number BiH = hcH/λ is based on the thickness H of the layer. For shallow droplets
with a small aspect ratio � � 1 the apex temperature can be approximated by Tapex ≈ Ts with BiH =
Bi�. The temperature difference between the apex and the wall in a purely conducting shallow
droplet can thus be approximated by

�TH = |Tw − Tapex| ≈ BiH
1 + BiH

|Tw − Ta| = Bi �

1 + Bi �
�T . (6)

This leads to the alternative Marangoni number, as for plane layers of depth H ,

MaH := γ�TH H

ρνκ
= Bi �2

1 + Bi �
Ma, (7)

suitable for shallow droplets. We shall use MaH as the control parameter, because the stability
boundary in terms of MaH is less sensitive with respect to variations of Bi than the stability boundary
in terms of Ma, even for large contact angles.

B. Linear stability analysis

Since the problem is invariant with respect to translations in t and ϕ, it admits a steady
axisymmetric basic flow (u0, θ0)(r, z) with u0 = u0er + w0ez and v = ∂ϕ = ∂t = 0 satisfying the
symmetry conditions

u0 = ∂rw0 = ∂r p0 = ∂rθ0 = 0 on r = 0. (8)

The linear stability of the basic flow is investigated by linearizing (3) with respect to small
perturbations (u′, θ ′)(r, ϕ, z, t ) leading to

(∂t + u0 · ∇)u′ + (u′ · ∇)u0 = −∇p′ + ∇2u′ + Bd Re

�2
θ ′ez, (9a)

∇ · u′ = 0, (9b)

(∂t + u0 · ∇)θ ′ + (u′ · ∇)θ0 = 1

Pr
∇2θ ′. (9c)

These equations are subject to formally the same boundary conditions as in Eq. (4), except that
the temperature perturbation must vanish on the wall, i.e.,

θ ′ = 0 at z = 0. (10)

Solutions to Eq. (9) are sought in the form of normal modes⎛
⎝u′

p′
θ ′

⎞
⎠ =

⎛
⎝û

p̂
θ̂

⎞
⎠(r, z)eμt+imϕ + c.c., (11)

where the complex growth rate μ = ς + iω consists of the real growth rate ς = �(μ) and an
oscillation frequency ω = �(μ), m is the azimuthal wave number and c.c. denotes the complex
conjugate. Inserting this Ansatz into Eq. (9) leads to a linear system of partial differential equations

μ

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠

⎛
⎝û

p̂
θ̂

⎞
⎠ = L

⎛
⎝û

p̂
θ̂

⎞
⎠, (12)

114003-5



LUKAS BABOR AND HENDRIK C. KUHLMANN

where L is a linear differential operator with respect to r and z. The boundary conditions on the axis
r = 0 for the amplitudes û, p̂ and θ̂ depend on the azimuthal wave number m as follows:

m = 0 : û = v̂ = ∂rŵ = ∂r p̂ = ∂r θ̂ = 0 on r = 0, (13a)

m = 1 : ∂r û = ∂r v̂ = ŵ = p̂ = θ̂ = 0 on r = 0, (13b)

m > 1 : û = v̂ = ŵ = p̂ = θ̂ = 0 on r = 0. (13c)

They are obtained by inserting the Ansatz (11) into the equivalent of Eq. (4b) for the perturbation
flow and using the continuity Eq. (9b). Discretization of Eq. (12) in r and z provides, together with
the boundary conditions, a generalized eigenvalue problem

μM · x̂ = A · x̂, (14)

where the matrix A is the discrete approximation of L, M is diagonal as in Eq. (12) and the eigen-
vector x̂ contains the nodal values or interpolation coefficients (depending on the discretization) of
û, p̂ and θ̂ .

To find the linear stability boundary, characterized by a critical Reynolds (Rec) or Marangoni
number (MaH,c), the eigenvalue problem is solved, and the lowest Reynolds number is determined
such that the maximum real growth rate among all eigenvalues vanishes, i.e., max ς = 0.

III. NUMERICAL METHODS

A. Solution technique

The numerical solution follows the method of des Boscs and Kuhlmann [45] which is extended
to cylindrical coordinates and a curved free surface. The governing equations for the basic state
(u0, θ0) and for the normal modes (û, θ̂ ) are discretized in the (r, z) plane by a continuous
Galerkin finite-element method on a grid of triangular Taylor-Hood elements, where the velocity
and temperature are approximated by quadratic, and the pressure by linear element-wise polynomial
interpolation of the nodal values. The no-penetration condition at the free surface is enforced with
the method of Nitsche [46], as described in Appendix B. Terms proportional to 1/r2 which do not
vanish on the axis r = 0 for normal modes with the azimuthal wave number m = 1 are replaced
using the incompressibility constraint (9b) to avoid the nonintegrable singularity. The approach of
Gelfgat, Bar-Joseph and Yarin [47] is extended to the stress formulation of the Stokes subsystem, as
explained in Appendix C.

The open-source finite-element solver FEniCS [48] is employed for the meshing in the (r, z)
plane using an unstructured grid and for the discretization of weak forms. Given the number N
of elements of the basic (unrefined) mesh in the radial direction, the contour of the curved free
surface is approximated by M = N2/4 line segments of uniform length per π/2 radians. The size
of elements decreases towards the free surface, since the sides of the elements on the free surface
coincide with the very short line segments representing the free surface. Except for the neighborhood
of the free surface, the size of the elements is uniform in the basic mesh returned by the mesher.
The elements of the basic mesh near the wall are then divided into halves. In the case of a cold
substrate, thin boundary layers arise near the cold corner (r, z) = (1, 0). Therefore, the elements
within the distance of 0.04 and 0.01 from the contact line (r, z) = (1, 0) are gradually refined up to
1/8 and 1/64 of the basic area of unrefined elements in the bulk for Pr < 1 and Pr � 1, respectively.
A coarse mesh with N = 20 is shown in Fig. 2. The case of a hot wall does not require a corner
refinement. However, for the hot wall, m = 1 and Pr � 1, the elements adjacent to the axis r = 0 are
split into halves and those near the apex (r, z) = (0, �) are refined in the same way as the elements
near the contact line in case of a cold wall.

The resulting nonlinear system of algebraic equations for the discrete basic state is solved using
the Newton-Raphson method implemented in FEniCS. The discretization with the second-order
Taylor-Hood elements leads to a quadratic convergence with N . The convergence is shown in Fig. 3
by monitoring the extremum of the Stokes stream function ‖ψSt‖∞ of the basic flow as a function
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FIG. 2. (a) Example for a coarse mesh with N = 20 for α = 90◦ suitable for a cold wall. (b) Zoom into the
three-phase contact point.

of the mean number of cells per space direction n = √
N × �N . The convergence is not monotonic,

because the unstructured grid changes with the resolution used.
Having computed the basic flow, the matrices A and M of the linear stability eigenproblem

(14) are assembled in FEniCS on the same grid as used for the basic state and exported to SciPy.
The eigenproblem is solved with scipy.sparse.linalg.eigs [49] which is an interface to the
Arnoldi package [50]. Following the recommendation of des Boscs and Kuhlmann [45] we set the
number of computed eigenvalues to 50, and the dimension of the Krylov space (parameter ncv)
to 300. A shift-invert transformation [see chap. 3.2 of Ref. [50]] is necessary to find eigenvalues

FIG. 3. Convergence of the extremum of the Stokes stream function ‖ψSt‖∞ of the basic flow with the
grid resolution n = N

√
� for a hot (a) and cold wall (b) and for (Pr, α, Re, Bi) = (10−3, 90◦, 37024, 0.236),

(16.36, 25◦, 23622, 0.236), (0.038, 120◦, 35645, 0.236) and (28.1, 120◦, 17115, 0.4) indicated by black, blue,
red and green symbols, respectively.
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FIG. 4. The spectrum of 50 eigenvalues (dots) closest to σA = 1 + 0i (green triangle) for a hot wall
and (Pr, α, Re, Bi) = (10−3, 90◦, 37024, 0.236). The red dashed circle indicates the distance of the leading
eigenvalues (red dots) from σA.

close to 0 + 0i. It is recommended [51] to employ a shift σA with a positive real part to ensure
that eigenvalues with nonnegative ς and large ω are not overshadowed by eigenvalues with small
negative ς and small ω. Nevertheless, we found that even for the largest critical frequencies
ωc ∼ O(100) encountered in this study, there are less than 10 eigenvalues closer to the origin than
the most dangerous one (Fig. 4). Thus, the most dangerous mode would be captured safely with
50 computed eigenvalues, even without the shift. If a smaller number of computed eigenvalues was
desired for the sake of computational efficiency, then the real part of σA should be proportional
to the absolute value of the critical frequency, or even a more robust algorithm of Meerbergen,
Spence and Roose [52] could be adopted as in Ref. [53]. For the present problem, the small constant
shift σA = 1 + 0i was sufficient. The matrix-vector multiplications required by ARPACK were
parallelized with OpenBLAS [54].

The critical Reynolds number Rec was sought with the iterative root-finding algorithm of
Muller [55]. Assuming several critical Reynolds numbers on the critical curve as function of a
governing parameter, say the Prandtl number Pr, have already been obtained, the parameter Pr
is advanced. The critical Reynolds number for the advanced parameter is then calculated by a
modified secant method. The two required initial guesses for Rec are obtained from a second-order
polynomial extrapolation in Pr of Rec from previously computed points on the same critical curve
and by a single Newton step for ς (Re)|Rec = 0 based on a zeroth-order polynomial extrapolation
in Pr of ∂ς/∂Re. Thereafter, each new estimate for Rec is obtained as the root of the second-order
interpolating polynomial of the last three computed values of ς (Re). The iterations are terminated
when the error estimate ε = |ς |∂Re/∂ς for Rec drops below a tolerance of 1‰.

B. Grid convergence

The grid convergence of the critical Reynolds number is demonstrated in Fig. 5 for selected cases.
For a hot wall and (Pr, α) = (16.36, 16◦) [blue in Fig. 5(a)] the critical Reynolds number Rec ∼
O(103) is comparatively low and it is already converged to 0.1‰ deviation from a quadratically ex-
trapolated value for an infinitely fine mesh, even on a relatively coarse mesh N = 60/

√
�. For a very

low Prandtl number and a larger contact angle (Pr, α) = (10−3, 90◦) [black in Fig. 5(a)], the critical
Reynolds number Rec ∼ O(104) is one order of magnitude larger compared to the case (Pr, α) =
(16.36, 16◦). The deviation is then approximately 5‰ with N = 60/

√
� and 3‰ with N = 80/

√
�.
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FIG. 5. Convergence of Rec with n = N
√

�. (a) Hot wall, Bi = 0.236 and (Pr, α) = (10−3, 90◦) and
(16.36, 16◦) indicated by black circles and blue squares, respectively. (b) Cold wall with α = 120◦ and
(Pr, Bi) = (0.038, 0.236) (red diamonds) and (28.1, 0.4) (green triangles). The dashed lines are least-squares
linear fits of Rec(n−2). The solid symbols correspond to the grid resolutions mentioned in the text.

In the case of a cold wall, a finer mesh is required to obtain Rec with sufficient accuracy. For a
low Prandtl number and a large contact angle (Pr, α, Bi) = (0.038, 120◦, 0.236) [red in Fig. 5(b)],
the deviation is 6‰ with N = 90/

√
�. For larger Prandtl and Biot numbers (Pr, Bi) = (28.1, 0.4)

[green in Fig. 5(b)], the nonmonotonicity with respect to the resolution N due to the unstructured
nature of the grid is clearly visible on the scale of the plot. For these parameters, large velocity
and temperature gradients are concentrated near the contact line (r, z) = (1, 0). Nevertheless, the
amplitude of the variation of Rec with N is only within 8‰ for N ∈ [73/

√
�, 130/

√
�].

C. Code verification

To check the correct implementation of our code we consider the linear stability of the ther-
mocapillary flow in a thermocapillary liquid bridge with a statically deformed free surface under
zero gravity conditions which is heated differentially [56]. This problem is selected because linear
stability results are available. The surface shape is computed as in Nienhüser and Kuhlmann [56]
and the mesh is constructed and refined analogously to the droplet. The number of element edges
constituting the free surface is set to N2/16. The elements adjacent to the walls are split into
halves, while each element within the distance (scaled with the radius of the concentric solid disks
supporting the liquid bridge) of 0.04 and 0.01 from the cold corner are divided into 8 and 64 pieces
for Pr < 1 and Pr � 1, respectively.

The critical Reynolds numbers obtained for � = 1, Bi = 0, two Prandtl numbers Pr, and different
contact angles α are shown in Table I as a function of the grid resolution. In all cases, the
critical wave number is m = 2. Our results for Rec compare very well with the reference results of
Nienhüser and Kuhlmann [56]. The deviations from the reference results found are typically ≈1%
(for N = 100), except for the deviation of ≈5% in the demanding case of (Pr, α) = (0.02, 130◦).
The agreement between the oscillation frequencies ωc for Pr = 4 (not shown) is on a similar level.
For Pr = 0.02 the instability is stationary.

Linear stability results for the present model of a nonvolatile wall-attached droplet are not yet
available from other authors. Nevertheless, we attempt a comparison with the results of Shi et al. [35]
who carried out full three-dimensional time-dependent numerical simulations including radiation
heat transfer at the free surface. To that end the thermal boundary condition is supplemented with
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TABLE I. Critical Reynolds number Rec of the axisymmetric thermocapillary flow in a noncylindrical
liquid bridge with aspect ratio � = 1 under zero gravity for different contact angles α and two different Prandtl
numbers Pr. The critical wave number is m = 2 in all cases.

Pr 0.02 4
�������N

α
50◦ 90◦ 130◦ 50◦ 90◦ 130◦

40 2426 2058 2930 1458 1001 805
60 2411 2058 2911 1452 1001 807
80 2408 2059 2907 1451 1001 808
100 2405 2059 2902 1449 1001 808
[56] 2380 2060 3070 1445 1010 800
[53] 1002

a Stefan-Boltzmann law as described in Appendix A, based on the thermophysical parameters
provided by Shi et al. [35]. While the full nonlinear radiation law is used for the basic state, the lin-
earization used for the perturbation flow leads to a lump Biot number Bilump = Bi + 4Bir = 0.202 +
4 × 0.0342 = 0.339, where Bir is a radiation Biot number as explained in Appendix A. A compari-
son between the critical Marangoni numbers is made in Fig. 6. It should be noted that Shi et al. [35]
specified an a posteriori effective Biot number Bieff = 0.438 for their simulations which was eval-
uated at some supercritical flow conditions far above the stability boundary, combining conduction,
convection, and radiation. This value cannot be directly compared to the a priori lump Biot number
Bilump imposed by the thermal boundary conditions. The critical Marangoni numbers for α � 15◦
are in good agreement, although the critical Marangoni numbers specified by Shi et al. [35] (blue
triangles in Fig. 6) are slightly smaller than the present linear stability results for Bi = 0.339 (lines).
This deviation can be explained as follows. The stationary m = 0 modes (blue triangles in Fig. 6) did
not arise due to symmetry-breaking instabilities. The m = 0 modes detected by Shi et al. [35] rather
characterize the onset of a different stationary axisymmetric flow with concentric rolls embedded
in the global axisymmetric circulation. In Sec. IV A 1 below we show for α = 5◦ and Bi = 0.236

FIG. 6. Dependence of the critical Marangoni number Mac on the contact angle α for a hot wall, Pr = 16.36
and a superposition of Newton’s and Stefan-Boltzmann’s law according to the thermophysical parameters and
conditions provided by Shi et al. [35]. Full lines: present linear stability analysis. Symbols: results of Shi
et al. [35] for the same material parameters. Different wave numbers are indicated by color.
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(disregarding radiation) that a symmetry-preserving saddle-node bifurcation of the basic flow exists
at Reynolds numbers below the one for the symmetry-breaking instability (corresponding to the
lines in Fig. 6). While such saddle-node bifurcations are not easily tracked by time-dependent
numerical simulations, they could be responsible for the blue triangles marking axisymmetric flow
transitions in Fig. 6. For α > 15◦ the most dangerous modes are nonaxisymmetric (orange and
green triangles for the results of Shi et al. [35]) and the deviations between both results grow.
One possible reason for these deviations of the critical Marangoni numbers could be subcritical
bifurcations. As shown below in Sec. IV A 2, the neutral curves for different wave numbers are
fairly close to each other and intersect in the range α ∈ [15◦, 20◦] which may lead to a complicated
nonlinear interaction.

According to our linear stability analysis, the most dangerous (infinitesimal) symmetry-breaking
perturbation mode is nonaxisymmetric and steady up to α = 13.5◦, while for higher contact angles
the critical modes are oscillatory. In contrast, Shi et al. [35] predict a steady axisymmetric multi-cell
flow (created by a basic flow bifurcation) up to α = 15◦. The close agreement between the critical
Marangoni numbers for α � 15◦ provides confidence in the current code.

For the results presented in the following sections, as a compromise between effort and accuracy,
we select N = 80/

√
� for a hot substrate, N = 90/

√
� for a cold substrate and Pr < 1, and N =

110/
√

� for a cold substrate and Pr � 1. Linear stability results for droplets attached to a hot wall
are presented first, followed by those for droplets attached to a cold wall.

IV. DROPLETS ON A HOT WALL

A. Shallow high-Prandtl-number droplet

As a representative high-Prandtl-number fluid we consider in this section Pr = 16.36 and Biot
number Bi = 0.236, corresponding to a droplet from 1 cSt silicone oil, the wetting radius of
R = 2.5 × 10−3 m, and the heat transfer coefficient of hc = 9.44. These parameters correspond
to those of Shi et al. [35], but with radiation disregarded and with a higher value of the heat transfer
coefficient. As mentioned in Sec. II A the asymptotic limit Bd → 0 is considered throughout, unless
stated otherwise.

1. Two-dimensional steady flows

a. Global thermocapillary flow. For a droplet on a hot substrate in a cold environment, the
surface temperature will decay from the contact line toward the apex of the droplet. The resulting
axisymmetric thermocapillary flow is thus directed from the contact line to the apex of the droplet
and returns to the region near the contact line along the hot wall. Examples of the basic flow at the
critical Marangoni number for the onset of three-dimensional flow are shown in Fig. 7 for contact
angles α � 25◦.

The thermocapillary flow is characterized by a single toroidal vortex. For large contact angles
[Figs. 7(c) and 7(d)] the toroidal flow is strong (Table II). As the contact angle becomes smaller,
the flow becomes weaker and it develops a circular hyperbolic line of stagnation in the range 12◦ �
α � 17◦. For α = 15◦ [Fig. 7(b)] the stagnation line is located at (r, z) = (0.187, 0.083).

For still smaller contact angles α < 10◦ the flow gets weaker and the temperature field be-
comes almost conducting, depending nearly linearly on z. Therefore, the tangential thermocapillary
stresses, vanishing at r = 0, are very small in a region around the apex of the droplet and the fluid
is almost quiescent in this region.

b. Axisymmetric Marangoni instability. As an example for a shallow high-Prandtl-number
droplet heated from the wall we consider α = 5◦ in some more detail. The global thermocapillary
flow driven by the temperature difference between the wall and the apex of the droplet is very
weak and almost quiescent. As the Marangoni number MaH exceeds a critical value we find steady
axisymmetric concentric convection rolls due to a Marangoni instability.
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FIG. 7. Streamlines (black) and temperature field (color and white isotherms) of the basic flow at criticality
for a droplet of Pr = 16.36 on a hot surface and (a) α = 5◦, MaH,c = 83.35, (b) α = 15◦, MaH,c = 122.0,
(c) α = 20◦, MaH,c = 603.3, (d) α = 25◦, MaH,c = 4263. The cross × in panel (b) indicates the position of a
hyperbolic stagnation point found with the Newton-Raphson method.

A bifurcation diagram in terms of the vertical velocity w0(r = 0, �/2) on the axis at midheight
is shown in Fig. 8. For MaH � 80 the basic flow (full orange line) corresponding to the global
thermocapillary flow is unique and weak on the scale shown with w0(r = 0, �/2) < 0. At Ma2D

H,c =
83.18 (diamond in Fig. 8) additional solutions corresponding to steady axisymmetric concentric
convection rolls bifurcate transcritically from the basic flow. The bifurcating convection rolls are
much stronger at r = 0 than the global thermocapillary-driven flow. The subcritically bifurcating
solution branch (blue) has up-flow on the axis (except near the transcritical bifurcation point). It is
unstable (dashed blue line) in two dimensions and becomes two-dimensionally stable (solid blue
line) at the saddle-node bifurcation point (MaSN

H ,w(0, �/2)) = (82.16, 0.479) (square in Fig. 8).
The solution bifurcating supercritically from the transcritical bifurcation point has downflow on the
axis initially. For higher MaH > Ma2D

H,c, w0(r = 0, �/2) oscillates with MaH .
In the absence of the weak global thermocapillary flow the transcritical bifurcation (diamond in

Fig. 8) would be perfect. The bifurcation diagram suggests that in that case w0(r = 0, �/2) of the
supercritically bifurcating solution would oscillate about w0 = 0 creating a sequence of transcritical
bifurcations. Here, the weak global flow represents a perturbation to these transcritical bifurcations

TABLE II. Maximum velocity magnitude of the basic thermocapillary flow at the critical Marangoni
number (as in Fig. 7) versus the contact angle for a hot wall, Pr = 16.36 and Bi = 0.236.

α 10◦ 15◦ 20◦ 25◦

max |u| 1.06 3.01 11.51 29.92
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FIG. 8. Imperfect bifurcations for heating from the wall, Pr = 16.36 and α = 5◦ showing the vertical ve-
locity w0(r = 0, z = �/2) on the axis and at mid-height as a function of MaH . The connected and disconnected
solution branches are shown in orange and blue, respectively. Full (dotted) lines indicate solutions which are
stable (unstable) to axisymmetric perturbations. The black square marks the saddle node bifurcation point, the
diamond shows the (weakly perturbed) transcritical bifurcation point. Flow fields at the black dots are shown in
Fig. 9. Flow fields at the colored dots are discussed in Fig. 36 in Appendix D. The vertical green line indicates
the critical Marangoni number for the three-dimensional symmetry-breaking instability (from Fig. 10) of the
two-dimensionally stable solution (full orange line). The inset shows a zoom into the region near the perturbed
transcritical bifurcation.

of the convection rolls such that the bifurcations are imperfect. The first transcritical bifurcation
is only slightly perturbed (inset in Fig. 8). In this sense, the perfect bifurcation point (diamond)
specified above as Ma2D

H,c = 83.18 represents an approximation. As MaH increases and the global
thermocapillary flow becomes stronger, the transcritical bifurcations become increasingly perturbed
such that the connected (orange) and disconnected (blue) solutions separate from each other (for
MaH � 120).

A similar Marangoni instability from the state of rest is found in liquid pools [57]. The
degeneracy of the two equivalent solutions with either up- or down-flow on the axis is removed
by nonlinear finite-amplitude effects (and in the present case by the curvature of the interface)
such that the bifurcation of concentric Marangoni rolls for zero gravity is transcritical. For a pool
with depth-to-radius ratio � = 1/1.8 and zero tangential vorticity on the adiabatic cylindrical side
walls, Rosenblat, Homsy and Davis [57] find the transcritical bifurcation at MaH = 79.7. This value
compares well with the present value of Ma2D

H,c = 83.18. Also, the flow directions are the same for
the present high-Prandtl-number flow and flow in cylindrical pools. For very shallow pools, Schatz
et al. [58] experimentally found the transcritical bifurcation at MaH = 83.6. This is only 0.5% larger
than the present value of Ma2D

H,c. The deviation is well within the error bar �MaH,c = ±11 specified
by Schatz et al. [58]. Also, the range of ε := (MaSN

H − Ma2D
H,c)/Ma2D

H,c = −1.22 × 10−2 over which
the basic flow and the disconnected branch solution (past the saddle-node) are both linearly
stable in two-dimensions has a similar magnitude as the corresponding value −3.2 × 10−2 in the
experiments. Different from the experiments by Schatz et al. [58], who found the stable bifurcating
flow to arise in form of regular hexagons, we find concentric rolls. This difference is attributed to
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FIG. 9. Two-dimensional flows for heating from the wall, Pr = 16.36, α = 5◦ and MaH = 87 (three
vertically aligned black dots in Fig. 8). (a) the lower branch of the disconnected solution corresponding to
the global thermocapillary flow (for MaH = 87), (b) Marangoni rolls on the connected solution branch, and
(c) Marangoni rolls on the disconnected solution branch.

the shape of the droplet for which the local Marangoni number Maloc(r) := MaH [h(r)/H], based on
the local height h(r), depends on r and, for slightly supercritical driving, drops to subcritical values
beyond a critical distance r∗ from the axis. As a result, the concentric Marangoni rolls are localized
and centered at the axis.

For MaH = 87 Fig. 9 compares the unstable global thermocapillary flow corresponding (at this
Marangoni number) to the lower branch of the disconnected solution (a), the marginally stable (in
2D) connected-branch Marangoni rolls (b), and the stable (in 2D) upper-branch Marangoni rolls of
the disconnected solution (c) (three black dots in Fig. 8). Apparently, the disconnected upper-branch
Marangoni-flow solution with up-flow on the axis is favored by the concave shape of the interface
and exhibits the strongest (positive) velocity on the axis r = 0. This flow is stable in two dimensions
and its strength (as well as the radial extension) increases rapidly with MaH . In contrast, the lower
branch of the disconnected solution is always unstable in 2D, as is the flow on the connected solution
branch for MaH > 87.0. Despite their instability, the oscillating character of the flow direction with
respect to a variation of MaH is intriguing. Therefore, some related considerations are provided in
Appendix D.

As the contact angle (aspect ratio) increases, the thermocapillary flow becomes stronger. As-
sociated with it is an increased perturbation of the locally almost conducting state near the apex.
As a result, the two-dimensional bifurcation to concentric Marangoni rolls becomes increasingly
perturbed and the saddle node of the disconnected solution branch moves to higher Marangoni
numbers. For α = 15◦ we could no longer find numerically the disconnected solution branch. In the
following, we investigate the three-dimensional instability of the dominant connected solution for
which w0(r = 0, z = �/2) < 0 (down-flow on the axis).
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FIG. 10. Dependence of the critical (thick lines) and neutral (thin lines) Marangoni numbers (a) and the
critical (thick lines) and neutral (thin lines, inset only) oscillation frequencies (b) on the contact angle α for
shallow droplets on a hot substrate with Pr = 16.36.

2. Three-dimensional flow instability

For α = 5◦ the steady axisymmetric connected-branch solution becomes unstable to three-
dimensional perturbations at MaH,c = 83.27 (vertical green line in Fig. 8), only slightly above the
transcritical bifurcation point. At the same Marangoni number, the upper branch of the disconnected
solution is linearly stable with respect to three-dimensional perturbations. Since the most dangerous
mode of the upper-branch disconnected solution is found to be axisymmetric with a real growth
rate of ς (m = 0, MaH = 83.27) < 0, we can expect the upper-branch disconnected solution to be
linearly stable in a range around the critical Marangoni number of the connected-branch solution.
Furthermore, since the basic subcritical flow for very low MaH merges smoothly into the connected
solution, in particular for α > 5◦, we investigate the three-dimensional instability of the connected
solution, also denoted basic state in the following. The corresponding critical Marangoni number is
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TABLE III. Neutral Marangoni numbers MaH,n for different azimuthal wave numbers m for a droplet on a
hot substrate with contact angle α = 5◦ and Prandtl number Pr = 16.36. The m = 0 mode is oscillatory with
ωn = 4.36.

m 0 1 2 3 4 5 6 7 8

MaH,n 87.01 83.27 83.35 83.92 84.47 85.18 87.04 86.82 87.55

denoted MaH,c. As long as an axisymmetric upper branch of the disconnected solution stably exists
in a range of Ma > MaH,c the supercritical flow could possibly be bistable between the steady
concentric Marangoni roll solutions of the upper branch of the disconnected solution and a slightly
supercritical three-dimensional flow near the unstable connected-branch solution.

The critical curve MaH,c(α) for the basic state and α > 5◦ is shown in Fig. 10(a). Similar to the
critical onset in cylindrical liquid pools [59], the neutral Marangoni numbers for different azimuthal
wave numbers are very close to each other. For α < 8◦ the critical curves for the azimuthal wave
numbers m = 1 and m = 2 are almost indistinguishable. As a result, the critical wave number often
changes with the contact angle. Increasing α from 15◦ to 20.5◦, the critical wave number monoton-
ically increases from 1 to 6. A further increase of α leads to a monotonic reduction of m until, for
α � 23.1◦, the critical mode has become axisymmetric (m = 0). The critical Marangoni number
MaH,c is a strictly monotonic function of α within the range considered. Extrapolating the critical
Marangoni number MaH,c to α → 0◦ we find MaH,c(α = 0) ≈ 79.6 by quadratic extrapolation the
critical data of the m = 2 mode. This is a typical value for critical Marangoni numbers also found
for plane liquid layers [18] and shallow pools [44,57].

The critical three-dimensional modes are all stationary for α < 13.4◦ [Fig. 10(b)]. For α = 5◦
the basic state becomes unstable at MaH,c = 83.27 to a nonaxisymmetric steady mode with m =
1. Further neutral Marangoni numbers for m ∈ [0, 8] are provided in Table III. For m � 1, they
increase with the azimuthal wave number m and demonstrate the crowding of neutral modes. The
critical and some neutral modes are shown in Fig. 11. Here and in all following figures red and blue
color shading indicates θ ′ > 0 and θ ′ < 0, respectively. These modes as well as the stationary modes

0.25
0

Γ
z

0 r 0 0.25r 0 0.25r

FIG. 11. Critical mode with m = 1 (a) and neutral modes with m = 2 (b) and m = 3 (c) for α = 5◦. The
critical/neutral Marangoni numbers are given in Table III. The free-surface temperature distribution is shown
at the top, while at the bottom the velocity vectors and temperature field are shown close to the axis and in the
plane ϕ = 0 (corresponding to a horizontal cut along the dashed line in the top view). The dotted circles in the
top views indicate the critical distance r∗ from the axis where Maloc(r∗) = MaSN

H = 82.16.
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FIG. 12. Critical modes for a droplet on a hot substrate with Pr = 16.36 and α = 15◦ (a), (c) and α =
20◦ (b), (d). The critical Marangoni and wave numbers are MaH = 122.0, m = 1 and MaH = 603.3, m = 5,
respectively. The surface temperature is shown in panels (a), (b), while the velocity and temperature field are
shown in panels (c), (d) in a plane ϕ = const. containing the maximum positive temperature perturbation in the
bulk. The waves rotate clockwise.

for other small values of α are localized near r = 0 and exhibit a clear cellular structure in the cross-
section of constant ϕ, similar to the axisymmetric basic state for MaH,c > Ma2D

H,c. Therefore, these
three-dimensional instabilities must also be due to a Marangoni instability in which the temperature
perturbations are produced by the vertical advection of basic temperature by the perturbation flow.
Furthermore, as α increases, the critical modes extend further in the radial direction.

Since the neutral curves for the steady low-α modes m = 2 and m = 3 turn backward [inset in
Fig. 10(a)] upon an increase of α at α = 12.7◦ and α = 13.3◦, respectively, the stationary mode
with wave number m = 3 is replaced by the oscillatory mode with m = 1 at a codimension-two
point at α = 13.4◦. This transition from stationary to oscillatory critical modes seems to suggest
a modification of the instability mechanism. The critical circular frequencies ωc [Fig. 10(b)] grow
monotonically with α. Since the time-dependent critical modes arise in complex conjugate pairs, we
only present clockwise rotating modes as viewed from above the droplet. For these modes ω > 0
for m � 1. Examples of oscillatory critical modes are shown in Fig. 12 for α = 15◦ and 20◦. For
the purpose of illustration Fig. 13 shows a superposition of the basic states at criticality and the
same critical modes with arbitrary amplitudes. The temperature perturbation exhibits a fan-blade
shape distribution on the free surface, similar to that observed by Karapetsas et al. [39] in shallow
evaporating droplets on a perfectly conducting substrate. Therefore, the temperature perturbation
structures close to the axis lag those near the periphery. Owing to the strong winding of the spirals
the perturbation flow in azimuthal cross sections at constant ϕ has a cellular character, as for the
low-α stationary modes, but the cells at constant ϕ appear to travel radially inward, related to the
(negative) azimuthal direction of wave propagation. The structure of the critical mode for α = 15◦
is consistent with the flow oscillations simulated by Shi et al. [35] (their Fig. 7), who obviously
found a nonlinear standing wave composed of the two bifurcating counter-propagating waves of
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FIG. 13. Superposition of the basic states and the corresponding critical modes for the same parameters as
in Fig. 12. The amplitude of the perturbation flow is selected for visualization purposes such that the maximum
temperature does not exceed the temperature of the wall. The top row (a), (b) shows the temperatures on the
free surface, while the bottom row (c), (d) shows meridional cuts along the dashed lines. The yellow and
violet borders of the colormap correspond to the maximum and minimum fluid temperature within the droplet.
Arrows in panels (c), (d) represent velocity vectors.

which one is shown in Fig. 12(a). With increasing α the inward propagating cells at constant ϕ

become increasingly oblique [Figs. 12(c) and 12(d)], an effect caused by the increasing shear in the
basic flow [Figs. 7(b) and 7(c)]. Since the basic flow also develops considerable radial temperature
gradients, the rotating critical modes combine characteristics of the (stationary) Marangoni insta-
bility [18] and of (oscillatory) hydrothermal waves [19]. Both mechanisms are based on basic state
temperature gradients in the bulk and a feedback through the thermocapillary-induced perturbation
flow.

An example of an axisymmetric (m = 0) oscillatory critical mode at an even larger contact angle
α = 25◦ is shown in Fig. 14. The perturbation streamlines and temperature field are displayed at four
instants over half a period τ/2 = π/ωc of oscillation. The perturbation flow consists of concentric
convection rolls which propagate radially inward. Rolls are generated near the contact line and they
are annihilated on the axis. Despite the increased importance of radial temperature gradients of the
basic flow for this larger contact angle [Fig. 7(d)], the basic state temperature gradients normal to the
interface dominate. From the extrema of the perturbation temperature near the free surface between
the concentric rolls, it is obvious that the traveling concentric rolls are supported by the classical
Marangoni effect [18], except near the axis where radial temperature gradients dominate in the
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FIG. 14. Critical axisymmetric mode (m = 0) for α = 25◦ with MaH,c = 4263 and ωc = 503. Shown are
snapshots of the perturbation temperature and streamfunction at times t0 (a), t0 + τ/8 (b), t0 + τ/4 (c), and
t0 + 3τ/8 (d), where τ = 2π/ωc is the period of oscillation.

basic state and the behavior is more complex. Even though the mechanism is mixed, we shall call
this mode radially propagating Marangoni rolls. Since the temperature perturbations at mean radial
coordinates r ≈ 0.5 arise near the interface (not in the bulk) the inward propagation of the critical
mode seems to be due to the radially inward advection provided by the basic free surface flow. In
fact, the radial phase velocity compares well with the free surface velocity w0(r, h(r)). For example,
the mean radial propagation velocity of the maximum of the free-surface perturbation temperature
between Figs. 14(a) and 14(d) is −30, while the radial velocity of the basic flow at the location of
the maximum perturbation temperature varies from u0 = −28 [Fig. 14(a)] to u0 = −29 [Fig. 14(d)].

The stability threshold MaH,c of the present high-Prandtl-number basic flow for heating from the
wall increases approximately exponentially with α [note the logarithmic scale in Fig. 10(a)]. As α

increases the thermocapillary flow gets stronger and, for a high Prandtl number, the vertical tempera-
ture profile becomes strongly S-shaped with a local inversion of the temperature gradient [Fig. 7(d)].
Therefore, temperature perturbations associated with velocity perturbations in form of a regular roll
structure, which extends vertically over the full depth of the liquid, can be amplified by vertical ad-
vection of basic state temperature via the Pearson mechanism only over a relatively thin subsurface
layer within which ∂zθ0 < 0. However, the intermediate layer with the inverted temperature gradient
∂zθ0 > 0 acts stabilizing regarding the Pearson mechanism. This structural change of the basic flow
with an inverted vertical temperature gradient may explain the strong increase of MaH,c with α.

The types of instabilities, stationary cells, rotating patterns, and radially propagating rolls, found
for Pr = 16.36 are also expected for other high-Prandtl-number droplets when the heating is from
the wall. For α = 16◦ the dependence of the critical Marangoni number on the Prandtl number is
shown in Fig. 15. For this contact angle, rotating spirals with m = 1 or m = 2 can become critical.
In the limit of large Prandtl numbers, the neutral Marangoni number seems to saturate. In this
limit, the Reynolds number ReH = MaH/Pr → 0 becomes arbitrarily small for constant MaH such
that the basic flow field is creeping and the basic flow (including the temperature field) does not
change anymore. Similar arguments apply to the perturbation flow such that MaH,c should indeed
saturate. However, when Pr → 0, the critical Marangoni number seems to diverge. In this limit, the
basic temperature field becomes perfectly conducting, and all instabilities which rely on temperature
fluctuations are rapidly dissipated such that the critical Marangoni number must diverge for those
perturbations. Merely, purely inertial instabilities remain possible in the low Prandtl number limit
as, e.g., in thermocapillary liquid bridges [29,60,61] or pools [62,63].

Buoyancy has a stabilizing (destabilizing) effect in the case of a pendant (sessile) low-contact-
angle droplet due to the vertical thermal stratification of the basic state [Figs. 7(a) and 7(b)].
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FIG. 15. Neutral curves MaH,n(Pr) for the two most dangerous modes with azimuthal wave number m = 1
(red) and m = 2 (orange) for a droplet on a hot substrate with contact angle α = 16◦.

For α = 15◦ and Pr = 16.36, the critical curve MaH,c(Bd) shown in Fig. 16(a) has the slope of
∂MaH,c/∂Bd|Bd=0 = −23.69 at Bd = 0. Under the physical conditions considered by Shi et al. [35],
corresponding to Bd = 0.015 for α = 15◦, the effect of buoyancy on the critical Marangoni number
is less than 3‰. Thus, it is permissible to neglect buoyancy under similar conditions. For these
conditions the Rayleigh number based on the height of the droplet and the temperature difference
between the wall and the free surface is Ra = Bd MaH ∼ O(1). This is far below the critical value
RaRB

c = 669 for the onset of Rayleigh-Bénard convection in plane layers with rigid-free velocity
and fixed-insulating temperature boundary conditions [64,65].

The oscillation frequencies ωn of the neutral modes decrease monotonically with Bd [Fig. 16(b)]
and eventually drop to zero. The change from an oscillating to a steady mode is accompanied
by a decrease of the neutral Marangoni number. In this regard, the effect of an increase of Bd
is very similar to a decrease of α. For Bd > 1.2, the oscillating mode with m = 1 is replaced by a
steady mode with m = 3, and for Bd > 2 the azimuthal wave number decreases to m = 2. The same
occurs when the contact angle is decreased below 13.4◦ and 12.2◦, respectively. For Bd < −0.4, the

FIG. 16. The effect of buoyancy on the neutral Marangoni numbers MaH,n (a) and neutral oscillation
frequencies ωn (b) for α = 15◦, Pr = 16.36 and different wave numbers m = 1 (red), m = 2 (orange), and
m = 3 (violet). Thick lines indicates critical values.
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FIG. 17. Dependence of the critical Marangoni number MaH,c (a) and the critical oscillation frequency ωc

(b) on the contact angle α for a nonwetting droplet on a hot wall for Bi = 0.236 (dashed line), Bi = 0.4 (solid
line) and Pr = 7 (orange), Pr = 16.36 (black), Pr = 28.1 (blue), Pr = 83 (green). The critical wave number is
always mc = 1.

azimuthal wave number of the oscillating mode increases from m = 1 to m = 2, as for α > 15.2◦
and zero gravity [Fig. 10(b)].

It must be pointed out that for common liquids (water, ethanol, silicone oil, liquid metals),
Bd ∼ O(1) would be accompanied by a nonnegligible deformation of the free-surface shape. The
investigation of the effect of the shape deformation due to gravity is, however, beyond the scope of
the present work. Regardless of this, the effect of strong buoyancy (large dynamic Bond number)
on the steady axisymmetric flow has been studied systematically by Masoudi and Kuhlmann [25]
for spherical droplets.

B. Nonwetting high-Prandtl-number droplet

As the contact angle α increases, the critical Marangoni numbers continue to rise. We did not
continue the critical curves to these high values of MaH , because they appear unrealistic and the
temperature dependence of the material parameters becomes relevant. However, for large contact
angles, we find different modes of instability for which the critical Marangoni numbers decrease
with α. These instabilities are considered here for a representative Biot number Bi = 0.236 and
Bi = 0.4 to show the influence of the Biot number on the stability boundary. For contact angles
larger than α � 70◦, heating from the wall and large Prandtl numbers (Pr � 5, depending on α)
only m = 1 modes become critical. This is in qualitative agreement with Watanabe et al. [36].

We first consider the dependence of the stability boundary MaH,c on the contact angle. Critical
curves are shown in Fig. 17(a) for several Prandtl numbers Pr > 5 (color coded) and two Biot
numbers Bi = 0.236 and Bi = 0.4 (distinguished by line type). Within the range of α, the Biot
number has little effect on the stability boundary MaH,c and almost no effect on the critical
oscillation frequency ωc shown in Fig. 17(b). The critical Marangoni numbers for α = 70◦ are very
large. Therefore, the basic flow is relatively intense and the basic temperature field exhibits a thin
boundary layer on the hot wall. Examples of the basic flow at criticality for Pr = 16.36, Bi = 0.236
and contact angles α = 90◦ and 120◦ are shown in Figs. 18(a) and 18(b). Owing to the more intense
flow at criticality when α = 90◦ the total variation of the basic temperature field in the liquid is
much less than for α = 120◦ with a smaller critical Marangoni and Reynolds number. The thermal
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FIG. 18. Streamlines (black), isotherms (white), and temperature field (color) of the axisymmetric ba-
sic flow in nonwetting droplets on a hot wall for Pr = 16.36, Bi = 0.236 at the critical conditions α =
90◦, MaH = MaH,c = 52850 (a) and α = 120◦, MaH = MaH,c = 7459 (b).

boundary layers on the hot wall are clearly visible as well as an inverted vertical gradient of the
basic temperature field just above the boundary layer.

For moderate contact angles α ∼ 90◦, the most dangerous mode is oscillatory and its frequency
ωc decreases if the contact angle α or the Prandtl number Pr increases [Fig. 17(b)]. Above a certain
contact angle, depending on Pr, the oscillatory mode is replaced by a stationary one with the same
wave number mc = 1. For Bi = 0.236 and Pr = 28.1 and 83, the codimension-two points are located
at α = 148◦ and 161◦, respectively.

Also the critical Marangoni number MaH,c decreases with α and Pr for α ∼ 90◦. The neutral
curves of both the oscillatory and the steady modes are convex and the critical curves have minima at
large contact angles, depending on Pr. For the Prandtl numbers Pr = {7, 16.36}, the global minimum
of MaH,c(α) belongs to the neutral curve of the stationary mode with ωc = 0. For Pr = 28.1 the
two local minima have approximately the same Marangoni number while for Pr = 83 the global
minimum corresponds to the oscillatory mode.

The minima of the critical curves in Fig. 17 only arise for MaH,c(α) (length scale H). The
corresponding critical Marangoni number Mac(α) (length scale R) decays almost exponentially
with α (not shown). The decay of Mac, which also rules the decay of MaH,c for intermediate contact
angles, is due to the increase of the length scale � = H/R of the droplet as α increases. For very
large contact angles α → 180◦, however, the aspect ratio � → ∞ and MaH,c must diverge, since
limα→π Mac �= 0.

A characteristic feature of the high-Prandtl-number basic flow in a droplet exposed to a cold
environment is a vertical channel of cold liquid around the axis (Fig. 18). It is created by the transport
of cold liquid from a thin layer below the free surface which turns towards the wall along the
axis. Since the cold temperature cannot rapidly diffuse radially due to the high Prandtl number,
large radial basic-state temperature gradients are created near the axis. Figure 19 shows the typical
oscillatory (a–c) and stationary (d–f) m = 1 modes for Pr = 16.36 and Bi = 0.236 associated with
the two basic flows shown in Fig. 18. The velocity and temperature perturbations of the critical
mode are localized near and under the apex of the droplet. This suggests that the critical mode
is indeed based on the near-axis radial temperature gradients of the basic flow. The perturbation
flow in Figs. 19(a) and 19(d) is approaching and leaving the apex approximately perpendicular to
the isotherms of the basic flow [Figs. 18(a) and 18(b)]. By advection of basic-flow temperature,
the perturbation flow creates the hot and cold temperature perturbation spots on the free surface
visible in Figs. 19(c) and 19(f). In turn, the perturbations of the free surface temperature generate
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FIG. 19. Critical m = 1 modes for Pr = 16.36 and Bi = 0.236. (a)–(c) α = 90◦, MaH,c = 52850, ωc =
55.6 (clockwise rotation). (d)–(f) α = 120◦, MaH,c = 7459, ωc = 0. Panels (c) and (f) show the velocity and
temperature perturbations on the free surface as seen from above. Panels (a), (b), (d), and (e) show the flow
fields in vertical cross-sections indicated by dashed lines in panels (c) and (f). The corresponding basic states
are shown in Fig. 18.

the perturbation flow field via the thermocapillary effect. The effect of such an m = 1 perturbation
flow is a displacement of the total toroidal vortex and its temperature field from the axis.

The dependence of the critical Marangoni number on the Prandtl number is shown in Fig. 20(a)
for (α, Bi) = (140◦, 0.236) (blue), (α, Bi) = (140◦, 0.4) (black), and (α, Bi) = (120◦, 0.236) (red).
For all three parameter sets, the critical mode is oscillatory with m = 1 for very large Prandtl
numbers and, similar as for lower contact angles, MaH,c saturates for very large Pr. As Pr is
reduced, the oscillatory mode is replaced by a stationary one (m = 1). The stationary mode is
strongly stabilized upon a further reduction of the Prandtl number and the critical curve MaH,c(Pr)
may even turn forward (near Pr ≈ 5 for α = 120◦ and near Pr ≈ 2.5 for α = 140◦). We find the
basic flows and the stationary critical modes for α = 120◦ are very similar to those for Pr = 16.36
[Figs. 18(b) and 19(d)–19(f)] all along the almost vertical critical curve. Therefore, the instability
mechanism must be the same. Since thermal diffusion becomes more important as the Prandtl
number is decreased, the Marangoni number must be much larger in order that the radial temperature
gradients of the basic temperature field below the apex of the droplet, required for the instability,
are maintained. This may explain the dramatic stabilization of the basic flow with respect to the
stationary instability as Pr decreases. Finally, at even lower Prandtl numbers the stationary mode
is replaced by another oscillatory mode (only shown for α = 120◦ in Fig. 20). For α = 120◦ and
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FIG. 20. Critical Marangoni number MaH,c (a) and critical oscillation frequency ωc (b) as functions of
the Prandtl number. Shown are curves for (α, Bi) = (140◦, 0.4) (black), (α, Bi) = (140◦, 0.236) (blue) and
(α, Bi) = (120◦, 0.236) (red). The critical azimuthal wave number is mc = 1.

Bi = 0.236 this cross-over occurs at (Pr, MaH,c) = (5, 3.5 × 104). The low Prandtl number modes
are considered in more detail in the next section.

C. Nonwetting low-Prandtl-number droplet

The critical Marangoni number of the oscillatory m = 1 instability with (α, Bi) = (120◦, 0.4)
(red curves in Fig. 20) decreases rapidly with decreasing Prandtl number for Pr � 5. Therefore, the
limit of small Prandtl numbers Pr � 1 is of interest. In the limit Pr → 0, the temperature field is
dominated by thermal conduction and becomes independent of the flow. In this case, the Reynolds
number instead of the Marangoni number is the appropriate similarity parameter to measure the
driving force.

To approximate the low-Prandtl-number limit we consider Pr = 10−3 for which the temperature
field is almost conducting as long as the Reynolds number is less than Re � 103. Basic flows for
Pr = 10−3 and Bi = 0.236 are shown in Fig. 21 for α = 90◦ and α = 120◦. For these nonwetting
droplets, the almost frozen surface temperature distribution drives a thermocapillary flow that

FIG. 21. Streamlines and temperature field of the axisymmetric basic flow in nonwetting droplets on a hot
wall for a very low Prandtl number of Pr = 10−3, Bi = 0.236 and contact angles α = 90◦ (a) and α = 130◦

(b). The basic flow is shown for critical conditions, i.e., for Rec = 37024 (a) and Rec = 1895 (b).
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FIG. 22. Dependence of the critical Reynolds number Rec (a) and the critical frequency ωc on the contact
angle α for droplets with Pr = 10−3, Bi = 0.236 on a hot substrate. The dots indicate the cases shown in
Fig. 21.

occupies the whole droplet. For α = 90◦ [Fig. 21(a)] a small separated vortex exists on the hot
wall near the contact line. It arises due to the very high Reynolds number for which the vortex core
tends to approach its inertial limit and because the radially outward flow near the wall is strongly
decelerated as it approaches the free surface near the contact line. This separation is similar to the
separation upstream of the moving lid in the lid-driven cavity [Fig. 9(b) of Ref. [66]]. The separated
region vanishes as α increases from 90◦ along the stability boundary. While the structure of the
basic flow does not change significantly when the contact angle is varied, the critical Reynolds
number reduces rapidly from Rec = 37 024 for α = 90◦ [Fig. 21(a)] to Rec = 1895 for α = 130◦
[Fig. 21(b)] as the contact angle is increased. The strong reduction of Rec is due to the combined
effects caused by the increase of the droplet height H , while Re ∝ R, and the increased total
variation of the surface temperature.

The dependence of the critical Reynolds number on the contact angle is shown in Fig. 22 for
Pr = 10−3. It is remarkable that the oscillatory critical mode with m = 1 (red in Fig. 22) already seen
in Fig. 20 remains critical down to such small Prandtl numbers. Only for sufficiently large contact
angles does a different mode become more unstable (orange in Fig. 22). This mode is stationary
and has the wave number m = 2. When the Prandtl number is varied for constant α = 120◦ the
intersection of the neutral curves for the oscillatory m = 1 and the stationary m = 2 mode arises at
(Pr, Rec) = (2.1813 × 10−2, 3953) [circle in the inset of Fig. 23(a)]. From Fig. 23(a) it is seen that
the stationary m = 2 mode becomes critical only at very small Prandtl numbers and remains critical
for Pr → 0. The neutral Reynolds number as well as the oscillation frequency for the oscillatory
m = 1 mode, however, increase strongly for Pr � 0.02 (Fig. 23).

For α = 120◦ Figs. 24(a)–24(d) compare the two modes which are neutrally stable at the
codimension-two point. Shown are the surface velocity and the surface temperature fields projected
in the radial (a, c) and in the axial direction (b, d). In addition, Figs. 24(e) and 24(f) show
the oscillatory m = 1 mode for Pr = 1 which evolves continuously from the m = 1 mode at the
codimension-two point [Figs. 24(c) and 24(d)]. Note that for α = 120◦ only the upper part of the
free surface is visible in Figs. 24(b), 24(d), and 24(f)].

As a distinctive feature of the stationary m = 2 mode, the surface velocity is mainly directed from
cold surface regions to hot surface regions [Fig. 24(a)], except for a small region near the apex. This
indicates that the surface flow is not driven by the thermocapillary effect. Rather the thermocapillary
forces are opposing the surface flow. Therefore, the stationary m = 2 perturbation flow must be
created by an inertial instability of the basic flow. This interpretation is consistent with the finite
limit Rec(m = 2, Pr → 0) = 3100. The thermocapillary stresses near the apex merely assist the
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FIG. 23. Critical Reynolds number Rec (a) and the critical frequency ωc (b) as functions of the Prandtl
number Pr for contact angle α = 120◦ and Bi = 0.236. Several other neutral Reynolds numbers are shown by
thin lines in panel (a).

inertial instability. The instability resembles the stationary inertial instability in low-Prandtl-number
thermocapillary liquid bridges [29,67] which is related to the instability of vortex rings caused
by the self-induced strain [68]. The critical Reynolds number for the droplet on a hot wall with
α = 120◦ has a similar magnitude as the one in liquid bridges with the same contact angle (see
Table I). In fact, the perturbation flow in the plane z = �/2 shown in Fig. 25(b) is very similar
to the critical mode in an adiabatic thermocapillary liquid bridge for Pr = 0.02 (see Fig. 3(a) of
Wanschura et al. [29]). We hypothesize that the production of perturbation kinetic energy is largest
near the apex of the droplet where the basic flow on the free surface is strongly decelerated and
deflected axially downward. Such energy production based on flow deceleration near a hyperbolic
line arises in a lid-driven cavity in which two facing walls move parallel to each other [Fig. 7(b) of
Albensoeder and Kuhlmann [69]].

Figure 26 shows a three-dimensional overview of the critical Reynolds number Rec(α, Pr) com-
puted for a hot wall and Bi = 0.236. In contrast to the above inertial instability, the m = 1 oscillatory
instability [Figs. 24(c)–24(e)] is the continuation of an instability from higher Prandtl numbers.
At Pr = 1, this type of instability resembles the hydrothermal waves found in thermocapillary
liquid bridges [53]. These waves are characterized by strong internal temperature extrema which
arise in the region of large gradients of the basic temperature field, and weak surface temperature
perturbations which azimuthally advance the strong internal perturbation temperature extrema.
These features are clearly seen in Figs. 25(f)–25(h). It is surprising that this mode, which is based
on thermal effects, smoothly continues to be critical down to very low Prandtl numbers of the order
of Pr = 0.02, for which the instability is expected to be inertial. The very strong stabilization of
the basic state with respect to this perturbation mode we find for even smaller Prandtl numbers
in the limit Pr → 0, and the perturbation flow on the free surface which is consistent with a
thermocapillary driving suggest that this mode of instability is indeed of thermal origin.

V. NONWETTING DROPLETS ON A COLD WALL

When the droplet resides on a cold instead of a hot wall, the basic flow direction on the free
surface is reversed. For creeping flow, the temperature field is conducting and the shape of the
streamlines and of the isotherms is identical for both a hot and a cold wall. Since flow inertia tends
to shift the maximum of the free surface velocity downstream, the maximum surface velocity for
a droplet on a cold wall is found closer to the contact line than in the case of a droplet on a hot
wall. This is illustrated in Fig. 27 for the idealized case of Pr → 0 in which the temperature field
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FIG. 24. Critical modes for α = 120◦ and Bi = 0.236: (a), (b) stationary mode m = 2 at the codimension-
two point (Pr, Rec ) = (2.1813 × 10−2, 3953), (c), (d) oscillatory m = 1 mode at this codimension-two point,
and (e), (f) the same oscillatory m = 1 mode but at a much high Prandtl number for Pr = 1 and Rec = 8409.
The velocity and temperature on the free surface are viewed from above (right column, (b), (d), (f) and projected
radially to a cylindrical surface r = const. (left column, (a), (c), (e). Oscillatory modes rotate clockwise.
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FIG. 25. Stationary mode m = 2 (a), (b) and oscillatory mode m = 1 (c)–(h) for α = 120◦ both at the
codimension-two point (Pr, Rec ) = (2.1813 × 10−2, 3953). The oscillatory m = 1 mode on the same neutral
curve but at (Pr, Rec ) = (1, 8409) is shown in panels (f)–(h). The temperature (color) and velocity (arrows)
perturbations are shown in meridional planes ϕ = const. (a), (c), (d) and in the midplane z = �/2 (b), (e). The
respective planes are indicated by the dashed lines. Oscillatory modes rotate clockwise.

is conducting. For high Prandtl numbers, this difference is even more pronounced, because of the
temperature transport and the associated crowding of isotherms on the free surface.
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FIG. 26. Overview of the critical Reynolds number as a function of the contact angle and the Prandtl
number for a hot wall and Bi = 0.236. The azimuthal wave number is coded by color: m = 0 (blue), m = 1
(red), m = 2 (orange), m = 3 (violet), m = 4 (green), m = 5 (cyan), m = 6 (maroon). Filled circles with black
edges connected by full lines indicate oscillating modes ωc �= 0, while crosses connected by dashed lines
indicate steady modes ωc = 0.

A. Low-Prandtl-number instability

For cooling from the wall the fluid temperature increases towards the free surface. Therefore,
the Pearson mechanism tends to suppress any temperature perturbations on the free surface and the
critical Reynolds numbers are expected to be large, in particular for shallow droplets. For shallow
droplets, inertial instabilities are very unlikely because, in addition to the stabilizing temperature
gradient normal to the interface, the flow velocities are small.

To demonstrate the inertial instability for large-contact-angle droplets, unperturbed by thermal
effects, we consider the idealized case of Pr → 0, which may approximate the behavior in liquid
metals. The critical Reynolds number as a function of the contact angle is shown in Fig. 28.
Throughout the range of α shown the instability is stationary with critical wave number m = 2.
Representative basic flows at criticality are shown in Fig. 29 for α = 90◦ (a), α = 120◦ (b), and

FIG. 27. Basic state for Pr = 0, α = 120◦ and Re = 2000. Shown are (a) the isotherms of the (conducting)
basic temperature field, (b) streamlines for a droplet on a hot wall (counterclockwise rotation), and (c) those for
a droplet on a cold wall (clockwise rotation). The gray scale in panels (b), (c) indicates the velocity magnitude.
Note the contours of the conducting temperature field are identical but θ0 has an opposite sign for (b), (c).
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FIG. 28. Critical Reynolds number as function of the contact angle α for a cold substrate and Pr → 0. The
critical mode with wave number mc = 2 is stationary.

α = 140◦ (c). For large contact angles [Fig. 29(c)] the droplet is tall and it reaches farther into the
hot ambient than the droplets with smaller contact angles. Therefore, the total variation of the surface
temperature is larger (for the same effect and a hot wall, see Fig. 21) and the vortex reaches closer
to the apex than for smaller contact angles. For α = 100◦ [Fig. 29(a)], however, the basic vortex
is confined to the region near the contact line such that the flow separates from the wall. Since the
inertial instability relies on the strain field of the vortex, the decrease of the critical Reynolds number
with α is due to the larger strain which the basic vortex provides for α = 140◦ when it is stretched
axially as compared to α = 100◦.

The stationary critical modes for all three contact angles are shown in Fig. 30. In the horizontal
cross section at z = �/2 the critical modes for α = 120◦ and 140◦ [Figs. 30(b) and 30(c)] appear
as four vortices, very similar as the low-Prandtl-number critical mode in thermocapillary liquid
bridges [29]. From Figs. 30(h) and 30(i) is seen that the axes of the perturbation vortices are tilted
towards the coordinate axis in the upper part of the droplet. The velocity field of the critical mode
being strongest near the center of the basic toroidal vortex [see Figs. 30(e) and 30(f)] suggests a
mechanism similar to the vortex ring instability [68], i.e., the elliptic instability mechanism [70–72].
The critical mode for α = 100◦ which becomes critical at much higher Reynolds numbers differs
from those for α = 120◦ and 140◦. From Figs. 30(d) and 30(g) the axes of the perturbation vortices
are now almost parallel to the wall and located in the upper part of the droplet where the basic flow
is weak.

0 0

FIG. 29. Streamlines and absolute velocity of the basic flow in a droplet on a cold substrate for Pr = 0 and
α = 100◦, Rec = 12 062 (a), α = 120◦, Rec = 1680 (b), and α = 140◦, Rec = 564.2 (c).
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FIG. 30. Critical modes for a droplet with Pr = 0 on a cold substrate and α = 100◦, Re = 12 062 (a), (d),
(g), α = 120◦, Re = 1680 (b), (e), (h), α = 140◦, Re = 564.2 (c), (f), (i). All modes are stationary with mc = 2.
The top row (a)–(c) shows the perturbation velocity in the midplane z = �/2, and the middle (d)–(f) and the
bottom row (g)–(i) show the corresponding critical modes in meridional cuts indicated by the blue and orange
dashed lines in panels (a)–(c), respectively. The green and pink colors in the bottom row indicate the positive
and negative azimuthal velocities, respectively.

The low-Prandtl-number instability for large contact angles is qualitatively similar for droplets
on a cold wall and those on a hot wall [Figs. 21(b) and 24(a), 24(b)]. Also, the dependence of the
critical Reynolds number on α for the stationary m = 2 modes are similar in both cases [compare
Figs. 22(a) and 28]. This underlines the inertial mechanism based on the straining of the basic vortex
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FIG. 31. Neutral curves Ren(Pr) for m = 2 and a droplet on a cold wall for different contact angles (coded
by color). The critical wave number is mc = 2, throughout. Full lines indicate stationary modes. Dashed lines
mark oscillatory modes with frequencies ωn ∼ O(10).

which is elongated in the wall-normal direction for large contact angles regardless of the wall being
hot or cold.

The dependence of the critical Reynolds number on the Prandtl number is shown in Fig. 31
for the inertial instability. As Pr increases from zero, the basic flow is strongly stabilized, de-
pending on the contact angle. The reason is the critical inertial mode generates a temperature
perturbation which creates a thermocapillary stress opposing the perturbation flow on the free
surface. Since the temperature perturbations become stronger with increasing Prandtl number, the
self-suppression is enhanced with Pr. This effect is similar as in liquid bridges [73] and has also
been observed for droplets on a hot wall (Sec. IV C) for the stationary m = 2 mode. In Fig. 31
the neutral curves Ren(Pr) for α = 120◦ and α = 150◦ turn backward and may intersect with other
neutral modes. Such codimension-two points are shown by the dots in Fig. 31 for α = 120◦ and
α = 150◦, where the stationary branch intersects with the neutral curve of an oscillatory m = 2
mode. For a millimeter-sized droplet of mercury or galinstan (for the thermophysical properties see

FIG. 32. Dependence of the critical Marangoni number MaH,c (a) and of the critical frequency ωc (b) on
the Prandtl number Pr for a cold substrate, mc = 1, α = 140◦, and Bi = 0.4
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FIG. 33. Marginally stable basic state (streamlines and temperature field) for a droplet on a cold wall,
α = 140◦, Pr = 28.1, Bi = 0.4, and MaH,c = 206889.

Refs. [74–76]), the Reynolds number of the codimension-two point Ren ∼ O(104) corresponds to
�T ∼ O(10 K). For all contact angles the critical Reynolds number exceeds 104 when Pr � 0.08.

B. High-Prandtl-number instability

The basic flow beyond Pr > 0.2 is very stable until, for Pr � 1, the inertial instability is replaced
by a hydrothermal wave instability. The critical Marangoni number MaH,c as a function of the
Prandtl number is shown in Fig. 32 for α = 140◦ and Bi = 0.4. The behavior for Bi = 0.236 is
similar (not shown). The critical Marangoni numbers MaH,c are significantly larger than the ones

FIG. 34. Critical velocity (arrows) and temperature field (color) of a mc = 1 hydrothermal wave traveling
azimuthally [clockwise in panel (c)] with ωc = 1.71 in a droplet on a cold wall. The parameters are α = 140◦,
Pr = 28.1, Bi = 0.4, and MaH,c = 206 889. The critical mode is displayed in two orthogonal planes of ϕ =
const. (a), (b) and in the midplane z = �/2 (c). The planes in panels (a) and (b) are indicated, respectively, by
the blue and orange dashed lines in panel (c). Contours of equal azimuthal velocity are shown in panel (a), (b)
as full (v > 0) and dashed curves v < 0 [blue curve in panel (b): v = 0].
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FIG. 35. Critical Marangoni number MaH,c (a) and frequency ωc (b) as functions of the contact angle α for
a cold substrate, mc = 1 and Pr = 28.1. The Biot numbers are Bi = 0.4 (blue) and Bi = 0.236 (green).

for a droplet on a hot wall. Throughout the range of Prandtl numbers shown the critical mode is
oscillatory with wave number mc = 1. For a given contact angle α � 90◦ the critical Marangoni
number decreases with increasing Prandtl number and might eventually saturate at a nonzero value
for Pr → ∞.

As an example we consider α = 140◦, Pr = 28.1, Bi = 0.4 with MaH,c = 206 889. The basic
flow on the stability boundary is shown in Fig. 33. Owing to the high Marangoni number, the
internal isotherms are almost parallel to the streamlines of the basic toroidal vortex flow. The
high-Prandtl-number instability is based on the associated large radial temperature gradients of
the plumelike cold finger on the axis which originates from the cold wall. The critical mode
shown in Fig. 34 draws its energy from these radial temperature gradients by advecting basic
state temperature. It is seen that the perturbation velocity field is directed across the axis and
arises primarily in the lower half of the droplet [Fig. 34(a)]. The advection of the basic state
temperature thus creates the strong internal temperature extrema shown in color in Fig. 34.
The perturbation flow itself is driven primarily in the azimuthal direction by surface tension
gradients created by comparatively weak surface temperature variations which are ultimately
created by thermal conduction from the internal perturbation temperature extrema. These prop-
erties of the basic and the perturbation flow indicate the instability mode is a hydrothermal
wave [28,29].

The dependence of the critical Marangoni number on the contact angle α is displayed in
Fig. 35(a). The dependence is qualitatively similar to the one for droplets on a hot wall [Fig. 17(a)],
although the structures of the critical modes in Figs. 19 and 34 differ considerably. MaH,c decreases
almost exponentially with α ∈ [90◦, 120◦] and reaches a minimum at α = 140◦ for Bi = 0.4
and Pr = 28.1. The critical frequency ωc [Fig. 17(b)] varies moderately with α, but is almost
independent of the Biot number within the considered range of α for Pr = 28.1: The
curve ωc(α) for Bi = 0.236 is indistinguishable from the one for Bi = 0.4 on the scale
shown.

VI. SUMMARY AND CONCLUSIONS

The linear stability of the steady axisymmetric flow in droplets with a spherical cap attached
to a wall hotter or colder than the environment has been computed numerically. To enable a
quasicontinuous variation of the contact angle and the Prandtl number the heat transfer from the
free surface has been idealized using Newton’s law of cooling.

For shallow droplets of 1 cSt silicone oil on a hot wall the axisymmetric flow is not unique. We
find a similar bifurcation structure as for an infinitely extended plane layer heated from the wall
[57,58]. Steady concentric convection rolls come into existence at the apex of the shallow droplet
via a transcritical bifurcation. Contrary to plane layers, the bifurcation in the droplet is weakly
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perturbed by the global thermocapillary flow driven over the whole free surface. For Marangoni
numbers slightly above the imperfect bifurcation point, the solution connected with the subcritical
global thermocapillary flow becomes unstable by an axisymmetry-breaking three-dimensional flow.
For larger contact angles the steady concentric Marangoni rolls are suppressed by the global
thermocapillary circulation and the Marangoni instability becomes nonaxisymmetric with stationary
roll-like solutions which are azimuthally modulated with wave numbers m = 2 and m = 4. For even
larger contact angles spiral waves appear which are also destabilized by the classical Marangoni
mechanism. Common to all wetting droplets for 1 cSt silicone oil on a hot wall is a very dense
gathering of the neutral stability boundaries for axi- and nonaxisymmetric modes. This property
may explain the rapid succession of different flow patterns as the contact angle or the Marangoni
number changes [see, e.g., Ref. [35]]. Some of the nonaxisymmetric flow patterns observed by Shi
et al. [35] for Marangoni numbers below the present linear stability threshold may have come into
existence via a transcritical bifurcation, similar to the steady concentric convection rolls.

Depending on the Prandtl number and the contact angle also instabilities have been found which
are created by inertial or hydrothermal-wave mechanisms, or combinations thereof. These inertial
and hydrothermal-wave instabilities arise for nonwetting droplets on a hot wall, a case only sparsely
reported in the literature. The velocity fields of the critical hydrothermal waves are of interest,
because the nonlinear azimuthally propagating waves emerging from the instability are believed to
be responsible [see, e.g., Ref. [77]] for the particle accumulation structures observed experimentally
in droplets pending from a hot wall [26,36].

A difficulty often faced by both experiments and single fluid numerical analyses is an uncertainty
regarding the ambient conditions. Watanabe et al. [36] measured the onset of oscillations in
thermocapillary buoyant droplets pending from a hot wall when a cold wall was placed in immediate
vicinity of the apex of the droplet, almost making contact. They expressed the critical conditions in
terms of the temperature difference between both walls. For � = 1 their Fig. 3 yields �T exp

c = 27 K
for Pr = 28.1. Assuming the droplet shape can well be approximated by a half sphere of radius R the
critical Marangoni number becomes Maexp

c = 2.33 × 104. The present result for � = 1, Pr = 28.1
and Bi = 0.4 is Mac = 7.55 × 104. The discrepancy is mainly due to the different definitions of the
characteristic temperature difference. A better measure for the characteristic temperature would
be �Tapex := |Tapex − Twall|. This temperature difference is proportional to the total variation of
the surface tension along the free surface, similar as in thermocapillary liquid bridges. Based on
the nondimensional critical apex temperature ϑapex,c = 0.9428 for the case considered we obtain
Maapex

c = |ϑapex,c − 1|Mac = 7051. Similarly, �Tapex in the experiment of Ref. [36] most likely was
much less than 27 K, because the flow in the lubrication film between droplet and cold wall prevents
the apex of the droplet to attain the cold wall temperature [78,79]. This is confirmed by the IR
temperature measurement in figure 6(b) of Ref. [36] which suggests that �Tapex is at least 50% less
than the nominal value of �T , which leads to the estimate Maapex,exp

c � 1.2 × 104. This shows that
the critical conditions based on the �Tapex are indeed comparable, notwithstanding the remaining
differences caused by the different gravity levels, differences in shape and in the temperature
distribution along the surface of the droplet. In fact, the critical wave number is mc = 1 in both cases.

We did not find instabilities corresponding to the convective rolls and Bénard-Marangoni cells
near the contact line, which were observed in evaporating droplets experimentally [20] and nu-
merically by three-dimensional time-dependent simulations [22]. It seems natural to attribute these
flow patterns to the substantial changes in the thermal and solutal boundary conditions at the free
surface due to the evaporation and the associated local cooling effect. The comparison between our
results and the linear stability analysis of Karapetsas et al. [39], however, reveals that the thermal
boundary condition at the free surface does not have a severe effect on the qualitative structure of
the most dangerous modes. The time-dependent three-dimensional simulations of Kumar, Medale
and Brutin [80] show that even for evaporating shallow droplets the Marangoni instability is indeed
triggered near the center of the droplet, as predicted by our linear stability analysis. Soon after these
initial cells appear, they rapidly spread through the rest of the droplet, a feature which cannot be
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captured by our linear analysis. These cells are then sustained even relatively close to the contact
line, most likely due to the large local evaporative cooling.

Nonwetting droplets on a cold wall in a hot atmosphere were considered as well. At low
Prandtl numbers, an inertial instability of the concentric vortex flow exists, similar to the one
in thermocapillary liquid bridges [29]. These instabilities are suppressed, however, as the droplet
becomes more shallow, because of the stabilizing Marangoni effect. For a high-Prandtl-number
droplet on a cold wall, we find a hydrothermal wave instability, but the critical Marangoni numbers
are orders of magnitude larger than those for a hot wall.

The present results on the flow instability of nonvolatile thermocapillary droplets may serve as
reference data for numerical investigations of extended models which may take into account solutal
effects [81,82], the inhomogeneous cooling of the interface by the latent heat due to evaporation
[39,83–88], buoyancy forces [24,37], including deviations from a spherical droplet shape [89], the
heat, mass, and momentum transport in the ambient atmosphere [53,90], and the thermal properties
of the wall [20,91,92].
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APPENDIX A: RADIATION HEAT TRANSFER AT THE FREE SURFACE

To compare the present linear stability results with the numerical simulations of Shi et al. [35]
in Fig. 6 we consider a radiation heat flux between the free surface of the droplet and the ambient
according to the Stefan-Boltzmann law

q̃r = εσr
(
T 4 − T 4

a

)
, (A1)

where ε is the emissivity of the free surface, σr is the Stefan–Boltzmann constant, and Ta is
the absolute ambient temperature. In our scaling the dimensionless form of radiation heat flux
reads

qr = Bir
�

Re

[(
θ

Re

�
+ 1

)4

− 1

]
, (A2)

where Bir = εσrT 3
a R/k and � = γ TaR/(ρν2). While the radiation is emitted and absorbed in the

bulk of the fluid, we take the limit of large absorption coefficient of the fluid. In this approximation,
any radiation from the droplet is (for moderate temperature variations) emitted or absorbed within
an infinitely thin layer of fluid beneath the free surface.

The linear combination of Newton’s law and Stefan-Boltzmann’s law leads to

n · ∇θ0 = −
{

Bi + Bir
�

Re

[(
θ0

Re

�
+ 1

)4

− 1

]}
θ0, (A3)

which is used as the thermal boundary condition for basic flow instead of (4g) whenever radiation
is taken into account. The expression in the curly brackets represents the effective Biot number Bieff

used by Shi et al. [35]. In the linear stability analysis the linearized version of Eq. (A3),

n · ∇θ ′ = −{Bi + 4Bir}θ ′, (A4)

is implemented to compute the perturbation flow.
The dimensional parameters used by Shi et al. [35] are hc = 8.08 W/(m2K), ε = 0.91, Ta =

298.15 K, R = 2.5 × 10−3m. The remaining parameters are provided in Table IV. For these condi-
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TABLE IV. Thermophysical parameters of 1 cSt silicone oil. The data are the same as in Ref. [35].

Parameter Symbol Value

Thermal conductivity k 0.1 W/(m K)
Temperature coefficient of surface tension γ 7.55 × 10−5 N/(m K)
Density ρ 818 kg/m3

Kinematic viscosity ν 10−6 m2/s
Thermal diffusivity κ 6.112 × 10−8 m2/s

tions, we obtain Bi = 0.202, Bir = 0.0342, and � = 68797 and the linear stability analysis yields
the critical curve shown in Fig. 6. The critical Marangoni numbers compare favorably with the
numerical results of Shi et al. [35] (reproduced from their Fig. 4 as triangles in Fig. 6).

APPENDIX B: THE METHOD OF NITSCHE TO IMPOSE A NO-PENETRATION CONDITION
ON THE FREE SURFACE

The weak formulation of the Navier-Stokes subsystem (3a) and (3b) reads: Find uh, ph such that

([∂t + uh · ∇]uh, v) − (ph,∇ · v) + (sh,∇v) + 〈n · (phI − sh), v〉 = 0 ∀v ∈ P 2
2 , (B1a)

−(∇ · uh, q) = 0 ∀q ∈ P1, (B1b)

where the subscript h indicates the interpolation of the nodal values with the given basis functions,
n is a boundary normal, v and q are test functions, sh = ∇uh + ∇uT

h and the inner products are

(a, b) =
∫

�

a : bd�, 〈a, b〉 =
∫

∂�

a · bdS,

where � is the domain and ∂� the domain boundary. On the wall z = 0 and on the axis r = 0,
the boundary integral vanishes due to Dirichlet boundary conditions imposed in a strong form and
homogeneous Neumann boundary conditions.

At the free surface, independent boundary conditions in the normal and tangential directions are
imposed, which do not coincide with coordinate lines. Thus, the stress on the boundary and the
test function v are decomposed into the normal and the two orthogonal tangential directions by the
projection operators nn, tt and eϕeϕ (dyadic products) to obtain

〈phn − n · sh, v〉 = 〈phn − n · sh · nn, v · nn〉 + 〈n · sh · tt, v · tt〉 + 〈n · sh · eϕeϕ, v · eϕeϕ〉. (B2)

The tangential stresses on the boundary can be substituted by the thermocapillary stresses from
Eqs. (4d) and (4e). The normal boundary stress tensor is treated with the method of Nitsche [46]
to enforce the no-penetration condition on the free surface. In Nitsche’s method, additional terms
are added to the left-hand side of the weak formulation (B1) to penalize the deviation from the
prescribed Dirichlet boundary condition (in our case the no-penetration condition). The penalty
term

C

he
〈uh · nn, v · nn〉,

where C = 60 is a penalization constant and he is the circumradius of the respective finite element,
is added to the left-hand side of Eq. (B1a). Furthermore, a stabilization term

〈qn − n · (∇v + ∇vT) · nn, uh · nn〉,
which is a symmetric counterpart of the normal boundary stress term, is added to the left-hand side
of Eq. (B1b).
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APPENDIX C: SINGULARITY OF THE PERTURBATION EQUATIONS ON THE AXIS FOR m = 1

The equations for μû and μv̂ in the system of perturbation equations (12) contain, respectively,
the following terms from the divergence of the viscous stress tensor

−m2 + 2

r2
û − 3im

r2
v̂ and − 2m2 + 1

r2
v̂ + 3im

r2
û,

which are proportional to 1/r2. These terms present a nonintegrable singularity at r = 0 for m = 1,
since û and v̂ can be nonzero on the axis (13b) for m = 1. Using the continuity equation (9b) û and
v̂ can be expressed as

3im

r2
û = −3im

r
∂r û + 3m2

r2
v̂ − 3im

r
∂zŵ, (C1a)

−3im

r2
v̂ = 3

r
∂r û + 3

r2
û + 3

r
∂zŵ, (C1b)

as suggested by Gelfgat et al. [93]. Inserting these expressions into the singular terms leads to

−m2 + 2

r2
û − 3im

r2
v̂

∇·u′=0= 1 − m2

r2
û + 3

r
∂r û + 3

r
∂zŵ, (C2a)

−2m2 + 1

r2
v̂ + 3im

r2
û

∇·u′=0= m2 − 1

r2
v̂ − 3im

r
∂r û − 3im

r
∂zw. (C2b)

Notice that on the right-hand sides, the terms proportional to 1/r2 vanish when m = 1. Thus, the
right-hand sides of Eqs. (C2a) and (C2b) are employed for m = 1. Otherwise, the left-hand sides
are used.

APPENDIX D: UNSTABLE MARANGONI ROLLS AT A CONTACT ANGLE α = 5◦

Marangoni cells can exist for a local Marangoni number Maloc > MaSN
H = 82.16. Since Maloc

decays with r, the driving is supercritical in the near-axis region with radius r∗ given by Maloc(r =
r∗) = MaSN

H . The locally varying Marangoni number provides a spatial ramp of the driving force.
For ramped systems it is well known that a weak ramp from sub- to supercritical conditions
significantly reduces the band of wave numbers (here the radial wave number) realizable in the
supercritical region (for the Taylor-Couette system see Ref. [94]). In the extreme case, the wave
number becomes unique [95].

If the variation of the local driving has a finite slope, as Maloc(r) does in the present case, then
the ramp has a certain phase pinning effect associated with the radial location r∗ [96,97]. However,
an even stronger phase pinning is associated with the axisymmetry of the flow which requires u(r =
0) = 0. This condition does not, however, determine the flow direction on the axis. Since the region
of supercritical conditions expands radially as MaH is increased, both pinning conditions and the
restricted wave number band are not in general compatible, leading to frustrated Marangoni cells.
This seems to apply to the lower branch of the solution emerging from the saddle node. The situation
is remedied by the amplitude of the Marangoni cells on the lower branch becoming approximately
zero at values of MaH at which this incompatibility is strongest. As a result, the position of the radial
nodal points (u0 ≈ 0) of the Marangoni cells remains approximately constant upon an increase of
MaH (dominance of the pinning at the axis r = 0), while the amplitude of the rolls [measured by
w0(0, �/2) in Fig. 8] oscillates between positive and negative values such that the flow direction
of the Marangoni rolls on the axis changes almost periodically with MaH . The oscillations of the
amplitude of the lower-branch Marangoni cells with MaH along the lower disconnected and the
connected branches are illustrated in Fig. 36 by streamlines of the lower-branch Marangoni rolls.
To eliminate the weak perturbing global thermocapillary circulation in the figure, the streamlines
of the difference of the flow fields on the connected and the disconnected lower-branch solutions
±(ψcon

0 − ψdiscon
0 ) are shown in Fig. 36. The sign is selected such that the flow with the lower
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FIG. 36. Difference between the flow fields on the unstable connected and disconnected solution branches
(orange and blue dotted lines in Fig. 8) evaluated at the Marangoni numbers indicated by the blue, orange and
black dots in Fig. 8. Shown are streamlines and temperature fields (color). The dashed vertical red line in panels
(a)–(c) indicates r = r∗ (see text).

velocity on the axis is subtracted from the other one. It can be noticed that the amplitude oscillates
as MaH and r∗ increase. The wave number increases slightly with MaH because it is determined by
the local height h(r∗) which decreases as MaH and r∗ grow. The upper-branch solution (solid blue
line in Fig. 8) does not exhibit these oscillations, probably because the amplitude of the Marangoni
rolls is too strong.
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