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We present and analyze a theoretical model for the dynamics and interactions of “capil-
lary surfers,” which are millimetric objects that self-propel while floating at the interface of
a vibrating fluid bath. In our companion paper [I. Ho et al., Phys. Rev. Fluids 8, L112001
(2023)], we reported the results of an experimental investigation of the surfer system, which
showed that surfer pairs may lock into one of seven bound states, and that larger collec-
tives of surfers self-organize into coherent flocking states. Our theoretical model for the
surfers’ positional and orientational dynamics approximates a surfer as a pair of vertically
oscillating point sources of weakly viscous gravity-capillary waves. We derive an analytical
solution for the associated interfacial deformation and thus the hydrodynamic force exerted
by one surfer on another. Our model recovers the bound states found in experiments and
exhibits good agreement with experimental data. Moreover, we conduct a linear stability
analysis of bound state solutions and compute numerically the associated eigenvalues.
We find that the spacings of the bound states are quantized on the capillary wavelength,
with stable branches of equilibria separated by unstable ones. Generally, our work shows
that self-propelling objects coupled by capillary waves constitute a promising platform for
studying active matter systems in which both inertial and viscous effects are relevant.

DOI: 10.1103/PhysRevFluids.8.114001

I. INTRODUCTION

Over the last several decades, there has been significant interest in understanding the physics
of so-called “wet” active matter systems, in which constituents consume energy in order to move
through a fluid medium [1–3]. Such systems are ubiquitous in biology and span the Reynolds-
number spectrum. On one end, organisms at the microscale interact through low-Reynolds number
(viscous or Stokesian) hydrodynamic interactions [4–6]. On the other end, schools of fish and flocks
of birds generate relatively high-Reynolds number flows in which inertial effects are dominant
[7–9]. Interfacial active systems consist of objects or organisms that self-propel at a liquid-gas
interface and typically exist in an intermediate regime in which both inertial and viscous forces are
relevant [10]. Examples include water-walking insects [11–14], bio-inspired self-propellers [15],
and self-assembled magnetic swimmers [16–19]. Prior work has shown that floating solid bodies
can self-propel due to the net flow generated by AC electrowetting [20], and that floating water
droplets [21–23] and bouncing oil droplets [24,25] may self-propel across a vibrating fluid bath
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FIG. 1. A capillary surfer self-propels on a fluid interface due to its self-generated waves. (a) Oblique wave
field visualization, in which colors are obtained from the distorted reflection of a yellow and blue background
on the fluid surface. (b) Surfer geometry used in experiments. (c) Side view schematic of the experimental
setup (not to scale). The fluid has density ρ, surface tension σ , dynamic viscosity η, and depth H . The
theoretical idealization of the surfer is superposed: the surfer is represented as two unequal masses m+ and m−
connected by a rod of length l . (d) Top view schematics of the theoretical model: a surfer with center-of-mass xi

experiences a propulsive force Fpni, and its associated masses located at xi,+ (white) and xi,− (gray) experience
capillary forces F± (thick arrows) due to the masses making up the jth surfer.

due to interfacial Faraday waves. Moreover, camphor boats self-propel due to gradients in surface
tension [26,27] and thus exhibit rich collective behavior [28–31].

In a companion paper [32], we report the discovery of an interfacial active system called
“capillary surfers” [Fig. 1(a)]. A surfer consists of a millimetric hydrophobic body [Fig. 1(b)] that
floats on the surface of a vertically vibrating fluid bath of a water-glycerol mixture [Fig. 1(c)].
All experiments are performed below the Faraday instability threshold, above which subharmonic
standing waves spontaneously form at the free surface [33]. A surfer is front-back asymmetric and
thus tilts slightly backwards in equilibrium, with the contact line remaining pinned to the surfer’s
base perimeter. The vibration of the bath results in the vertical oscillation of the surfer and the
subsequent generation of a radiated, propagating wave field. The surfer thus moves along its long
axis in the direction of its thinner half [Figs. 1(a) and 1(c)], the velocity being constant in the absence
of external perturbations and other surfers. In the following we refer to the front and back of the
surfer as the “bow” and “stern,” respectively.

For a given surfer geometry, the surfer speed increases with the forcing acceleration and de-
creases with the forcing frequency (Fig. S1 in [32]). Moreover, surfers interact through the wave
fields that they generate and thus exhibit unique collective behavior. Specifically, experiments
have demonstrated that when pairs of surfers are set into motion towards each other, they may
spontaneously arrange into a variety of different bound states (Fig. 2 in [32]). The system also
exhibits multistability: multiple bound states may coexist for the same experimental parameters,
and these states are quantized on the capillary length (Fig. 3 in [32]). Collections of more surfers
may self-organize due to their mutual capillary wave field and exhibit ordered flocking states (Fig. 4
in [32]). The goal of this paper is to construct and analyze a theoretical model for capillary surfer
interactions in order to rationalize the experimental observations.

In order to build such a model, we require a theory for the interfacial deformation induced by
capillary-scale floating objects. Approximate expressions for the capillary forces between stationary
spherical and cylindrical bodies have been derived [34–38], and review articles have detailed
experimental and theoretical efforts to understand the capillary interactions between bodies trapped
at fluid interfaces [39,40]. The dynamic problem, wherein the bodies oscillate at the interface and
thus generate a time-dependent wave field, has received comparatively less attention. Prior work
has focused on the deformations generated by relatively large bodies, for which gravitational forces
dominate over surface tension [41]. Asymptotic expressions in both the long- [42] and short-wave
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limits [43–48] have been derived. De Corato and Garbin [49] were the first to derive expressions for
small-amplitude capillary waves generated by a periodically oscillating point force at the interface
and the resulting lateral capillary forces experienced by two oscillating point particles.

The outline of the theoretical model presented in this paper is as follows. We model the dynamics
of each surfer’s center of mass and orientation in the plane [Fig. 1(d)], assuming these dynamics to
be decoupled from the surfer’s periodic vertical motion. The propulsive force on each surfer is
inferred from experimental measurements of the free speed of a single surfer. Since there does not
exist an analytical expression for the capillary force between two finite-sized objects oscillating on a
fluid interface, we model each surfer as a pair of oscillating masses, chosen to represent the surfer’s
asymmetric mass distribution in experiments [Fig. 1(b)]. The surfers interact through the interfacial
deformation generated by these masses. The “static” part of the resulting force, due to the surfer’s
weight, is approximated by treating each mass as a disk. The “dynamic” part of the force, due to the
surfer’s oscillation at the interface, is approximated by treating each mass as a point particle.

To obtain an expression for the dynamic force, in Sec. II we generalize De Corato and Garbin’s
work [49] to account for the effects of gravity and weak viscosity. We thus obtain in Sec. III a
formula for the combined static and dynamic forces between two bodies that oscillate at a fluid
interface. This formula is used in Sec. IV to produce a trajectory equation for capillary surfers that
interact through their collectively generated wave field. In Sec. V we examine the existence and
stability of bound states of surfer pairs and compare our results with experimental data reported in
our companion paper [32]. Examples of collective modes exhibited by larger populations of surfers
are given in Sec. VI. Conclusions and avenues for future work are presented in Sec. VII.

II. WEAKLY VISCOUS LINEAR WAVES GENERATED BY AN OSCILLATING POINT FORCE

In this section we derive the linear wave field generated by a point force oscillating harmonically
on the free surface of a fluid bath. In the experiments [32], the entire fluid bath is shaken vertically
with an acceleration γ cos(ωt ) below the Faraday instability threshold, so we neglect the effects of
parametric forcing on the waves. Our analysis generalizes the potential flow model of De Corato
and Garbin [49] by accounting for gravity and weak viscosity. The latter is incorporated by using
the so-called quasipotential formalism first given by Lamb [50] and then Dias et al. [51], wherein
viscous corrections to the free surface boundary conditions are derived by assuming that the waves
are irrotational and inviscid at leading order, but that dissipation occurs in a viscous boundary
layer at the free surface. We adapt the governing equations derived by Milewski et al. [52], who
generalized the formalism in Ref. [51] to include surface tension. The model in Ref. [52] has been
used profitably to simulate the pilot-wave dynamics of liquid droplets bouncing on a liquid bath
[53–57], and accurately predicts the time-dependent wave field and trajectories of capillary-scale
rebounds of nonwetting particles and droplets [58,59].

Consider an incompressible fluid in an infinite domain (x, z), where x ∈ R2 and z < 0, z = 0
being the mean position of the free surface. The fluid has density ρ, surface tension σ , and kinematic
viscosity ν, and evolves under the influence of a gravitational acceleration g and an oscillating point
force with amplitude F0 and frequency ω. The relevant variables and their characteristic values are
listed in Table I. Assuming that the waves are of small amplitude so that the governing equations may
be linearized, the free surface height h(x, t ) and velocity potential φ(x, z, t ) satisfy the system

	φ + ∂zzφ = 0, z < 0, x ∈ R2,

∂tφ = −gh + σ

ρ
	h + 2ν	φ + F0

ρ
cos ωt δ(x) at z = 0,

∂t h = ∂zφ + 2ν	h at z = 0,

φ → 0, h → 0 as |x|, z → ∞, (1)
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where 	 = ∂xx + ∂yy. The first equation follows from the assumptions that the fluid is incom-
pressible and irrotational, while the second and third equations are, respectively, the dynamic and
kinematic conditions at the free surface.

We solve these equations by writing φ(x, z, t ) = Re[φ1(x, z)eiωt ] and h(x, t ) = Re[h1(x)eiωt ],
where

φ1(x, z) =
∫
R2

φ̂1(k, z)eik·x dk and h1(x) =
∫
R2

ĥ1(k)eik·x dk. (2)

The Fourier-transformed quantities φ̂1 and ĥ1 satisfy the algebraic equations

∂zzφ̂1 − |k|2φ̂1 = 0, iωφ̂1(k, 0) = −gĥ1 − σ

ρ
|k|2ĥ1 − 2ν|k|2φ̂1 + F0

(2π )2ρ
,

iωĥ1 = ∂zφ̂1(k, 0) − 2ν|k|2ĥ1. (3)

Writing φ̂1(k, z) = A(k)e|k|z, we obtain expressions for ĥ1 and A:

ĥ1(k) = F0

(2π )2

|k|
ρ(iω + 2ν|k|2)2 + (ρg + σ |k|2)|k| and

A(k) = F0

(2π )2

iω + 2ν|k|2
ρ(iω + 2ν|k|2)2 + (ρg + σ |k|2)|k| . (4)

We are primarily interested in the wave height, so we proceed by finding h1(x):

h1(x) = F0

2πσ

∫ ∞

0
dk

k2

(ρ/σ )(iω + 2νk2)2 + k/l2
c + k3

J0(kr)

= F0

2πσ

∫ ∞

0
dk

k2

ε2k4 + 2iεk2 + k3 + βk − 1
J0(kkcr), (5)

where |x| = r, and the capillary length lc, capillary wave number kc, reciprocal Reynolds number ε,
and Bond number β are defined as, respectively,

lc =
√

σ

ρg
, kc =

(
ρω2

σ

)1/3

, ε = 2νk2
c

ω
, and β = 1

(kclc)2
. (6)

We note that the weakly viscous wave model (1) was derived in Ref. [52] under the assumption
ε � 1. This assumption is satisfied for the experimental parameter regime considered herein, as
0.1 � ε = 2ν(ρ/σ )1/3ω1/3 � 0.18 in the range of forcing frequencies f = 20–100 Hz. We note
that, for the sake of simplicity, additional dissipation due to contamination of the free surface by
surfactants has been neglected, as was done in prior models [52] that have since been successfully
compared to highly controlled experiments [58,59]. Great care is taken in the companion exper-
iments to minimize the presence and influence of surface contaminants [32]. We also note that
tanh(kcH ) ≈ 1 where H is the bath depth, which justifies taking the bath to be semi-infinite in the z
direction.

The integrand in Eq. (5) can be written as

k2

P(k)
=

4∑
j=1

Aj

k − k j
, where P(k) = ε2k4 + 2iεk2 + k3 + βk − 1,

Aj = 1

3 + β/k2
j + 4iε/k j + 4ε2k j

, (7)
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TABLE I. Variables and parameters appearing in the wave model (Sec. II) and the trajectory equation for
surfers (Sec. IV). Italicized quantities vary with γ and f and so are reported for the typical combination
f = 100 Hz and γ = 3.3 g.

Dimensional Dimensionless

variable Definition Value variable Definition Value

ρ Fluid density 1.175×10−3 g/mm3 ε = 2νk2
c /ω Reciprocal Reynolds number 0.18

σ Fluid surface tension 66 g/s2 β = 1/(kclc )2 Wave Bond number 0.048

η Fluid dynamic viscosity 0.018 g/(mm s), k1 Wave numbers in (7) 0.96–0.11 i

ν = η/ρ Fluid kinematic viscosity 15.3 mm2/s k2 −0.47−1.02 i

H Fluid depth 5 mm k3 −0.48+0.78 i

g Gravitational acceleration 9810 mm/s2 k4 −31.2+0.36 i

f = ω/2π Forcing frequency 20–100 Hz μ± = m±/m Mass ratios 0.6, 0.4

γ = ζω2 Forcing acceleration 0–3.5 g μ0 = μ+ − 1/2 Mass offset 0.1

lc = √
σ/ρg Capillary length 2.39 mm Bo = ρgR2/σ Surfer Bond number 0.2

L Surfer length 4.3 mm α [Eq. (16)] Static force coefficient 0.037

l = L/2, a Surfer half-length, asymmetry 2.15 mm, 1/2 l̃ = lkc Distance between masses 4.12

kc = (ρω2/σ )1/3 Capillary wave number 1.92 mm−1 ξ = γ /g Forcing acceleration 0–3.5

λc = 2π/kc Capillary wavelength 3.28 mm m̃ = kcUτv Surfer mass 2.23

w Surfer width 2.7 mm F̃c = Fc/Fp Dynamic force coefficient 2.29×104

ρs Surfer density 2.2×10−3 g/mm3

h+, h− Surfer stern, bow heights 1.2, 0.8 mm

m Surfer mass 0.026 g

m+ = aLρswh+ Larger mass 0.015 g

m− = (1 − a)Lρswh− Smaller mass 0.01 g

R = aL/2 Surfer effective radius 1.08 mm

I = m+m−l2/m Surfer moment of inertia 0.028 g mm2

U Surfer free speed 1.9 mm/s

τv = mH/ηwL Viscous timescale 0.61 s

Fp = mU/τv Propulsive force 0.08 mm · g/s2

Fc = (mg)2kc/σ Dynamic force coefficient 1.82×103 mm · g/s2

and k j ∈ C are the roots of P(k). Using the identity (A3) in Appendix A, the integral in Eq. (5) may
thus be evaluated explicitly:

h1(x) = F0

2πσ

4∑
j=1

1

3 + β/k2
j + 4iε/k j + 4ε2k j

∫ ∞

0
dk

J0(kkcr)

k − k j
= F0

σ
Hd(kcr),

where Hd(r) = 1

12

4∑
j=1

C0(−k jr)

1 + β/3k2
j + (4/3)iε/k j + (4/3)ε2k j

, Cn(r) = Hn(r) − Yn(r); (8)

Hn is the nth-order Struve function and Yn the nth-order Bessel function of the second kind [60].
The final solution is

h(x, t ) = Re[h1(x)eiωt ] = Re[h1(x)] cos ωt − Im[h1(x)] sin ωt . (9)

A video of this wave field is shown in Video 1 (left panel) in the Supplemental Material [61], and
the wave field corresponding to a pair of point masses in shown in Fig. 3(d).

When implementing the model for interacting capillary surfers (Secs. IV–VI), we numerically
compute the roots ki of P(k). However, analytical insight may be obtained by noting that ε � 1 and
β = O(ε2) for a typical value of the forcing frequency f = 100 Hz, as shown in Table I. One can
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FIG. 2. Real (a) and imaginary (b) parts of the wave height given in Eq. (8) (black curves) are compared
against the solution in Eq. (A6) (gray curves), the latter of which neglects viscous and gravitational effects.
The parameters correspond to those given in Table I, with forcing frequency f = 100 Hz.

then show that the roots of P(k) have the following asymptotic expansions in the limit ε → 0:

k1 = 1 − 2iε

3
+ O(ε2), k2 = −ς + O(ε), k3 = −ς̄ + O(ε), k4 = − 1

ε2
+ O

(
1

ε

)
, (10)

where ς = eiπ/3. Since H0(x) and Y0(x) both vanish as x → ∞, we thus obtain the following
approximation to Eq. (8), valid in the regime 0 < ε � 1, r � ε2:

h1(x) ≈ F0

12σ
{η1(r) + 2 Re[η2(r)]}, where η1(r) = C0

[(
−1 + 2iε

3

)
kcr

]
and

η2(r) = C0[ςkcr]. (11)

While the real part of η2(r) decays monotonically in r, η1(r) decays while oscillating on roughly
the capillary wavelength λc.

In Appendix A we derive the solution h1(x) in the absence of gravity and viscosity. The
derivation closely follows that of De Corato and Garbin [49]; the significant difference is that we
impose the Sommerfeld radiation condition (A7), which enforces that waves propagate outward
from the source, while De Corato and Garbin use a reflecting boundary condition at infinity
[see Eq. (2.7) in [49]] and thus obtain a standing wave form. Figure 2 shows a comparison between
the weakly viscous result (8) and the inviscid result h+

1 (x) in (A6). We observe that, for the typical
parameter regime explored in experiments, the inclusion of viscous effects causes h1(r) to decay
faster than its inviscid counterpart. A more detailed discussion of the far-field behavior of h1

is given in Appendix B. We also note that, since the waves generated by a surfer of mass m
have amplitude A ≈ F0/4πσ where F0 ≈ mγ (see Sec. III B), the ratio A/λc ≈ 0.1–0.3 over the
range f = 20–100 Hz for the largest value of the forcing acceleration considered, γ = 3.5g, which
validates the small-amplitude approximation made in Eq. (1).

III. INTERACTION FORCE BETWEEN A PAIR OF OBJECTS OSCILLATING
ON A FLUID INTERFACE

We now derive an approximate expression for the interaction force between a pair of surfers
oscillating on the free surface of a fluid. We will use this expression in Sec. IV, where we will
propose equations of motion for a collection of surfers that interact pairwise. To our knowledge,
there does not exist an analytical expression for the capillary force between two finite-sized objects
oscillating on a fluid interface. For this reason, we make the following simplifying approximations.
We model a single surfer as a pair of masses, which exert capillary forces on the masses that
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FIG. 3. (a) Experimental image of two surfers [32]. In the theoretical model, each surfer is approximated
as a pair of masses. However, for the sake of simplicity we highlight only one mass on each surfer. Specifically,
the cyan (magenta) box indicates the front (rear) half of the left (right) surfer. The subsequent panels detail
the interactions between the two highlighted masses only. (b) The static force associated with the surfer’s
weight is approximated by treating each mass as a floating disk of radius R = L/4. The color bar indicates
the static wave field (mi/m)Hs(kc|x − xi|) + (mj/m)Hs(kc|x − x j |), obtained by superposing the profiles Hs

given in Eq. (16) associated with masses mi = 0.4m and mj = 0.6m centered at xi and x j . (c) The plot shows
the dependence of the static force between floating disks fs on the distance r between the disks, as given in
Eq. (17). (d) The dynamic force associated with the surfer’s oscillation on the fluid interface is approximated
by treating each mass as an oscillating point. The color bar indicates the dynamic wave field due to two masses,
(mi/m)Re[Hd(kc|x − xi|)] + (mj/m)Re[Hd(kc|x − x j |)], obtained by superposing the profiles Hd given in
Eq. (8). (e) The black curve shows the time-averaged dynamic force fd between oscillating point masses,
as given in Eq. (18). The gray curve shows the corresponding expression (A13) derived in Ref. [49], in which
gravitational and viscous effects were neglected. The parameters correspond to those given in Table I, with
forcing frequency f = 100 Hz. In panels (b) and (d), the insets show the wave field along the horizontal line
connecting the masses, and the scale bar indicates the capillary wavelength λc.

represent other surfers [Fig. 1(d)]. While each surfer is approximated as a pair of masses, for the
sake of simplicity we highlight only one mass on each surfer in Fig. 3(a), with the cyan (magenta)
box indicating the front (rear) half of the left (right) surfer. The other panels in Fig. 3 detail the
interactions between the two highlighted masses only, while the complete pairwise surfer interaction
model (described in Sec. IV) includes the interactions between all four masses. The “static” part
of the force, induced by the object’s weight, is approximated by treating each mass as a floating
disk [Figs. 3(b) and 3(c)]. This force is responsible for the so-called “Cheerios effect” [36], which
causes floating objects to clump together. The “dynamic” part of the force, induced by the object’s
oscillation on the fluid interface, is approximated by treating each mass as an oscillating point
particle, which is the problem we solved in Sec. II [Figs. 3(d) and 3(e)]. This approximation is
expected to be valid when the distance between surfers is much larger than the surfer’s length L.
Expressions for the static and dynamic forces are derived in Sec. III A and Sec. III B, respectively.

A. Static force between floating disks

We proceed by calculating the interfacial deformation hs(r) due to a floating disk of radius R and
mass m at rest at a depth χ below the undisturbed free surface. The Young-Laplace equation with
Dirichlet boundary conditions,

	hs ≡ h′′
s + 1

r
h′

s = hs

l2
c

, r > R, hs(R) = −χ, hs → 0 as r → ∞, (12)
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has the solution [36]

hs(r) = −χ
K0(r/lc)

K0(R/lc)
, (13)

where K0 is the modified Bessel function of the second kind of order zero. The depth χ is calculated
by balancing the disk’s weight mg against the buoyancy force ρgπR2χ and the vertical component
2πRσ sin θ of the surface tension force, θ being the contact angle of the fluid with the disk:

mg = ρgπR2χ + 2πRσ sin θ. (14)

Assuming θ � 1, so that sin θ ≈ tan θ ≈ h′(R), we obtain

χ = mg

πσ

K0(
√

Bo)

Bo K0(
√

Bo) + 2
√

Bo K1(
√

Bo)
, (15)

where Bo ≡ ρgR2/σ = (R/lc)2 is the Bond number, and we use the fact that K′
0 = −K1. Substitut-

ing Eq. (15) into Eq. (13), we obtain the following formula for the static deformation generated by
a floating disk:

hs(r) = −mgα

σ
Hs(kcr), where Hs(r) = 1√

β
K0(

√
βr) and

α =
√

β

π
(
Bo K0(

√
Bo) + 2

√
Bo K1(

√
Bo)

) . (16)

This solution is plotted in Fig. 3(b).
The force Fs

i j on a disk of mass mi at x = xi due to the static deformation generated by a disk of
mass mj at x = x j is [36]

Fs
i j ≈ −mig∇hs(x − x j )|x=xi = mimjg2

σ
αkc fs(kcri j )x̂

j
i , where

ri j = |xi − x j |, x̂ j
i = x j − xi

ri j
, and fs(r) = −H′

s(r) = K1(
√

βr). (17)

Here we have assumed that the distance between the disks is much bigger than the capillary length,
ri j � lc. Note that this force is always attractive and decays exponentially with the distance between
the objects, as shown in Fig. 3(c).

B. Dynamic force between oscillating point particles

The results of Sec. II can readily be used to compute the force between two point particles with
positions (xi, zi ) and (x j, z j ), as depicted in Fig. 3(d). Specifically, we assume that the particles
oscillate on the fluid interface with the same phase, z̈ j = −ζ jω

2 cos ωt , and compute the time-
averaged force Fd

i j on particle i due to the deformation generated by particle j. Following Ref. [49],
we use the result that the capillary force on particle i has a lateral component proportional to the
gradient of the interfacial deformation generated by particle j [62]. Recalling the definition of h in
Eq. (9), we thus obtain

Fd
i j = 〈miz̈i∇h(x − x j, t )|x=xi〉 = mimjζiζ jω

4

2σ
kc fd(kcr)x̂ j

i ,

where fd(r) = −Re[H′
d(r)] = 1

12

4∑
n=1

Re

[
kn

H−1(−knri j ) + Y1(−knri j )

1 + β/3k2
n + (4/3)iε/kn + (4/3)ε2kn

]
, (18)

the time average over the oscillation period 2π/ω is denoted by 〈·〉, and we use the facts that Y′
0 =

−Y1 and H′
0 = H−1. A plot of the dynamic force (18) is shown in Fig. 3(e): while it is attractive
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when the particles are close together, r � λc, it differs from the static force (17) in that it oscillates
between attractive and repulsive as r increases. This net oscillatory interaction force has both stable
and unstable equilibria, quantized on the capillary wavelength. This result might be anticipated in
cases where standing waves mediate surface interaction, as arise in the bouncing droplet system
[24,25] or if reflecting boundary conditions were considered in our system [49]. However, in our
case the point sources (and surfers) are sources of continuously generated propagating waves, and
thus it is both the wave field and synchronized vertical oscillation that together lead to the apparent
spatial quantization predicted by Eq. (18). Note also that Eq. (18), which incorporates the effects of
viscosity, decays much faster than its inviscid counterpart (A13), which was derived by De Corato
and Garbin [49].

IV. TRAJECTORY EQUATIONS FOR CAPILLARY SURFERS

We proceed by constructing the equations of motion for a collection of interacting surfers, the
relevant variables being listed in Table I. Consider a surfer with the “boat” geometry shown in
Fig. 1(b), with length L, width w, asymmetry a, stern (bow) heights h+ (h−), mass density ρs, and
mass m, floating on the free surface of a fluid bath oscillating vertically with acceleration γ and
frequency ω. Since there does not exist an analytical expression for the force between two surfers
oscillating on a fluid interface, we model each surfer as a pair of masses chosen to represent the
surfer’s asymmetric mass distribution in experiments, m+ = Laρswh+ and m− = L(1 − a)ρswh−
[Fig. 1(c)]. These masses are assumed to be nonrotating and connected by a rigid massless rod
of length l = L/2. For the “static” part of the force, induced by the surfer’s weight, we treat each
mass as a disk of radius R+ = aL/2 and R− = (1 − a)L/2, where R+ = R− = R ≡ L/4 for the case
a = 1/2 considered herein. We use Eq. (17) to approximate the interaction force between two such
disks [Figs. 3(b) and 3(c)]. For the “dynamic” part of the force, induced by the surfer’s oscillation
on the fluid interface, we treat each mass as a point particle and use Eq. (18) to approximate the
interaction force between two point particles [Figs. 3(d) and 3(e)].

We describe the trajectory of the ith surfer by its center of mass xi(t ) ∈ R2 and orientation (unit)
vector ni(t ), which points from m+ to m− [Fig. 1(d)]. The masses are centered at xi,± = xi ∓ μ∓lni,
where μ± = m±/m. Each mass moves in response to two forces: drag forces −D±ẋi,± and wave
forces F±, time-averaged over the forcing period 2π/ω of the bath. The equations of motion are
thus

m±(ẍi ∓ μ∓ln̈i ) + D±(ẋi ∓ μ∓lṅi ) = F±. (19)

Since the contact line remains pinned to the surfer’s base, the dominant contribution to the drag
arises from the viscous shear stress underneath the surfer. We have assumed that the associated drag
force is proportional to the velocity ẋi,± of each mass, an approximation that is valid provided
that the laminar boundary layer thickness lBL ≈ 5

√
νL/U is much greater than the fluid depth

H , lBL/H � 1, U being the surfer’s characteristic speed. We approximate the associated drag
coefficient as D± = m±/τv, where τv = mH/ηwL is the viscous timescale obtained by computing
the shear stress due to a locally fully developed Couette flow on the underside of the surfer. Prior
experiments [63] on a disk that slides across an air-water interface showed that, in the regime
lBL/H � 1, the drag is dominated by skin friction due to the boundary layer underneath the body,
with associated drag force proportional to U 3/2. We find that 25 � lBL/H � 270 for the experiments
considered herein [32], an intermediate regime for which a simple drag law does not exist but
the linear drag law is more appropriate. For the sake of simplicity, we neglect the influence of
hydrodynamic interactions between the two masses on the values of the drag coefficients.

Adding the two equations in Eq. (19), we obtain the trajectory equation for the center of mass

m

(
ẍi + 1

τv
ẋi

)
= F+ + F−. (20)
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To model the rotational dynamics, we take the cross product of the first equation in Eq. (19) with
−μ−lni, the second equation with μ+lni, and add the two resulting equations:

[m−(μ+l )2 + m+(μ−l )2]ni × n̈i + 1

τv
[m−(μ+l )2 + m+(μ−l )2]ni × ṅi = lni × (μ+F− − μ−F+).

(21)

Writing ni = (cos θi, sin θi ), Eq. (21) reduces to

I θ̈i + I

τv
θ̇i = lni × (μ+F− − μ−F+), (22)

where I = m+(μ−l )2 + m−(μ+l )2 = μ+μ−ml2 is the moment of inertia in the plane.
The wave forces F± may be decomposed into three terms: a propulsive force due to radiation

pressure (Fp/2)ni, an attractive capillary force (17) due to the surfer’s weight, and a dynamic wave
force (18) due to the interfacial waves generated by the surfers. The latter two are expressed as a
linear superposition of the forces generated by all other surfers, as shown schematically in Fig. 1(d).
We thus obtain the trajectory equations

mẍi + m

τv
ẋi = Fpni + Fc

∑
p,q=±1

μpμq

∑
j �=i

�(kc|x j,q − xi,p|) x j,q − xi,p

|x j,q − xi,p| ,

I θ̈i + I

τv
θ̇i = −lFc

∑
p,q=±1

μpμq

∑
j �=i

pμ−p�(kc|x j,q − xi,p|)ni × x j,q − xi,p

|x j,q − xi,p| , (23)

where Fc = (mg)2kc/σ is the capillary force coefficient. The interaction force � is obtained by
adding Eqs. (17) and (18), where we assume that the surfer oscillation amplitudes ζi are equal to the
forcing amplitude γ /ω2 of the bath:

�(r) = α fs(r) + ξ 2

2
fd(r), where ξ = γ

g
. (24)

Equations (23) account for the lateral force and torque balances on each surfer, respectively. The
trajectory equations contain a single unknown parameter Fp, whose value Fp = mU/τv is directly
inferred from the experimentally measured free speed U of a single surfer in isolation. We observe
from Table I that α � ξ 2 for γ /g � 1, the regime in which most of the experiments are conducted
[32], indicating that the dynamic force typically dominates the static force. The dynamic wave field,
which we will plot in Sec. V, is obtained by combining Eqs. (8), (9), and (16):

h(x, t ) = −mg

σ

∑
p=±1

μp

∑
i

H(kc|x − xi,p|, t ), where H(r, t ) = αHs(r) + ξRe[Hd(r)eiωt ].

(25)

We proceed by nondimensionalizing the trajectory equations (23) using x → kcx and t →
tkcFpτv/m:

m̃ẍi + ẋi = ni + F̃c

∑
p,q=±1

μpμq

∑
j �=i

�(|x j,q − xi,p|) x j,q − xi,p

|x j,q − xi,p| ,

m̃l̃ θ̈i + l̃ θ̇i = −F̃c

∑
p,q=±1

pμq

∑
j �=i

�(|x j,q − xi,p|)ni × x j,q − xi,p

|x j,q − xi,p| , (26)

where l̃ = lkc, xi,p = xi − pμ−pl̃ni, and the dimensionless parameters

m̃ = kcFpτ
2
v

m
= kcUτv and F̃c = Fc

Fp
= Fcτv

mU
(27)
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FIG. 4. Bound states of pairs of surfers, obtained in experiment [32] (top row) and numerical simulations
of (28) with different initial conditions (bottom row). (a) Head-to-head, (b) back-to-back, (c) tailgate, (d) prom-
enade, (e) orbit, (f) t-bone, and (g) jackknife. The forcing frequency is f = 100 Hz and forcing acceleration is
γ /g = 3.3, for which the surfer free speed is U = 1.9 mm/s. The values of the parameters are given in Table I.
The associated wave fields are given by Eq. (25) evaluated at t = 0. Scale bar in numerical simulations denotes
the capillary wavelength λc.

are defined through the free speed U = Fpτv/m of a single surfer in isolation. Equation (26) is
solved using a fourth-order explicit Runge-Kutta method in MATLAB, and the Struve functions in
the expression for � are evaluated using the toolbox “Struve functions” developed by Theodoulidis
[64].

V. BOUND STATES OF PAIRS OF SURFERS

For a pair of surfers, Eq. (26) can be written as

m̃ẍ1 = −ẋ1+n1 + F̃c{(x2−x1)[μ2
+ f++ + μ2

− f−− + μ+μ−( f+− + f−+)]

+ l̃μ+μ−[(n1 − n2)(μ+ f++ − μ− f−−) + n1(μ− f−+ −μ+ f+−) + n2(μ+ f−+ − μ− f+−)]},
(28a)

m̃ẍ2 = −ẋ2 + n2 − F̃c{(x2 − x1)[μ2
+ f++ + μ2

− f−− + μ+μ−( f+− + f−+)]

+ l̃μ+μ−[(n1 − n2)(μ+ f++ − μ− f−−) + n1(μ− f−+ −μ+ f+−) + n2(μ+ f−+ − μ− f+−)]},
(28b)

m̃l̃ θ̈1 = −l̃ θ̇1 + F̃cn1 × {(x2 − x1)[μ+( f+− − f++) − μ−( f−+ − f−−)]

+μ+μ− l̃ ( f++ + f−− − f+− − f−+)n2}, (28c)

m̃l̃ θ̈2 = −l̃ θ̇2 − F̃cn2 × {(x2 − x1)[μ+( f−+ − f++) − μ−( f+− − f−−)]

−μ+μ− l̃ ( f++ + f−− − f+− − f−+)n1}, (28d)

where fpq = �(|δpq|)/|δpq| and δpq = x2,p − x1,q; specifically,

δ++ = x2 − x1 − μ− l̃ (n2 − n1), δ−− = x2 − x1 + μ+ l̃ (n2 − n1),

δ+− = x2 − x1 − l̃ (μ−n2 + μ+n1), and δ−+ = x2 − x1 + l̃ (μ+n2 + μ−n1). (29)

Numerical simulations of Eq. (28) demonstrate that our model recovers the seven different
interaction modes exhibited by two surfers of equal size and speed (Fig. 4). In the head-to-head
mode [Fig. 4(a)] the two surfer bows face each other, while in the back-to-back mode [Fig. 4(b)]
the two surfer sterns face each other. While these modes are static, the remaining five modes are
dynamic. In the tailgating mode [Fig. 4(c) and Video 2 in the Suppl. Mater. [61]], the surfers are
aligned along their major axis, with the bow of one surfer pointing toward the stern of the other, and
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they move with constant speed along a rectilinear trajectory. In the promenade mode [Fig. 4(d) and
Video 3 in the Suppl. Mater. [61]], they proceed side by side with constant speed along a rectilinear
trajectory. In the orbiting mode [Fig. 4(e) and Video 4 in the Suppl. Mater. [61]], the two surfers
orbit around the system’s fixed center of mass. In the t-bone mode [Fig. 4(f) and Video 5 in the
Suppl. Mater. [61]], the two major axes are perpendicular to each other and the bow of one surfer
points toward the stern of the other, while they both execute a circular trajectory. The jackknife
mode [Fig. 4(g) and Video 5 in the Suppl. Mater. [61]] has a similar configuration except the stern
of one surfer points toward the stern of the other.

We proceed by considering the existence and stability of the bound states shown in Fig. 4, as
predicted by the model (28). To that end, we rewrite Eq. (28) in terms of the variables

σ = x1 + x2 and δ = x2 − x1. (30)

Adding and subtracting Eqs. (28a)–(28b) and Eqs. (28c)–(28d), we obtain

mσ̈ = −σ̇ + n1 + n2, (31a)

mδ̈ = −δ̇ + n2 − n1 − 2F̃c[δF + l̃μ+μ−(n1T1 − n2T2)], (31b)

ml̃ (θ̈1 + θ̈2) = −l̃ (θ̇1 + θ̇2) + F̃cδ × (n1T1 − n2T2), (31c)

ml̃ (θ̈1 − θ̈2) = −l̃ (θ̇1 − θ̇2) + F̃c[δ × (n1T1 + n2T2) + 2μ+μ− l̃Sn1 × n2], (31d)

where

F = μ2
+ f++ + μ2

− f−− + μ+μ−( f+− + f−+), S = f++ + f−− − f−+ − f+−,

T1 = μ+ f++ − μ+ f+− + μ− f−+ − μ− f−−, T2 = μ+ f++ + μ− f+− − μ+ f−+ − μ− f−−. (32)

The bound states are determined by the distance between the surfers d = |δ|, and the angles
ϕ1 and ϕ2 between the surfers’ orientation vectors ni and δ through the relations cos ϕi = ni · δ/d
[Fig. 1(d)]. In Sec. V A we treat the one-dimensional rectilinear modes (head-to-head, back-to-back,
tailgating), which are determined by d alone. We then treat the promenade mode in Sec. V B, which
is determined by d and ϕ2 since ϕ1 = π − ϕ2. We shall see that the promenade speed v is determined
by ϕ2. In Sec. V C we treat the rotating modes, which are determined by d , ϕ1 and ϕ2, variables that
determine the orbital frequency ω0. The linear stability analysis of the rectilinear (head-to-head,
back-to-back, tailgating, promenading) and rotating (orbiting, t-bone, jackknife) states is presented
in Appendixes C 1 and C 2, respectively. We conduct a quantitative comparison between theory
and experiment for the promenade mode, the mode that exhibits the largest number of equilibrium
spacings for the parameter regime explored in experiments [32].

A. Head-to-head, back-to-back, and tailgating modes

The head-to-head mode [Fig. 4(a)] centered at the origin and oriented along the x axis is
given by σ = 0, δ = (d, 0) [corresponding to x1 = (−d/2, 0), x2 = (d/2, 0)], n1 = (1, 0), and
n2 = (−1, 0), where d is the distance between the centers of mass. Substituting this solution
into Eq. (31) and defining μ0 through μ± = 1/2 ± μ0, we obtain a single algebraic equation that
determines d:

1 = F̃cFH(d ),

where FH(d ) = −d (μ2
+ f++ + μ2

− f−− + 2μ+μ− f+−) − 2l̃μ+μ−[μ+ f++ − μ− f−− − 2μ0 f+−]

and |δ++| = d + 2μ− l̃, |δ−−| = d − 2μ+ l̃, |δ−+| = |δ+−| = d − 2l̃μ0. (33)
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FIG. 5. (a) Force curves corresponding to the head-to-head [blue, Eq. (33)], back-to-back [red, Eq. (34)],
and tailgating [yellow, Eq. (35)] modes, for f = 100 Hz and γ /g = 3.3. Filled (unfilled) circles correspond
to stable (unstable) solutions. (b) Dependence of the distance d on the forcing frequency f , as described in
Sec. V A, for surfer pairs in each of the three modes. Solid (dashed) curves correspond to stable (unstable)
solutions. (c) The dependence of the distance d between surfers on the forcing acceleration γ for fixed forcing
frequency f = 100 Hz. The three rightmost columns show, for the mode order n indicated, the (unique) stable
mode for γ /g = 3.3 and f = 100 Hz. The corresponding wave field is computed using Eq. (25) evaluated at
t = 0, and scale bars denote the capillary wavelength λc. Movies of the tailgating modes are shown in Video 2
in the Suppl. Mater. [61].

Similarly, the back-to-back mode [Fig. 4(b)] is given by σ = 0, δ = (d, 0), n1 = (−1, 0), and
n2 = (1, 0), from which we obtain

−1 = F̃cFB(d ),

where FB(d ) = −d (μ2
+ f++ + μ2

− f−− + 2μ+μ− f+−)

+ 2l̃μ+μ−[μ+ f++ − μ− f−− − 2μ0 f+−] and

|δ++| = d − 2μ− l̃, |δ−−| = d + 2μ+ l̃, |δ−+| = |δ+−| = d + 2l̃μ0. (34)

The tailgating mode [Fig. 4(c)] with speed v is given by σ = (vt, 0), δ = (d, 0) [corresponding
to x1 = (−d/2 + vt, 0), x2 = (d/2 + vt, 0)], and n1 = n2 = (1, 0). The first equation in Eq. (31)
implies that v = 1, or that the speed in the tailgating mode is equal to the surfer free speed, a result
that is roughly consistent with experimental data on the n = 1 mode (see Table II in Appendix D).
The second equation in Eq. (31) reduces to

FT(d ) = 0, where FT(d ) = −d[(μ2
+ + μ2

−) f++ + μ+μ−( f+− + f−+)] − l̃μ+μ−( f−+ − f+−)

and |δ++| = |δ−−| = d, |δ+−| = d − l̃, |δ−+| = d + l̃. (35)

The force curves FH(d ), FB(d ), and FT(d ) are shown in Fig. 5(a). The equilibrium distances d
are found numerically using bisection; since F̃c � 1 in the parameter regime of interest (Table I),
the equilibrium distances are well approximated by the roots of the functions FH, FB, and FT. The
stability of the equilibria is assessed using the framework detailed in Appendix C 1. The dependence
of d on the forcing frequency f is shown in Fig. 5(b). As in the experiments [see Fig. 3(f) in [32]],
both f and γ (and thus ξ ) are varied together; specifically, γ /g increases from 1.1 to 3.3 as f is
varied from 50 to 100 Hz. The dimensionless parameters m̃ and l̃ depend on the surfer free speed
U , which in turn varies with both γ and f . The values of U and ξ are thus inferred from the
experimental data in Fig. S1 of [32] using linear interpolation or extrapolation. The dependence of
d on the forcing acceleration γ for a fixed forcing frequency f = 100 Hz is shown in Fig. 5(c).
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From Figs. 5(b) and 5(c), we observe that, for each of the three modes considered, there
is a quantized set of stable solutions (solid lines) separated by unstable ones (dashed lines).
Specifically, in the stable head-to-head, back-to-back, and tailgating modes, the centers of mass are
separated by roughly integer multiples of the capillary wavelength: d = nλc, d = (n − 1/2)λc, and
d = (n − 1/4)λc, respectively, where n � 2. From Fig. 5(b) [Fig. 5(c)], we observe that stable
modes exist over a larger range of f (γ ) values as n increases. We also note that, as shown in
Fig. 5(b), there are unstable families of solutions at relatively low frequencies ( f < 70 Hz). The
head-to-head and back-to-back equilibria will play a role in the next section, where we discuss the
so-called promenade mode.

B. Promenade mode

The promenade mode [Fig. 4(d)], in which surfers move side by side at a constant velocity
orthogonal to the line connecting their centers, is given by σ = (0, vt ), δ = (d, 0) [corresponding to
x1(t ) = (−d/2, vt ), x2(t ) = (d/2, vt )], θ1(t ) = π − ϕ2, and θ2(t ) = ϕ2. Substituting this solution
into Eq. (31) we obtain a system of equations that determines the distance d between surfers, their
speed v and orientation ϕ2:

v = sin ϕ2,

0 = FP(d, ϕ2) ≡ − cos ϕ2 + F̃c{(μ2
+ f++ + μ2

− f−− + 2μ+μ− f+−)d

− 2l̃μ+μ− cos ϕ2[μ+ f++ − μ− f−− − 2μ0 f+−]},
0 = TP(d, ϕ2) ≡ d[μ+ f++ − μ− f−− − 2μ0 f+−] − 2μ+μ− l̃ cos ϕ2( f++ + f−− − 2 f+−),

where |δ++| = |d − 2μ− l̃ cos ϕ2|, |δ−−| = |d + 2μ+ l̃ cos ϕ2|,
and |δ+−|2 = |δ−+|2 = d2 + l̃2(μ2

+ + μ2
− − 2μ+μ− cos 2ϕ2) + 4dl̃μ0 cos ϕ2. (36)

The first (second) equation in Eq. (36) represents the force balance in the transverse (lateral)
direction, while the third equation represents the torque balance. The distinct promenade modes are
found numerically by finding the roots of FP(d, ϕ2) and TP(d, ϕ2), which constitutes a system of two
equations in two unknowns. Specifically, we compute the zero contours of the two functions using
MATLAB and locate their intersections [65], as depicted in Fig. 12 in Appendix C. The stability
of the solutions is assessed using the framework described in Appendix C 1. We assume that v � 0
and thus restrict our attention to 0 � ϕ2 � π .

The dependence of the equilibrium distance d and orientation angle ϕ2 on the forcing frequency
f is shown in Fig. 6. As in Fig. 5(b), both f and γ are varied together, with the intermediate values
extrapolated from the experimental data as detailed in Sec. V A and the caption of Fig. 6. We observe
that the stable (solid curves) promenade modes are roughly quantized on the capillary wavelength,
with separation distance d ≈ nλc for n ∈ N. The stable states have angle ϕ2 � π/2, indicating that
the surfers are approximately oriented along their direction of motion. The model also predicts a
number of unstable (dashed curves) solutions with a variety of separation distances and angles.
The stable equilibrium distances exhibit excellent agreement with experiment, with the theory
correctly capturing the slight decrease in d/λc with increasing f . The agreement between theory and
experiment improves at lower values of f , presumably because the quasipotential approximation for
the wave field in Eq. (1) is valid for ε � 1, and the reciprocal Reynolds number scales as ε ∼ ω1/3

from Eq. (6). We note that, for the experimental data points in Fig. 6, the surfer width w is subtracted
from d . This correction accounts for the fact that, while a surfer is represented as a pair of point
sources in the model, experimental observations indicate that a surfer generates waves along its
whole perimeter. We also note that, as f is varied for n = 2, 3, and 4, most of the solution branches
bifurcate into the head-to-head (blue) and back-to-back (red) modes as ϕ2 → π− and ϕ2 → 0+,
respectively.
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FIG. 6. Dependence of the promenade mode equilibria on the forcing frequency f , as obtained by solving
Eq. (36) using the procedure described in Sec. V B. The large panel shows the dependence on f of the distance
d between the surfers’ centers of mass. Stable (unstable) promenade mode solutions are indicated by the solid
(dashed) curves. Data points correspond to the values of d − w obtained in experiments [see Fig. 3(f) in [32]],
the w term accounting for the surfers’ finite width. In the experiments, f ranges from 50 to 100 Hz in increments
of 10 Hz, and the corresponding values of γ /g are 1.1, 1.5, 2.0, 2.3, 3.0, and 3.3. The head-to-head (blue)
and back-to-back (red) modes from Fig. 5(b) are superimposed. The middle column shows the corresponding
orientation angle ϕ2 for the mode order n indicated. For a given mode order, the colors correspond to those in the
large panel. The rightmost column shows, for each n, the (unique) stable promenade mode for the combination
f = 100 Hz and γ /g = 3.3, and the corresponding wave field (25) evaluated at t = 0. Scale bars denote the
capillary wavelength λc. Movies of these promenade modes are shown in Video 3 in the Suppl. Mater. [61].

The dependence of the promenade speed on f , where both f and γ are varied together as in
Fig. 6, is shown in the left column of Fig. 13 (Appendix D), while the dependence of the promenade
speed on γ for fixed f = 100 Hz is shown in the right column. Since v = sin ϕ2 and ϕ2 � π/2, the
theory predicts that the speed of stable promenade modes is just slightly less than the free speed
of a single surfer, and the dimensionless promenade speed v/U is roughly constant (� 1) across
a range of values of f and γ . These two predictions agree with experiment when the surfers are
relatively far apart, in the n = 3 and n = 4 modes; however, when the surfers are relatively close
together, as in the n = 1 and n = 2 modes, the promenade speed can go down to as low as 50%
of the free speed in experiment, a phenomenon not captured by the theoretical model. A similar
quantitative discrepancy was observed in a study on oil droplets that bounce on the surface of a
vertically vibrating fluid bath, pairs of which also executed the promenade mode [66]. In that study,
the discrepancy was resolved by modeling the coupling between the droplets’ horizontal and vertical
dynamics. While the surfer model presented herein neglects consideration of the vertical dynamics,
presumably an analogous extension of the model would lead to predicted promenade speeds that are
closer to those observed in experiments. Furthermore, both the static and dynamic components to the
present model improve as approximations when the surfers are spaced farther apart, and thus some
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FIG. 7. Dependence of the promenade mode equilibria on the forcing acceleration γ , for the fixed forcing
frequency f = 100 Hz. The head-to-head (blue) and back-to-back (red) modes from Fig. 5(c) are superim-
posed. Data points correspond to the values of d − w obtained in experiments [see Fig. 3(e) in [32]]. See the
caption of Fig. 6 for more details.

quantitative disagreement between experiment and theory might be anticipated when the surfers are
relatively close to one another, as in the smallest n modes.

Figure 7 shows the dependence of the equilibrium distance d and orientation angle ϕ2 on the
forcing acceleration γ for the forcing frequency f = 100 Hz, the largest value of f considered in
experiments. The predicted equilibrium distances d exhibit adequate agreement with experiment,
and correctly capture a number of trends: namely, that d is quantized on the capillary wavelength
λc and remains slightly below integer multiples of λc; d increases very slightly with forcing
acceleration γ ; and that the critical γ above which stable promenade solutions appear decreases
with the mode order n, as was the case with the head-to-head, back-to-back, and tailgating modes
[Fig. 5(c)]. However, the theoretically predicted values of d are systematically larger than those
obtained in experiment, presumably due to the fact that the quasipotential approximation is less
accurate at larger frequencies. We note that, for γ ≈ 3g, the theory predicts two small regions of
“exotic” promenade modes, highlighted by the green and blue circles, where d/λc ≈ 1.25 and 2.75
and ϕ2 ≈ π/8 and 3π/4, respectively. These exotic states coexist with the other promenade modes
and presumably exist in a corner of parameter space too small to be accessed by experiments.

C. Orbiting, jackknife and t-bone modes

Circular orbit solutions, in which two surfers traverse a circular orbit with constant angular
frequency ω0, are given by the expressions δ = d (cos ω0t, sin ω0t ), n1 = (cos(ω0t + ϕ1), sin(ω0t +
ϕ1)), and n2 = (cos(ω0t + ϕ2), sin(ω0t + ϕ2)). We substitute this solution into Eq. (31). To simplify
the resulting system of equations, we take the cross product of δ with Eq. (31b) and add to it the
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product of Eq. (31c) and 2μ+μ− l̃:

ω0(d2 + 4μ+μ− l̃2) = d (sin ϕ2 − sin ϕ1) ⇒ ω0 = d (sin ϕ2 − sin ϕ1)

d2 + 4μ+μ− l̃2
. (37)

We then take the cross product of Eq. (31b) with (n1T1 − n2T2) and add to it the product of Eq. (31c)
and 2F :

−m̃ω2
0d (T1 sin ϕ1 − T2 sin ϕ2) − dω0(T1 cos ϕ1 − T2 cos ϕ2) + (T1 − T2) sin(ϕ2 − ϕ1) = −4l̃ω0F .

(38)

Equation (31c) reduces to

2ω0 l̃ = F̃cd (T1 sin ϕ1 − T2 sin ϕ2), (39)

while Eq. (31d) reduces to

d (T1 sin ϕ1 + T2 sin ϕ2) + 2μ+μ− l̃S sin(ϕ2 − ϕ1) = 0. (40)

Using Eq. (29), F , S , T1, and T2 are evaluated using the formulas

|δ++|2 = d2 +
(

2l̃μ− sin
ϕ2 − ϕ1

2

)2

− 2dl̃μ−(cos ϕ2 − cos ϕ1),

|δ−−|2 = d2 +
(

2l̃μ+ sin
ϕ2 − ϕ1

2

)2

+ 2dl̃μ+(cos ϕ2 − cos ϕ1),

|δ+−|2 = d2 + l̃2[μ2
+ + μ2

− + 2μ+μ− cos(ϕ2 − ϕ1)] − 2dl̃ (μ+ cos ϕ1 + μ− cos ϕ2),

|δ−+|2 = d2 + l̃2[μ2
+ + μ2

− + 2μ+μ− cos(ϕ2 − ϕ1)] + 2dl̃ (μ− cos ϕ1 + μ+ cos ϕ2). (41)

Using Eq. (37) to eliminate ω0, the system of three equations (38)–(40) thus defines the three
unknowns d , ϕ1, and ϕ2. The stability of circular orbits is assessed using the framework described
in Appendix C 2.

The orbiting mode [Fig. 4(e)] is a special case in which the surfers orbit their fixed center of
mass while remaining diametrically opposed to each other. Equation (40) is trivial in this mode,
since ϕ2 − ϕ1 = π and thus |δ+−| = |δ−+|, so T1 = T2. After using Eq. (37), Eqs. (38) and (39)
make up a system of two equations in the two unknowns d and ϕ2, which may be solved using
the method described in Sec. V B. We assume that the surfers orbit in the counterclockwise sense
(ω0 > 0), and thus restrict our attention to 0 � ϕ2 � π .

The dependence of d and ϕ2 on the forcing acceleration γ is shown in Fig. 8. As with the
promenade mode (Fig. 7), we observe that the stable (solid curves) orbiting modes are roughly
quantized on the capillary wavelength, with separation distance d ≈ nλc for n ∈ N. The stable states
have angle ϕ2 � π/2, indicating that the surfers remain roughly tangent to the circle they traverse.
As with the promenade mode, for n = 2, 3, and 4, two branches of unstable orbiting modes bifurcate
into the head-to-head (blue) and back-to-back (red) modes as ϕ2 → π− and ϕ2 → 0+, respectively.
Using Eq. (37), we deduce that the orbital speed dω0/2 increases with orbit order n and remains less
than unity, the free speed of a single surfer. While the orbital speeds in the n = 1 and n = 2 modes,
respectively, are predicted to be roughly 60% and 90% of the free speed, in experiments they are
slightly greater than the free speed (see Table II in Appendix D).

In the t-bone [Fig. 4(f)] and jackknife [Fig. 4(g)] modes, two surfers execute circular orbits
of different radii around a common center. We locate these modes by solving Eqs. (38)–(40) for
the three unknowns d , ϕ1, and ϕ2. The contour method described in Sec. V B is designed for two
unknowns and thus cannot be used; we instead use MATLAB’s root-finding algorithm to locate
some of the modes, and leave the identification of all possible t-bone and jackknife modes for future
work. The dependence of d , ϕ1, and ϕ2 on the forcing acceleration γ is shown in Fig. 9. We observe
that stable t-bone (jackknife) modes satisfy ϕ1 � 0 (ϕ1 � π ), and both satisfy ϕ2 ≈ π/2. As with
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FIG. 8. Orbiting modes of surfer pairs, obtained by solving Eqs. (38) and (39) for the orbital diameter d
and orientation angle ϕ2 = ϕ1 + π . The large panel shows the dependence of d on the forcing acceleration
γ . Stable (unstable) orbiting modes are indicated by the solid (dashed) curves. The head-to-head (blue) and
back-to-back (red) modes from Fig. 5(b) are superimposed. The middle column shows ϕ2 for the mode order
indicated. For a given mode order n, curves of the same color indicate the same solution branch. The rightmost
column shows, for each n, the (unique) stable orbiting mode for γ /g = 3.3 and the corresponding wave field
(25) evaluated at t = 0. Scale bars denote the capillary wavelength λc. Movies of these orbiting modes are
shown in Video 4 in the Suppl. Mater. [61].

the orbiting modes (Fig. 8), the distance d between surfers is quantized on the capillary wavelength,
with the t-bone modes consistently larger than the jackknife modes.

The trajectories and wave fields in the third and fourth columns of Fig. 9 are obtained by recasting
the solutions in terms of x1 = (σ − δ)/2 and x2 = (σ + δ)/2. Specifically, we let σ ≡ s(cos(ω0t +
ψ ), sin(ω0t + ψ )) and find s and ψ by numerically solving the system of equations

−m̃sω2
0 = cos(ϕ2 − ψ ) + cos(ϕ1 − ψ ), sω0 = sin(ϕ2 − ψ ) + sin(ϕ1 − ψ ), (42)

which are obtained from Eq. (31a). Moreover, the orbital diameter d1 = |x1|/2 and d2 = |x2|/2 of
each surfer may be deduced using the relations

d1 =
√

d2 + s2 − 2ds cos ψ, d2 =
√

d2 + s2 + 2ds cos ψ,

from which the orbital velocities v1 = d1ω0/2 and v2 = d2ω0/2 follow directly. Experimental
data on the orbital velocities are available for both t-bone and jackknife n = 1 modes, and
for the jackknife n = 2 mode, for the single-parameter combination f = 100 Hz and γ /g = 3.3
(see Table II in Appendix D). For the t-bone mode, if we take the upper (lower) limits of the velocity
range measured experimentally for the inner (outer) surfer, we find that the predicted velocities
agree to within 10%. However, there is a larger discrepancy between theory and experiment for the
jackknife modes, as the velocity of the inner surfer is markedly underpredicted.
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FIG. 9. T-bone (yellow, red, cyan) and jackknife (green, magenta, blue) modes, as obtained by solving
Eqs. (38)–(40) for the forcing frequency f = 100 Hz. Stable (unstable) states are indicated by the solid (dashed)
lines. The left column shows the dependence of the distance d between surfers on the forcing acceleration γ .
The panels in the second column show the corresponding orientation angles ϕ1 and ϕ2 for each mode order n
indicated. The third (fourth) columns show, for each n, the stable t-bone (jackknife) mode for γ /g = 3.3 and
the corresponding wave field (25) evaluated at t = 0. Scale bars denote the capillary wavelength λc. Movies of
these t-bone and jackknife modes are shown in Video 5 in the Suppl. Mater. [61].

VI. COLLECTIVE MODES

Experiments and simulations of our model (26) show that collections of capillary surfers exhibit
unique self-organization phenomena. For example, a many-body promenade mode has been ob-
served in experiment [Fig. 4(a) in [32]] and simulations [Fig. 10(a) and Video 6 in the Suppl. Mater.
[61]]. Similarly, simulations are able to reproduce the “super-orbiting mode” [Fig. 10(b) and Video
7 in the Suppl. Mater. [61]], wherein eight surfers execute orbital motion around a fixed center of
mass [Fig. 4(b) in [32]]. Owing to its simplicity, the theoretical model is also able to produce more
exotic collective modes that are currently difficult to realize in experiments. For example, Fig. 10(c)
(Video 8 in the Suppl. Mater. [61]) shows an exotic promenade mode of 13 surfers, in which the
spacing between neighboring surfers is approximately either one or two capillary wavelengths. This
mode may be thus interpreted as an aggregate of n = 1 and n = 2 promenade modes (Fig. 6) and
exhibits an example of how the multistable quantized states obtained in Sec. V can be used as
building blocks for many-body states. Figure 10(d) (Video 9 in the Suppl. Mater. [61]) shows a
similar phenomenon, wherein a square lattice of 16 surfers executes a coherent flocking state with
constant velocity. This state may be interpreted as a combination of the n = 3 tailgating (Fig. 5) and
promenade modes.
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FIG. 10. Collective modes of capillary surfers obtained through numerical simulations of Eq. (26).
(a) Four-surfer promenade mode, where the surfers translate at constant velocity and neighbors are separated
by approximately one capillary wavelength. (b) Eight-surfer super-orbiting mode, where the collective executes
uniform circular motion at constant angular frequency and neighbors are separated by approximately one
capillary wavelength. (c) Flocking state of 13 surfers, wherein the collective moves upward with constant
velocity. Pairs of surfers are separated by approximately one or two capillary wavelengths. (d) A flocking
state of 16 surfers, in which the collective moves with constant velocity. Neighboring surfers are separated by
approximately three capillary wavelengths in both the horizontal and vertical directions. All four modes are
obtained for the parameter combination f = 100 Hz and γ /g = 3.3. These four modes are shown in Videos 6
through 9 in the Suppl. Mater. [61], respectively.

VII. CONCLUSION

We have presented a theoretical model (23) for the dynamics of capillary surfers (Fig. 1),
bodies that self-propel while oscillating at the interface of a fluid bath. The interfacial deformation
generated by such a body is calculated by splitting it into static and dynamic contributions, the
former resulting from the body’s weight and the latter from the prescribed oscillation of the body
at the interface. The static contribution [Eq. (17), Fig. 3(c)] to the force is obtained in Sec. III A by
approximating the surfer as a pair of floating disks with unequal masses. The dynamic contribution
to the force [Eq. (18), Fig. 3(e)] is obtained in Sec. III B by approximating the surfer as a pair
of point sources of weakly viscous gravity-capillary waves, the point-source approximation being
required because there does not exist a formula for the dynamic interfacial deformation generated
by a finite-sized oscillating body. The resulting formula for the dynamic force is obtained by making
use of the results in Sec. II, in which we solved the quasipotential wave model (1) and thus derived
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a formula [Eq. (8), Figs. 2(a) and 2(b)] for the small-amplitude (linear) wave field generated by an
oscillating point source. In contrast to the static force, the dynamic force has a distinct oscillatory
behavior, with stable equilibria quantized by the capillary wavelength. The waves generated by
each individual point source are outwardly propagating, and thus the time-averaged surface gradient
experienced by each individual particle vanishes. However, the synchronized vertical oscillation of
each point source leads to a weighted sampling of the underlying surface gradient, the time-averaged
result of which is a spatially oscillatory interaction force. This mechanism reveals the origin of the
quantized spacings readily observed in experiment for all stable interaction modes.

The resulting model contains as its only free parameter the speed of a single surfer U , which
is obtained from experiment [32]. For the case of two surfers, the model recovers the seven
bound states observed in experiments [32] (Fig. 4). We found exact solutions for the head-to-head,
back-to-back, and tailgating modes in Sec. V A and investigated their stability in Appendix C 1.
These solutions are quantized on the capillary wavelength λc, with stable branches of solutions
separated by unstable ones (Fig. 5). An exact solution for the promenade mode is found in
Sec. V B, and the theoretical predictions correctly capture the trends observed in experiment.
Moreover, the theoretically predicted dependence of the distance between surfers on the forcing
frequency is in excellent quantitative agreement with experiment (Fig. 6). However, the predicted
dependence of the distance on the forcing acceleration for a relatively large value of the forcing
frequency ( f = 100 Hz) exhibits small but systematic discrepancies with experiment (Fig. 7). This
is presumably due to the fact that the quasipotential approximation for the wave field is valid in the
low-frequency regime ε � 1. We also found exact solutions for the orbiting (Fig. 8), jackknife, and
t-bone (Fig. 9) modes in Sec. V C and investigated their stability in Appendix C 2.

While the theoretically predicted distances between promenading surfers exhibit good agreement
with experiment, the promenade speed exhibits less good agreement (Fig. 13 in Appendix D).
Specifically, the model typically overpredicts the promenade speed and fails to capture the sub-
stantial decrease in speed observed in experiment for the most tightly bound modes (n = 1 and
n = 2). The data shown in Table II in Appendix D for the tailgate, orbit, t-bone, and jackknife mode
velocities also exhibit discrepancies between theory and experiment. As discussed in Sec. V B,
these discrepancies can presumably be attributed to the fact that our theoretical model neglects
modulations in the surfers’ vertical dynamics. Indeed, in prior work it was observed that pairs of
oil droplets bouncing on the surface of a vertically vibrating fluid can execute both the promenade
[66] and orbiting [67] modes; moreover, it was found that neglecting consideration of the droplets’
vertical dynamics led to substantial discrepancies between theory and experiment for the droplet
speeds, a deficiency that was overcome by modeling the coupling between the droplets’ horizontal
and vertical dynamics. Furthermore, the simplified static model used here assumes surfer spacings
much greater than the capillary length: the approximation of a surfer as two disks for the static force
neglects fine-scale geometric details such as edge effects that are relevant for objects floating near
each other [68], and the point-source dynamic model is likely to break down near the finite-size
surfer. Future extensions to the model to better account for near-field interactions may thus improve
the comparison with experiment. Nevertheless, the highly tractable and computationally efficient
first interaction model presented herein does predict many of the salient and subtle features observed
in the experiment.

All of the bound states described in Sec. V exhibit multistability of a discrete set of interaction
states, wherein a number of states quantized on the capillary wavelength may stably coexist for
the same experimental parameters. This feature is due to the wave-mediated interactions between
surfers, which result in long-range spatially oscillatory forces defined by alternating regions of
attraction and repulsion [Fig. 3(e)]. Such interactions give rise to the collective modes shown in
Fig. 10, which may be viewed as combinations of pairwise bound states.

While the point force approximation is expected to be valid when the distance between surfers
is much larger than the surfer’s length, many of the bound states and collective modes reported in
experiments consist of closely separated surfers [32]. A promising future direction would thus be
to develop a theory for the dynamic deformation generated by a finite-sized body oscillating on
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a fluid interface. A theory for dynamically floating bodies may also shed light on the propulsion
mechanism of surfers, thus allowing us to eliminate the ad hoc propulsive force Fpni in our model
(23). We note that, as a consequence of modeling the surfer as a pair of masses, the translational
and rotational drag coefficients are equal to each other in the model [see Eqs. (20) and (22)]. This
is not true in general for distributed bodies, so a future direction would be to calculate the drag
coefficients for the surfer geometry considered in experiment. Another future direction would be to
model the surfer’s vertical dynamics, which was not considered herein; rather, we simply assumed
for the sake of simplicity [between Eqs. (23) and (24)] that the surfer’s vertical acceleration is equal
to that of the bath. Consideration of the surfer’s vertical dynamics would allow us to determine the
dependence of the lateral force between surfers on the bath’s forcing frequency f and acceleration
γ . Moreover, Fig. 10 describes only a small sample of the rich variety of collective modes expected
to arise in the surfer system. The self-organization and emergent collective behavior exhibited by
large populations of surfers will be detailed in future work.
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APPENDIX A: INVISCID LINEAR WAVES GENERATED BY AN OSCILLATING POINT SOURCE

We here derive the linear wave field generated by a point force oscillating harmonically on the
free surface of an inviscid fluid bath in the absence of gravity, a problem first considered by De
Corato and Garbin [49]. The derivation proceeds as in Sec. II, with the reciprocal Reynolds number
and wave Bond numbers set to zero, ε = β = 0. Equation (5) then reads

h1(x) = F0

2πσ

∫ ∞

0
dk

k2

k3 − 1
J0(kkcr). (A1)

Following Appendix A in [49], we compute the integral by rewriting the rational function in the
integrand above,

k2

k3 − 1
= 1

3

(
1

k − 1
+ 1

k + ς
+ 1

k + ς̄

)
, (A2)

and using the fact that [69],∫ ∞

0

J0(kkcr)

k + k0
dk = π

2
C0(k0kcr) for k0 ∈ C with Im(k0) �= 0. (A3)

However, the integral
∫ ∞

0 J0(kkcr)/(k − 1) dk is divergent. To make sense of the integral, we employ
the limiting absorption principle and interpret it as the following limit:

lim
ε→0+

∫ ∞

0

J0(kkcr)

k − 1 ± iε
dk = lim

ε→0+

π

2
C0((−1 ∓ iε)kcr)

= lim
ε→0+

π

2
{−H0[(1 ± iε)kcr] − Y0[(1 ± iε)kcr] ∓ 2iJ0[(1 ± iε)kcr]}

= −π

2
[H0(kcr) + Y0(kcr)] ∓ iπJ0(kcr), (A4)
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where we use the facts [70]

H0(−z) = −H0(z) and Y0(−z) = Y0(z) − 2i sgn(Im[z])J0(z) for z ∈ C with Im[z] �= 0.

(A5)

We thus obtain

h±
1 (x) = F0

12σ
{2 Re[C0(ςkcr)] − H0(kcr) − Y0(kcr) ∓ 2iJ0(kcr)}. (A6)

We note that the imaginary term is missing from Eq. (3.16) in Ref. [49].
To choose the correct sign in Eq. (A6), we use the Sommerfeld radiation condition, which ensures

that the waves propagate outward from the source:

lim
r→∞

√
r

(
∂

∂r
+ ikc

)
h±

1 = 0. (A7)

Substituting Eq. (A6) into (A7), we obtain

lim
r→∞

√
r(−2 Re[ςC1(ςkcr)] + H1(kcr) + Y1(kcr) ± 2iJ1(kcr)

+ i{2 Re[C0(ςkcr)] − H0(kcr) − Y0(kcr) ∓ 2iJ0(kcr)}) = 0, (A8)

where we use the facts that Y′
0 = −Y1 and H′

0 = H−1 = 2/π − H1. Using the far-field asymptotic
results [70]

C0(z) ∼ 2

πz
and C1(z) ∼ 2

π

(
1 + 1

z2

)
as |z| → ∞ in | arg z| < π, (A9)

Eq. (A8) reduces to

lim
r→∞

√
r{Y1(kcr) ± iJ1(kcr) − i[Y0(kcr) ± iJ0(kcr)]} = 0. (A10)

Using the asymptotic forms for the Bessel function,

Jn(x) ∼
√

2

πx
cos

(
x − π

4
− nπ

2

)
and Yn(x) ∼

√
2

πx
sin

(
x − π

4
− nπ

2

)
as x → ∞,

(A11)

we deduce that Eq. (A10) is satisfied for the solution with the positive sign; that is, h+
1 (x) satisfies

the radiation condition (A7). Using Eq. (9), we conclude that the wave field has the form

h(x, t ) = F0

12σ
{[2 Re[C0(ςkcr)] − H0(kcr) − Y0(kcr)] cos ωt + 2J0(kcr) sin ωt}. (A12)

We note that our result differs from that of Ref. [49] due to the sine term [see Eq. (3.17) there].
That is, the wave form in Ref. [49] is a standing wave due to the authors’ assumption of a reflecting
boundary condition at infinity [see Eq. (2.7) there]; however, our radiation condition (A7) enforces
the requirement that waves propagate outward from the source, which is evident from Video 1
(right panel) in the Suppl. Mater. [61]. Moreover, by combining Eqs. (11) and (A5), it is evident that
the wave form (8) that we derived for weakly viscous gravity-capillary waves reduces to h+

1 (x) in
Eq. (A6) if the effects of gravity (β = 0) and viscosity (ε → 0) are neglected.

We conclude by computing the time-averaged force exerted by one oscillating particle on
another: specifically, suppose particles (labeled 0 and 1) separated by a distance r exert vertical
forces F0 cos ωt and F1 cos(ωt + φ1) on the fluid interface. The force on particle 1 due to the
interfacial deformation generated by particle 0 is

〈F1 cos(ωt + φ1)∇h(x, t )〉 = F0F1kc

24σ
{[2 Re[ςC1(ςkcr)] − H1(kcr) − Y1(kcr)] cos φ1

− 2J1(kcr) sin φ1}r̂, (A13)
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FIG. 11. Plots of the functions ηI(r), ηR(r) and 2 Re[η2(r)], as defined by Eqs. (B1) and (11). Panels
(a) and (b) correspond to ε = 0.1, and (c) and (d) to ε = 0.01. In each pair, the panel on the left (right) is
on semilogarithmic (logarithmic) scale to illustrate the far-field behavior of each function.

where r̂ is a unit vector that points from particle 1 to 0. If the particles oscillate in-phase (φ1 = 0)
or out of phase (φ1 = π ), we recover the expression derived in Ref. [49] [see Eq. (3.20) therein];
however, other phase relationships will result in deviations from that expression owing to the J1 term
in Eq. (A13).

APPENDIX B: FAR-FIELD BEHAVIOR OF THE WAVE FIELD GENERATED
BY AN OSCILLATING POINT SOURCE IN THE SMALL VISCOSITY LIMIT

We now consider the far-field behavior of the wave field h1(r) in the regime where viscous
effects are small but nonzero (0 < ε � 1). An approximation of h1 is given by Eq. (11), and we
wish to compare the magnitudes of the two terms η1(r) and η2(r). We observe that Re[η2] decreases
monotonically in r (Fig. 11). Since the real and imaginary parts of η oscillate between positive and
negative values, we instead consider their local amplitudes

ηR(r) =
(

2

λc

∫ r+λc/2

r−λc/2
{Re[η1(r′)]}2 dr′

)1/2

and ηI(r) =
(

2

λc

∫ r+λc/2

r−λc/2
{Im[η1(r′)]}2 dr′

)1/2

,

(B1)

which are shown in Fig. 11 for two different values of ε. First, we note that Re(η2) decays
algebraically in r, as expected from Eq. (A9), and that Re(η2) is dominated by ηR and ηI in the
region 1 � r/λc � 1/ε. Second, while η1 also decays algebraically as r → ∞, we are interested in
its behavior for small ε, which corresponds to arg zε ≈ π for zε = (−1 + 2iε/3)kcr. The connection
formula (A5) implies that

η1(r) = −C0

[(
1 − 2iε

3

)
kcr

]
− 2i H(2)

0

[(
1 − 2iε

3

)
kcr

]
, (B2)

where H(2)
0 is the Hankel function of order zero of the second kind (not to be confused with the

Struve function). The Hankel function dominates over C0 for small ε and kcr = O(1), and its
asymptotic behavior is given by [70]

H(2)
0 (z) ∼

√
2

πz
exp [−i(z − π/4)] as |z| → ∞. (B3)

From Eqs. (B2) and (B3), we conclude that η1 decays exponentially in the region r/λc = O(1/ε)
and algebraically thereafter, which is confirmed by Fig. 11. We also observe that viscosity damps the
waves generated by the point source, since the decay length 3λc/4πε = 3λ3

cω/4(2π )3ν is inversely
proportional to the viscosity ν.
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APPENDIX C: LINEAR STABILITY ANALYSIS OF BOUND STATES OF SURFER PAIRS

Here we perform the linear stability analysis of rectilinear (Appendix C 1) and rotating
(Appendix C 2) bound states. It is useful to use Eq. (30) to write Eq. (28) in the form

m̃σ̈ = −σ̇ + n1 + n2, (C1a)

m̃δ̈ = −δ̇ + n2 − n1 − 2F̃c[μ2
+F++ + μ+μ−(F+− + F−+) + μ2

−F−−], (C1b)

m̃l̃ θ̈1 = −l̃ θ̇1 + F̃cn1 × [μ+(F+− − F++) − μ−(F−+ − F−−)], (C1c)

m̃l̃ θ̈2 = −l̃ θ̇2 − F̃cn2 × [μ+(F−+ − F++) − μ−(F+− − F−−)], (C1d)

where

F pq = fpqδpq = �(|δpq|)
|δpq| δpq, p, q = + or − . (C2)

Given a base state x◦ and perturbation x̃, an object that will show up repeatedly is

�(|x◦ + εx̃|)
|x◦ + εx̃| (x◦ + εx̃) = �(|x◦|)

|x◦| x◦ + εL(x◦)x̃ + O(ε2),

where L(x) = �(|x|)
|x|

x⊥x⊥

|x|2 + �′(|x|) xx
|x|2 (C3)

and x⊥ = (x, y)⊥ = (−y, x). The derivative of the dimensionless force is �′(r) = α f ′
s (r) +

(ξ 2/2) f ′
d(r), where, from Eqs. (17) and (18),

f ′
s (r) =

√
βK′

1(
√

βr) and f ′
d(r) = − 1

12

4∑
j=1

Re

[
k2

j

H′
−1(−k jr) + Y′

1(−k jr)

1 + β/3k2
j + (4/3)iε/k j + (4/3)ε2k j

]
.

(C4)

To evaluate Eq. (C4), we use the identities

K′
1(x) = −1

2
[K0(x) + K2(x)],

Y′
1(x) = 1

2
[Y0(x) − Y2(x)], and H′

−1(x) = 1

πx
+ 1

2
[H−2(x) − H0(x)]. (C5)

1. Rectilinear modes

We linearize Eq. (C1) around the base state (x◦
i , θ

◦
i ) for i = 1, 2, where ni = (cos θi, sin θi ). To

that end, we substitute the expressions xi = x◦
i + εx̃i and θi = θ◦

i + εθ̃i into Eq. (C1) and retain
terms at leading order in ε. Using the fact that ni = n◦

i + εn◦⊥
i θ̃i + O(ε2), we obtain the linearized

equations of motion

m̃
d2σ̃

dt2
= −d σ̃

dt
+ n◦⊥

1 θ̃1 + n◦⊥
2 θ̃2,

m̃
d2δ̃

dt2
= −d δ̃

dt
+ n◦⊥

2 θ̃2 − n◦⊥
1 θ̃1 − 2F̃c[μ2

+L++δ̃++ + μ+μ−(L+−δ̃+− +L−+δ̃−+) + μ2
−L−−δ̃−−],

m̃l̃
d2θ̃1

dt2
= −l̃

d θ̃1

dt
+ F̃c

{
n◦

1 × [μ+(L+−δ̃+− − L++δ̃++) − μ−(L−+δ̃−+ − L−−δ̃−−)]

+ θ̃1n◦⊥
1 × [μ+(F◦

+− − F◦
++) − μ−(F◦

−+ − F◦
−−)]

}
,
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m̃l̃
d2θ̃2

dt2
= −l̃

d θ̃2

dt
− F̃c

{
n◦

2 × [μ+(L−+δ̃−+ − L++δ̃++) − μ−(L+−δ̃+− − L−−δ̃−−)]

+ θ̃2n◦⊥
2 × [μ+(F◦

−+ − F◦
++) − μ−(F◦

+− − F◦
−−)]

}
. (C6)

Here δpq = δ◦
pq + εδ̃pq + O(ε2), F◦

pq = �(|δ◦
pq|)δ◦

pq/|δ◦
pq| and Lpq = L(δ◦

pq), where, from Eq. (29),

δ̃++ = δ̃ − μ− l̃
(
n◦⊥

2 θ̃2 − n◦⊥
1 θ̃1

)
, δ̃−− = δ̃ + μ+ l̃

(
n◦⊥

2 θ̃2 − n◦⊥
1 θ̃1

)
,

δ̃+− = δ̃ − l̃
(
μ−n◦⊥

2 θ̃2 + μ+n◦⊥
1 θ̃1

)
, δ̃−+ = δ̃ + l̃

(
μ+n◦⊥

2 θ̃2 + μ−n◦⊥
1 θ̃1

)
. (C7)

We note that Eq. (C6) is independent of the (rescaled) center of mass σ̃ due to translation invariance
of the governing equations. Equation (C6) may thus be written in the matrix form (dropping the
tildes)

dz
dt

= Mz, where z = (
δ σ̇ δ̇ θ1 θ2 ω1 ω2

)T
and

M =

⎛⎜⎜⎜⎜⎜⎜⎝
Z Z I Z Z

Z −I/m̃ Z N Z

F1 Z −I/m̃ F2 Z

Z Z Z Z I

T1 Z Z T2 −I/m̃

⎞⎟⎟⎟⎟⎟⎟⎠. (C8)

Here Z and I are the 2×2 zero and identity matrices, respectively. The 2×2 matrix F1 is defined as

F1 = −2F̃c

m̃

[
μ2

+L++ + μ+μ−(L+− + L−+) + μ2
−L−−

]
, (C9)

and the 2×2 matrices

N = 1

m̃

(
n◦⊥

1 n◦⊥
2

)
, F2 = (m1 m2), T1 =

(
mT

3

mT
4

)
, and T2 =

(
m5 m6

m6 m7

)
(C10)

are made up of the elements

m1 = −(I + 2F̃cl̃μ+μ−[μ+(L++ − L+−) + μ−(L−+ − L−−)])
n◦⊥

1

m̃
,

m2 = (I + 2F̃cl̃μ+μ−[μ+(L++ − L−+) + μ−(L+− − L−−)])
n◦⊥

2

m̃
,

mT
3 = F̃c

m̃l̃

(
n◦⊥

1

)T
[μ+(L+− − L++) − μ−(L−+ − L−−)],

mT
4 = − F̃c

m̃l̃

(
n◦⊥

2

)T
[μ+(L−+ − L++) − μ−(L+− − L−−)],

m5 = F̃c

m̃l̃

{
l̃n◦

1 × [−μ+(μ+L+− + μ−L++) − μ−(μ−L−+ + μ+L−−)]n◦⊥
1

+ n◦⊥
1 × [μ+(F◦

+− − F◦
++) − μ−(F◦

−+ − F◦
−−)]

}
,

m6 = F̃c

m̃
μ+μ−n◦

1 × (−L+− + L++ − L−+ + L−−)n◦⊥
2 ,

m7 = − F̃c

m̃l̃
{l̃n◦

2 × [μ+(μ+L−+ + μ−L++) + μ−(μ−L+− + μ+L−−)]n◦⊥
2

+ n◦⊥
2 × [μ+(F◦

−+ − F◦
++) − μ−(F◦

+− − F◦
−−)]}. (C11)
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For each of the rectilinear bound states considered in this paper, the matrix M has a zero eigenvalue
due to the solution’s rotational invariance (Appendix C 1 a). The stability of the bound state is thus
determined by the remaining eigenvalues; a solution is stable if all of the eigenvalues have negative
real part, and is unstable otherwise.

a. Rotational invariance of rectilinear bound states

We proceed by showing that the vector

v = (δ◦⊥ n◦⊥
1 + n◦⊥

2 0 1 0)T, where 0 = (0, 0) and 1 = (1, 1) (C12)

is in the nullspace of M, due to the invariance of the governing equations under rotation. The vectors
v and Mv are in R10 and may be viewed as lists with five entries in R2. We have

Mv = (0 0 F1δ
◦⊥ + F21 0 T1δ

◦⊥ + T21)T, (C13)

where the second entry vanishes because N1 = (n◦⊥
1 + n◦⊥

2 )/m̃. The third entry is, after some
algebra and using the fact that Lpqδ

◦⊥
pq = F◦⊥

pq ,

F1δ
◦⊥ + m1 + m2 = n◦⊥

2 − n◦⊥
1

m̃
− 2F̃c

m̃
[μ2

+L++δ◦⊥
++ + μ+μ−(L+−δ◦⊥

+− + L−+δ◦⊥
−+)

+ μ2
−L−−δ◦⊥

−−]

= n◦⊥
2 − n◦⊥

1

m̃
− 2F̃c

m̃
[μ2

+F◦⊥
++ + μ+μ−(F◦⊥

+− + F◦⊥
−+) + μ2

−F◦⊥
−−], (C14)

which is zero by Eq. (C1b). The last entry in Eq. (C13) is

T1δ
◦⊥ + T21 =

(
m3 · δ◦⊥ + m5 + m6

m4 · δ◦⊥ + m6 + m7

)
, (C15)

where

m3 · δ◦⊥ + m5 + m6 = F̃c

m̃l̃

{
n◦

1 × (−μ+L++δ◦⊥
++ + μ−L−−δ◦⊥

−− + μ+L+−δ◦⊥
+− − μ−L−+δ◦⊥

−+)

+ n◦⊥
1 × [μ+(F◦

+− − F◦
++) − μ−(F◦

−+ − F◦
−−)]

} = 0. (C16)

A similar argument shows that m4 · δ◦⊥ + m6 + m7 = 0, which completes the proof.

2. Rotating modes

To assess the stability of rotating bound states, we use the results from Appendix C 1. Substituting
the rotating base state solutions directly into Eq. (C8) would result in a system of equations with
time-varying coefficients, so we first transform Eq. (C8) into a frame rotating with the orbital
frequency ω0. To that end, we let r̂0 = (cos ω0t, sin ω0t ) and θ̂0 = (− sin ω0t, cos ω0t ), and define
the 2×2 matrix � = (r̂0 θ̂0). Since d

dt (�v) = �̇v + �v̇, we define the transformed vector z̃ by
Rz̃ = z, where R is the 10×10 matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎝
� Z Z Z Z

Z � Z Z Z

�̇ Z � Z Z

Z Z Z I Z

Z Z Z Z I

⎞⎟⎟⎟⎟⎟⎟⎠. (C17)
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FIG. 12. Illustration of the numerical method used to locate promenade mode solutions, as described in
Sec. V B. The curves are zero contours of the functions FP(d, ϕ2) (gray) and TP(d, ϕ2) (yellow), as defined in
Eq. (36), where d is the distance between surfers and ϕ2 the orientation angle. Equilibrium solutions are given
by the intersections of the contours, with stable (unstable) points marked in blue (red). The parameters are
given in Table I, with γ = 3.3g and f = 100 Hz.

The linearized equations d
dt z = Mz transform into d

dt z̃ = M̃z̃, where

M̃ = R−1(MR − Ṙ)

=

⎛⎜⎜⎜⎜⎜⎜⎝
Z Z I Z Z

Z −I/m̃ + ω0J Z �TN Z

ω2
0I + �TF1� + ω0J/m̃ Z 2ω0J − I/m̃ �TF2 Z

Z Z Z Z I

T1� Z Z T2 −I/m̃

⎞⎟⎟⎟⎟⎟⎟⎠ (C18)

and J =
(

0 1
−1 0

)
. As with the rectilinear modes, the matrix M̃ has a zero eigenvalue due to the

invariance of the orbital solutions under rotation (Appendix C 2 a). The stability of the solutions
is thus determined by the remaining eigenvalues; a solution is stable if all of the eigenvalues have
negative real part, and is unstable otherwise.

a. Rotational invariance of rotating modes

Using arguments analogous to those in Appendix C 1 a, we show that

v = (
�Tδ◦⊥ − (

ω0J − 1
m̃I

)−1
�TN1 0 1 0

)T
(C19)

is in the nullspace of the matrix M̃. The first, second, and fourth entries of the product M̃v are
identically zero. The third entry is(

ω2
0I + �TF1� + ω0J

m̃

)
�Tδ◦⊥ + �TF21 = �T

[(
ω2

0I + ω0J

m̃
+ F1

)
δ◦⊥ + F21

]
= �T

[(
ω2

0I + ω0J

m̃
+ F1

)
δ◦⊥ + m1 + m2

]
. (C20)
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FIG. 13. Comparison between theory (curves) and experiment (points, [32]) for the surfers’ speed v in
the promenade mode, scaled by the free speed U . The left column shows the dependence of the speed on the
forcing frequency f , where f and γ are varied together, as described in Sec. V A. The corresponding results for
the distance between surfers are shown in Fig. 6. The right column shows the dependence of the speed on the
forcing acceleration γ /g for the fixed forcing frequency f = 100 Hz; the corresponding results for the distance
between surfers are shown in Fig. 7. Different rows are labeled by their corresponding mode orders n. Stable
(unstable) modes are indicated by the solid (dashed) curves. For the sake of simplicity we show only the (cyan)
solution branches in which stable promenade modes are found.

Using Eq. (C14), the term in the square brackets may be simplified to

ω2
0δ

◦⊥ + ω0

m̃
δ◦ + n◦⊥

2 − n◦⊥
1

m̃
− 2F̃c

m̃
[μ2

+F◦⊥
++ + μ+μ−(F◦⊥

+− + F◦⊥
−+) + μ2

−F◦⊥
−−], (C21)

which is zero by Eq. (C1b). The fifth entry in M̃v is T1δ
◦⊥ + T21, which is zero as shown in

Appendix C 1 a.

APPENDIX D: SPEED OF SURFERS IN BOUND STATES

Figure 13 shows a comparison between theory and experiment for the surfers’ speed in the
promenade mode, across different values of forcing acceleration γ and forcing frequency f . Table II
shows a comparison between theory and experiment for the surfers’ speed in four of the bound states
considered in the main text, for the single parameter combination f = 100 Hz and γ /g = 3.3.

114001-29



OZA, PUCCI, HO, AND HARRIS

TABLE II. Comparison between theory and experiment for the surfer speed in one of four bound states
(tailgate, orbit, t-bone, and jackknife) and one of two orbit orders (n = 1 and n = 2). Numerical values are the
dimensionless speed v/U , v being the surfer speed and U the free speed of an isolated surfer, for the parameter
combination f = 100 Hz and γ /g = 3.3. The experimental values are given in Table S1 in Ref. [32], and blank
entries indicate modes that were not measured in experiment. Note that in the t-bone and jackknife modes the
two surfers have different speeds.

Tailgate Orbit T-bone Jackknife

Experiment Theory Experiment Theory Experiment Theory Experiment Theory

n = 1 0.9 ± 0.1 1 1.1 ± 0.1 0.58 1.1 ± 0.1 0.95 1.5 ± 0.2 1.05
0.4 ± 0.1 0.55 0.9 ± 0.1 0.52

n = 2 1 1.1 ± 0.1 0.89 1.04 1.2 ± 0.1 1.11
0.54 0.8 ± 0.1 0.45
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