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Compression-driven viscous fingering in a radial Hele-Shaw cell
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The displacement of a viscous liquid by a gas within a Hele-Shaw cell is a classical
problem. The gas–liquid interface is hydrodynamically unstable, forming striking finger-
like patterns that have attracted research interest for decades. Generally, both the gas
and liquid phases are taken to be incompressible, with the capillary number being the
key parameter that determines the severity of the instability. Here, we consider a radially
outward displacement driven by the steady compression of a gas reservoir. The associated
gas-injection rate is then unsteady due to the compressibility of the gas. We identify a sec-
ond nondimensional parameter, the compressibility number, that plays a strong role in the
development of the fingering pattern. We use an axisymmetric model to study the impact
of compressibility number on the unsteady evolution of injection rate and gas pressure.
We use linear stability analysis to show that increasing the compressibility number delays
the onset of finger development relative to the corresponding incompressible case. Finally,
we present and compare a series of experiments and fully nonlinear simulations over a
broad range of capillary and compressibility numbers. These results show that increasing
the compressibility number systematically decreases the severity of the fingering pattern at
high capillary number. Our results provide an unprecedented comparison of experiments
with simulations for viscous fingering, a comprehensive understanding of the role of com-
pressibility in unstable gas–liquid displacement flows, and insight into a new mechanism
for controlling the development of fingering patterns.

DOI: 10.1103/PhysRevFluids.8.113904

I. INTRODUCTION

When a fluid is displaced from a Hele-Shaw cell or porous medium by the injection of a less vis-
cous fluid, the fluid-fluid interface is hydrodynamically unstable and tends to deform into complex,
branched structures [1–5]. This classical viscous-fingering instability has been extensively studied
as an archetype of interfacial pattern formation [6–8] and for its relevance to enhanced oil recovery
[1,3,9–11], for which fingering poses major obstacles. Modern applications include the operation of
fuel cells [12,13], the remediation of groundwater contamination [14,15], and the subsurface seques-
tration of CO2 [16,17] or storage of hydrogen [18]. Whether fingering is advantageous or problem-
atic, the key concern in all applications has been understanding the mechanisms that influence the
development of the fingering pattern, which is driven by viscous forces in the fluids and opposed by
capillary forces at the interface. The capillary number Ca [19], which measures the relative scales of
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these forces, is therefore the key control parameter. Recent studies have considered a variety of per-
turbations to classical viscous fingering, such as imposing a time-dependent injection rate [20,21],
replacing one of the rigid plates with an elastic membrane or slab [22,23], varying the gap between
the plates as the gas is injected [24,25], using a tapered (rather than uniform) flow cell [26,27], and
the application of external electric fields [28]. Here, we examine a simple but previously overlooked
mechanism in classical gas-driven viscous fingering: the compression of the injected gas.

Gas-driven displacement of liquid is a common practical and experimental scenario that is
highly susceptible to viscous fingering. In addition to generally being much less viscous than
liquids, gases are also much more compressible than liquids; as a result, they will undergo some
amount of springlike volumetric compression under the typical viscous pressures of displacement
flows. Such compression-driven flows can exhibit unsteady flow rates [29–31], which are known
to exert a fundamental influence on pattern-forming processes [32]. Mathematical models of gas–
liquid displacement in a Hele-Shaw cell typically assume that the gas is incompressible, whereas
experimentalists often take pains to avoid or ignore gas compression, such as by withdrawing the
liquid at the outlet instead of injecting the gas at the inlet [33–38], performing analysis based on
the instantaneous interface velocity [27,39], or constraining themselves to low injection rates [40].
Alternatively, one may inject a low-viscosity liquid rather than a gas, such as injecting water into
oil [41,42]. However, the ability to entirely neglect the viscosity of the gas phase makes gas-driven
displacement flows especially tractable to analytical and numerical analysis and many applications
inherently involve gases. As such, compressibility is typically considered to be a necessary compli-
cation in studies of viscous fingering, but the impact of compressibility on displacement flows and
viscous fingering in Hele-Shaw cells has not previously been considered in any detail.

Here, we use a combination of mathematical modeling, simulations, and experiments to elucidate
the role of gas compression during gas-driven viscous fingering. We show that the unsteady flow
rates observed in experiments and simulations can be rationalized by a simple axisymmetric model
that couples the compression of an ideal gas to laminar viscous flow of liquid. Within the context of
this simplified model, the problem is controlled by a single dimensionless compressibility number
C that compares the rate of viscous depressurization to the rate of compressive pressurization. We
find that C also plays an important role in experiments and simulations involving fingering, dictating
both the volumetric growth rate and the evolution of pressure. We examine the dynamical-systems
framework that underpins the basic compression-driven displacement flow in the simplified model,
identifying the emergence of two distinct dynamical regimes that are analogous to those recently
described for compression-driven displacement in a capillary tube [31]. A linear stability analysis
of this axisymmetric model suggests that compressibility can significantly delay the onset of
viscous fingering at high Ca, via the low initial injection rates of the compression-driven flow.
This prediction is confirmed in our experiments and nonlinear simulations, where we observe a
systematic delay in the onset of fingering to larger radii as C is increased. We further show that
increasing C is as effective in delaying onset as decreasing Ca, pointing to compressibility as
a powerful new control parameter for gas-driven viscous fingering. Our study also provides an
unusually thorough comparison between simulations and experiments of viscous fingering. Previous
studies have made quantitative comparisons between experimental results and simulations over
a relatively small portion of the parameter space [20,21,43–46]. The present study is the most
extensive comparison of its type, featuring quantitative examination of the fingering patterns, the
time-dependent injection rate, gas pressure, and the onset and development of the instability. This
work therefore provides a rare opportunity to validate a numerical realization of viscous fingering
directly against a dedicated set of experiments.

II. MATHEMATICAL MODEL

A. Full quasi-2D model

We consider the system shown schematically in Fig. 1, comprising a rigid, circular Hele–Shaw
cell of radius Rc and gap thickness b, initially filled with an incompressible liquid of dynamic
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FIG. 1. Schematic diagram of the fingering problem considered here. A reservoir of gas (white) is com-
pressed at a constant volumetric rate Q to displace liquid (blue) from a Hele-Shaw cell comprising the uniform
gap b between two plates.

viscosity μ. Gas is injected through a hole in the center of the cell by compressing an attached
gas reservoir of initial volume Vres(0) at a constant volumetric rate Q. We take the gas and liquid
phases to be immiscible. We ignore viscous pressure gradients within the gas phase, such that the
gas pressure pg(t ) is spatially uniform.

Within the domain � of the liquid phase, we consider a quasi two–dimensional (quasi-2D) model
of Hele–Shaw flow that relates the gap-averaged velocity of the liquid v to its pressure p via

v = − b2

12μ
∇p, x ∈ R2\�(t ). (1a)

Further, the incompressibility of the liquid phase requires that ∇ · v = 0 and, hence, that

∇2 p = 0, x ∈ R2\�(t ). (1b)

Following Peng et al. [47], we impose the kinematic and dynamic conditions at the moving interface
∂�(t ):

vn = − 1

1 − f1

b2

12μ
∇p · n, x ∈ ∂�(t ), (1c)

p = pg(t ) − γ

(
π

4
κ + 2 f2

b

)
, x ∈ ∂�(t ), (1d)

where vn is the normal velocity of the interface, n is the unit normal to the interface, γ is the
interfacial tension, and κ is the signed in-plane curvature of the interface. The kinematic boundary
condition Eq. (3) relates the velocity of the interface to the velocity of the liquid. The dynamic
boundary condition Eq. (4) models the capillary pressure via the Young–Laplace equation. Both of
these boundary conditions are influenced by the presence of thin residual films of liquid that coat
the walls in the gas region [48]. Following Peng et al. [47], we model these films via the empirical
functions

f1 = |vnη/γ |2/3

0.76 + 2.16|vnη/γ |2/3
and f2 = 1 + 1.59|vnη/γ | + |vnη/γ |2/3

0.26 + 1.48|vnη/γ |2/3
, (1e)

which were derived by fitting to simulations of viscous fingering in a rigid Hele-Shaw channel
[49]. We assume here and going forward that the liquid is perfectly wetting to the cell walls. The
total thickness of the films f1b depends on the normal velocity of the interface at the instant of
deposition, and we assume that the films are static after deposition on the timescale of the flow,
such that the film thickness at each point in space is constant after the interface has passed. The
function f2 captures the modified dynamic boundary condition due to capillary and viscous stresses
at the interface. We take the gas to be a fixed mass of ideal gas and the process to be isothermal,
meaning that temperature changes due to compression and expansion equilibrate rapidly with the
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environment. In practice, the compression of the gas will not be perfectly isothermal due to the
timescale of thermal diffusion through the glass walls of the syringe. However, our data suggests
that an isothermal model is suitable for our experiments, as discussed in Appendix A. Pressure and
volume are then related by Boyle’s law,

pg(t )Vg(t ) = pg(0)Vg(0), (1f)

where Vg(t ) = Vb(t ) + Vres(t ) is the total volume of gas in the system, with Vb the volume of gas
in the cell (accounting for thin films) and Vres the volume of the gas reservoir. Due to the imposed
steady compression rate Q, the volume of gas in the reservoir is Vres(t ) = Vres(0) − Qt , such that the
pressure of the gas is

pg(t ) = Vg(0)

Vg(0) + Vb − Vb(0) − Qt

[
patm + γ

(
π

4r0
+ 2

b

)]
, (1g)

where the term in square brackets is the initial gas pressure pg(0), which balances the Laplace
pressure jump across the interface via Eq. (4) for p(0) = patm. We have taken the system to be
initially at rest, with a small circular bubble of gas of radius r0 centered on the origin (see Sec. II C)
such that the initial in-plane curvature of the interface is 1/r0 and Vb(0) = πr2

0b. While pressure and
volume must be related in terms of absolute pressure, we will find it instructive to consider gauge
pressures, measured relative to atmospheric pressure. The gauge gas pressure �pg = pg − patm can
be written as

�pg(t ) = patmV −1
g (0)(Qt + Vb0 − Vb) + γ

(
π

4r0
+ 2

b

)
1 + V −1

g (0)(Vb − Vb(0) − Qt )
. (1h)

At the outlet of the Hele–Shaw cell (around the rim), we take the pressure of the liquid to be
atmospheric, p(r = Rc) = patm, such that the gauge liquid pressure �p = p − patm is

�p = 0, |x| ∈ Rc. (1i)

The flow is driven by the gauge liquid pressure difference between the liquid-gas interface and the
outlet.

We nondimensionalize our problem via

x̂ = x
Rc

, t̂ = Q

πR2
cb

t, p̂ = πb3

6μQ
p, v̂ = 2πRcb

Q
v, V̂ = V

πR2
cb

, (2)

leading to

∇̂2 p̂ = 0, x̂ ∈ R2\�(t̂ ), (3a)

v̂n = − 1

1 − f1
∇̂ p̂ · n, x̂ ∈ ∂�(t̂ ), (3b)

�p̂ = �p̂g(t ) − Ca−1

(
π

4
κ̂ + 2α f2

)
, x̂ ∈ ∂�(t̂ ), (3c)

�p̂ = 0, |x̂| ∈ 1, (3d)

where

�p̂g = 2C−1[t̂ + R2 − V̂b(t̂ )] + Ca−1
(

π
4R + 2α

)
1 − V−1[t̂ + R2 − V̂b(t̂ )]

. (3e)

The thin-film factors f1 and f2 are still given by Eq. (1e), which is dimensionless. The dimensionless
control parameters are

Ca = 12α2μQ

2πRcbγ
, C = 12μQVg(0)

π2R2
cb4 patm

, V = Vg(0)

πR2
cb

, α = Rc

b
, and R = r0

Rc
, (3f)
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where Ca is the capillary number, often referred to as the “modified” capillary number as it
incorporates the role of the cell aspect ratio α [e.g., Ref. 19]. The parameter C, which we refer
to as the compressibility number, is directly analogous to the compressibility number identified in
Ref. [31]. Physically, C may be considered the ratio of viscous and compressive pressure scales
or, equivalently, the ratio of the rate of viscous depressurization (drainage) to that of compressive
pressurization (compression).

For comparison, we also consider the case where the gas is incompressible. In this limit,
Eq. (3e) is replaced by the constraint that �pg must be chosen so that the actual injection rate
Q̂b ≡ dV̂b/dt̂ = 1 at all times and the parameters C and V can be eliminated. This constraint can be
enforced by choosing �pg such that

∫ 2π

0
−∂ p̂

∂ r̂

∣∣∣∣
r̂=1

dθ = 2π, (4)

which ensures that the total rate of outflow is unity.

B. Axisymmetric model

To gain insight into the coupling between gas compression and liquid displacement, we consider
the axisymmetric limit in which the interface remains circular with radius r = R0(t ). Equa-
tions (3a)–(3e) then reduce to

dR̂0

dt̂
=

�p̂g − Ca−1
(

π

4R̂0
+ 2α f2

)
2(1 − f1)R̂0 ln(1/R̂0)

, (5)

�p̂g = 2C−1
(
t̂ + R2 − R̂2

0

)+ Ca−1
(

π
4R + 2α

)
1 − V−1

(
t̂ + R2 − R̂2

0

) . (6)

We can simplify further by taking V � 1 and 2C−1 � Ca−1[π/(4R) + 2α]; the former limit
corresponds to an initial volume of gas that is much larger than the volume of liquid in the cell
(i.e., a large gas reservoir) while the latter corresponds to negligible capillary pressure relative to
atmospheric pressure, which also implies 2C−1 � Ca−1[π/(4R̂0) + 2α f2] and thus eliminates f2

from the model. Additionally ignoring the kinematic impact of thin films (i.e., assuming f1 ≈ 0),
Eqs. (5) and (6) reduce to the ordinary differential equation

dR̂0

dt̂
= �p̂g

2R̂0 ln(1/R̂0)
, with � p̂g = 2

C
(
t̂ + R2 − R̂2

0

)
. (7)

The evolution of the interface then depends on a single dimensionless parameter, the compressibility
number C. When the gas is incompressible (C → 0), Eq. (7) degenerates to R̂0(t̂ ) = (R2 + t̂ )1/2 and
�p̂g = ln(1/R̂0), as expected.

Throughout the present work, we focus on injection via the steady compression of a gas reservoir,
as may be imposed by a syringe pump, for consistency with our experiments. However, another
common experimental implementation of gas injection is from a high-pressure source regulated by
a needle valve. In Appendix B, we derive a mathematical model for this alternative approach and
show that the two methods are identical under the assumptions of the axisymmetric model.

C. Numerical scheme

We solve Eqs. (3a)–(3e) using the numerical scheme proposed by Morrow et al. [50], which we
briefly summarize here. The scheme is based on the level-set method [51], where we construct a
level-set function φ such that φ < 0 in the gas region and φ > 0 in the liquid region. We evolve φ
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via the level-set equation

∂φ

∂ t̂
+ F |∇̂φ| = 0, (8)

where

F = −∇̂ p̂ · n, (9)

and n = ∇̂φ/|∇̂φ| is the unit (outward) normal. This choice of speed function F satisfies the
kinematic boundary condition on the interface [Eq. (3b)] and gives a continuous expression for
F in the liquid region x ∈ R2\�(t̂ ). We extend F into the gas region by solving the biharmonic
equation [52]. To solve Eq. (8), we use a second-order essentially nonoscillatory scheme for the
spatial derivatives, and integrate in time using second order total-variation-diminishing Runge-Kutta
with �t = �x/[4 max |F |]. To maintain φ as a signed distance function such that |∇̂φ| = 1, we
occasionally perform reinitialization [50]. We solve Eq. (3b) for the liquid pressure via a finite
difference stencil. Following Gibou et al. [53], we modify the stencil at nodes adjacent to the
gas–liquid interface to incorporate the dynamic boundary condition [Eq. (3c)], where the signed
curvature of the interface is κ = ∇ · n. Further, the volume of the gas region is computed with

V̂g =
∫
R2

(1 − f )H (φ) dV̂ , (10)

where

H =
⎧⎨
⎩

0 if φ < −δ,

1 if φ > δ,
1
2

[
1 + φ

δ
+ 1

π
sin

(
πφ

δ

)]
otherwise.

(11)

Here, δ = 1.5�x, and f is the proportion of the Hele-Shaw cell filled with liquid at each node,
as determined from f1 [see Eq. (1e)]. When the gas is incompressible, we discretize the integral
in Eq. (4) via the trapezoidal rule. We solve the resulting system of linear equations via LU
decomposition. All simulations are performed with the initial condition

R̂(θ, 0) = R
{

1 +
12∑

n=2

εn cos [n(θ − 2πθn)]

}
, (12)

where θn and εn are selected at random from uniform distributions on the intervals (0, 1) and (5 ×
10−4, 10−3), respectively. Simulations are performed on the computational domain 0 � r � 1 and
0 � θ < 2π using 1000 × 1000 equally spaced nodes. Simulations are stopped when the maximum
radius of the interface is 0.99; we denote the time at which this occurs as t̂ = t̂ f .

III. EXPERIMENTAL METHODS

A. Setup

Experiments are performed in a Hele-Shaw cell comprising two glass plates of radius Rc =
105 mm. We impose a gap b = 0.42 ± 0.01 mm between the plates using a plastic spacer. The
spacer supports the outer 5 mm of the plates and, in doing so, obstructs a small fraction of the
outflow area. Note that this partial obstruction is not included in the simulations and is believed to
contribute to the systematically greater pressures recorded in experiments, although this discrepancy
could instead result from qualitative differences in fingering patterns (see Secs. V B and V E).

The cell is initially filled with 1 000 cSt silicone oil (dynamic viscosity μ = 0.97 Pa s and surface
tension γ = 21 mN m−1 at laboratory temperature 22 ± 1◦C; Sigma), which is dyed (Sudan III;
Merck) and filtered. We impose a fixed hydrostatic pressure at the outer rim of the cell (the outlet)
by surrounding the cell with a shallow oil reservoir, filled to a depth approximately 1 mm above the
top of the gap, which is maintained using an overflow.
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The cell is connected to an air reservoir via a 2 mm diameter injection port. The reservoir
comprises two 50 ml airtight glass syringes (1050TTL; Hamilton), along with stiff connective
tubing of internal volume 12 ± 1 ml (Legris). Short sections of connective tubing (Tygon) are used
sparingly to minimise pressure-induced changes in the volume of the air reservoir itself. The total
initial volume of the air reservoir (tubing and syringes) is set to Vres(0) ∈ {25, 50, 100, 200} ml, with
a relative error of 2–4%. To achieve Vres(0) = 200 ml, we connect an additional sealed acrylic box
of internal volume 120 ± 3 ml. The total internal volume of the box and tubing was measured via
changes in air pressure during controlled compression tests with the system closed. These tests also
suggest that air leakage was negligible over the timescales and pressures of our experiments.

Prior to each experiment, we introduced a circular precursor bubble of initial radius R0(0) =
2.7 ± 0.1 mm by injecting air very slowly, such that no significant pre-compression of the air was
introduced. The initial air pressure is taken to be atmospheric, neglecting the small hydrostatic
pressure imposed by the oil reservoir and the Laplace pressure jump at the interface. The initial
volume of the bubble, around 0.01 ml, is negligible compared with Vres(0).

To conduct an experiment, the air was then compressed using a syringe pump (AL-4000; WPI)
at a fixed volumetric rate Q ∈ {1.25, 2.50, 5.00, 10.0} ml min−1. The gauge pressure �pg of the air
relative to atmospheric pressure patm was recorded using a pressure sensor (0–15 PSI; Honeywell)
via a USB DAQ (U6; LabJack) at a frequency of approximately 20 Hz. The pressurized air drove
oil out of the cell and into the surrounding oil reservoir.

We imaged the motion of the interface using a CMOS camera (acA4096-30um; Basler) mounted
vertically below the cell and recording at a fixed frame rate of 1.5–12 frames per second (fps),
depending on Q, and at a spatial resolution 91 µm per pixel. Over each experiment, we typically
recorded 400 frames. The cell was backlit using a custom array of LEDs (Wholesale LED Lights),
diffused through opalescent acrylic (Sheet Plastics) and a blue filter (Stage Depot) to enhance
contrast with the dyed oil. Ambient light from the laboratory was blocked by cloaking the setup
in opaque fabric (BK5; Thorlabs).

Each experiment was performed twice to assess reproducibility. We found that bulk displace-
ment measurements, such as the evolution of the injection rate and the air pressure, were highly
reproducible between experiments despite significant variation in the fingering patterns and their
associated metrics after onset (see Sec. V E and Appendix C).

B. Data processing

The volume of the air in the cell Vb was calculated from the air pressure. We did so by modeling
the air as a fixed mass of isothermal ideal gas, such that [patm + �pg(t )]Vg(t ) = patmVres(0). Taking
Vg(0) = Vres(0) and pg(0) = patm by neglecting the initial volume Vb(0) of the bubble and the initial
Laplace and hydrostatic pressures, respectively, introduces negligible error in this calculation. The
total volume of air, which changes due to both compression of the reservoir and invasion into the
flow cell is Vg(t ) = Vres(0) − Qt + Vb(t ) − Vb(0), so that

Vb(t ) = Vb(0) + Qt − Vres(0)

[
1 −

(
patm

patm + �pg(t )

)]
. (13)

Accounting for Vb(0) at this step ensures that the initial value of Vb(t ) is accurate. In Appendix A we
compare Eq. (13) with an adiabatic model to show that the assumption of isothermal compression
is justified for our experiments. The actual time-dependent injection rate of air into the cell Qb =
dVb/dt (which is equivalent to the flow rate of liquid out of the cell) was calculated at each recorded
Vb(t ) data point by taking a second-order polynomial least-squares fit to the data on either side of
that point. The first derivative of the fitted function was then taken as the local value of Qb(t ); the
size of the fitting window was automatically adjusted to minimise a χ2 fitting parameter that avoided
over- or underfitting to the data.

Recorded experimental images were processed in MATLAB R2020b to recover the two-
dimensional area of the gas region and the shape of the interface as functions of time. The key steps
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FIG. 2. Key stages of image analysis: (a) Raw image, (b) background subtraction and contrast enhance-
ment, (c) edge detection, (d) dilation, (e) filling, and (f) erosion. This image is taken from an experiment with
Q = 5 ml/min and Vres(0) = 200 ml at t = 83.3 s.

of the algorithm are illustrated in Fig. 2. From each raw image [Fig. 2(a)], a reference image of the
cell prior to air injection was subtracted. The resulting difference image was then contrast-enhanced
using imadjust to facilitate the isolation of the interface [Fig. 2(b)]. Pixels along the interface were
identified using the edge function with a canny filter [Fig. 2(c)]. The resulting binary image was
dilated by applying imerode with a circular structuring element of radius one pixel to a negative
of the edge-detected image, which ensured connectivity of the interface [Fig. 2(d)]. A binary
image of the air region was generated by filling the connected interface contour using bwconncomp
[Fig. 2(e)] and then eroding using imerode with the same structure element to compensate for the
earlier dilation step [Fig. 2(f)]. The area and perimeter of the air region were then calculated using
regionprops and converted to dimensional units according to the spatial resolution of the camera.
We process images up to the first frame when the maximum radial coordinate of the interface
max(R) is greater than 0.9Rc, beyond which interaction between the interface and the spacer became
visually noticeable. We refer to the moment when this occurs as the near-breakout time t0.9.

IV. DIMENSIONAL AND NONDIMENSIONAL PARAMETER RANGES

Going forward, we discuss results primarily in terms of Ca and C. In both experiments and
simulations, however, we choose to vary the dimensional nominal injection rate Q and initial gas
volume Vg(0) for practical reasons. Moreover, while Ca depends only on Q and not on Vg(0), C is
proportional to the product QVg(0). To vary C ∝ QVg(0) while keeping Ca ∝ Q fixed, we fix Q and
vary the initial gas volume within the range Vg(0) ∈{3.125, 6.25, 12.5, 25, 50, 100, 200, 400, 800,
1600} ml, equivalent to V ∈{0.215, 0.430, 0.859, 1.72, 3.44, 6.87, 13.7, 27.5, 55, 110} (experiments
were only performed at bold values). To vary Ca while keeping C fixed, we vary Q while fixing
the product QVg(0). We restrict our simulations to the experimental values of Q, corresponding to
Ca ∈ {2.61 × 103, 5.21 × 103, 1.04 × 104, 2.08 × 104}. Values of V are given in the caption of
each figure, where appropriate. The remaining parameters are fixed at α = 250 and R = 0.025,
with dimensional values listed in Sec. III A.
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FIG. 3. Experimental fingering patterns for Ca increasing top to bottom and C increasing left to right.
The corresponding dimensional parameters are (top to bottom) Q = [1.25, 2.5, 5, 10] ml/min and (along each
north-west/south-east diagonal) Vres(0) = [25, 50, 100, 200] ml, with Rc = 10.5 cm, μ = 0.97 Pa s, γ = 21
mN m−1, and b = 0.42 mm. Profiles are plotted in equal time intervals of t0.9/10.

V. RESULTS

Section V is organized as follows. We begin in Sec. V A by describing the key observations
of compression-driven viscous fingering. In Sec. V B, we then consider the “bulk” displacement
dynamics, and specifically the unsteady injection rate and injection pressure, that arise from
compression-driven displacement in a radial Hele-Shaw cell. We show that the axisymmetric
model derived in Sec. II B qualitatively captures the variation in bulk displacement dynamics
with increasing C. Comparison between experiments, simulations and the axisymmetric model
demonstrates that the bulk displacement dynamics of the full system are also controlled primarily
by C and are remarkably insensitive to both variations in Ca and the presence of viscous fingering.
In Sec. V C, we examine the underlying dynamical-systems structure that dictates the unsteady
injection rate in the axisymmetric model. The dynamical regimes described in this framework
qualitatively predict the bursts of high flux observed at C � 1 both in experiments and simulations.
In Sec. V D, we perform a linear stability analysis. At sufficiently large Ca, our analysis suggests
that compressibility significantly delays the onset of viscous fingering relative to an incompressible
system; we also identify a weaker effect at low Ca, where compressibility may instead promote
onset to comparatively smaller radii. In Sec. V E, we examine the growth of viscous fingers in
both experiments and simulations. We observe a strong delay in the onset with increasing C,
consistent with the predictions of our linear stability analysis. Finally, we discuss the qualitative
impacts of compressibility on the nonlinear evolution of the fingering pattern in both experiments
and simulations.

A. Features of compression-driven viscous fingering

We begin by briefly examining the qualitative impact of compressibility on viscous fingering.
In Figs. 3 and 4, we show the evolution of the fingering pattern across all of our experiments and
simulations, respectively. For the experiments (Fig. 3), each image includes the observed interface
at time intervals of t0.9/10, where t0.9 is the near-breakout time at which the experiment is concluded
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FIG. 4. Example numerical solutions for Ca increasing top to bottom. Column one shows solutions of
the incompressible model, while columns two to eight show numerical solutions of the compressible model
Eqs. (3a)–(3e) with C increasing left to right. Profiles are plotted in equal time intervals of t0.9/10. Simulations
with shaded background correspond to the same parameter values as the experiments shown in Fig. 3.

(Sec. III B). Rows correspond to fixed Ca, while columns correspond to fixed compressibility num-
ber. In terms of dimensional quantities, we can interpret this arrangement as each row having a fixed
nominal injection rate Q with the initial gas reservoir size fixed along each north-west/south-east
diagonal and increasing from left to right in each row. The behavior for increasing Ca (top to bottom)
is as expected from classical work on viscous fingering [41]: The fingering pattern becomes more
severe as Ca increases in the sense that we observe more and narrower fingers, as well as increasing
instances of tip-splitting and side branching; Additionally, the onset of fingering (i.e., the point at
which the interface deviates noticeably from a circle) appears to occur at smaller radii for larger Ca.

It is striking, however, that we see a similar decrease in onset radius with decreasing C at fixed Ca
(i.e., decreasing the air reservoir volume while fixing the nominal injection rate), which corresponds
to moving from right to left along a given row. In other words, increasing C at fixed Ca, in this
case by using a larger air reservoir, appears to systematically delay the onset of viscous fingering.
Varying the initial reservoir volume Vres(0) does not change Ca, so its impact on viscous fingering
is not considered in classical studies. Rather, changing Vres(0) changes how “compressible” the
system is [32], as measured by the value of C. This change in compressibility modifies the actual
time-dependent injection rate (as distinct from the nominal injection rate Q) due to coupling between
viscous forces in the displaced liquid and compressive forces in the air [31]. Our focus below is to
formally rationalise and quantify the impact of compressibility in this system.

In addition to our experimental results, we conducted an extensive set of simulations over a wider
range of parameters. These simulation results are shown in Fig. 4, again with rows and columns
ordered by Ca and C, respectively. The first column shows the results for an incompressible system.
Images with a shaded square background indicate simulations conducted at the same parameters
as the experiments in Fig. 3. Our simulations and experiments are in strong qualitative agreement,
showing consistent variations in patterns as Ca and C are varied. We analyze and compare these
results quantitatively in Sec. V E.

B. Bulk displacement dynamics

The dynamics of the axisymmetric model [Eq. (7)] are illustrated in Fig. 5, which shows the evo-
lution of the nondimensional injection rate Q̂b [Fig. 5(a)] and the gauge gas pressure �p̂g [Fig. 5(c)]
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FIG. 5. Compressibility number C has a strong impact on the evolution of injection rate Q̂b and gas gauge
pressure � p̂g. Here, we plot (a) Q̂b and (c) � p̂g as functions of time t̂ from the numerical solution to the
axisymmetric model [Eq. (7)] with R = 0.025 and (blue to red) C = 0.018, 0.036, 0.071, 0.14, 0.28, 0.57,
1.13, 2.27, and 4.54. The incompressible solution is shown for comparison (dashed black curves). Panels
(b) and (d) show the same quantities from numerical simulations (solid curves) and experiments (symbols) with
viscous fingering at Ca = 2.08 × 104 (Q = 10 ml/min and Vres(0) ∈ {25, 50, 100, 200} ml; row 4 of Figs. 3
and 4). Blue and red shades indicate C < 1 and C > 1, respectively.

for different compressibility numbers C. For reference, the incompressible solution for a circular
interface is also shown (dashed black curve), for which Q̂b = 1 and � p̂g monotonically decreases as
liquid drains and viscous resistance decreases. In the axisymmetric model, by contrast, the injection
rate varies strongly as the interface advances and the gas pressure evolves nonmonotonically. This
behavior is due to the basic coupling between viscous displacement and compressive pressurization
(fingering is absent from this model). Initially, the gas compresses and pressurises, such that Q̂b and
�p̂g increase gradually from initial values of zero. As the interface advances and drives liquid out,
the resistance to flow decreases. The injection rate eventually exceeds the nominal injection rate
(Q̂b > 1), at which point the gas begins to expand and � p̂g decreases. For C 
 1, the compressible
dynamics differ only weakly from the incompressible dynamics, with Q̂b rapidly reaching and then
exceeding the nominal flux, before relaxing back toward the incompressible solution Q̂b = 1. As C
approaches unity, the maximum in Q̂b increases and occurs at later times. For C > 1, the maximum
in Q̂b vanishes, and the injection rate instead increases monotonically, diverging as the interface
escapes the cell at the moment of breakout (when R̂0 = 1). The qualitative change in dynamics
around C = 1 is consistent with the distinct dynamical regimes observed for compression-driven
displacement in a capillary tube [31], as discussed further in Sec. V C.

We show in Figs. 5(b) and 5(d) that the full numerical simulations (solid lines) and the experi-
ments (symbols) with viscous fingering both exhibit qualitatively similar displacement dynamics in
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FIG. 6. Capillary number Ca has a modest impact on the evolution of injection rate Q̂b and gauge gas
pressure � p̂g. Here, we plot (a) Q̂b and (b) � p̂g for C = 0.14 from numerical simulations of viscous fingering
at Ca ∈ {2.61 × 103, 5.21 × 103, 1.04 × 104, 2.08 × 104} (V ∈ {1.72, 3.44, 6.87, 13.7}; column 5 in Fig. 4)
and from the axisymmetric model (dashed black).

Q̂b and �p̂g. The presence of fingers in the experiments and simulations leads to an earlier breakout
than in the axisymmetric model. In addition, the transition from nonmonotonic to monotonically
increasing Q̂b occurs at a slightly lower value of C in the simulations and experiments than in the
axisymmetric model. Otherwise, the evolution of Qb and � p̂g and the variation with C are strikingly
similar. This agreement suggests that viscous fingering has only a weak influence on the underlying
displacement dynamics, primarily leading to earlier breakout compared with the axisymmetric
model [Eq. (7)]. Furthermore, the quantitative agreement between experiments and corresponding
simulations is in contrast with the visually distinct fingering patterns generated in each case;
comparing the bottom rows of Figs. 3 and 4, we see that experiments produce fingering patterns with
greater instances of tip-splitting and side-branching, resulting in more severely distorted interfaces
(see Sec. V E).

As shown in Fig. 6, the evolution of Q̂b [Fig. 6(a)] and �p̂g [Fig. 6(b)] at fixed C is also only
weakly modified by varying Ca over an order of magnitude, despite the strong variation in fingering
patterns (see fourth column in Fig. 3 and fifth column of Fig. 4). The dominant effect of fingering
on compression-driven displacement is to induce an increasingly early breakout as Ca increases.
Larger values of Ca also lead to systematically lower values of � p̂g, consistent with the fact that
more severe fingering patterns bypass an increasingly large fraction of the liquid. Hence, the bulk
displacement dynamics, in terms of injection rates and driving pressures, are remarkably insensitive
to viscous fingering, and are governed primarily by C. As noted in Sec. III, the systematically greater
pressure recorded in experiments [Fig. 5(d)] may derive in part from the geometry of the spacer
used to impose the gap, which was not accounted for in the simulations. However, differences in
the fingering patterns [Figs. 3 and 4] may also influence the pressure evolution, as illustrated by the
results of Fig. 6(b) (see Sec. V E).

C. Dynamical systems framework

The axisymmetric model exhibits two dynamical regimes, characterized by the change from
nonmonotonic to monotonically increasing Q̂b around C ≈ 1 [Fig. 5(a)]. We next rationalise these
regimes in terms of a general dynamical systems framework. A similar treatment was originally
applied to compression-driven displacement in a capillary tube by Cuttle and MacMinn [31]; we
take the same approach here to describe the dynamics of axisymmetric displacement in a Hele-Shaw
cell, as embodied by the axisymmetric model [Eq. (7)].
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FIG. 7. Phase-space representation of the axisymmetric model [Eq. (7)], in terms of injection rate Q̂b and
interface radius R̂0, for C = 0.25. The local time derivative of injection rate Q̇b is indicated by the colormap
(see colorbar). Stable and unstable trivial solutions Q̄± are shown as solid and dashed black lines, respectively.
The R̂0 and Q̂b coordinates of the saddle-node bifurcation point are indicated by dot-dashed and dotted lines,
respectively. A solution of the axisymmetric model for C = 0.25 and R = 0.01 is plotted as a thick blue curve.
Regions of the phase space for which Q̇b is positive or negative are shaded orange or purple, respectively (see
colorbar). When λ(� p̂g) > λ(ω̂), the interface accelerates, Q̇b > 0. This occurs in three distinct subregions (see
inset): when Q̂b < 1 because the gas is compressing while resistance decreases (� ṗg > 0 and ω̇ < 0); when
1 < Q̂b < Q̄− because the gas is decompressing slowly (� ṗg < 0 is small); and when Q̂b > Q̄+ because the
gas is over-compressed (� p̂g is large). When λ(� p̂g) < λ(ω̂), the interface decelerates, Q̇b < 0. This occurs
only in the region Q̄− < Q̂b < Q̄+, where the gas decompresses quickly (� ṗg < 0 and |� ṗg| is large).

We start by considering the injection rate, which for a circular interface is Q̂b = 2R̂0(dR̂0/dt̂ ).
From the axisymmetric model, Q̂b = �p̂g/ω̂, where we have introduced the resistance ω̂ =
ln(1/R̂0) by analogy with Ohm’s law. We can then write the axisymmetric model as

λ(Q̂b) = λ(�p̂g) − λ(ω̂) = 2

ω̂C

(
1

Q̂b
− 1 + CQ̂b

4R̂2
0

)
, (14)

where λ(x̂) = ẋ/x̂ is the relative rate of change of the variable x̂, with ẋ = dx̂/dt̂ . The axisymmetric
model admits two trivial solutions, for which the driving compressive force and the opposing viscous
resistance decrease at the same relative rate [i.e., λ(Q̂b) = 0]. These are

Q̄± = 2R̂0

⎛
⎜⎝ R̂0 ±

√
R̂2

0 − C
C

⎞
⎟⎠, (15)

which satisfy λ(Q̄±) = 0.
The influence of these trivial solutions on compressible displacement dynamics is illustrated

by the phase-space plot in Fig. 7, where Q̄±(R̂0) are plotted as dashed and solid black curves,
respectively, for C = 0.25. The trivial solutions separate regions where Q̇b is positive (orange) or
negative (purple). The local change of sign in Q̇b determines the stability of each trivial solution.
Specifically, Q̄+ is a repeller and Q̄− is an attractor, in the sense that small perturbations grow or
decay, respectively. A solution of the axisymmetric model is plotted as a faint blue curve, displaying
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FIG. 8. (a) Breakout time t̂ f at which the interface first reaches the rim of the flow cell and (b) correspond-
ing breakout gauge gas pressure � p̂g(t̂ f ), both computed from numerical solution of Eq. (7) for R = 0.025
(black lines) and from the full numerical simulations (coloured curves and symbols) for Ca ∈ {2.61 × 103,
5.21 × 103, 1.04 × 104, 2.08 × 104} (increasing in the direction of the arrows). Each point is the average value
from 10 simulations, with error bars equal to one standard deviation above and below the mean. Error bars
are smaller than symbols in panel (a). The incompressible results are shown for reference (horizontal dashed
lines).

the characteristic nonmonotonic variation in Q̂b with R̂0 and showing that, rather than tending back
toward the incompressible solution (Q̂b = 1), the system is drawn onto the attractive solution Q̄−.

Due to their R̂0-dependence, the trivial solutions only exist for R̂0 �
√
C. At R̂0 = √

C, the two
branches Q̄± meet and annihilate at a saddle-node bifurcation. For R̂0 <

√
C there are no trivial

solutions: Q̇b > 0 for all Q̂b, so that the interface accelerates monotonically. Because R̂0 must
be less than unity, C > 1 implies that there is no attractive solution and the interface accelerates
monotonically toward breakout. Even for C < 1, however, the dynamics may fail to converge onto
Q̄−, depending on the initial radius R. Computing the basin of attraction in terms of R for a given
C is only possible numerically, and is beyond the scope of this study. A brief exploration suggests
that, for R = 0.01, the system fails to converge onto Q̄− when C � 0.92. Therefore, C = 1 is an
upper bound on the critical value at which the stability of the flow changes, unlike in a capillary
tube where the critical value C = 1 is a precise indicator of the flow regime [31].

The stable trajectories that do converge onto Q̄− terminate with a breakout flux of Q̂b(R̂0 = 1) ≡
2(1 − √

1 − C)/C because the resistance ω̂ vanishes at the moment of breakout, driving the system
exactly onto Q̄−. Similarly, for unstable trajectories that fail to converge onto Q̄−, the vanishing
resistance drives divergent λ(Q̂b), and hence divergent Q̂b, in the absence of a local attractive
solution.

In Figs. 8(a) and 8(b), we plot the breakout time and the breakout pressure, respectively. We
compute these values numerically from the axisymmetric model (solid black curves) for R = 0.025.
We find that, for C � 1, the breakout time t̂ f is almost exactly 1 (to within numerical resolution)
while the breakout pressure �p̂g(t̂ f ) is almost exactly zero (to within numerical resolution). This
corresponds to a scenario where breakout occurs at exactly the same time as for an incompressible
flow driven at the nominal injection rate. As a consequence, the volume of air displaced by the
piston at the moment of breakout is exactly equal to the volume of liquid displaced by the air, such
that the air returns to its initial volume and pressure. Hence, the driving compressive force vanishes
at the same rate as the viscous resistive force, consistent with terminating on the trivial solution Q̄−.
For C � 1, in contrast, breakout is delayed (t̂ f > 1) which means that the air is still compressed
at breakout and �p̂g(t̂ f ) > 0. Hence, the driving pressure remains finite as the opposing resistance
vanishes and Q̂b diverges.
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For comparison, in Fig. 8 we also show the breakout time and the breakout pressure from
simulations with fingering over a range of C at different values of Ca (colored curves and symbols).
We observe qualitatively similar behavior, with t̂ f and �p̂g(t̂ f ) varying slowly for C � 0.1 before
increasing sharply around C ≈ 0.1. We also observe nonmonotonic variation in � p̂g(t̂ f ) for the
highest Ca studied, and we would expect to see the same for the lowest Ca were the range of C
extended. Breakout times are systematically and substantially lower in the simulations than in the
axisymmetric model because a significant fraction of the liquid is bypassed by viscous fingers,
allowing the interface to reach the edge of the cell earlier. Similarly, the breakout pressures are
systematically greater in the fingering simulations, which may reflect the significant volume of
liquid left in the cell at the moment of breakout; because the interface is still advancing, a significant
pressure is still required to drive flow in the remaining liquid.

D. Linear stability analysis

We next examine the impact of compressibility on the onset of viscous fingering by performing
a linear stability analysis. To do so, we consider a slightly perturbed circular solution of the form

R̂(θ, t̂ ) = R̂0(t̂ ) + εγ̂n(t̂ ) cos nθ + O(ε2), (16)

p̂(r̂, θ, t̂ ) = p̂0(r̂, t̂ ) + εÂn(r̂, t̂ ) cos nθ + O(ε2), (17)

where ε 
 1, n � 2, and R̂0 and p̂0 are the unperturbed circular solution (i.e., the base state). Here,
γ̂n and Ân denote, respectively, the amplitudes of the nth mode of perturbation to the radius and
pressure. Following Paterson [6], we use the O(ε) problem to derive an evolution equation for the
relative growth rate of the nth mode of perturbation,

λ(γ̂n) = n − 1

2R̂2
0

[
Q̂b − n(n + 1)

CaR̂0

]
. (18)

The most unstable mode of perturbation is then

nmax =
√

1 + CaR̂0Q̂b

3
, (19)

which comes about by solving ∂λ(γ̂n)/∂n = 0. Thus, the value of nmax depends on the evolution
of Q̂b(R̂0) for an unperturbed circular interface. This base state is precisely the solution to the
axisymmetric model, where Q̂b = 2R̂0Ṙ0. By combining the axisymmetric model and linear stability
analysis, we may therefore understand how compression-driven displacement modifies the onset of
viscous fingering.

Figures 9(a) and 9(c) show λ(γ̂max) and nmax, respectively, as functions of R̂0 for fixed C at
different values of Ca. These curves are calculated by solving Eq. (7) numerically and substituting
Q̂b(R̂0) into Eqs. (18) and (19). Increasing Ca enhances the growth rate of the instability [λ(γ̂n)
increases] as well as the most unstable mode of perturbation nmax for all R̂0. These observations are
consistent with our experimental and numerical results (Figs. 3 and 4) where, over the values of C
considered, increasing Ca results in more prominent branching and tip splitting behavior.

Fixing Ca and varying C, as in Figs. 9(b) and 9(d), we find that increasing C suppresses the
instability at earlier times and promotes it at later times. This observation is consistent with the fact
that, as discussed in Sec. V B, compression-driven displacement is characterized by a lower injection
rate at earlier times and a greater injection rate at later times, compared with the nominal injection
rate. As a result, for a given C, both λ(γ̂n) and nmax cross the incompressible solution (dashed line;
Q̂b = 1) at some value of R̂0.

Physically, the instability is driven by viscous forces in the defending liquid and resisted by
capillary forces at the interface. The stabilising effect of capillary forces means that sufficiently
high wave number (i.e., short wavelength) modes decay; onset occurs as the radius of the interface
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FIG. 9. (a) Growth rate of the most unstable mode of perturbation [Eq. (18)] and (c) most unstable mode
of perturbation [Eq. (19)] for C = 0.14 and Ca ∈ {2.61 × 103, 5.21 × 103, 1.04 × 104, 2.08 × 104} (increasing
in the direction of the arrows). Panels (b) and (d) show the same quantities for Ca = 1.04 × 104 and (blue to
red) C ∈ {0.018, 0.036, 0.071, 0.14, 0.28, 0.57, 1.13, 2.27} (increasing in the direction of the arrows). Blue
and red shades indicate C < 1 and C > 1, respectively, and the classical incompressible values are shown for
comparison (dashed black). Note that while the incompressible values are defined for all R̂0 � 0, compressible
values are only defined for R̂0 � R = 0.025.

reaches a critical value, at which the perimeter of the interface becomes large enough to accommo-
date the longest-wavelength unstable mode [6]. In the incompressible system, where the injection
rate is fixed at Q̂b = 1, Paterson [6] showed that this critical radius R̂0i satisfies√

CaR̂0i + 1

4
− 1

2
= 2π. (20)

Hence, R̂0i ∼ Ca−1, such that onset occurs at smaller radii for larger Ca or, say, larger Q. In the
compressible system, the time-dependent injection rate is Q̂b = 2R̂0Ṙ0, where Ṙ0(t̂ ) is given by
Eq. 7. The critical radius R̂0c in the compressible system must then satisfy√√√√2CaR̂0c

C

(
R̂2

0c − R2 − t̂c
ln(R̂0c)

)
+ 1

4
− 1

2
= 2π, (21)

where t̂c is the time of onset (i.e., R̂0(t̂c) = R̂0,c). To close Eq. (21), we require R̂0(t̂ ), which we
calculate numerically from the axisymmetric model. Hence, onset in the compressible system
depends on both Ca and C, with the latter dictating the unsteady injection rate.

In Fig. 10, we compare the linear stability predictions of onset in the compressible and in-
compressible systems by plotting R̂0c/R̂0i as a function of Ca for varying C. We determine R̂0c

numerically, while R̂0i is given analytically by Eq. (20). We observe a substantial delay in the onset
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FIG. 10. Onset radius R̂0c in the compressible system [Eq. (21)], normalized by the onset radius R̂0i in the
incompressible system [Eq. (20)] at the same Ca, as functions of Ca for C ranging from 0.01 to 10 (increasing
in the direction of the arrows). Red and blue curves, respectively, indicate C > 1 and C < 1. The dashed black
line denotes R̂0c = R̂0i. Inset: Closeup of the low-Ca region where compressibility can weakly promote onset
(R̂0i < R̂0c), according the predictions of linear stability analysis.

of the instability, indicated by R̂0c/R̂0i > 1, when Ca � 102. At the highest Ca and C shown, onset
is delayed in the compressible system to radii more than 20 times greater than in the incompressible
system at the same Ca. The strong delaying effect derives from the very low initial injection rates
Q̂b 
 1 [see Fig. 5(a)] associated with compression-driven displacement. The effect is amplified
with increasing C, which leads to lower initial Q̂b, and with increasing Ca, which corresponds to
smaller onset radii in the incompressible system. Hence, if onset is predicted at small radii R̂0 
 1
for an incompressible flow, then the slow initial injection rate can significantly delay onset in a
compression-driven flow. The inset of Fig. 10 shows a magnified plot of R̂0c/R̂0i at Ca � 103.
For low Ca, linear stability predicts that compressibility may act to promote the onset of viscous
fingering relative to an incompressible system, such that R̂0c/R̂0i < 1. This promoting effect at low
Ca is due to the relatively high injection rates (Q̂b > 1) at later times or larger R̂0, which linear
stability analysis suggests may trigger onset at smaller radii relative to an incompressible flow. This
promoting effect is much weaker than the delaying effect of high Ca, reducing the radius of onset by
less than a factor of 2. Moreover, the effect is triggered for large R̂0 � 1, and it is therefore unclear
whether the effect on viscous fingering would be visible before breakout.

E. Nonlinear finger growth

We now return to fully nonlinear pattern formation in both experiments (Fig. 3) and simulations
(Fig. 4). We first demonstrate that the systematic delay in the onset of fingering predicted by linear
stability analysis due to compressibility at high Ca is readily observable in both experiments and
simulations. We then examine the impact of this delayed onset on the resulting fingering pattern.
We also examine the agreement between simulations and experiments, both in terms of the point of
onset and the details of the resulting pattern. To quantify the severity of the fingering pattern, we
consider the isoperimetric ratio

I = L2

4πA
, (22)
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FIG. 11. Isoperimetric ratio I [Eq. (22)] as a function of the maximum radial extent of the interface at Ca =
5.21 × 103 from (a) numerical simulations at C ∈ {4.5 × 10−3, 0.009, 0.018, 0.036, 0.071, 0.14, 0.28, 0.57,
1.13, 2.26}, and (b) experiments at C ∈ {0.036, 0.071, 0.14, 0.28} (Q = 2.5 ml/min, Vg(0) ∈ {25, 50, 100, 200}
ml). The incompressible solution is shown in panel (a) for comparison (dotted black). Dashed curves in panel
(a) are at the values of C used for the experiments in panel (b).

where L and A are, respectively, the length of the interface and the area it encloses. For a circular
interface, I = 1. Hence, any deviation from unity indicates some perturbation away from the
axisymmetric base state assumed in the linear stability analysis [Sec. V D].

Figure 11 shows the evolution of I at fixed Ca for a range of C for simulations [Fig. 11(a)]
and experiments [Fig. 11(b)] as functions of the maximal radial extent of the interface max(R̂).
These experiments and simulations correspond to the top row of Figs. 3 and 4, respectively. The
isoperimetric ratio I is initially close to 1, suggesting that the interface is near-circular, before
increasing monotonically and at a relatively steady rate for the remainder of the experiment or
simulation, corresponding to the growth of viscous fingers. The departure from I ≈ 1 occurs at
larger radii [max(R̂)] for larger C (arrows) in both simulations and experiments, consistent with a
delayed onset. The growth of I with max(R̂) is somewhat faster in experiments than in simulations,
consistent with the more frequent occurrence of tip-splitting and side-branching visible in the
experimental images (Fig. 3).

To quantitatively examine how C impacts the onset of fingering, we define the radius at onset
R̂∗ in our experiments and simulations as being max(R̂) at the last recorded instant (video frame
or time step) for which I < 1.1. The measured and computed values of R̂∗ as functions of C for
different Ca are shown in Fig. 12(a) for experiments (scattered symbols) and simulations (connected
symbols). Qualitatively, both sets of data show the same behavior: the onset radius R̂∗ tends to
increase with increasing C or decreasing Ca. The latter result is familiar from classical studies
of viscous fingering [6]. Both results are consistent with the linear stability analysis presented
in Sec. V D, confirming the prediction that increasing C delays the onset of fingering. Moreover,
varying Ca or C by a similar amount (an order of magnitude, say) yields a comparable (and opposite)
effect on the radius of onset. Comparing experiments and simulations directly, there is reasonable
quantitative agreement between the two over the experimental parameter range studied: the majority
of experimental data points lie within one standard deviation of the corresponding simulation. The
gradient of the experimental data, however, appears shallower than that of the simulations, which
suggests that increasing C is less effective in delaying onset in experiments.

The broad range of patterns generated by the fingering instability after onset can be quantified by
considering I (t̂0.9). That is, the isoperimetric ratio at the near-breakout time t̂0.9 = t̂ (max(R̂) = 0.9)
(see Sec. III B). We plot I (t̂0.9) as a function of C for different values of Ca in Fig. 12(b). In
simulations, we find that I (t̂0.9) tends to the incompressible case (dashed lines) as C → 0, and the
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FIG. 12. (a) Onset radius R̂∗ at which I first exceeds 1.1 (cf. Fig. 11) and (b) the near-breakout isoperimet-
ric ratio I(t̂0.9) measured at t̂0.9 = t̂ (max(R̂) = 0.9) as functions of C for a range of Ca. Symbols and colours
correspond to Ca = 2.61 × 103, 5.21 × 103, 1.04 × 104, and 2.08 × 104 with arrows indicating increasing
Ca. Simulation results and experimental results are plotted with small connected symbols and large scattered
symbols, respectively. The incompressible results are shown for reference (horizontal dashed lines).

severity of the fingering pattern at t̂0.9 decreases with increasing C or decreasing Ca. Qualitatively,
this behavior is consistent with experiments, though experimental measurements are systematically
greater, again consistent with the observed prevalence of tip-splitting and side-branching in experi-
ments (Fig. 3).

As discussed in Sec. III and Sec. V B, the systematically greater pressures observed in ex-
periments than in simulations may be in part due to the qualitatively and quantitatively different
fingering patterns. For instance, though I increases more steeply in experiments than in simulations
(Fig. 11), indicating more severe fingering which was previously attributed to lower pressures, the
delayed onset in experiments [Fig. 12(a)] could counter this effect due to the need to displace more
liquid at earlier times. Furthermore, the greater instances of side-branching and tip-splitting in
experiments may also correspond to greater pressures due to the displacement of liquid between
the primary fingers. The exact correspondence between finger morphology and driving pressure is
beyond the scope of this study, but merits future investigation.

Finally, we return to the bulk displacement dynamics to shed some light on the increasingly
delayed onset and mitigated fingering with C. The near-breakout volume of air in the cell, V̂b(t̂0.9),
which is approximately equal to the near-breakout volume of liquid expelled since V̂b(0) 
 V̂b(t̂0.9),
is close to the incompressible value and essentially independent of C for C � 0.1 [Fig. 13(a)].
Recall that the same is true of the breakout time t̂ f [Fig. 8(a)]. Thus, the average injection rate
up to near-breakout (i.e., the average value of Q̂b during the interval 0 � t̂ � t̂0.9), which is given
by V̂b(t̂0.9)/t̂0.9, is approximately unity for C � 0.1 [Fig. 13(b)]. That is, the average injection
rate is approximately equal to the nominal injection rate for C � 0.1, despite the nontrivial time
evolution of the instantaneous injection rate Q̂b(t ). Nonetheless, these smaller values of C lead
to noticeably delayed onset and reduced intensity of fingering (Fig. 12). Both V̂b(t̂0.9) and I (t̂0.9)
increase substantially as C increases further (C � 0.1) [Figs. 12(b) and 13(b)], but V̂b(t̂0.9)/t̂0.9

decreases substantially (Fig. 13). Thus, weak compressibility (C � 0.1) delays onset and mitigates
fingering by introducing a time-varying Q̂b(t̂ ) while roughly preserving the average injection rate,
whereas stronger compressibility (C � 0.1) further delays onset, mitigates fingering, and increases
the volume of liquid expelled by reducing the average injection rate.

Note that we observe systematically lower values of V̂b(t̂0.9) in experiments than in simulations
[Fig. 13(a)], which is consistent with the systematically larger values of I (t̂0.9) [Figs. 12(b)] and
further suggests that the experiments are subject to more severe fingering than the simulations at the
same values of Ca and C.

113904-19



CUTTLE, MORROW, AND MACMINN

FIG. 13. (a) Volume of air in the flow cell at near-breakout, V̂b(t̂0.9), and (b) overall average injection rate up
to near-breakout, V̂b(t̂0.9)/t̂0.9, as functions of C for a range of Ca. Note that V̂b(t̂0.9) is also approximately equal
to the near-breakout volume of liquid expelled since V̂b(0) 
 V̂b(t̂0.9). Symbols and colours correspond to Ca =
2.61 × 103, 5.21 × 103, 1.04 × 104, and 2.08 × 104 with arrows indicating increasing Ca. Simulation results
and experimental results are plotted with small connected symbols and large scattered symbols, respectively.
The incompressible results are shown for reference (horizontal dashed lines).

VI. DISCUSSION AND CONCLUSIONS

We have studied gas–liquid displacement in a rigid Hele-Shaw cell, driven by the steady
compression of a connected gas reservoir. By considering an axisymmetric interface, we developed
a simple axisymmetric model [Eq. (7)] analogous to the recent work of Cuttle and MacMinn [31],
who studied compression-driven displacement in a capillary tube. The unsteady injection rate and
the gas pressure in the axisymmetric model are controlled by a single dimensionless parameter,
the compressibility number C, and are independent of the capillary number Ca. Remarkably,
in experiments and simulations, which are subject to viscous fingering and therefore strongly
nonaxisymmetric, we found that the injection rate and gas pressure were still controlled primarily
by C. Variations in Ca had a far more modest effect on these “bulk” dynamics, despite having a
strong influence on the severity of the fingering instability. We therefore argue that C is the key
control parameter for bulk displacement dynamics, even for hydrodynamically unstable flows.

The axisymmetric model [Eq. (7)] also revealed two underlying dynamical regimes that arise
from the basic coupling between a viscous displacement flow and the volumetric compression
of a gas. The low- and high-C regimes correspond to “on-time” and quasisteady or delayed and
burstlike expulsion at the moment of breakout, when the interface reaches the outlet of the cell. We
rationalized these regimes by following the dynamical-systems approach employed by Cuttle and
MacMinn [31] in studying the corresponding capillary-tube problem. As in the capillary tube, there
exists a critical compressibility number C = 1, which dictates the transition between quasi-steady
and burstlike dynamics. In our axisymmetric model, C plays a directly analogous role, with the
trivial solutions of the system vanishing for R̂0 � 1 at C = 1. However, due to the evolving base
state (increasing radius) of the axisymmetric model, we identified an additional sensitivity to the
initial radius R that can influence whether the dynamics are quasi-steady or burstlike. While
the axisymmetric model neglects the fingering instability, we nonetheless found that the delayed
breakout and over-pressure predicted by the model were qualitatively recovered in simulations
(and experiments; not shown) (Fig. 8), which again points to the robust role of compression-driven
displacement dynamics in a pattern-forming system.

To understand the impact of compression-driven displacement dynamics on the onset of viscous
fingering, in Sec. V D, we performed a linear stability analysis of the axisymmetric model, which
we took as the base state. We found that the growth rate and the most unstable mode of the
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perturbations depended strongly on both Ca and C. Specifically, Ca modulates the relative strengths
of the destabilising viscous and stabilising capillary forces at a given flow rate, as in the classical
system, while C sets the evolution of the time-dependent injection rate. Our analysis predicted that,
compared to an incompressible flow at the same nominal injection rate Q, compressibility may either
suppress or promote the onset of fingering, depending on Ca. The promoting effect is relatively weak
and would occur at very low Ca, an order of magnitude lower than the experiments presented in this
work, so it is uncertain whether one could observe its effects in practice. In contrast, the delaying
effect at high Ca is much more pronounced and is indeed readily observed in both experiments and
simulations. In fact, increasing C was found to be as effective in delaying onset as decreasing Ca by
a similar factor. The result of this delay is that the severity of the fingering pattern, as measured by
the isoperimetric ratio [Eq. (22)], decreases substantially as C increases at fixed Ca. This mitigated
finger growth can be largely attributed to the delayed onset predicted by linear stability analysis.

In the context of viscous fingering with incompressible fluids, numerous studies have considered
the impact of imposing a time-varying injection rate Qb(t ), typically with the goal of identifying the
Qb(t ) that minimises or otherwise controls the number of fingers that develop. For example, one pair
of studies considered strategies to suppress fingering by varying Qb(t ) while keeping the average
injection rate constant (i.e., while still injecting a given total volume in the same time total time)
[20,54]. Dias et al. [54] found that a piecewise-constant Qb(t ) with a small initial rate followed by
a larger subsequent rate was effective in suppressing onset, whereas Dias et al. [20] found that the
optimal form of Qb(t ) was linearly increasing in time. Although compressibility leads to a natural
and passive (rather than actively controlled) variation in the injection rate, our results share several
features with these previous works. Specifically, the time-varying rates Qb(t ) observed here for
C � 0.1 [Figs. 5(a) and 5(b)] mimic a small-to-large variation that preserves the average rate, as
suggested by Dias et al. [54] [Fig. 13(b)]. In addition, the rates observed here for C � 0.1 mimic the
monotonically increasing rates suggested by Dias et al. [20]. Thus, although we have not specifically
investigated optimization here, our results suggest that compression-driven displacement at C ≈ 0.1
would passively achieve the strongest delay in onset while preserving the nominal injection rate on
average, and would therefore be optimal (in the sense of Ref. [54]) at a given Ca.

By conducting extensive experimental and numerical studies in tandem, we were able to thor-
oughly compare state-of-the-art simulations with physical data. The most impressive agreement
between the two was found in the volume growth rate of the bubbles and, to a lesser extent, the
evolution of the pressure. This difference is despite the broad variation in patterns, quantified by the
isoperimetric ratio, observed in experiments and simulations at the same parameters. Indeed, even
our repeat experiments were subject to significant variability in fingering behavior, and yet were
highly reproducible in terms of injection rate and pressure (Appendix C). These observations speak
to the robust nature of the underlying dynamics of compression-driven displacement that modulate
the growth of the interface, and which can be described to leading order by the single parameter C.

There are several possible sources for the differences in pattern formation (e.g., the isoperimetric
ratio or the qualitative interface evolution) between experiments and simulations. One such source
is the choice of initial condition in the simulations [Eq. (12)]. We chose an initial radius r0 to best
match with experiments. However, small variations in r0, along with the choice of ε (initial am-
plitude of perturbations) and the modes of perturbations used could have a nonnegligible influence
on the final shape of the interface. Further, the experiments are subject small disturbances due to
plate defects, microscopic contaminants, thermal fluctuations, and the outlet conditions, amongst
other culprits, which are not captured by our model. Despite being small, such disturbances can
significantly modify the fingering pattern, particularly at higher Ca where the interface is far more
distorted. For example, it has been shown that finite perturbations in Hele-Shaw cells and channels
can exert a strong influence on pattern formation [7,55–58]. As our simulations and experiments
are subject to very different sources of perturbations, it is unsurprising that they should produce
quantitatively and qualitatively different patterns. These details, however, do not detract from the
key result confirmed by both approaches; increasing the compressibility number is as effective
in delaying onset as decreasing the capillary number. Compressibility acts passively in two-phase
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gas-driven flows and is as natural to the system as viscosity or surface tension. This is in contrast
with previous control strategies [22,24,26,28,59] that, although effective, are often awkward to
implement in practice due to the restrictions placed on the confining geometry or the choice of fluids.
The compressibility number, meanwhile, is a parameter that can easily be tuned, without having
to alter the system geometry, compliance, or fluid properties; simply selecting a larger syringe
is sufficient. Our results therefore strongly point to compressibility as a second key parameter in
the assessment and control of viscous fingering in real systems, as discussed in more detail in a
companion study [60]. As a final remark, gas compression and the associated unsteady flows will
continue to be a source of frustration in many practical and experimental settings, where steady
flows are required. For those wishing to avoid such effects, our study offers a complete framework
that accounts for all relevant parameters.

The supporting data for this study are openly available on Zenodo [61].
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APPENDIX A: ISOTHERMAL AND ADIABATIC MODELS OF GAS COMPRESSION

In our experiments, we assumed that gas compression was isothermal, corresponding to “rapid”
equilibration with the environment due to heat diffusion through the walls of the syringe. In practice,
the syringe walls are borosilicate glass, which is a poor thermal conductor, and our assumptions
therefore require some justification. For instance, one may calculate the typical timescale of thermal
diffusion τD = W 2/αg ≈ 7 s, based on the thickness of the syringe walls W = 2.2 mm and the
thermal diffusivity of borosilicate glass αg ≈ 0.6 mm2/s. Alternatively, if we consider thermal
diffusion in the air, which has a diffusivity of 18 mm2/s and a lengthscale on the order of the syringe
barrel inner radius 16.3 mm, we compute a similar timescale of around 14 s. We can then compute
the Fourier number Fo = t f /τD, which compares the total time t f of an experiment to the timescale
of thermal diffusion. Hence, when Fo � 1, we expect any heat generated to dissipate rapidly to
the environment and maintain a near-constant temperature during compression (i.e., an isothermal
process). We find that, for Q = [1.25, 2.5, 5, 10] ml/min, Fo ≈ [40, 20, 10, 5], with some scatter
around these mean values due to experimental variability and compressibility effects. Hence, we
expect compression to be approximately isothermal for all but the fastest experiments (largest Q),
where Fo � 1 and compression may result in nonnegligible changes in temperature.

Rather than assume the gas compression is isothermal, we may have instead assumed that the
compression is adiabatic, such that the system is perfectly insulated and no heat is conducted to the
environment. (In reality, the process will lie somewhere between these two extremes, but a mixed
model is unnecessarily complicated and would cloud the key results of our study.) To compare
the two assumptions, we can compute the gas volume from the recorded gas gauge pressure (as
discussed in Sec. III B) for an adiabatic process, for which pgV η

g is a constant. The adiabatic index
η = 7/5 for diatomic gases, of which air is predominantly composed. Equation (13) then becomes

Vb(t ) = Vb(0) + Qt − Vres(0)

[
1 −

(
patm

patm + �pg(t )

)1/η
]
. (A1)

Figure 14 compares isothermal (13) and adiabatic (A1) calculations of the normalized bubble
volume V̂b as functions of normalized time t̂ for the smallest nominal injection rate Q and reservoir
volume Vres(0) [Fig. 14(a)] and the largest Q and Vres(0), corresponding to the smallest and largest
compressibility numbers [Fig. 14(b)], respectively. On the one hand, when C ∝ QVres(0) is smaller,
the difference between adiabatic and isothermal models is minimal [Fig. 14(a)] because the pressure
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FIG. 14. The normalized bubble volume V̂b as a function of normalized time t̂ for isothermal [solid blue;
Eq. (13)] and adiabatic [dotted red; Eq. (A1)] models of gas compression. Dashed black curves are the
normalized projected volume Â(t̂ ) of the fingering pattern, which is an upper bound on V̂b. Panels (a) and
(b) show data from experiments performed at the smallest and largest compressibility numbers studied,
C = 0.018 (Q = 1.25 ml/min, Vg(0) = 25 ml) and C = 1.13 (Q = 10 ml/min, Vg(0) = 200 ml), respectively.

�pg required to drive the flow is smaller and the volume of the bubble Vb is more comparable to that
of the reservoir Vres. Thus, relative changes in the total volume of the gas are smaller and have less
impact on the volume of gas in the cell. On the other hand, when C is larger, the two models predict
significantly different V̂b for the same �pg [Fig. 14(b)]. Because Fo � 1 for the largest Q, it is
unclear which of the models is most suitable. However, we can compare the data to an independent
upper bound on Vb, which we calculate from images of the expanding fingering pattern, multiplying
the projected area of the pattern A(t ) by the depth of the cell b. The projected volume A(t )b is
then the maximum volume that the air could occupy in the cell at time t in the absence of residual
films. Comparing predictions of V̂b from the isothermal and adiabatic models against the normalized
projected volume Â = Ab/(πR2

cb) (black dashed line), we see in Fig. 14(b) that only the isothermal
model stays consistently below this upper bound, while the adiabatic model prediction far exceeds
it. Hence, the isothermal model is the better choice for our experiments, even for modest Fo.

APPENDIX B: INJECTION FROM A COMPRESSED GAS SOURCE

In the main text, we considered injection from a syringe pump, where a fixed mass of gas is
compressed at a constant volumetric rate Q. Here, we consider a second scenario, also commonly
used in laboratories: injection from a compressed gas source via a needle valve. For brevity, we
consider a circular front and neglect thin films, as in the derivation of the axisymmetric model
presented in Sec. II B.

This injection scenario corresponds to a constant mass flow of air into a reservoir of fixed volume,
such that the number of moles n(t ) of gas in the system increases at a fixed rate dn/dt = ṅ. In
practice, the volumetric rate of gas emitted from the needle valve is calibrated and set at Q while
venting into fixed atmospheric pressure patm, such that

Q = dVg

dt

∣∣∣∣
pg=patm

= RgT

patm
ṅ, (B1)

where Rg and T are the ideal gas constant and gas temperature, respectively. However, compression
of the gas once it is diverted into the flow cell means that while ṅ may remain constant, the actual
injection rate Qb will no longer be equal to Q. From the ideal gas law, we have pg(t )Vg(t ) = [n(0) +
ṅt]RgT , where Vg(t ) is the total volume of gas in the reservoir and the cell. Also, pg(0)Vg(0) =
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(a)

(b)

FIG. 15. Experimental reproducibility. (a), (b) Interface evolution for experimental repetitions at Q =
2.5 ml/min and (left to right) Vres(0) ∈ {25, 50, 100, 200} ml. The experiments in panel (a) correspond to the
main set reported throughout the main document, while those in panel (b) are the repeat set. (c)–(e) Nondimen-
sional (c) volume, (d) gauge gas pressure � p̂g, (e) and isoperimetric ratio as functions of nondimensional time
for the experiments shown in panel (a) and panel (b), plotted as solid red and dotted blue curves, respectively.
Arrows indicate increasing Vg(0).

n(0)RT , so the pressure of the gas is

pg(t ) = Vg(0)(patm + γ {π/[4R0(0)] + 2/b}) + Qt patm

Vg(0) + Vb(t ) − Vb(0)
, (B2)

where the initial gas pressure pg(0) is the same as in Sec. II A. Applying the nondimensionalization
of Eq. (2) yields

�p̂g(t̂ ) = 1

V + R̂2
0(t̂ ) − R2

{
V
[
P + 1

Ca

( π

4R + 2α
)]

+ P t̂

}
− P . (B3)

Finally, taking the limits V � 1, and P � (π/(4R) + 2α)/Ca, we have

�p̂g(t̂ ) = 2
(
t̂ − R̂2

0 − R2
)

C . (B4)

Comparing with Eq. (7), we find that in the limit of the axisymmetric model, compressed gas
injection is identical to syringe pump injection. We therefore expect similar dynamics in both
scenarios in practice, as was recently observed by Peng et al. [23].

113904-24



COMPRESSION-DRIVEN VISCOUS FINGERING IN A …

APPENDIX C: EXPERIMENTAL REPRODUCIBILITY

Figure 15 shows data from two sets of experiments performed at the same parameter values
(Q = 2.5 ml/min; Vg(0) = 25, 50, 100, and 200 ml). The main set [Fig. 15(a)] corresponds to the
set of data presented throughout the main text, i.e., in Figs. 3, 5(b), 5(d), and 11(b). The repeat set
[Fig. 15(b)] are used with the main set to calculate the mean values shown in Fig. 12, along with the
experimental error bars.

Comparing the two sets, we see that they both exhibit the same qualitative response to increasing
the initial gas volume Vg(0) (arrows), which leads to the growth of fingers at larger radii. Quan-
titatively, the dynamical growth of the bubbles V̂b(t̂ ) [Fig. 15(c)] is remarkably reproducible; data
from the main set (solid red curves) and repeat set (dotted blue curves) largely overlap on the scale
of the plot. This is despite significant differences in the evolution of both the gauge gas pressure
�p̂g [Fig. 15(d)] and the viscous fingering pattern, again quantified by the isoperimetric ratio I (t̂ )
[Fig. 15(e)]. While the observable onset of fingering (when I > 1.1) is in reasonable agreement
between the two sets, the Repeat Set has systematically greater I than the main set. The Hele-Shaw
cell was deconstructed, cleaned, and reassembled between the two sets, which will have introduced
small variations in cell geometry between the sets and is likely the reason for the systematic offset
in I (t̂ ). The greater variability in both �p̂g and I than in V̂b may reflect the greater sensitivity of
pressure to variations in fingering pattern (Fig. 6).
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