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Counterintuitively, fresh water attains a maximum density at a temperature above its
freezing point. As a result, it exhibits a phenomenon known as weak cabbeling. If a
system is in the weak cabbeling regime, then the mean density of the system is not equal
to the density evaluated at the mean temperature. The dynamics of freshwater gravity
currents are known to be influenced by weak cabbeling, but research on this influence
has been restricted to two-dimensional systems with stress-free (free-slip) boundaries. We
extend this work by simulating pairs of three-dimensional systems in the weak cabbeling
regime with no-slip conditions imposed on the vertical boundaries. In each pair, we have
a floating and sinking current: The former has a cold current intruding into a system at
the temperature of maximum density, and the latter has the reverse. We define currents
that form such a pair to be conjugate. The initial shape and size of conjugate currents are
the same, so we would expect the distribution of the intruding fluid to evolve identically
under the change of coordinates (y, z) → (Ly − y, Lz − z), where Ly is the domain width
and Lz is the domain height. This symmetry is broken two dimensions when a nonlinear
equation of state is assumed; we will show that this result extends to three dimensions. We
will report on differences among the lobe-cleft instability, the shear instability, the mixing,
and the bed-stresses of three-dimensional conjugate currents. Curiously, we observe that
differences in the lobe-cleft instability manifest only after secondary instabilities develop.
We also identify and discuss structures created by the lobe-cleft instability that, to our
knowledge, have been under-reported in the literature.

DOI: 10.1103/PhysRevFluids.8.113901

I. INTRODUCTION

Gravity currents are horizontal intrusions driven by a density difference between the intruding
and ambient fluid. When the current is lighter than the ambient fluid it is said to be hypopycnal,
and when it is denser it is said to be hyperpycnal. Gravity currents are ubiquitous in nature [1–3],
with rivers emptying into estuaries [4], the flow of one sea into another [5], the spread of storm
clouds [6], and volcanic discharge [7] all being examples of geophysical gravity currents. Early
theoretical investigations into gravity currents were concerned with self-similar solutions of inviscid
systems [3,8,9]. Subsequent experimental research of gravity currents was therefore concerned with
with measuring the height and speed of gravity currents and analyzing the data through the lens of
the. idealized, self-similar solutions [3,10–13]. Of course, the effects of friction along the density
interface and along the boundaries led to observed deviations from the theory [10–13]. The most
notable effects of friction are the production of coherent structures below, above, and behind the
current head [10].
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Laboratory and field investigations also reported on three-dimensional coherent structures near
and below the nose of a gravity current, which are understood to be the result of the lobe-cleft
instability [10,11,14–16]. Simpson [10] described these instabilities as “projecting noses with
bulges or buttresses,” and Ellison [14] noted that they cause the front to appear as if it “advances
in a series of localized bursts.” Härtel et al. [15,17] performed a stability analysis and direct
numerical simulation (DNS) of Boussinesq gravity currents that undergo a lobe-cleft instability. As
prior investigations determined the lobe-cleft instability is suppressed in the presence of free-slip
boundary conditions [10], the stability analysis assumes no-slip boundary conditions. Consistent
with results from laboratory experiments, this analysis showed that spanwise-varying perturbations
to the velocity and density fields due to the lobe-cleft instability grow near the front and bottom of
the current head; the authors also showed that the wavelength of the fastest growing mode decreases
with Gr, a dimensionless number that measures the scale of the buoyancy force relative to viscous
forces [15]. Experiments and three-dimensional DNS of no-slip gravity currents demonstrate that
the lobes continually change in shape and size, with a lobe splitting into two, or two lobes merging
into one [10,16–20]. Simulations show that the interface of high-Gr Boussinesq gravity currents
are populated by (baroclinic) hairpin vortices [20], and it is proposed that the merging and splitting
process is due to the interactions of those vortices near the front of the current [16]. Similarly, the
effects on vorticity of surface tension in viscous gravity currents [21], and of particle diameter in
non-Boussinesq sediment-laden currents [22], are thought to modulate the evolution of lobe-cleft
structures.

The billows, lobes, and clefts are of interest not just because they present a significant deviation
from the inviscid theory, but because they also play an integral role in the transport of heat and mass
in a myriad of geophysical settings [3,5,23–25]. The review articles by Meiburg and Kneller [23],
and Wells and Dorrell [25] outline how turbidity currents generated near the shores of lakes and
coastal oceans are affected by the instabilities and their resultant coherent structures. According to
Wells and Dorrell [25], these turbidity currents are generated by either sediment-laden outflow from
rivers or subsurface landslides and can travel large distances along the bed. Turbidity currents have
large values of turbulent kinetic energy (TKE) near the front and bottom of the current interface [26].
The largest values of TKE are found in the wake along the top of the current, where eddies induced
by the shear-instability entrain the ambient fluid [26]. The high-TKE, turbulent flow along the
bottom of the current also generates sufficient stress to scour and erode sediment along the bottom
boundary. Indeed, large-eddy simulations of high-Gr hyperpycnal currents show that the turbulent
wake of a gravity current entrains fluid from the upper water column while the lobe-cleft structures
entrain fluid from the bottom boundary layer [27]. If a turbidity current encounters a flat topography,
then it will eventually be extinguished, as friction along the boundary slows the current by direct and
indirect mechanisms [28]. The direct mechanism is somewhat obvious, since friction decreases the
TKE of the current; but, this decrease in TKE also causes sediment to precipitate from the current,
which gradually decreases the density difference between the intruding and ambient fluid [20].
Indeed, the wavelike shape of turbidites—minerals formed by accumulated ancient sediment—are
believed to be influenced by the lobes and clefts at the front of the decaying gravity currents that
transported the sediment to its ultimate destination [28,29].

In lakes during winter, gravity currents are not necessarily turbid and can be generated by temper-
ature differences alone [30]. During the freezing/thawing of winter lakes, nonuniform bathymetry
results in horizontal density gradients which can generate fresh-water gravity currents [30–33]. In
the middle of winter, when solar radiation cannot penetrate the surface ice, heat retained by sediment
can warm near-freezing water to the temperature of maximum density, which results in hyperpycnal
gravity currents [30]. The circulation induced by these currents are integral to hydrological and
biological processes during the deep winter [30,31,34]. Temperature-driven density differences in
cold water are especially interesting, as the density attains a maximum value at a temperature above
the freezing point and is therefore nonmonotonic [35]. For example, this nonmonotonic equation of
state can result in the phenomenon of cabbeling, whereby two hypopycnal parcels of water can
interact to create a hyperpycnal parcel [35]. Monotonic intervals of the nonlinear equation of state
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can also yield a cabbeling-like phenomenon known as weak cabbeling, where the mean density of
the parent parcels is not equal to the density evaluated at the mean temperature of the parent parcels
[36].

As discussed, the coherent structures of density driven currents modulate the transport of mass
and energy and have accordingly been studied in a variety of contexts [10,12,22,27,29,37,38], but
to our knowledge the modulation of coherent structures by the nonlinear equation of state for cold,
fresh water is a nascent field of study. Grace et al. [36] simulated two-dimensional gravity currents
in a free-slip domain using the equation of state for cool, fresh water. They used temperatures in a
monotonic interval below the temperature of maximum density (Tmd). In this setting hyperpycnal
currents are warmer than the ambient fluid, whereas hypopycnal currents are cooler. The authors
observed asymmetries in the position of the current front and shear-instability driven vertical fluxes
of mass and momentum between hypo- and hyperpycnal currents with equivalent initial Gr. This is
in direct contrast to the symmetry of two-dimensional, noncabbeling gravity currents demonstrated
in Fig. 11 of Härtel et al. [17]. In a subsequent investigation, researchers selected intruding and
ambient temperatures from an interval containing Tmd and described the effect of strong cabbeling
on these same phenomena [35,39]. In the present study we aim to extend this line of research
by investigating modulations of the development and evolution of the lobe-cleft instability by the
nonlinear, nonmonotonic equation of state for fresh water.

The remainder of this paper is organized as follows. In Sec. II, we state the governing equa-
tions and the numerical methods we use to solve them. We also define secondary variables used to
investigate the stress and mixing induced by the current. In Sec. III we present the results of our
simulations. First, we discuss the qualitative evolution of the gravity current by observing the effect
of shear and lobe-cleft instabilities on the temperature field; we will emphasize descriptions of the
structures generated by the lobe-cleft instability. We will then relate the qualitative evolution of the
temperature field to quantitiative trends in the speed of the currents, the position of the currents,
the bed-stresses along the contact boundaries (i.e., the bottom boundary for sinking currents
and the top boundary for floating currents), and in the mixing rate of temperature. As will be shown,
the evolution of the current, and the trends in the stresses and mixing induced by the current, will
vary for conjugate currents. In Sec. IV we summarize our results and proposed mechanisms before
describing future directions for this work.

II. METHODS AND THEORY

A. Governing equations and numerical methods

All simulations reported herein were performed using SPINS, a pseudospectral collocation
solver for the stratified, incompressible Navier Stokes equations [40]. As such, the accuracy of
the simulations scale with the number of grid points. To prevent aliasing, an exponential filter is
used to mitigate the accumulation of energy in the small length scales.

The governing equations, under the Boussinesq approximation are as follows [41]:
D�u
Dt

= − 1

ρ0
∇P − g

ρ ′

ρ0
k̂ + ν∇2�u, (1)

∇ · �u = 0, (2)

DT

Dt
= κ∇2T, (3)

where the x axis points streamwise and is aligned with the flat tank bottom, the z axis points
vertically and is aligned with the left wall of the tank, and the spanwise y axis is determined by
the right-hand rule. Note that we use the material derivative, D

Dt , in Eqs. (1) and (3). The dimen-
sions of the domains are L̃x × L̃y × L̃z = 153.6 × 12.8 × 30.0 cm, and we use an Nx × Ny × Nz =
1536 × 128 × 300 grid. We employ free-slip boundary conditions along x = 0, L̃x, and y = 0, L̃y;
we use no-slip conditions along z = 0, L̃z to trigger the lobe-cleft instability. We denote the ve-
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TABLE I. Parameters for the equation of state [Eq. (5)].

Tmd C ρ0

(◦C) (kg ◦C−2 m−3) (kg m−3)
3.98 7.6 × 10−6 999.974

locity by �u = [u(x, y, z, t ), v(x, y, z, t ),w(x, y, z, t )], the density by ρ(x, y, z, t ), the temperature by
T (x, y, z, t ), and the pressure by P(x, y, z, t ). g is the acceleration due to gravity, ν is the kinematic
viscosity, and κ is the thermal diffusivity. k̂ is the unit vector pointing in the z direction.

We have decomposed the density as follows:

ρ = ρ0 + ρ ′(x, y, z, t ), (4)

where ρ ′ represents fluctuations around a hydrostatic background state, ρ0. The buoyancy term
associated with ρ0 is balanced by a hydrostatic pressure term. Hence, the vertical gradient of the
hydrostatic pressure and −gρ0k̂ cancel each other out and do not appear in Eq. (1); instead, P
represents the dynamic pressure and buoyant forcing is due solely to the fluctuation, ρ ′. We use the
following equation of state for the fluctuation:

ρ ′ = −C(T − Tmd)2. (5)

This is a quadratic fit [39,42] to the freshwater, surface-pressure limit of the equation of state of
McDougall et al. [43], and it is suitable for cold, fresh water less than approximately 10 ◦C [39].
Alternative equations of state include the full equation of state of McDougall et al. [43] or the
freshwater limit of the fit to the UNESCO equation of state by Brydon et al. [44]. Note that the total
density in Eq. (4) attains its maximum value of ρ0 at Tmd ≈ 3.98 ◦C, which is the temperature of
maximum density. Thus, the dynamic pressure and buoyant forcing are due to deviations in T from
Tmd. The values of C, Tmd, and ρ0 are in Table I.

The system is initialized with the following stratification:

T (x, y, z) = Ta + �T

4

[
1 + βtanh

(
z − z�

δz

)][
1 − tanh

(
x − x�

δx

)]
, (6)

where �T = Ti − Ta, δx = δz = 1.00 cm, and x� = 19.2 cm. z�, Ti, Ta, and β are varied as part of
the numerical experiments, and their values will be stated in Sec. II C. These quantities will be
defined and discussed in greater detail in Sec. II B and II C; for now, it suffices to say that δx = δz

is the initial width of the interface between the intruding and ambient fluid, x� is the initial width of
the intruding fluid, and z� is the height of the intruding fluid.

B. Characteristic scales and dimensionless parameters

We perform our numerical experiments by simulating the dimensional equations presented in
the previous subsection, but we shall use nondimensional quantities for portions of our analysis. In

TABLE II. The parameters characterizing each experiment. As mentioned in the text, H̃ = √
x̃�z̃� is the

characteristic length, Gr is the Grashof number, t̃c is the characteristic time, and δx = δz is the dimensionless
initial width of the interface between the ambient and intruding fluid.

Case H̃ (cm) Gr t̃c(s) δx = δz

B/T-High 23.52 6.069 × 106 22.45 4.252 × 10−2

B/T-Med 16.63 2.146 × 106 18.87 6.013 × 10−2

B/T-Low 11.76 7.586 × 105 15.87 8.503 × 10−2
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the remainder of the text, dimensional variables will be represented with tildes (e.g., T̃ ). Standard
physical constants such as g, ν, and κ are understood to be dimensional and will not have tildes.

We nondimensionalize our lengths via

(x, y, z) = (x̃/H̃ , ỹ/H̃ , z̃/H̃ ),

where H̃ ≡ √
x̃�z̃�. Our decision to use this length is discussed in the final paragraph of Sec. II C.

The dimensionless temperature is given by

T = T̃ − T̃a

T̃i − T̃a
,

This has the effect of setting the temperature of the ambient fluid to 0 and the intruding fluid to 1.
Similarly, we have

ρ ′ = ρ̃ ′ − ρ̃ ′(T̃a)

ρ̃ ′(T̃i ) − ρ̃ ′(T̃a)
,

where ρ̃ ′ is given by Eq. (5); this also sets the density of the ambient fluid to 0, and of the intruding
fluid to 1.

The characteristic velocity and time are

Ũb =
√

|�ρ̃|
ρ̃0

gH̃ , (7)

t̃c = H̃

Ũb
, (8)

where |�ρ̃| = |ρ̃ ′(T̃i ) − ρ̃ ′(T̃a)|.
These are commonly used scales [16–18,36,39], with the exception of H̃ , which is the geometric

average of the lock-release depth and length. We use the geometric average to compare our cases,
because we varied z̃� without varying x̃�. We will explain this decision in Sec. II C.

Grace et al. [39] constructed a dimensionless parameter,

	 ≡ T̃i − T̃a

T̃md − T̃a
, (9)

that allowed them to thoroughly classify the effect of the nonlinearity of the equation of state of fresh
water on the behavior of two-dimensional gravity currents in free-slip domains. In our simulations,
we will have cases with T̃md ≈ T̃a, so we will instead use the parameter


 = 1

	
. (10)

As noted by Grace et al. [39], this is the dimensionless temperature of maximum density. Thus,

 = 1 corresponds to cases where T̃i = T̃md, and 
 = 0 corresponds to cases where T̃a = T̃md.

These scales and parameters allow us to nondimensionalize Eqs. (1)–(3) as follows [39]:

D�u
Dt

= −∇P + (T − 2
)T

|1 − 2
| k̂ + 1√
Gr

∇2�u, (11)

∇ · �u = 0, (12)

DT

Dt
= 1√

GrPr2
∇2T . (13)

Note that the absolute value sign in the buoyancy term arises because the left-hand side of Eq. (1)
has the characteristic scale Ũ 2

b /H̃ = g|�ρ̃ ′|/ρ0.
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The viscosity term in Eq. (11) and diffusion term in Eq. (13) are scaled by the dimensionless
quantities 1/

√
Gr and 1/

√
GrPr2, respectively. The Grashof number1 is

Gr =
(

ŨbH̃

ν

)2

. (14)

This characterizes the stability of the gravity current, in addition to the qualitative and quanti-
tiatve features of the gravity current and the lobe-cleft structures [10,12,15,16,18,20]. The Prandtl
number is

Pr = ν

κ
, (15)

which characterizes the diffusion of momentum relative to the diffusion of heat in the system; in all
cases Pr = 10.

Though it does not appear in the equations of motion, we will also make use of the Froude
number,

Fr = ũc

Ũb
, (16)

where ũc is the speed of the gravity current. After an adjustment period, gravity currents enter the
slumping phase where they travel with a constant speed [13]. After this, they can enter the inertial
phase and afterwards the viscous phase [although some currents skip the inertial phase entirely
if Re (the Reynolds number) or the lock-release volume are sufficiently small]; these periods are
characterized by current speed, and thereby Fr, obeying a distinct power law in time [12,13,19]. The
currents in the present investigation remain in the slumping phase for the majority of the simulation,
so we do not report on such power laws.

C. The numerical experiments

We simulate gravity currents initialized by a partial-depth lock-release; that is, the height
initial region of the intruding fluid is less than the height of the domain (z̃� < L̃z). The numerical
experiments involve adjusting z̃�, β, T̃i, and T̃a. Varying z̃� changes H̃ , and thereby changes Gr, which
measures how turbulent we can expect a given current to be. Since the dimensional interface width,
and the lock-release length are fixed the values of δx, δz, and x� also vary across the cases. When
β = −1, T̃i = 4.0◦C, and T̃a = 1.5◦C, the initial condition is a region of warm, dense fluid will
collapse and sink into the much larger region of cool, light fluid. These are the B-cases, but we also
refer to these as the bottom cases; here 
 = 0.99. A schematic is presented in Fig. 1. When β = 1,
T̃i = 1.5◦C, and T̃a = 4.0◦C, the initial condition is a region of cool, light fluid shorter than L̃z that
will collapse and float over a much larger region of warm, dense fluid. These are the T-cases, but we
also refer to these as the top cases; here 
 = 0.01. We do not present a schematic for these cases;
the configuration is essentially the same as Fig. 1, but the blue lock-release region is adjacent to
the top boundary instead of the bottom boundary. When we discuss the interaction between bottom
(top) currents and the bottom (top) boundary, we will often refer to the bottom (top) boundary as the
contact boundary. We will use �z when referring to distances measured from the contact boundary;
accordingly, �z is always non-negative.

Note that the nondimensional governing equations [Eqs. (11)–(13)] imply that, instead of 1.5 ◦C,
we could use T̃i = 6.5 ◦C (T̃a = 6.5 ◦C) for the B-cases (for the T-cases) and observe identical
outcomes, since we would still have 
 = 0.99 (
 = 0.01).

To summarize, we create two currents with equivalent initial g|�ρ̃|/ρ̃0 due to both currents
having equivalent |T̃i − T̃a|; however, in one case T̃a ≈ T̃md, while in the other T̃i ≈ T̃md. We shall

1This is also the square of a Reynolds number.
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FIG. 1. A schematic of the initial experimental configuration for the bottom cases. As mentioned in the
text, T̃i is the temperature of the intruding fluid, T̃a is the temperature of the ambient fluid, L̃x is the streamwise
length of the domain, L̃y is the spanwise extent of the domain, L̃z is the height of the domain, x̃� is the length
of the lock-release region, and z̃� is the height of the lock-release region.

henceforth refer to such pairs as “conjugate.” Note that the initial states of conjugate currents are
symmetric under the transformation

(y, z) → (Ly − y, Lz − z).

In Sec. III, we demonstrate that this symmetry is broken over time.
We also increase z̃�, as this will destabilize the systems by increasing the characteristic velocity

and length scales. Our objective is therefore to observe how differences between conjugate currents
manifest as the inherent stability of the system decreases. The parameters characterizing our
experiments can be found in Table II.

In varying z̃� without varying x̃�, δ̃x, or δ̃z, a simple experimental variation in a dimensional
system produces a number of disjunct variations in parameter space. For example, changing z̃�

while holding x̃� fixed affects the aspect ratio of the lock-release region; this could obfuscate the
source of discrepancies between trends of cases with different Gr, as the volume and aspect ratio of
the lock-release region modulate the duration (and existence) of the inertial and viscous phases of
gravity currents [13]. However, our simulations end before fully entering either phase, so this will
not concern us. To be more precise, the B/T-High currents reached the end of domain shortly after
t = 10; we therefore stopped the B/T-Med and B/T-Low simulations at the same dimensionless
time. As a result, none of the systems fully entered the inertial or viscous phases. The evolution of
the currents will be discussed in greater detail in Sec. III.

To verify our use of H̃ = √
x̃�z̃� as the characteristic length scale, we conducted two-dimensional

simulations of conjugate currents, which we do not report on, where we did scale x̃�, δx, and δz

with z̃�. We observed differences between conjugate currents consistent with our three-dimensional
results, which we shall report on in Sec. III. Altering z̃�, and using z̃� as the characteristic length
instead of

√
x̃�z̃� generated trends in the differences between the dimensionless current speed and

front location of conjugate currents. These dimensionless trends are consistent with our three-
dimensional results, but only if we nondimensionalize our three-dimensional cases using

√
x̃�z̃�

as the characteristic length scale.

D. Stress along the contact boundaries

We use no-slip boundary conditions along the top and bottom of the domain, so the gravity
currents will generate stress along these surfaces. The stress in the xi direction (i = 1, 2; x1 = x,
x2 = y) along the top of the domain is given by

τ̃xi = − ρ̃0ν
∂ ũi

∂ z̃

∣∣∣∣
z̃=L̃z

, (17)
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and along the bottom by

τ̃xi = ρ̃0ν
∂ ũi

∂ z̃

∣∣∣∣
z̃=0

. (18)

We do not have a similar stress for i = 3 (the z direction) because our fluid is incompressible, and we
assume no-slip boundary conditions. In our results, we present the nondimensionalized boundary
stresses, which are scaled by ρ̃0Ũ 2

b .

E. Mixing

In a fixed domain D with a (dimensional) volume V , the domain-averaged temperature is

〈T̃ 〉 = 1

V

∫
D

T̃ dV. (19)

We can then define the variance as

Var(T̃ ) = 1

V

∫
D

(T̃ − 〈T̃ 〉)2dV. (20)

This immediately reduces to

Var(T̃ ) = 〈T̃ 2〉 − 〈T̃ 〉2. (21)

The time derivative of the above is then

d

dt̃
Var(T̃ ) = d

dt̃
〈T̃ 2〉 − 2〈T̃ 〉 d

dt̃
〈T̃ 〉. (22)

If we assume that D is fixed, and that the boundary of D obeys the no-flux and no-pass conditions,
then

d

dt̃
Var(T̃ ) = − 1

V

∫
D

2κ∂̃ j T̃ ∂̃ j T̃ dV. (23)

Note that ∂̃ j = ∂/∂ x̃ j , and we are using the Einstein summation convention for compactness. The
decrease in the global variance of temperature is therefore driven solely by the domain integral of
the quantity

χ̃T = 2κ∂ j T̃ ∂ j T̃ . (24)

As a shorthand, define

χ̃D
T = 1

V

∫
D

2κ∂ j T̃ ∂ j T̃ dV. (25)

We will call χ̃T the local mixing rate and χ̃D
T the global mixing rate. The local mixing rate is

to Var(T̃ ) what viscous dissipation is to kinetic energy, so it is also known as the dissipation of
temperature variation [45]. Finally, we shall denote the horizontal average of the local mixing rate
by χ̃H

T . That is,

χ̃H
T (z̃, t̃ ) ≡ 1

L̃xL̃y

∫ L̃y

0

∫ L̃x

0
χ̃T dx̃dỹ. (26)

The quantities defined by Eqs. (24)–(26) are scaled by (T̃i − T̃a)2/t̃c, and the nondimensional local
mixing rate is

χT = 2√
GrPr2

∂ jT ∂ jT, (27)

where ∂ j is now shorthand for ∂/∂x j .
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F. Baroclinic vorticity

If we nondimensionalize and then take the curl of Eq. (1), then we get the vorticity equations:

Dωx

Dt
= (�ω · ∇)u + 2

(T − 
)

|1 − 2
|
∂T

∂y
+ 1√

Gr
∇2ωx, (28)

Dωy

Dt
= (�ω · ∇)v − 2

(T − 
)

|1 − 2
|
∂T

∂x
+ 1√

Gr
∇2ωy, (29)

Dωz

Dt
= (�ω · ∇)w + 1√

Gr
∇2ωz. (30)

The first term on the right-hand side of each equation is the vortex tilting and stretching term, and
the last term on the right-hand side of each equation accounts for viscous forcing [41]. The middle
term of the right-hand side of Eqs. (28) and (29) describe the quantity known as baroclinic vorticty
generation [41]; they account for the effects of the buoyant force on vorticity:

∂ωclin,x

∂t
= 2

(T − 
)

|1 − 2
|
∂T

∂y
, (31)

∂ωclin,y

∂t
= −2

(T − 
)

|1 − 2
|
∂T

∂x
, (32)

where ωclin,x and ωclin,y are respectively the x component and y component of the rate of baroclinic
vorticity generation. The initial streamwise temperature gradient generates ωclin,y, which initiates
the motion of the gravity current. When the gravity current begins to form lobe-cleft structures, a
spanwise temperature gradient forms and generates ωclin,x. The streamwise baroclinic vorticity, in
turn, induces motion in the vertical and spanwise directions. Increasing the x and y components of
the vorticity allow for the production of horseshoe/hairpin vortices [46], the interactions of which
are believed to govern the merging and splitting processes in gravity currents [16].

III. RESULTS

Before we present our results, we wish to discuss the common format of the three- and six-panel
figures. In each of these figures, the top row of panels corresponds to the B/T-High cases, the
middle row to the B/T-Med cases, and the bottom row to the B/T-Low cases. In the six-panel
figures, the left column corresponds to the bottom cases, and the right column corresponds to the
top cases. When we use �z, we are referring to the distance from the contact boundary—i.e.,
the boundary over/under which the bottom/top current flows—and not the vertical height. As such,
the right column panels are effectively “flipped” upside-down. For example, in Fig. 2, the currents
in Figs. 2(b), 2(d) and 2(f) are traveling under the top boundary.

A. Qualitative description of current evolution

Initially rectangular intrusions collapse towards the boundary and take the form of a round head
with a trailing rectangular tail [1]. The currents accelerate and then enter the slumping phase during
which they move with a constant velocity. Shortly after entering the slumping phase, two instabilities
develop: first, shear instabilities along the top and back of the current head, and second, lobe-cleft
instabilities along the front and bottom of the current head. The former manifest as billows oriented
parallel to the spanwise axis (see Fig. 2), and the latter manifest as rows of bulges along the front
of the current. The currents evolve consistently with past work [1,2,10,12,15–17,19,20,24], but—as
we will show—the specifics of the evolution of the two- and three-dimensional structures of the
current differ for 
 ≈ 1 (B-cases) and 
 ≈ 0 (T-cases).
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FIG. 2. Spanwise mean of T at time t = 5. The left panels correspond to B-cases, and the right panels
correspond to T-cases. For clarity, the contact boundary is coloured pink when it corresponds to the bottom
boundary, and it is coloured cyan when it corresponds to the top boundary. The panels in the top row correspond
to the B/T-High cases (Gr = 6.069 × 106), the middle row to the B/T-Med cases (Gr = 2.146 × 106), and
the bottom row to the B/T-Low cases (Gr = 7.586 × 105). The horizontal axis measures the width/spanwise
extent of the domain. This is a frame from the supplementary video HOR-T-PROF. The vertical axis measures
the distance from the contact boundary instead of the vertical coordinate (i.e., the currents in the right panels
are “upside-down” and are actually floating under the top boundary). This is a frame from the supplementary
video VER-T-PROF. The gray rectangles highlight the dipoles from the B/T-High cases. The white rectangles
surround billows produced by the shear instability. The black rectangles surround structures produced by the
lobe-cleft instability; these will be discussed in Sec. III A 2.

1. The shear instability

We begin by discussing the shear instability. In Figs. 2 and 3 we plot the spanwise averaged
temperature for each case at time t = 5 and t = 10, respectively. We observe that the proportion of
fluid within the head versus the tail depends on Gr. In the bottom panels of Fig. 2 and 3, the tails
of currents from the B/T-Low cases contain the majority of the fluid, while the heads are tall, thin
structures that slowly decay over the duration of the simulation. In contrast, in the B/T-High cases
the intruding fluid is contained almost entirely within the head of the current. Fittingly, the currents
from the B/T-Med cases have both rounded heads, and stable, wide tails. In the B/T-High cases the
volume-dominant head leaves behind a long, thin tail which goes unstable and forms a dipole; the
dipole from each case is highlighted by a gray rectangle in Figs. 2(a) and 2(b) and Figs. 3(a) and
3(b). The dipole is eventually ejected from the tail, and the dipole from the B-High case is ejected
farther from the contact boundary than the T-High dipole; this is consistent with the results from
Grace et al. [36].
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FIG. 3. Same as Fig. 2 but at t = 10.0. The gray rectangles highlight the dipoles from the B/T-High cases.
The white rectangles surround billows.

The shear along the collapsing currents generates billows along the tops and backs of the current
heads, as is often observed [1,2,12]. We highlight the billows with white rectangles in Fig. 2. The
billows of the B/T-High and B/T-Med cases consist of coiled filaments. The filaments from bottom
currents are thinner than those from the top currents. Furthermore, the filaments of the top currents
are coiled tighter, so their billows entrain less ambient fluid than those of equivalent bottom currents.
In Fig. 3 it appears that the billows are no longer well defined and have effectively been destroyed;
this, however, is a misleading artifact of averaging the field in the spanwise direction.

In Fig. 4 we present the three-dimensional T fields from the B/T-High cases at time t = 10. We
use an opacity map that sets regions with T < 0.05 and T > 0.95 to be transparent. Figure 4(a)
corresponds to the B-High case and Fig. 4(b) to the T-High case. In this figure, we see that the
billows are still attached to the current head and have a highly three-dimensional structure: namely
the billows have spanwise undulations. The undulations are produced by folds in each billow, which
are highlighted in Fig. 4. The folds have the effect of segmenting the billow, with the size of the
segments being similar to the size of the lobes at the front of the current (which are also highlighted
via annotations). These lobes are produced by the mature lobe-cleft instability, which we will discuss
in detail in Sec. III A 2; for now, it suffices to note that by “mature,” we mean that the lobe-cleft
instability has developed secondary instabilities. The correlation between the size of segments and
lobes suggests that the billows are three-dimensionalized by the lobe-cleft instability. Notice that
the segments in Fig. 4(b) have a greater vertical offset than the segments in Fig. 4(a). Indeed, this
vertical offset is why the billows in the spanwise average of the T field in Fig. 3(b) appear to be
ejected from the current head, whereas the billows in Fig. 3(a) appear to be attached. To summarize,
the pale blue regions in Fig. 3 indicate regions where the billows possess a large degree of spanwise
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FIG. 4. The interface between the intruding and ambient fluid for the B/T-High cases at time t = 10.
Regions where T < 0.5 or T > 0.95 have been made transparent. Panel (a) is from the B-High case, and panel
(b) is from the T-High case. As in Fig. 2 and 3, the T-High system has been rotated π radians about the x axis
so that it is easier to compare the conjugate currents.

variation, and top current billows have more spanwise variation than the conjugate bottom current
billows. The physical significance of this will be discussed in Sec. III B 3.

To reiterate, the observed asymmetric behavior is in contrast to that of noncabbeling currents,
where we would expect to see little to no discrepancy in the spanwise structure of conjugate currents.
For an example, refer to Fig. 2 from Härtel et al. [17]. There we see that the three-dimensional
no-slip top and bottom currents evolve similarly until t = 5 and then with some slight deviations at
later times due to the stochastic nature of the wake formed by the shear instability. At t = 10, the
top and bottom current heads have a nearly identical position, shape, and volume, which is clearly
not the case in our Fig. 4; this greater discrepancy must be due to weak cabbeling.

2. The lobe-cleft instability

We shall now discuss the lobe-cleft instability. In Figs. 5 and 6 we present the interface between
the current head and the ambient fluid from the high-Gr cases. In both figures, the bottom row of
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FIG. 5. The interface between the intruding and ambient fluid for the B/T-High cases at time t = 10.
Regions where T < 0.5 or T > 0.95 have been made transparent. Panels (a) and (b) correspond to the B-High
case and panels (c) and (d) to the T-High case. Gr = 6.069 × 106 in both cases. As in Fig. 2 and 3, the T-High
system has been rotated π radians about the x axis so that it is easier to compare the conjugate currents. These
figures focus on a window 0.2H̃ away from the contact boundary and 2.2H̃ behind the front of the current.
The dimensionless time is stated in each panel. Annotations highlight structures produced by the lobe-cleft
instability.

FIG. 6. Similar to Fig. 5. Panels (a)–(c) correspond to the B-High case, and panels (d)–(f) correspond to
the T-High case. Gr = 6.069 × 106 in both cases. In panels (a)–(c) we use annotations to call attention to five
lobes undergoing the merging process. The lobes labeled with double-headed arrows are annihilated by the
adjacent lobes labeled with stars. Other lobes in panels (a)–(c) and panels (d)–(f) undergo the merging process,
but we do not highlight them.
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FIG. 7. x − y cross section of T taken �z = 0.02 from the contact boundary at time t = 10. The left panels
correspond to B-cases and the right panels correspond to T-cases. The panels in the top row correspond to the
-High cases (Gr = 6.069 × 106), the middle row to the -Med cases (Gr = 2.146 × 106), and the bottom row to
the -Low cases (Gr = 7.586 × 105). The vertical axis measures the width/spanwise extent of the domain. This
is a frame from the supplementary video HOR-T-PROF.

panels correspond to the T-High case and the top row to the B-High case. We restrict our focus
to the lobe-cleft structures and truncate the interface to only include a region �x = 2.2 behind the
wave front and �z = 0.2 away from the contact boundary; there is no truncation in the spanwise
direction.

Figures 5(a) and 5(c) correspond to the early lobe-cleft instability. The early stages of the
instability result in spanwise undulations at front of the current; these undulations leave elongated
indents in the lower interface. We use annotations in Fig. 5(a) to call attention to these features. In
Figs. 5(b) and 5(d), we depict secondary instabilities with annotations that highlight the resultant
structures. In Fig. 5(b) and 5(d), we see that the undulations from 5(a) and 5(c) (respectively) have
evolved into the iconic lobes and clefts described in previous investigations [2,3,10,15–17,19,20].
Just as the undulations were trailed by indentations, the lobes are now trailed by valleys, and the
clefts are trailed by tubes (which are themselves trailed by structures we henceforth refer to as
nodules). Note that some nodules do not correspond to a tube and are therefore “abandoned.” In
spite of the secondary instabilities in Figs. 5(b) and 5(d), the tubes are still “orderly.” By orderly,
we mean that the tubes and valleys are parallel and oriented along the streamwise direction. To
our knowledge, these nodules, tubes, and valleys are not often discussed in the lobe-cleft literature,
though they appear to correspond to the horseshoe vortices in Fig. 7 from Dai and Huang [16] and
to the streaks in Fig. 8(f) from Didden and Maxworthy [47]. Dai and Huang [16] also allude to the
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FIG. 8. The height of the current front. Here �z is the distance from the contact boundary to the front and
�x is the horizontal displacement of the front (i.e., the distance traveled by the front from the lock-release
region). The superimposed black curves denote the horizontal displacement of the front every t = 0.25. The
left column of panels are from the bottom cases, and the right column are from the top cases. The panels
in the top row correspond to the B/T-High cases (Gr = 6.069 × 106), the middle row to the B/T-Med cases
(Gr = 2.146 × 106), and the bottom row to the B/T-Low cases (Gr = 7.586 × 105). Black rectangles highlight
a subset of the merging events, and gray rectangles highlight a subset of the splitting events.

existence of these structures in the discussion of their Fig. 2, which shows an x-z cross section of
the inside of the current head.

In Fig. 6 structures from the secondary instability continue to grow. At time t = 5, the tubes of the
B-High current develop kinks [see Fig. 6(a)], and the nodules elongate. Similar effects are present
in the T-High current [see Fig. 6(d)], but the kinks in the tubes are much larger, and the elongated
nodules begin to deviate from the streamwise direction. That is, they are becoming disordered. This
trend continues in Figs. 6(b) and 6(e) (time t = 7.5). In Fig. 6(b), the tubes and nodules of the
B-High current are still orderly, which is in clear contrast to the behavior of the T-High case in
Fig. 6(e). The nodules of the T-High current are no longer visible, and the field around the tubes
has a complex, chaotic structure. Finally, in Figs. 6(c) and 6(f) (t = 10), the tubes of the B-High
current are still orderly, whereas the tubes of the T-High current are almost entirely obfuscated by
the aforementioned chaotic structures in the T field; this suggests that the inside of the T-High
current is transitioning into a turbulent flow by the end of the simulation.

Notice that the lobes at the front of both currents swell and decrease in number as the current
evolves. This is due to the merging process [10,16]. We use annotations in Figs. 6(a), 6(b) and 6(c)
to call attention to an example. The rectangle in Fig. 6(a) contains five lobes: three labeled with
stars and two labeled with double-headed arrows. In Fig. 6(b), we see that only the three lobes with
stars remain. Between the events depicted in Figs. 6(a) and 6(b), half of each double-arrow lobe
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was rolled into a starred neighbor. Recall that in Fig. 5(b) and 5(d), each lobe is trailed by a valley,
and each cleft is trailed by a tube. This one-to-one correspondence is clearly broken in Figs. 6(c).
The second lobe (counting from the left), has two tubes and one valley trailing directly behind it,
whereas the first lobe and third lobes are trailed only by one tube and one valley. The second lobe,
which is the largest, has also developed a small indent (visible just beneath the star), which indicates
that it is about to split. This suggests that multiple tubes trailing a lobe is an unstable configuration
and will initiate the well-documented splitting process [10,16].

We have discussed the lobe-cleft instability of the B/T-High cases at great length, but what of
the other cases? In Fig. 7 we plot x-y cross sections of the T field taken at �z = 0.02 for each case
at t = 10. This is a frame from the supplemental video HOR-T-PROF [48], which we encourage
the reader to view for additional insight into the internal dynamics of the current. The red regions
correspond to the valleys that trail the lobes. From the cross-sections plotted in panels Figs. 7(d)–7(f)
we see that the trends from the B/T-High cases also hold for the B/T-Med and B/T-Low cases.
Namely, the valleys (and therefore the tubes) in the T-cases become more curved and distended than
those from the B-cases as the current evolves. At every Gr, the T-case valleys are visibly wider than
those of the conjugate B-case.

The lobe-cleft structures are also visible in Figs. 2 and 3; the nodules and tubes create the yellow
regions highlighted by the black, rectangular annotations. At time t = 5 (Fig. 2; inside the black
rectangles), a lump of ambient fluid is trapped under the current head. The tubes correspond to the
yellow-orange region between the trapped lump and the front of the current. The tubes of the T-cases
extend farther into the current head than the tubes of the B-cases. Notice that the height of the tube
also increases with Gr. These trends hold for the nodules, which correspond to the yellow-orange
regions protruding obliquely from the trapped lump. By t = 10 (Fig. 2; inside the black rectangles),
the nodules and tubes cannot be distinguished in the spanwise-averaged temperature field; they are
instead replaced by diffuse yellow regions emanating from the contact boundary. As with the height
of the tubes, these regions are taller in the T-cases. Observe that the lumps of trapped ambient fluid
have also nearly disappeared and are almost entirely incorporated into the current. This indicates
that the fluid from these trapped lumps fills the inside of the nodules.

B. Quantitative analysis of current evolution

1. The position of the front, the size of the lobes, and their relation to the merging process

Investigations into the lobe-cleft instability naturally focus on the front of the current, where
the instability first manifests [10,12,16,17,19–21,36]. We define the coordinates of the front at time
t , (x f (t ), y f (t )), as the leading points of the projection of the contour ρ = 0.05 onto the contact
boundary. In effect, our front is the leading edge of a “digital shadowgraph.” We then evaluate ρ

at each (x f (t ), y f (t )), and the �z f at which ρ takes its maximum value is taken to be the vertical
distance between the front and the contact boundary at a given (x f (t ), y f (t )). In Fig. 8, we use
a black contour to indicate the location of the front every t = 0.25 from t = 0.25 to t = 10.0.
These are superimposed on the �z f (x f (t ), y f (t )) field between t = 0.0 to t = 10.0. Note that on
the horizontal axis we measure �x f (t ) = x f (t ) − x�, which is the displacement from the initial
location of the front. The contours in Fig. 8 produce plots similar to Fig. 8 from Simpson [10], to
Fig. 10(a) from Cantero et al. [19], and to Fig. 4 from Dai and Huang [16].

In each panel of Fig. 8, the leftmost contours are straight, vertical lines. Towards the middle
of the panel, however, the contours develop small bumps: These are the result of the lobe-cleft
instability, and each bump corresponds to a lobe. As we move our focus rightwards, we see that the
bumps in the contours become wider and less numerous. This is due to the fact that as the lobe-cleft
instability matures, lobes exhibit lateral growth or decay. A trio of lobes can fuse into a pair if the
two outermost lobes become larger than and absorb the intermediate lobe during a period of lateral
growth [10,16]. We indicate examples of merging events using black rectangles in Fig. 8. Note that
wherever we see merging, we see that �z f has a local maximum. Thus, when a lobe is absorbed
by two neighboring lobes in the merging process, its vertical distance from the contact boundary
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FIG. 9. Similar to Fig. 8 but plotting the x component of the baroclinic vorticity along the front instead of
the vertical displacement of the front. The black and gray squares correspond, respectively, to the same merging
and splitting events highlighted in Fig. 8.

increases as its lateral extent decreases. In other words, the consumed lobe is “rolled” up between
its growing neighbors. We also see evidence of splitting: the process where one lobe becomes two;
refer to the gray rectangles in Fig. 8 for examples.

Reference [16] argues that the merging and splitting processes are governed by vortex inter-
actions. We present evidence for this in Fig. 9, where we plot the x component of the baroclinic
vorticity (as defined in Sec. II F) sampled along the front of the current. By sampling, we mean that
we evaluate the baroclinic vorticity at each (x f , y f ,�z f ). Each lobe is subdivided into a red, white,
or blue region, which correspond, respectively, to streamwise, null, or antistreamwise baroclinic
vorticity. Thus, each lobe corresponds to the front of one horseshoe vortex, as defined by Adrian
[46]. Recall that in Figs. 5(b) and 5(d), each lobe is initially bordered by two tubes.2 Thus, the arms
of the horseshoe vortices are aligned with the tubes. Indeed, the tubes are an additional source of
baroclinic vortex generation, since they generate spanwise gradients in T . Take care to note that
each tube is situated between two lobes, so the arms of adjacent horseshoe vortices share one tube.

In Fig. 9, the flow is oriented away from the contact boundary where a red region meets a blue
region (i.e., between two lobes, within a cleft, and along a tube); similarly, the flow is oriented
towards the contact boundary where a red or blue region meets a white region (i.e., in the center of
a lobe and along a valley). Thus, when two lobes overtake their common neighbor, the flow along
the lobe boundaries pushes the lobe upwards and onto the neighboring lobes, and thereby generates

2With the exception of the lobes at the y = 0, Lz walls, which can only be bordered by one tube.
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FIG. 10. The vertical distance of the nose from the contact boundary. The current velocity is the time
derivative of xN . Panel (a) corresponds to the B/T-High currents, (b) to the B/T-Med currents, and (c) to the
B/T-Low currents. �z f is the vertical distance from the contact boundary. Black arrows indicate the emergence
of the lobe-cleft instability and gray arrows indicate the time when the swelling lobes begin to interact.

the local maxima in �z f that correlate with merging regions in Fig. 8. The vortices of the larger
lobes induce faster flows than the vortex of the intermediate lobe; the merging process ultimately
results in the decoherence of the smaller vortex of the intermediate lobe. However, the arms of the
smaller horseshoe vortex are still coherent along the tube. As discussed in Sec. III A 2, the lobes that
remain after merging are now trailed the tubes they shared with the rolled-up lobe. That is, the arms
of the annihilated vortex continue to interact with the arms of the remaining vortices in the tubes,
and this interaction takes place immediately behind some of the remaining lobes. These interactions
then initiate the splitting process, as is evidenced by the newly formed cleft in the second starred
lobe in Fig. 6(c). The region highlighted by the gray box of Fig. 9(a) corresponds to this cleft. This
previously white region is now developing a red-blue patch, which is due to the new cleft generating
spanwise gradients in T . Other splitting events are also highlighted with gray rectangles.

Let xN and �zN be the the spanwise mean of x f and �z f , respectively. That is,

xN (t ) =
∫ y f (t )

0
x f (s)ds, (33)

�zN (t ) =
∫ y f (t )

0
�z f (x f (s), s)ds. (34)

These are the coordinates of the nose of the gravity current, which is the front-most protrusion of
the spanwise-averaged profile of the current. We plot �zN in Fig. 10. In every case the vertical
displacement of the nose appears to increase, plateau, and then decrease towards another plateau.
The first plateau correlates with the emergence and initial growth of lobe-cleft structures, and the
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period of descent correlates with the maturation of the lobes and clefts; these events are labeled
with arrows in Fig. 10. The lobes begin to merge half-way through the descent and continue to
do so during the second plateau; the vertical displacement of the nose does not appear to change
during subsequent merging events. Furthermore, the duration of the ascent of the nose does not
differ between conjugate currents. The duration of the descent does, however, appear to decrease as
Gr increases. The onset time of the lobe-cleft instability is clearly unaffected by whether 
 = 1 or
0 and is entirely dependent on Gr.

Consider the trapped lumps of ambient (blue) fluid inside the black, rectangular annotations
of Fig. 2. These lumps are traced out by the ascent and descent of the nose; this is especially
clear in the supplemental video VER-T-PROF [48]. The tubes and nodules emanating from the
trapped lump are also consistent with the initiation of secondary instabilities during the descent
of the nose. This is at odds with the results of Härtel et al. [17]. These authors argued that the
volume of fluid beneath the current head is too small to generate a buoyant instability and instead
state that the lobe-cleft structures are due to a unique instability that initiates near the stagnation
point (just below the nose). However, following our discussion here and in Sec. III A 2, we see that
the lobe-cleft instability initiates during the ascent and descent of the nose and that the instability
continues to grow between the trapped fluid and the nose throughout the simulation. That is, the
lobe-cleft instability is not confined to regions near the nose,3 but it grows along the entire bottom
of the current head. Furthermore, the growth of the nodules (which are generated by secondary
instabilities) is driven by the trapped ambient fluid pushing into the current. Altogether, this suggests
that some sort of buoyant forcing drives the lobe-cleft instability.

The dimensionless speed of a given current is uc = d
dt xN (t ), which is equal to Fr (as mentioned in

Sec. II B). We plot this in Fig. 11. In each case the currents accelerate until they enter the slumping
phase. Although the signal is noisy during the acceleration phase, the signals of conjugate currents
appear to fluctuate around similar curves. Towards the end of the medium and low-Gr simulations
[Figs. 11(b) and 11(c)], we see that the currents begin to decelerate; however, the simulations ended
before any current fully transitioned into the inertial phase. Consistent with the results of Ref. [36],
the bottom currents have greater speeds than their conjugates. Furthermore, the discrepancy between
conjugate currents slowly increases in time. However, the size of the discrepancy at any moment
of the slumping phase appears to decrease as Gr increases. Viscous forces also decrease as Gr
increases, so this suggests that fluid friction along the current interface is stronger for top currents,
and this discrepancy will disappear as Gr → ∞.

We note that the lobe-cleft instability does not contribute to the discrepancy in Fr, nor does it
contribute to the decrease in the discrepancy with the increase of Gr. In Fig. 11, we once again use
black and gray arrows to indicate the start of the lobe-cleft instability and the start of lobe swelling,
respectively. The primary lobe-cleft instability always starts during the acceleration phase, so it
cannot be the source of the discrepancy in Fr. Furthermore, the swelling process can start: (i) before
deviations in Fr are observable [Fig. 11(a)], (ii) as the deviations begin to emerge [Fig. 11(b)], and
(iii) well after the discrepancy has emerged [Fig. 11(c)]. That is, the lobe-cleft instability appears to
be entirely uncorrelated with the discrepancies in Fr of conjugate currents.

Let

T̄y(x, z, t ) ≡ 〈T (x, y, z, t )〉y ≡ 1

Ly

∫ Ly

0
T (x, y, z, t )dy, (35)

where 〈〉y denotes the spanwise average. The variance of the T field in the spanwise direction is then
given by 〈(T − T̄y)2〉y. If we then take the average of this in the x and z directions, then we get the

3Or, near the top of the current head, as argued in Härtel et al. [15].
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FIG. 11. Plots of Fr, as defined in Sec. II B. The current velocity is the time derivative of xN . Panel (a) cor-
responds to the B/T-High cases (Gr = 6.069 × 106), panel (b) to the B/T-Med cases (Gr = 2.146 × 106), and
panel (c) to the B/T-Low cases (Gr = 7.586 × 105). Black arrows indicate the emergence of the lobe-cleft
instability and gray arrows indicate the time when the swelling lobes begin to interact.

time-dependent scalar

Vary(T ) ≡ 1

LxLz

∫ Lz

0

∫ Lx

0
〈(T − T̄y)2〉ydxdz, (36)

which measures the three-dimensionalization of the field T at a given time.
In Fig. 12 we plot �Vary(T ), which is Vary(T ) of a B-case subtract Vary(T ) of its conjugate T-

case; that is, �Vary(T ) > 0 indicates the B-case system is more three dimensional, and �Vary(T ) <

0 indicates the T-case system is more three dimensional. The black arrows in Fig. 12 indicate the
start of the lobe-cleft instability, which is when the systems begin to exhibit three-dimensional
structure. We see that �Vary(T ) = 0 even after the instability initiates, which implies that the early
average growth of the lobe-cleft instability is similar—if not identical—for conjugate currents. In
other words, the differences between the lobe-cleft instability of conjugate currents only manifest
once the instability is finite amplitude. The gray arrows in Fig. 12 correspond to the swelling of the
nodes, which initiates just as �Vary(T ) becomes negative for all Gr. Thus, the lobe-cleft instability
of the top currents eventually induces more three-dimensional structure than that of their conjugate
bottom currents. This, however, does not remain true for all cases. In the B/T-Low cases [Fig. 12(c)],
the signal achieves a local minimum around t = 6.75 and then increases in value for the remainder
of the simulation, with �Vary(T ) > 0 after t = 7.5. This indicates that the B-Low current ultimately
develops more three-dimensional structure than its conjugate. In Figs. 12(a) and 12(b), this trend is
almost replicated, but at time t = 7.5 in Fig. 12(a) and time t = 9 in Fig. 12(b) �Vary(T ) begins to
decrease just before it becomes positive.
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FIG. 12. The difference between the measure of spanwise variation of conjugate currents [see Eq. (36)].
Panel (a) corresponds to the B/T-High cases (Gr = 6.069 × 106), panel (b) to the B/T-Med cases (Gr =
2.146 × 106), and panel (c) to the B/T-Low cases (Gr = 7.586 × 105). For reference, the largest Vary(T ) of the
B/T-High cases is Vary(T ) = 6.7 × 10−3 (T-High), of the B/T-Med cases is Vary(T ) = 1.5 × 10−3 (T-Med),
and of the B/T-Low cases is Vary(T ) = 2.3 × 10−4 (B-Low). Black arrows indicate the emergence of the
lobe-cleft instability and gray arrows indicate the time when the swelling lobes begin to interact. Positive values
indicate that the bottom current shows more spanwise variation, and negative values indicate the opposite.

To understand why this is the case, we must recall the following points from our discussion in
Sec. III A 1:

(i) When the instability starts, the lobe-cleft structures of conjugate currents are fairly similar in
shape, size, and orderliness. This is why �Vary(T ) = 0 even after the instability starts.

(ii) As the structures begin to grow, the tubes and valleys grow parallel to the streamwise axis in
the B-cases, while they deviate from this parallel growth in the T-cases. This causes the first period
where �Vary(T ) < 0 in Fig. 12.

(iii) The tubes and valleys of B-cases are smaller and more numerous than those of their
conjugate T-cases. This means the B-case currents begin to develop more spanwise variation (to
see this, count the yellow lines in Fig. 7). This leads to the first local minima in Fig. 12.

(iv) Finally, the mature lobe-cleft instability three-dimensionalizes the billows, causing them to
appear as round orange/red cores surrounded by pale blue regions in Figs. 3(a)–3(e). In reality,
vortex tilting/stretching generated by the baroclinic vortices of the lobe-cleft instability segment
the billows (see Fig. 6). The pale blue regions reflect the fact that the segments have a large vertical
offset. Furthermore, the vertical offset is greatest for T-High and T-Med currents and they therefore
gain more three-dimensional structure than their conjugates. This is the source of the second period
of decreasing �Vary(T ) in Figs. 12(a) and 12(b).
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FIG. 13. The evolution of the root-mean-square (RMS) of the streamwise stress along the contact boundary.
The RMS is calculated using the streamwise and spanwise average [see Eq. (37)]. Panel (a) corresponds to the
Gr = 6.069 × 106 cases, panel (b) to the Gr = 2.146 × 106 cases, and panel (c) to the Gr = 7.586 × 105 cases.

The T-Low current corresponds to Fig. 3(f), and we see that it does not have billows with these
pale blue regions. Its billows do not gain the associated highly three-dimensional structure, and the
B/T-Low cases are therefore the only cases where we observe �Vary(T ) > 0 [see Fig. 12(c)].

2. Stress

As discussed in Sec. III B 2, the bed stresses τxi are stresses induced along the contact boundary
by a gravity current [see Eq. (18) and (17)]. They are two-dimensional fields [functions of (x, y)]
and are defined along the bottom (top) boundary for bottom (top) currents. In this section we will
discuss trends in the root-mean-square of the bed stresses, which are defined as follows:

τxi, rms =
√

1

LxLy

∫ Ly

0

∫ Lx

0
τ 2

xi
dxdy. (37)

Streamwise stress (τx) is generated by the forward motion of the gravity current. As can be seen in
Fig. 13, the trends in τx, rms differ little between conjugate cases. As noted in our discussion of Fr
(see Fig. 11), the discrepancy between the speed of conjugate currents decreases with Gr. This trend
is reflected before time t = 2 in Fig. 13. The bottom current of the B/T-Low cases always generates
a greater streamwise bed stress. In contrast, we see that the B/T-High currents alternate in producing
a greater stress: There are roughly three periods where the bottom current produces a greater bed
stress and two periods where the top produces the greater bed stress. The B/T-Med currents also
alternate in producing the greatest streamwise bed stress, though there is only one period where the
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FIG. 14. Same as Fig. 13 but for the spanwise stress along the contact boundary. Note that the magnitude
of the streamwise stress is approximately triple that of the the spanwise stress.

top current produces the stronger bed stress. Our proposed explanation is that individual lobes move
at different speeds, and for sufficiently large Gr the fluctuations in speed among lobes increases.

Now we consider the spanwise stress, i.e., the stress on the contact boundary due to lateral
motions (τy). Comparing the axes of Fig. 13 and Fig. 14, we see that the magnitude of the streamwise
stress is approximately triple that of the spanwise stress. The weaker spanwise stress is mostly
generated by the small, side-to-side motions induced by the lobe-cleft instability. We know that,
initially, the spanwise stress is entirely generated by the lobe-cleft instability, because no τy, rms

signal is present before the instability initiates. The deviations in τy, rms among conjugate currents
also appear once the lobes begin to swell. The spanwise stress shows significant variation between
the top and bottom cases at the same Gr, with the medium Gr currents showing the greatest disparity.
In all cases, the signal of the top case is stronger than the signal of the corresponding bottom case
until time t = 9, which implies that the lobe-cleft structures of the top currents are generating more
lateral motion than those of their conjugates. As discussed in the previous subsection, the currents
around the tubes are more unstable in the top cases, which explains the larger spanwise stress.
After t = 9, the top currents of the small and medium Gr cases continue to generate a stronger
spanwise stress, while the bottom current of the high Gr cases generates the stronger signal. This
anomalous spike also correlated with a sharp increase in the streamwise stress of the bottom current
in Fig. 13(a). Both spikes are due to the same event: The rear-most billow of the B/T-High cases
impinges on the contact boundary between time t = 8 and t = 10. As can be seen in Fig. 7, the
billow interacts with a larger area in the B-High case.

3. Mixing

In Fig. 15 we present the evolution of the global mixing rate [see Eq. (25)] sampled every t =
0.25 between t = 0.25 and t = 10. Gr increases from the bottom panel to the top panel. Initially, the
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FIG. 15. Evolution of the nondimensionalized global mixing rate. Panel (a) corresponds to the Gr =
6.069 × 106 cases, panel (b) to the Gr = 2.146 × 106 cases, and panel (c) to the Gr = 7.586 × 105 cases.

global mixing rate does not differ significantly between the equivalent Gr cases, but eventually the
signals diverge. In panels Figs. 15(b) and 15(c), we see that the bottom current generates the greatest
mixing rates after the point of divergence. This is initially true in Fig. 15(a) (between t = 4 and 6),
but then the mixing rate of the top current suddenly accelerates and exceeds that of the bottom
current. To determine why this is the case, we need to better understand the spatial distribution of
mixing. To do so, we consider χH

T (t, z), which is given by Eq. (26).
In each panel of Fig. 16 we present a Hovmöller plot of the difference between χH

T (t, z) of a
bottom current and χH

T (t, Lz − z) of its conjugate top current [see Eq. (26) for the definition of χH
T ].

Red regions indicate where the bottom current induces the greatest local mixing rate at a distance
�z from the contact boundary, and blue regions indicate where that is instead true of the equivalent
top current. It is useful to know which current produces a greater mixing rate at a given distance
from the contact boundary, since we know that the lobe-cleft instability is the dominant phenomenon
near the contact boundary and that the shear-instability becomes more significant farther from the
contact boundary. For this reason, we have also plotted a dashed line which indicates

�zN (t ) ≡ �zB
N (t ) + �zT

N (t )

2
, (38)

where �zB
N (t ) is the nose height of a bottom current and �zT

N (t ) is the nose height of its conjugate.
We can attribute phenomena far below the line to the lobe cleft instability, and we can attribute
phenomena far above the line to the shear instability. This is an approximate view, of course, and we
should not to preclude the possibility of one instability interfering in the domain of the other. Indeed,
we have already noted that the billows of the B/T-High cases impinge on the contact boundary
between t = 7 and t = 10.
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FIG. 16. The horizontally averaged local mixing rate of conjugate currents at the same Gr as a function
of vertical displacement (�z) and time (t). Panel (a) corresponds to the Gr = 6.069 × 106 cases, panel (b) to
the Gr = 2.146 × 106 cases, and panel (c) to the Gr = 7.586 × 105 cases. The dashed line shows �zN (t ) [see
Eq. (38)].

Red regions just above the contact boundary in each panel indicate that the tubes and the lower
portions of the lobes and clefts of the bottom currents mix the fluid more efficiently than those of
their conjugate. In Figs. 16(b) and 16(c) (which correspond to the B/T-Med and B/T-Low cases,
respectively), we see red between the dashed line and the contact boundary. This indicates that the
lobes, clefts, and tubes of the bottom current induce a greater mixing rate than those of its conjugate.
This is not so obvious in the B/T-High cases, as we see intermittent blue and red patches below the
dashed line; this is due to the aforementioned billow-contact boundary interaction.

After t = 7, a large blue region is present only in Fig. 16(a). As mentioned previously, the billows
B/T-High, B/T-Med, and B-Low cases are segmented. The segments of the T-High current also
show large amounts of vertical offset, which is not present in the other cases. The segments both
increase the surface area of the current-ambient interface and decrease the width of the interface.
They in turn increase |∇T |2, and thereby the mixing rate. The enhanced vertical offset of the
segments of the T-High case further thin and stretch the interface, which explains why the mixing
rate of the top current exceeds that of the top current in panels Fig. 15(a) and Fig. 16(a) after t = 6.

As mixing is a dynamic process, we strongly urge the reader to view VIDEO-VERMIX in the
Supplemental Material [48].

IV. DISCUSSION AND CONCLUSIONS

We reported on a set of numerical experiments, the results of which demonstrate the effects
of weak cabbeling on three-dimensional gravity currents traveling along no-slip boundaries in
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three different scenarios: high-Gr currents with tall lock-release heights; low-Gr currents with short
lock-release heights; and, medium-Gr currents with intermediate lock-release heights. In agreement
with two-dimensional simulations of gravity currents traveling along free-slip boundaries in the
weak cabbeling regime [36], we observed that fluid ejected by the top currents travels farther from
the contact boundary while bottom currents travel the fastest and farthest horizontally. We found
that the B/T-Med currents traveled the farthest, the B/T-High currents the second farthest, and the
B/T-Low currents the third farthest; per our discussion in Sec. II C, this is not an artifact of our
nondimensionalization.

Our novel observations are concerned with the impact of weak cabbeling on the lobe-cleft
instability and how it imparts three-dimensional structure onto the shear instability. Namely, we
observed that top currents have fewer, larger lobes than their conjugates. We also found that the
lobe-cleft instability of top currents generate more disorderly secondary instabilities than their
conjugates. In other words, the tubes of top currents deviated more from their original streamwise
orientation and developed a larger number of transient, unstable structures [compare Fig. 6(c) and
6(f)]. Differences in the merging processes of conjugate currents were robust across Gr. At a given
lock-release height, the top current would always develop larger and fewer lobes/valleys by the end
of the simulation.

Lobes are characterized by regions of alternating streamwise baroclinic vorticity, ultimately
in agreement with the horseshoe vortex picture of Dai and Huang [16]. The initial streamwise
density gradient generates spanwise baroclinic vorticity. As the head of the current lifts away
from the contact boundary, the region between the current head and the contact boundary has an
unstable stratification, which results in spanwise-varying structures that resemble—but have been
argued to be distinct from—Rayleigh-Taylor instabilities [10,15,17]; in turn, these induce spanwise
density gradients. The spanwise density gradients then generate streamwise baroclinic vorticity. As
described by Adrian [46], the streamwise vortical currents “lift” the spanwise vortical currents; this
results in the formation of hairpin/horseshoe vortices. The different initial spanwise wave number
of the buoyancy-induced instability thereby determines the initial width of the horseshoe vortices
and thereby the initial width of the lobes. Curiously, we notice that the initial scale of the lobe-cleft
instability does not differ between conjugate currents and that differences in size do not manifest
until after the lobes have begun to swell (i.e., obtain a finite width).

In the study by Grace et al. [36], the enhanced dissolution of top currents was interpreted as
cool fluid below the temperature of maximum density being mixed more efficiently into the fluid
at the temperature of maximum density than vice versa. Our results are mostly consistent with this,
though the activity of lobe-cleft instabilities adds nuance. We found that currents initially mixed
fluid at equal rates. However, once the lobe-cleft instability matured, the lower portion of the bottom
currents gained more surface area than the equivalent region of the top currents; thus, top currents
mixed fluid near the contact boundary more efficiently than their conjugates. The mature lobe-cleft
instability also changed the surface area of the billows by segmenting them. This segmentation
became more pronounced as Gr increases, so we eventually observed the T-High current mix the
fluid more efficiently than its conjugate.

We observed that conjugate currents generate nearly equal amounts of streamwise contact bed
stress. In contrast, top currents generate more spanwise stress than their conjugates due to the
spurious lateral motions of their lobes and valleys. The total magnitude of the bed stress is therefore
greater in the top cases. The fact that lobe-cleft structures of the bottom currents mix ambient fluid
into the current more efficiently while top currents induce a greater magnitude of stress along the
contact boundary begs the following question: Which current would scour the most mass from a
given surface?

The longevity of cold, saline turbidity currents is an active area of investigation [23,24,49], and
the nonmonoticity of the equation state for sea water (with respect to temperature [43,44]) may play
a role in explaining their persistence. Namely, the reduced lateral motion of tubes and valleys paired
with the large surface area they generate suggests that bottom currents are able to mix sediment
into the current without losing as much TKE to friction at the solid boundary as would a top
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current. That being said, we do not mean to imply that top currents are negligible in the transport
of mass and heat. For instance, the lift generated by under-ice shear ejects oil droplets from the
ice-water boundary [50], which implies that shear generated by top gravity currents would affect the
transport of industrial waste and biofilms [51]. Furthermore, shear from under-ice currents cannot
be neglected when estimating the melt rate of ice covers in winter lakes [52]. Given that top currents
contribute to shear at the ice-water boundary, and given that top currents produce large stresses along
the contact boundary due to spurious lateral motions of lobe-cleft structures, our work implies that
models of bulk mass and heat transport must take the effects of the nonlinear equation of state into
account in their estimates of the friction velocity at the ice-water boundary.

As noted in Sec. III, none of the systems entered the inertial or viscous phases. Future work
should extend the lengths of the domain so that these phases are accessed, as information about
weak cabbeling in these phases will be relevant at the field scale. We estimate that differences in the
three-dimensional structures will still be observed, as top and bottom currents will enter the inertial
phase with different xN and uc due to accumulated deviations during the slumping phase.

While the shape, speed, mixing, and stresses of the currents differ between top and bottom
currents, they both contribute significantly to hydrological processes where they arise. While we
have focused on the effects of nonlinearity in the freshwater equation of state, the nonlinearity in
temperature persists even when accounting for dissolved mass [43,44]. Consequently, interesting
and surprising results related to nonlinear equations of state must also exist in oceanographic and
lacustrine systems and therefore warrant further investigation.
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