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Global stability of 180◦-bend pipe flow with mesh adaptivity
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The global stability of the flow in a spatially developing 180◦-bend pipe with curvature
δ = R/Rc = 1/3 is investigated by performing direct numerical simulations to understand
the underlying transitional mechanism. A unique application of the adaptive mesh refine-
ment technique is used during the stability analysis for minimizing the interpolation and
quadrature errors. Independent meshes are created for the direct and adjoint solutions,
as well as for the base flow extracted via selective frequency damping. The spectrum of
the linearized Navier-Stokes operator reveals a pair of complex conjugate eigenvalues,
with frequency f ≈ 0.233. Therefore, the transition is attributed to a Hopf bifurcation that
takes place at Reb,cr = 2528. A structural sensitivity analysis is performed by extracting the
wavemaker. We identify the primary source of instability located on the outer wall, θ ≈ 15◦

downstream of the bend inlet. This region corresponds to the separation bubble on the outer
wall. We thus conclude that the instability is caused by the strong shear resulting from the
backflow, similar to the 90◦-bend pipe flow. We believe that understanding the stability
mechanism and characterizing the base flow in bent pipes is crucial for studying various
biological flows, like blood vessels. Hence, this paper aims to close the knowledge gap
between a 90◦-bend and toroidal pipes by investigating the transition nature in a 180◦-bend
pipe flow.

DOI: 10.1103/PhysRevFluids.8.113903

I. INTRODUCTION

The flow in bent pipes serves as a valuable framework in various biological and technical
scenarios, including the aortic arch that exits from the left ventricle of the heart and piping systems
in process engineering. Differently from straight pipes, in the curved section, the centrifugal force
pushes the flow towards the outer region and is balanced by a pressure gradient from the outer
to the inner surface. This causes a secondary flow pattern which consists of a pair of symmetric,
counterrotating vortices, named Dean vortices. They are Prandtl’s first kind of secondary motion
occurring perpendicular to the main flow direction and present in both laminar and turbulent
regimes. Eustice [1] was the first to observe the presence of such secondary motions experimentally
and also noted that the mass flux decreases with curvature under a fixed pressure gradient. A
mathematical proof of the secondary motion’s existence was provided by Dean [2,3]. Dean observed
that the flow topology can be governed by a single parameter, thereafter called the Dean number:
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De = Reb

√
δ. In this definition, the curvature δ = R/Rc represents the ratio between the radius of the

pipe cross section and the radius of curvature at the pipe centerline, and the bulk Reynolds number
Reb = UbD/ν is based on the bulk velocity Ub, the pipe diameter D, and the kinematic viscosity ν

of the fluid. The Dean number is interpreted as the ratio of the square root of the product of inertial
and centrifugal forces to the viscous forces, representing a measure of the intensity of the secondary
flow [4]. The two symmetric, counterrotating vortices have been analytically derived as solutions
of the incompressible Navier-Stokes (NS) equations under the small-curvature assumption. Dean’s
solution is valid for a limited range of flow regimes: De < 37.94 [2] and De < 14.14 [3].

In addition to Dean vortices, there are other noteworthy distinctions between straight and bent
pipe flows. Within curved pipes, the flow has a less sudden transition [5] and is significantly more
stable, with a critical Reynolds number that can be twice or more as large, see also Refs. [4,6,7].
Sreenivasan and Strykowski [8] conducted experiments on flows in helical pipes, confirming this
finding. Up to a certain Reynolds number, they observed that turbulent flow from a straight pipe
could relaminarise upon entering a spiral, noting that different transition mechanisms occur at the
inner and outer walls. At the inner side, higher harmonics of the perturbation frequency appear as
Reb is increased, whereas, at the outer wall, transition takes place through the formation and merging
of turbulent bursts. Furthermore, the authors found that the flow in the straight section downstream
of the helix remains laminar for Reynolds numbers greater than the critical value for undisturbed
straight pipes.

Specific to toroidal pipes, Kühnen et al. [9,10] conducted experiments to describe the first
bifurcation leading to turbulence in a torus, observing a subcritical transition for values of the
curvature δ � 0.028. In agreement with this, the numerical work by Canton et al. [11] reported
that the flow is unstable to infinitesimal perturbations for all the values of the curvature δ at least
greater than 2 × 10−3 because of a Hopf bifurcation, leading to a periodic regime. The existence
of two symmetric, counterrotating vortices for any Reynolds number and any nonzero curvature
has been analytically and numerically proved by Canton et al. [12]. The latter also showed that
no flow quantities scale with De when δ > 10−6 and De > 10, and the flow thus requires being
studied as a function of two independent parameters: the curvature δ and the Reynolds number
Reb. The nature of the transition is altered without such a clear separation in the (δ, Reb) parameter
space, which presents a narrow region where two attractors are present. They correspond to two
distinct, coexisting transition scenarios, each resulting in different unsteady asymptotic states. In
the first scenario, at large curvatures, the flow undergoes a supercritical transition as a consequence
of modal instabilities. In the second one, at low curvatures, a subcritical transition to turbulence
occurs, triggered by finite-amplitude perturbations [13].

Since toroidal pipe flows represent an idealization of curved pipes, to what extent can the results
of the fully developed torus be transferred to limited bends? Does the spatially developing nature
of the flow affect the transition mechanism? In the literature, just a few studies attempted to answer
these questions. Lupi et al. [14] examined the stability properties of flow in a 90◦-bend pipe with
curvature δ = 1/3 and showed that the flow, steady for Reb � 2500, becomes periodic, oscillating
with a fundamental Strouhal number St = f D/Ub ≈ 0.23 for Reb > 2500. The global stability
analysis highlights a Hopf bifurcation as the cause of the transition from the steady to the periodic
regime at Reb = 2531. Furthermore, the structural sensitivity of the unstable eigenmode to spatially
localized feedback reveals that the region located 15◦ downstream of the bend inlet on the outer wall
is the most receptive to such perturbations, suggesting that the instability is linked to the strong shear
by the backflow phenomena in the outer-wall separation bubble. We thus aim to perform a similar
analysis for the 180◦-bend pipe with a unique numerical approach. The adaptive mesh refinement
(AMR) technique is used to obtain independent meshes for each solution field, e.g., the base flow
and the perturbation, both designed to minimize the committed error. Along with the numerical
methodology, this paper consists of the description of the transition mechanism for such curved
geometry. To our knowledge, the only study on transition in the 180◦-bend pipe is that by Hashemi
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et al. [15]. However, they do not address the nature and cause of transition, as no actual stability
calculation is performed. They also estimate an exceptionally high critical Reynolds number.

The remainder of the paper is organized as follows: First, we introduce the numerical method-
ology, including information about the AMR application for stability studies. Next, we discuss
the global stability analysis in Sec. IV, which involves the examination of the base flow and
the determination of both the direct and adjoint unstable eigenmodes. Then, Sec. V explores the
instability’s nature through the structural sensitivity map. Finally, we conclude with our findings
and prospects in Sec. VI.

II. NUMERICAL FRAMEWORK

In the current paper, we compute the numerical solution of the incompressible NS equations,
along with the linearized direct and adjoint (dual) solutions. We prescribe a Dirichlet condition
with a parabolic (Hagen-Poiseuille) velocity profile at the inlet, and the outflow consists of natural
boundary condition (−pI + ν∇u) · n = 0, where n is the normal vector. In the linear simulations,
we set a sponge layer at the outflow, with a length of 1D, and a forcing function adapted from
Nordström et al. [16], to avoid reflections from the boundary. The pipe surface is a no-slip and
impermeable wall. Different initial conditions are used for the linear and nonlinear simulations, as
specified below. The simulations are carried out using the open-source code Nek5000 [17], based
on a spectral-element method [18]. This formulation offers minimal dissipation and dispersion,
with high accuracy and almost exponential convergence. Similarly to a high-order finite element
method, the computational domain is divided into nonoverlapping hexahedral subdomains called
elements. Each element is considered a spectral domain where the velocity and pressure solutions
are based on the Lagrangian interpolants defined on the Gauss-Lobatto-Legendre (GLL) or Gauss-
Legendre (GL) points, respectively. The PN − PN−2 formulation employs p + 1 GLL points for
velocity and p − 1 GL points for pressure. In our simulations, the polynomial order p is set to 7 after
a proper convergence study. The time integration is performed via third-order implicit backward
differentiation, with an extrapolation scheme of order three for the convective term. In addition, the
advection term is also overintegrated, or dealiased, to retain its skew-symmetry [19].

Similarly to Lupi et al. [14], the computational domain consists of two straight sections, con-
nected by a 180◦-bend with a curvature radius equal to three times the radius of the pipe, i.e.,
δ = R/Rc = 1/3. During the simulations, the NS equations are expressed in the Cartesian reference
frame. However, in the postprocessing stage, a local reference system (s, p, y′) is introduced. The
direction of the coordinate y′ is unchanged compared to y, s is the streamwise coordinate along the
pipe centerline with the origin at the bend exit, and p is given by the right-hand triad with y′ and
s. This reference system can be seen as a Frenét frame with the p unit vector inverted and with
the angle θ measuring the location in the bend, starting from z = 0 (positive x-axis) and clockwise
(see Fig. 1). We refer to the xy and xz planes as the symmetry and cross planes, respectively. The
initial nonlinear simulation and the base flow computation are performed on a mesh with straight
inflow and outflow pipe sections which are 10D and 20D long, respectively. For the direct and dual
solution, we consider a smaller pipe with a 6D inflow (outflow) length. The mesh is made symmetric
(same inflow and outflow length) for the structural sensitivity analysis, with an outflow reduction
for truncating the convective growth of the instability. Nonetheless, following Lupi et al. [14], the
influence of the computational domain size is carefully assessed.

A. Mesh adaptivity

The current paper aims to use the AMR technique to obtain independent meshes designed for
the nonlinear base flow, direct, and dual linear solutions. In this section, first we introduce the used
computational tools and then we describe the general workflow for the meshing procedure.

The numerical framework has been developed by our group in the spectral-element code
Nek5000 [20–23]. The AMR has been recognized as a crucial advancement in numerical
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FIG. 1. Sketch of the 180◦-bend pipe geometry with black arrows indicating the inflow and outflow
directions. The reference systems are reported in the (left) symmetry and (right) cross planes.

simulations by Slotnick et al. [24]. This is due to its ability to provide greater flexibility in meshing,
allowing for adjustments to be made on the fly based on real-time or time-averaged estimations of
computational errors. Our previous usage of AMR focused on direct numerical simulations (DNSs)
of incompressible turbulent flows, see Refs. [25,26]. However, the application of AMR in three-
dimensional global stability analysis required the adaptation of the code to the linear solver and other
stability tools as well. For the interested reader, further details are provided in an exploratory work
that was conducted to validate the framework in a two-dimensional setting [27]. In the investigation
of transitional flows, the appropriate mesh resolution is pivotal, probably even more than in fully
turbulent flows. This is because an under-resolved mesh can lead to the identification of incorrect
underlying physical mechanisms. Therefore, we utilize AMR to obtain multiple independent meshes
that are optimized for the specific solution field being investigated.

Accurate measurement of the error is a prerequisite for designing an adequate mesh. In this case,
we employ the spectral error indicator (SEI), which was initially proposed by Mavriplis [28]. The
SEI assesses both the truncation and quadrature errors that occur in the solution field, which depends
on the nature of the problem at hand. For instance, in the case of nonlinear DNS, performed for
extracting the base flow, the velocity field is considered, whereas for linear DNS, the direct and dual
perturbation velocity field is assessed for the direct and adjoint problems, respectively. Regardless of
the solution field, the error indicator ε is estimated as follows. For the sake of simplicity, we consider
a 1D problem, where u is the exact solution to a system of partial differential equations and uN is
an approximate spectral-element solution with polynomial order N . We expand u(x) on a reference
element in terms of the Legendre polynomials,

u(x) =
∞∑

k=0

ûkLk (x), (1)

where ûk are the associated spectral coefficients and Lk (x) is the Legendre polynomial of order k.
The estimated error ε = ‖u − uN‖L2 results in

ε =
(∫ ∞

N

û(k)2

2k+1
2

dk + û2
N

2N+1
2

) 1
2

. (2)

Assuming a decay of the spectral coefficients of the form û(k) ≈ c exp(−σ̂k), the parameters c
and σ̂ are obtained by least-squares fitting of the (usually four) base functions uk with the highest
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frequencies. This operation is performed for each dimension separately. In the actual 3D case,
the maximum error among each component is considered. The error is measured online and ε

indicates the error per element at each time step. Eventually, the time average of ε for a given
interval T is considered. The elements with the largest SEI are isotropically split to increase the
spectral resolution (isotropic h-type refinement). The single parent element is replaced with eight
children in three-dimensional cases [29]. Following Kruse [30], we use the conforming-space and
nonconforming-mesh approach, in which the hanging nodes are not considered as real degrees of
freedom and nonconforming interfaces are treated with an interpolation operator. Massaro et al. [23]
showed the nonconforming interfaces do not affect the solution field or introduce any further
instabilities. Peplinski et al. [31] measured that the excellent parallel performance of Nek5000 [32]
are not affected by the AMR implementation.

Regarding the meshing procedure, further details are needed to clarify the workflow. Starting
from the nonlinear DNS, the base flow is extracted. After the transient, required by the initial
condition to adapt, several rounds of refinement are performed to enhance the mesh quality. Since
the refinement strategy remains consistent for both nonlinear and linear simulations, the approach is
explained once and for all for the direct problem, in a few lines below. In the nonlinear simulations,
we use a domain larger than Lupi et al. [14] and Hashemi et al. [15]: 10D and 20D for the inflow
and outflow lengths, respectively. The base flow, extracted using SFD, is then spectrally interpolated
on a mesh which is reduced for truncating the convective growth of the instability, and symmetric
(with straight sections of the same lengths) for performing the structural sensitivity analysis. The
interpolation is also required to start the linear simulation on a fresh spectral grid. Particularly,
we perform a spectral interpolation, with an accuracy that corresponds to the adopted polynomial
order (p = 7) [33]. The effects of the mesh reduction and the base flow interpolation have been
carefully assessed to make sure the instability mechanism is not altered by them. Subsequently, the
linear DNS of the direct and dual linear problem is carried out by initializing the perturbation field
with spatially uncorrelated noise. After the initial transient, which can be determined by looking at
local (velocity probes) and global (total perturbation energy) quantities, the velocity perturbation
field is used to improve the mesh quality by performing h refinement. The SEI is computed
on the current solution field, averaged for a reasonable time interval, and used as a measure of
the truncation and quadrature error [28]. Therefore, the resolution is automatically improved
in the regions indicated by the SEI. Multiple rounds of refinement are conducted and, at each round,
the total amount of elements is increased by a user-defined percentage. Specifically, in our case, the
elements where the SEI is the largest are refined to increase the overall number of elements by 15%.
This criterion is particularly suitable for static memory allocation codes like Nek5000. A standard
mesh convergence analysis is performed to terminate the process. A similar procedure is followed
for the linear dual solutions. Ultimately, three independent meshes are generated for the base flow,
linear direct, and dual solutions, respectively, each designed to reduce numerical errors. Especially,
the direct and dual solutions necessitate considerably different meshes. Indeed, the non-normality
of the NS operator leads to a significant spatial separation between them, as depicted in Fig. 2. Note
that the wavemaker evaluation, necessary for the structural sensitivity analysis discussed in Sec. V,
requires the direct and dual solution defined onto the same mesh. Thus, in this last postprocessing
step, the linear solutions are spectrally interpolated and the structural sensitivity is computed. The
outcomes have shown to be robust with respect to the chosen interpolating mesh in this last step.

There are critical aspects that will require attention in the future. One of the pressing questions
is the definition of a criterion for terminating the refinement process. Unlike turbulent flows, where
statistical approaches can be employed [26,34], global stability analysis lacks a clear criterion.
In the present paper, standard mesh convergence analysis is utilized, which involves examining
the convergence of local and global quantities. Another potential future direction may involve
employing multiple meshes for each of the m eigenvalues during the Arnoldi calculation. However,
implementing multiple meshes during the same simulation is currently unavailable in the spectral-
element code Nek5000. Note that typically the most unstable (most dangerous) mode is sought.
Despite the aforementioned limitations, this application of AMR in the study of transitional flows,
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FIG. 2. Spectral-element grid for different meshes designed via AMR technique for the (a) nonlinear base
flow, the linear (b) direct, and (c) dual solutions, respectively. From top to bottom: The symmetry plane (y = 0)
and the cross planes at the inlet (θ = 0) and outlet (θ = 180◦) of the bend. Blue isocontours of the velocity
magnitude normalized between [0,Ub] for the base flow and [0,1] (i.e., the maximum) for the linear and dual
solutions. In the symmetry plane view, a shortened domain is shown with inflow and outflow lengths equal to
2D. The black arrows indicate the base flow direction.

using different and independent meshes (adapted to the specific solution), provides interesting and
encouraging results. The main advantage consists of the capability of the code to automatically
adapt the mesh to the unstable eigenmode, minimizing the source of numerical errors. Once the
meshes are converged, they are employed in solving the nonlinear and linearized NS equations, as
well as for computing the spectrum of eigenvalues using the Arnoldi method.

III. NONLINEAR BASE FLOW

The literature lacks stability analysis of the 180◦-bend pipe flow. Only Hashemi et al. [15]
presents DNS of such transitional flow for the curvature δ = R/Rc = 1/3. Hence, we first compute
the numerical solution of the incompressible NS equations, which in the nondimensional form read

∂u
∂t

+ (u·∇)u = −∇p + 1

Reb
∇2u,

∇·u = 0, (3)

where u is the velocity vector, p is the nondimensional pressure, and Reb = UbD/ν is the Reynolds
number based on the pipe diameter D, the bulk velocity Ub, and the kinematic viscosity ν. To
complete the set of equations, proper initial and boundary conditions are considered.
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FIG. 3. Velocity magnitude field computed via nonlinear DNS after 200 convective time units (D/Ub) at
(a) Reb = 2500 and (b) Reb = 3000. The xz symmetry plane and the xy cross plane at z = 0 (bend outlet) on
the left and right, respectively. The black arrows indicate the inflow and outflow directions. The inner and outer
walls are marked with letters I and O

Hashemi et al. [15] showed that the critical Reynolds number is Reb = 5000 − 5200, based on
the bulk velocity, kinematic viscosity, and pipe diameter. As expected, the critical Reb,cr is much
higher than the straight pipe case. However, their estimation is far greater than the transitional
Reynolds number reported by previous studies for the same curvature δ = 1/3, particularly Reb,cr =
2531 [14] and Reb,cr = 3290 [11], for the 90◦-bend and toroidal pipes with the same curvature, re-
spectively. We thus would expect a critical Reynolds number falling within this range for a case that
is intermediate to the aforementioned ones. Indeed, our DNS of the nonlinear NS equations shows
clearly that the first instability occurs for Reb = 2500 − 2600. Already at Reb = 3000, the flow is
fully turbulent; see Fig. 3. It is unlikely to be a coincidence that our estimation precisely halves the
value reported by Hashemi et al. [15], who may have an inconsistency in reporting the value of Reb

by using the centerline velocity instead of the bulk velocity as reference. This is also evident from
Fig. 12 by Hashemi et al. [15], where the color scale ranges from 0 to 1.

With this in mind, we can proceed to obtain the base flow for a Reynolds number Reb = 2550
slightly higher than the largest value of Reb where the flow remains steady (Reb = 2500). At
Reb = 2550, the nonlinear DNS confirms that both the 90◦- and 180◦-bend pipe flows exhibit a time-
periodic behavior with a period T ≈ 4.3 convective time units (D/Ub). Local probe measurements
are also used to identify the appearance of a limit cycle in the phase space representation, see
Fig. 4(b). At this Reynolds number, the lowest for which the flow exhibits an unsteady behavior
among the considered values, the separation bubbles (see Fig. 4) oscillate with a Strouhal number
St = f D/Ub = 0.23, where f is the frequency. The results of the nonlinear simulations are in ex-
cellent agreement with the stability analysis outcomes, which report a globally unstable eigenmode
characterized by a similar frequency (St = 0.233), as discussed in Sec. IV. The consistent patterns
observed in both 90◦- and 180◦-bend pipe flows lead us to hypothesise that a common underlying
physical mechanism is responsible for triggering the transition in both cases. Note that we did not
observe any hysteresis when going from laminar to turbulent, as opposed to Hashemi et al. [15].

A. Base flow

As the stability analysis deals with the study of the evolution of infinitesimal perturbations to a
base state, we first need to calculate the base flow about which the NS equations are linearized. In
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FIG. 4. (a) Isocontours of the streamwise velocity us in the symmetry plane (y = 0) for the base flow
extracted via SFD at Reb = 2550. The blue three-dimensional isosurface for us � 0 shows the three distinct
recirculation regions, symmetric with respect to the xz plane. The black arrows indicate the flow direction.
(b) Phase-space representation of local velocity measurements of a probe located at (x = −1.30D, y =
−0.35D, z = −4.00D) for the nonlinear DNS of the 180◦-bend pipe flow at Reb = 2550.

the current paper, the steady base flow (U , P) at Reb = 2550 is extracted via selective frequency
damping (SFD) [35] from nonlinear NS equations. The SFD technique damps the oscillations of
the solution using a temporal low-pass filter. It applies to the flow a forcing f defined as f =
−χ (u − w), where u is the velocity solution and w is the temporally low-pass filtered velocity
obtained by a differential exponential filter wt = (u − w)/	, with 	 determining the filter width. To
assess the convergence, we consider the amplitude of the forcing ε = ‖u − w‖L2(�). The tolerance
level of ε ≈ 10−7 is achieved. For the base flow, as for the direct and dual solutions, the mesh is
designed via the AMR technique.

Figure 5 displays the base flow extracted using SFD at Reb = 2550, which resembles the steady
flow at Reb = 2500. Additionally, we compare it with the base state computed by Lupi et al. [14] for
the 90◦-bend pipe, at the same Reb = 2550 and curvature δ = 1/3. In both, the parabolic velocity
profile starts to deviate slightly just upstream of the bend inlet. Figure 5(a) shows the evolution
of the flow in the bend at the angles θ = 0◦, 45◦, 75◦, 90◦, 120◦ and 180◦ (panels A, B, C, D,
E, and F). Both flows exhibit a similar structure within the 0◦–90◦ range. In the panel labeled D,
which constitutes the outlet and midpoint of the bend for the 90◦ and 180◦ pipes, respectively, Dean
vortices are visible in the center of the pipe. Additionally, two smaller ones are located close to the
inner wall. The discrepancy with the torus, where only one pair of vortices shows up, is evident [12].

Furthermore, unlike a toroidal geometry where no separation occurs, both spatially developing
bent pipes exhibit at least two separation bubbles. One is situated on the outer wall of the pipe,
beginning at θ ≈ 0◦ (actually, a few degrees before the inlet) and reattaching at θ = 30◦, while the
other is located on the inner side, approximately 67.5◦ downstream of the bend inlet, see Fig. 4(a).
The reader can also refer to Fig. 4 in Lupi et al. [14] for the 90◦ case. The backflow region on the
outer wall at the bend inlet displays the most negative value, with the maximum absolute value of
the streamwise velocity equal to almost 50% of the bulk velocity. In addition, the 180◦ case presents
a third recirculation bubble. It extends from the bend outlet up to s = 2D on the inner wall, with a
maximum backflow velocity around 2% of the bulk velocity. All the recirculation regions exhibit a
symmetry with respect to to the xz plane.

As the curved section in the 180◦-bend pipe flow is twice as long as in the 90◦ case, the centrifugal
force acting on the flow persists for twice the length. Consequently, at the end of the bend, the
outflow becomes highly concentrated towards the outer side and the central areas. It resembles a
horizontal (IO plane) symmetric shape rather than being more uniformly distributed only along the
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(a)

(d)

(b) (c)

FIG. 5. Planar perspectives of the base flow extracted via SFD at the Reynolds number Reb = 2550
(curvature δ = 1/3). (a) The variation of velocity magnitude in circular cross sections of the bend is illustrated
at various angles, including θ = 0◦, 45◦, 75◦, 90◦, 120◦, and 180◦ (A, B, C, D, E, and F, respectively). In
addition, the in-plane streamlines are shown at 90◦ (panel D) and 180◦ (panel F ). (b), (c) Isocontours of
velocity magnitude in the xz plane at y = 0 for the 180◦ and 90◦ bent pipes, respectively. (d) Lastly, the velocity
magnitude and in-plane streamlines for the 180◦-bend (in the first row) and 90◦-bend (in the second row) are
shown for G, H, J, and L, respectively, at various streamwise stations s = 1D, s = 2D, s = 4D, and s = 8D.

wall [Fig. 5(a), panels D and F ]. Lupi et al. [14] described the pattern of four Dean vortices formed
at the bend outlet, with two large structures near the center of the pipe cross section and two small
ones located close to the inner wall [Fig. 5(a), panel D]. The outlet of the current case is significantly
different: a system of eight Dean vortices, is formed. As the configuration is nearly symmetric with
respect to the horizontal midaxis, just the lower part is described below. A large structure appears
near the center, close to two smaller and corotating (and counterrotating with respect to to the central
one) vortices. Furthermore, a vortical structure appears at the bottom of the cross section, pushed
towards the wall by the central vortices.

Looking at the outflow, Fig. 5(d) presents a comparison of the base flow at various distances
from the bend outlet, specifically s = 1D, s = 2D, s = 4D, and s = 8D, for the 90◦- and 180◦-bend
pipe flows (in the first and second rows, respectively). In-plane streamlines are used for the
characterization of the base flow and the identification of Dean vortices. Following the spatial
evolution downstream of the bend, the two corotating structures and the bottom Dean vortex get
larger at s = 1D. In addition, at the outer wall, where an intense shear layer develops, one more
vortex appears. At this stage, the formation counts ten Dean vortices overall (panel G). At s = 2D
(panel H), the pattern is shrunk downstream of the recirculation region described above, which is
a characteristic of the 180◦ case only. Further downstream (s = 4D), one sees an incipient merging
of the left-side vortex with the central one and the expansion of one of the two corotating vortices
(section J). The lower structure is now confined in the bottom right corner. Eventually, at s = 8D,
four out of five initial vortices are merged into two larger swirls. The bottom structure still persists
(panel L). Overall, the six Dean vortices state is weakly asymmetric, with a magnitude which grows
with the distance downstream of the bend, but without substantial differences between the two
halves of the pipe cross section. In summary, the overall pattern of the base flow is different from
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the four Dean vortices state described by Lupi et al. [14] for the 90◦-bend pipe flow and departs
from the fully developed toroidal flow, where only one pair of Dean vortices is detected [12].

IV. GLOBAL STABILITY ANALYSIS

In the current section, the results of the global stability analysis are presented. The base flow
previously extracted via SFD is used to linearize the NS equations. The linear direct and adjoint
eigenmodes, along with their associated eigenvalues, are computed. The most unstable eigenmode
is presented and compared to the 90◦-bend pipe flow results [14].

A. Linear direct numerical simulations

To investigate the unstable eigenmode, we start by performing a set of linear simulations. The
NS equations are linearized about the extracted base flow, deriving the governing equations for the
perturbations (u′, p′),

∂u′

∂t
+ (u′·∇) U + (U ·∇) u′ = −∇p′ + 1

Reb
∇2u′,

∇·u′ = 0, (4)

completed by proper initial and boundary conditions. The simulations are initialized with noise
uncorrelated in space, which has a nonzero projection on the wanted modes, and a frozen base flow
(previously extracted via SFD). We expect the perturbation solution to converge to the most unstable
eigenmode of the direct problem Eq. (4) [36].

Similarly, we compute the dual solution (u†, p†) for the linearized adjoint set of equations

−∂u†

∂t
− (U ·∇) u† + (∇U )T u† = ∇p† + 1

Reb
∇2u†,

−∇·u† = 0, (5)

supplemented by proper initial and boundary conditions. Similarly to the direct problem, the dual
perturbation from Eq. (5) converges to the most unstable adjoint eigenmode.

The simulations are initialised with a mesh which is gradually refined according to the procedure
described in Sec. II. As a result, we obtain independent meshes for the direct and dual solutions,
which are designed by minimizing the committed numerical error. Both the direct and the adjoint
simulations are run for a sufficiently long time interval after the last AMR refinement, approximately
100 convective units (D/Ub). The converged perturbation solutions, u′ and u†, are shown in Fig. 6.
As expected, they resemble the real part of the unstable eigenmode computed via the Arnoldi
method, see the discussion in Sec. IV B. The comparison with the 90◦-bend (same Reb and δ) shows
in a clear way that very similar perturbations are obtained, which then trigger the transition (Fig. 6).
The structure has a ring shape near the separation bubble on the outer wall of the pipe and moves
towards the inner wall as the distance increases along the bend. Eventually, it evolves into a larger
structure downstream of the bend. Interestingly, the origin of the xz-symmetric structure corresponds
to the recirculation area pointed out in Fig. 4. Similarly, the dual solution corresponds to the real
part of the unstable adjoint mode and the shape resembles the 90◦-bend flow solution.

Overall, the two perturbation solutions, u′ and u†, evolve in distinct regions of the domain
(Fig. 6). The AMR application allows having different independent meshes which are optimized
for the solution field under investigation. The resulting meshes are also used for the spectrum
calculation discussed in the following section.

B. Spectrum of the eigenvalues

The growth rate (σ ) and angular frequency (ω) of the unstable eigenmode can be determined
through the exponential power method [37]. One limitation of this approach is its inability to
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FIG. 6. Isosurfaces of the (blue) negative and (red) positive streamwise velocity component us of the
perturbation solution for Reb = 2550 of the (left) direct and (right) dual problem. The values are in the range
[−0.1, 0.1] of the maximum for the (top) 180◦- and (bottom) 90◦-bend pipes. For the sake of clarity, a shortened
domain is shown with inflow and outflow lengths equal to 5D and 3D, respectively. The black arrows indicate
the flow direction. Note that the phases of the disturbances are arbitrary and thus not directly comparable
between the two cases.

evaluate the full spectrum of eigenvalues. Indeed, it is not possible to determine if there is only
one unstable eigenvalue or multiple ones.

To address this limitation, we compute a portion of the spectrum of eigenvalues for both the direct
and adjoint linearized NS operators. The velocity and pressure disturbance of the linear problem
Eq. (4) can be expressed as

u′(x, t ) = û(x)eλt , λ ∈ C,

p′(x, t ) = p̂(x)eλt , λ ∈ C, (6)

under the normal-mode hypothesis, with λ = σ + iω. The same approach is applied to the problem
Eq. (5). Afterwards, the generalized eigenvalue problem is formulated by substituting Eqs. (6) in
Eq. (4):

λRr̂ = J r̂, (7)

where

r̂ =
(

û
p̂

)
, R =

(
I 0
0 0

)
, J =

⎛
⎝−∇U − U ·∇ + 1

Reb
∇2 −∇

∇· 0

⎞
⎠. (8)

The explicit solution of the problem Eq. (7) requires large memory storage and prohibitive compu-
tational cost. Alternatively, it can be reformulated as an initial value problem for the velocity only
by exploiting the incompressibility constraint, i.e., eliminating the pressure [38]. The solution has
the form

u(x, t ) = eLt u0(x), (9)

113903-11



MASSARO, LUPI, PEPLINSKI, AND SCHLATTER

FIG. 7. Portion of the spectrum for the direct problem at Reb = 2550 of the (cross) 90◦ and (circle) 180◦

bent pipe flows.

where L is the projection of J on a divergence-free space and k are the eigenvalues of the matrix
exponential eLt , related to those of J by the expressions

σ = ln(|k|)
	t

, ω = arg(k)

	t
, (10)

with 	t being the time interval between the Krylov vectors generated in the time-stepper approach,
as described by Bagheri et al. [39]. The eigenpairs are computed with the implicitly restarted Arnoldi
method, proposed by Sorensen [40] and implemented in the software package ARPACK [41]; see
also Refs. [39,42,43]. In the Arnoldi method, the eigenpairs are approximated by seeking solutions
in the Krylov subspace of dimension m = 100. The first 20 eigenpairs for both the direct and adjoint
problems are calculated and the residual tolerance is set to 10−6 for the eigenvalue computation. In
addition, the Ritz estimate for all eigenvalues is at least two orders of magnitude smaller than this
tolerance.

The spectrum confirms a single unstable eigenmode with the growth rate σ = 0.0342 and angular
frequency ω = 1.462, see Fig. 7. The same calculation is performed for the adjoint linearized
NS operator, whose eigenvalues correspond to the spectrum of the direct (the maximum relative
difference between the growth rates of the direct and adjoint eigenvalues is below 10−3). The shape
of the direct and dual unstable eigenmode corresponds, as expected, to the solutions obtained
via a linear response (Fig. 6). As the unstable mode is associated with a couple of complex
conjugate eigenvalues, the spectrum analysis confirms that the flow undergoes a Hopf bifurcation
between Reb = 2500 and Reb = 2550. A more accurate estimate of the critical Reynolds number is
obtained by linearly interpolating the growth-rate values of the least stable mode at Reb = 2500 and
Reb = 2550. For the 180◦-bend flow, the critical Reynolds number is estimated to be Reb,cr ≈ 2528,
very close to the 90◦-bend pipe (Reb,cr = 2531, see Ref. [14]), and significantly lower than the value
computed for a toroidal pipe with the same curvature (Reb,cr = 3290, see Ref. [11]).

The linear stability analysis is further validated by data from nonlinear DNSs. The nonlinear
simulations are initialized with a Poiseuille profile with superimposed a divergence-free spatially
uncorrelated noise. Discarding the initial transient, each simulation is time integrated for approxi-
mately 400 convective time units. From local velocity probes, the amplitude of the perturbations
can be estimated. The saturation amplitude (normalized by the value at Reb = 2800) is shown
in Fig. 8. For a supercritical Hopf bifurcation, the size of the limit cycle is supposed to grow
continuously from zero and increases proportionally to

√
Reb − Reb,cr [36]. The data exhibits an
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FIG. 8. The growth of the amplitude of the limit cycle. From local velocity probes, the saturation amplitude,
A, measured as a function of Reynolds number (red line). The nonlinear DNS data (red squares) fit the function
A ∼ √

Reb − Reb,cr . The intercept (black square) of the red line with the horizontal axis (black line) provides a
critical Reynolds number approximately equal to 2538.

excellent fit to the function A = C
√

Reb − Reb,cr that describes the growth of the amplitude of the
limit cycle. The intercept of the curve with the horizontal axis provides a critical Reynolds number
approximately equal to 2538, which is very close to the value estimated from the results of the
global stability analysis. The critical Reynolds number found in the current paper is approximately
half the prediction made by Hashemi et al. [15]. As previously suggested, this difference may be
due to an inconsistent normalization of the velocity field by Hashemi et al. [15], who used the
centerline velocity instead of the declared bulk velocity. Furthermore, Hashemi et al. [15] reported
sensitivity to the amplitude of the initial disturbance for 5000 < Reb < 5200, which is an indicator
of subcritical transition. Nevertheless, such a scenario is not observed in the present work.

V. STRUCTURAL SENSITIVITY ANALYSIS

The adjoint of a linear operator is a crucial concept of functional analysis, as it allows, among
other things, the identification of regions with the highest receptivity to initial conditions. In the case
of 180◦-bend pipe flow, the regions of maximum receptivity are concentrated in the outer part of the
inflow and at the beginning of the bending section, as depicted in figure 6. Overall, the receptivity
decays rapidly in the pipe cross-plane. Inside the curve, it does extend up to θ = 21◦. However,
analyzing the adjoint (and direct) mode independently does not provide conclusive information
about the origin of the instability. Thus, we conduct a structural sensitivity analysis.

According to Chomaz [44], the flow advection term −(U · ∇) u† is the primary cause of the
non-normality of the linear operator, resulting in upstream transport for the adjoint perturbations.
This non-normality, in turn, leads to the substantial spatial separation between the direct and adjoint
eigenmodes [44–46]. Due to this significant separation between the two, alternative methods are
necessary to pinpoint the origin of the instability. Similarly to Chomaz et al. [47] and Monkewitz
et al. [48], the work by Giannetti and Luchini [49] introduces the idea of a wavemaker for global
modes. By applying this concept, it becomes possible to examine the spatial location where a
modification in the problem structure results in the largest shift of the eigenvalue. This drift indicates
that the structural perturbation affects the core of the instability mechanism.

Therefore, we proceed to examine the spatial distribution of the structural sensitivity function η,
which identifies the locations where the feedback is stronger, i.e., the regions where the instability
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FIG. 9. Structural sensitivity map of the 180◦-bend pipe flow normalized between 0 and 1. (a) Three-
dimensional isosurface of η = 0.65 in a shortened domain, starting from θ = 0◦ with outflow length equal to
2D. (b) Two-dimensional isocontours of η (top) in the symmetry plane for θ between 0◦ and 90◦ and (bottom)
in the cross plane at θ = 15◦. The black arrows indicate the flow direction.

mechanism acts. This is defined as

η(x) = ‖û†(x)‖‖û(x)‖∫
�

û†(x)û′(x)d�
, (11)

where � is the computational domain and ‖ · ‖ is the magnitude. The sensitivity map of the unstable
eigenmode is shown in Fig. 9. The region of high sensitivity of the flow to localized feedback
from the velocity field can be determined by analyzing the spatial distribution of the structural
sensitivity function η. The results show that the significant values of η are limited to the region
located inside the bend, specifically on the outer wall and at an angular distance of approximately
15◦ from the inlet. This suggests that any modifications or perturbations to the flow in this area could
have a considerable impact on the stability of the system. In particular, the function η considers the
feedback that triggers the self-sustained oscillations, making it valuable in identifying the region
of the flow that operates as a wavemaker [49]. As described in Sec. II, the direct û and adjoint û†

are computed onto different meshes. Therefore, for evaluating the expression Eq. (11), a spectral
interpolation on a single mesh is required. Note that the η calculation is extremely robust with
respect to to the chosen mesh, even with a fairly coarse one.

The location of the wavemaker, which is found to be approximately in the middle of the
strongest separation bubble, is in agreement with the findings by Lupi et al. [14] for the 90◦-bend
flow. This analysis confirms that the 90◦- and 180◦-bend pipe flow undergo the same instability
mechanism. The origin of the unsteadiness of the flow can be traced back to the shear layer, with a
feedback mechanism triggered by the presence of the recirculation bubble. This conclusion is further
supported by previous studies on various flow cases, which have shown a clear correlation between
the onset of instability and the presence of a separation bubble (see, e.g., Schlatter et al. [38],
Hammond and Redekopp [50], Marino and Luchini [51]).
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VI. CONCLUSIONS AND OUTLOOK

This paper analyzes the global stability and structural sensitivity of spatially developing pipe
flow with a 180◦-bend and curvature δ = R/Rc = 1/3. First, we extracted the base flow from
nonlinear DNSs using SFD. Second, we evaluated the numerical solution of the linear direct and
adjoint problems. Third, we employed the implicitly restarted Arnoldi method [41] to compute the
eigenvalue spectrum to verify the presence of only one unstable eigenvalue. Eventually, to reveal
the nature of the transition, the structural sensitivity map is evaluated.

Given the critical role that mesh plays in numerical studies of flow stability, the AMR technique is
employed. Specifically, we adapted the AMR technique, previously used in the context of external
turbulent flows [22,26], to the linear and nonlinear solver in the spectral-element code Nek5000.
Unlike previous applications, where AMR was mainly utilized to reduce computational costs, the
primary focus on the stability analysis was to detect and refine poorly resolved regions of the
initial mesh. Indeed, these may have given rise to large numerical errors and potentially trigger
flow instability. We thus used independent meshes for the direct and dual linear solutions as well
as the nonlinear base flow. A reduction in the computational cost was also observed. Although
it is not as substantial as in the case of turbulent flows, where a tenfold reduction in grid points
was measured, it remains noteworthy, approximately around a factor of 3. Furthermore, as a future
prospect, it could be beneficial to create separate meshes for each of the first m eigenvalues in the
Arnoldi method, especially when multiple unstable eigenvalues exist. However, this would require
significant modifications to the solver with additional computational challenges. Nonetheless, as an
initial step, we believe that this paper already yields promising and noteworthy results.

We started by performing nonlinear DNSs. Another study in the literature that investigates the
transition in spatially developing 180◦-bend pipe flow is Hashemi et al. [15]. However, this study
does not perform an actual stability calculation and reports an exceedingly high Reynolds number.
As previously mentioned, we retain that an inconsistent normalization was performed in that study
using the centerline velocity instead of the declared bulk velocity. The actual global stability analysis
confirms the nonlinear DNS findings: By linearly interpolating the growth rate values of the least
stable mode at Reb = 2500 and Reb = 2550, we estimated the critical Reynolds number to be
Reb,cr = 2528. Thus, the Hopf bifurcation occurs at this Reynolds number, which is considerably
lower than the critical Reynolds number for the corresponding flow in a torus (Reb,cr = 3290; see
Ref. [11]). The computation of the eigenvalue spectrum confirms the existence of only one pair of
complex conjugate eigenvalues for the direct and dual operators, with a growth rate σ = 0.0342 and
angular frequency ω = 1.462. The latter corresponds to a Strouhal number St = 0.233, in agreement
with the oscillation of the separation bubbles at Reb = 2550 observed in the nonlinear simulations.
The direct eigenmode is characterized by a small, closed ring-shaped structure near the outer wall in
proximity to the bend inlet. This structure grows in amplitude as the streamwise distance increases
downstream. On the other hand, the adjoint eigenmode is concentrated in the section upstream
of the bend and close to the bend inlet. Due to the non-normality of the NS operator, the large
spatial separation between the two modes makes it challenging to draw any conclusive insights into
the instability origin by investigating them separately. Therefore, we conducted an analysis of the
unstable eigenmode sensitivity to spatially localized velocity feedback [49]. The resulting sensitivity
map revealed significant values on the outer wall inside the bend, approximately 15◦ downstream of
the bend inlet.

We conclude that the instability is caused by the separation of the shear layer, where a recir-
culation bubble is present, in a similar way to the spatially developing 90◦-bend pipe flow with
equal curvature. Thus, it is likely that large bends (i.e., larger than 180◦) would show the same
instability behavior. For shorter bends (lower than 90◦), the Hopf bifurcation needs to disappear
when approaching a straight pipe. It would be interesting to identify the critical angle. Our findings
suggest that it can be estimated to be approximately 20◦, given the location of the wavemaker region.
Regarding the further geometrical parameter, i.e., the curvature, based on the present results, it is
argued that at higher curvatures δ, the instability mechanism is very likely to be the same discussed
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here due to the even stronger shear layers. A different scenario is expected for lower curvatures,
where a subcritical transition to turbulence might occur, triggered by finite-amplitude perturbations,
as in toroidal pipes [13]. That said, this paper also provides a comprehensive characterization of the
steady base flow in the 180◦-bend pipe flow using high-order spectrally accurate nonlinear DNSs.
This finding is particularly significant as it can be utilized for fine-tuning more complex simulations,
including those involving blood flow in the aorta.
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