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The coupling between ion transport and fluid flow near ion-selective surfaces plays a cru-
cial role in various electrohydrodynamic applications. Above a critical voltage threshold,
electroconvective vortices emerge inside the liquid electrolyte and enhance ion transport.
Applying a magnetic field modifies the ion mobility and electroconvection by inducing a
Lorentz force. To investigate this phenomenon, we numerically study the electroconvection
under a perpendicular magnetic field by incorporating the Lorentz force into the coupled
Poisson-Nernst-Planck-Stokes equation. The magnetic field induces a cross-flow similar
to a pressure-driven Poiseuille flow and completely suppresses the electroconvection when
the applied voltage is slightly above the critical threshold. At a high voltage, the crossflow
reduces the fluctuation of ion flux passing through the ion-selective surfaces and induces
net ion flux along the flow direction. The analysis of the spatial spectra of flow kinetic
energy and electric energy reveals that the magnetic field reduces the size of the flow
structures.

DOI: 10.1103/PhysRevFluids.8.113701

I. INTRODUCTION

The directed motion of ions in a liquid electrolyte under applied electric and magnetic fields
is of great interest in many microfluidic applications, such as electrochemical reactions [1,2],
chemical detection [3,4], and environmental monitoring [5]. In these examples, the buffer solutions
are often electrically conductive, allowing for effective control of the flow through combined
electromagnetohydrodynamic effects. The electric force, which drives the migration of cations and
anions along the gradient of electric potential, can trigger the electroconvection (EC) instability in
a liquid electrolyte when the applied voltage exceeds a critical threshold [6,7]. The Lorentz force,
which is produced by the interaction of the electric current with the magnetic field, modifies the
EC of the electrolyte by inducing a circular motion of the ions [8]. The combined effects of ion
electromigration and the Lorentz forces provide an effective method to pump [9], mix [10,11] and
separate chemical species [12] in a fluid. However, the influence of the Lorentz forces on EC is not
yet fully understood.

Without the magnetic effect, EC has been widely investigated in previous theoretical, experi-
mental, and numerical studies [7,13–16]. Under an electric field, ion transport across ion-selective
surfaces leads to concentration polarization across the electrolyte [17]. At relatively low voltages,
the bulk electrolyte maintains local electroneutrality, and near the ion-selective surfaces, it forms an
electric double layer (EDL) with a typical thickness ranging from O(0.1) to O(10) nanometers,
depending on the salt concentration. As the applied voltage increases, the strong depletion of

*gaojinli@sjtu.edu.cn

2469-990X/2023/8(11)/113701(16) 113701-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7694-2430
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.113701&domain=pdf&date_stamp=2023-11-08
https://doi.org/10.1103/PhysRevFluids.8.113701


JINXIANG CAI, DONGXIAO ZHAO, AND GAOJIN LI

ions near the ion-selective surface leads to the formation of a micrometer-sized extended space
charge layer (ESCL) outside the quasiequilibrium EDL. Meanwhile, the ion transfer rate reaches
the diffusion limit, resulting in a limiting current. When the applied voltage exceeds a critical
value, small perturbations within the ESCL become linearly unstable, inducing a second kind
electroosmotic slip flow at the edge of the ESCL and triggering spontaneous convection inside
the liquid electrolyte [13]. The EC flow can greatly increase the ion transfer rate, leading to the
so-called overlimiting current. Moreover, it causes current fluctuations and enhances the mixing of
the fluid.

In recent years, various strategies have been explored to control EC near ion exchange surfaces
for different electrochemical applications, including desalination, energy harvesting, and sensors.
These strategies encompass flow confinement [18], buoyancy stabilization [19], the use of the
viscoelastic electrolyte [20,21], modification of the chemical kinetics of ion-selective surfaces [22],
incorporation of insulating structures in membranes [23], and implementation of pressure-driven
flow of the electrolyte [24–27]. Among these studies, pressure-driven flow of liquid electrolytes has
received significant attention due to its simplicity and direct relevance to microfluidic applications.
The electrohydrodynamic interaction between EC and a shear flow has been extensively studied by
experiments, numerical simulations, and scaling analysis. Kwak et al. [28] showed that the applied
voltage V and the shear velocity U jointly determine the height of the EC vortices h, causing a
scaling relation of h ∼ (V 2/U )1/3. In a subsequent work, Kwak et al. [24] studied the sheltering
effects of a pressure-driven flow of electrolytes and observed four types of flow states: 1D ion
polarization without EC, EC in diffusion layer, stable EC with unidirectional vortices, and chaotic
EC. They also found that a strong flow is needed to confine the EC fluctuations inside the high-shear
region and to generate stable unidirectional vortices close to the boundary. Liu et al. [27] later found
that the transition from a chaotic to steady EC state occurs when the shear flow velocity is above
a critical slip velocity us ∼ (δ−1V 4)1/3, where δ is the double layer thickness. In electrodeposition
processes, the presence of cross-flow can delay the onset of EC instabilities and suppress the growth
of metal dendrites [29]. Recently, Li et al. [26] analyzed the effects of the imposed flow on the linear
instability of the combined electroconvective and morphological perturbations. Their results show
that the imposed flow can fully suppress the EC instability at a sufficiently large velocity, while it
has smaller effects on the morphological instability.

In microchannels of liquid electrolytes, applying a magnetic field perpendicular to the electric
field can effectively drive or modify the fluid flow by inducing the Lorentz force [8]. This phe-
nomenon, known as the magnetohydrodynamic (MHD) effect, has been widely studied for the
development of various microfluidic devices. Bau and coworkers [9] demonstrated the feasibility
of using MHD effects to control individual flow branches in a microfluidic network. By applying
voltage differences to specific electrode pairs, liquid flow can be directed along desired paths
without the need for mechanical valves and pumps. The MHD effect is also effective in driving
the microfluidic flows of ionic liquids with much higher viscosity than aqueous electrolyte [30].
Directed flow can also be generated in ac MHD micropumps using synchronized high-frequency ac
current and a magnetic field generated by an electromagnet [31]. This design advantageously helps
reduce electrode degradation by constantly reversing the chemical reactions inside the electrolyte
solution. Das et al. [32] demonstrated the potential applications of MHD pumps for sample injection,
low pressure chromatography, and on-chip sample analysis. Fluid stirring and mixing by MHD
effects are also studied by arranging electrodes in different configurations to enhance chaotic
advection [10,11,33,34]. All these studies have focused on the influence of the Lorentz force on
fluid flow while neglecting the EC effects. However, considering the relatively high voltages (1–10
volts) and high ion conductivity (10−2 − 1 S/cm) in these studies, it is highly probable that EC will
occur and have a significant impact on the fluid flow.

Under the constraint of electroneutrality in the electrolyte, the Lorentz body force is often irro-
tational and generates flows identical to those driven by a pressure gradient [35,36]. Mutschke and
Bund [35] demonstrated that the simplified 2D treatment of the flow can not predict any non-trivial
effect when a uniform magnetic field is perpendicular to the electric field applied to an electroneutral
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fluid. Qian and Bau [36] showed that a Lorentz force potential, similar to a pressure field, can be
introduced to allow the analysis of MHD flows using data from the pressure-driven flows. When an
electric current is specified, this analogy can be directly applied to solve the Lorentz-force-driven
flow without requiring the information about concentration and electric potential fields. While if
the potential difference is the controlling variable, the full nonlinear coupling between ion transport
and fluid flow must be solved. Despite the analogy, there are at least two significant differences
between the Lorentz force and the pressure force. First, a Lorentz body force can induce a fluid
flow in a closed conduit. This effect has been demonstrated by applying an axial magnetic field to
the radial electric current to drive a fluid flow along the azimuthal direction in a circular conduit
[37]. In comparison, such a flow cannot be achieved by applying a pressure gradient. Second, in
the nonelectroneutral regions such as inside the ESCL, or when the magnetic field is nonuniform
or has a component along the same direction as the electric field, the Lorentz force is no longer
irrotational and can have unexpected impacts on the flow. Therefore, it is important to study the
effects of Lorentz force in EC to fully understand the ion transport under the combined influence of
magnetic and electric fields.

The influence of magnetic fields on ion transport has gained particular interest in recent years,
especially for energy storage applications involving electrodeposition processes [38–40]. Magnetic
fields are found to enhance the ion transport and suppress dendrite growth by altering the transport
direction of the charged species and inducing extra convection of electrolytes. In zinc-air batteries,
Wang et al. [38] investigated the interfacial behavior of zinc electrodes under the influence of a
magnetic field and found it enhances the electrolyte flow by inducing rotational movement of the
oxygen bubbles. This effect reduces the energy threshold for charging, suppresses dendrite growth,
and extends the life cycle of zinc-air batteries. Similarly, in lithium metal batteries, the Lorentz force
can effectively eliminate tip dendrite growth by causing spiral motions of lithium ions in a magnetic
field [39,40]. The MHD effect reduces the fluctuation in ion transfer and promotes a more uniform
and dense deposition of lithium on the electrode surface. As we will see in the following, similar
effects can be observed by applying a magnetic field to EC.

Studying the EC in a magnetic field is also valuable for advancing our understanding of MHD
turbulent flows in highly conducting fluids, such as liquid metals. In the high Reynolds number flow
regime, a strong imposed magnetic field can largely suppress the turbulent fluctuations and delay
the transition from laminar to turbulent flows [41,42]. Near an insulating wall perpendicular to the
magnetic field, the formation of a thin Hartmann layer can act as an effectively slipping boundary
and drive the core flow to become quasi-two-dimensional [43]. In microfluidic MHD flows, the
thickness of the Hartmann layers is typically much larger than the channel width, making these
studies helpful in revealing the flow dynamics inside the Hartmann layers.

In this paper, we conduct a numerical study on the influence of a magnetic field on the electro-
hydrodynamics of ion transport between two ion-selective surfaces. The magnetic field is applied
perpendicular to a two-dimensional channel of electrolytes, where the voltage is high enough to
induce EC. The rest of the paper is organized as follows: Section II discusses the governing
equations and the numerical setup, Sec. III presents the results of the numerical simulation, and
concluding remarks are provided in Sec. IV.

II. GOVERNING EQUATIONS AND SIMULATION SETUP

As shown in Fig. 1, we conduct a two-dimensional simulation of a binary univalent electrolyte
confined between two ion-selective surfaces subjected to a voltage difference VH . A uniform
magnetic field B is applied perpendicular to the potential gradient. The two-dimensional model
is employed here to simulate microfluidic flows in a high-aspect-ratio channel driven by electro-
magnetohydrodynamic effects. Previous experiments consistently demonstrated that the EC flows
are mainly two-dimensional in a channel where its thickness is an order of magnitude smaller than
the height [24,28,33]. In our simulation, we neglect the induced magnetic field since the typical
magnetic Reynolds number Rem = UH/η � 1 for dilute electrolytes in microfluidic channels [36],
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FIG. 1. Simulation setup for electroconvection (EC) between two ion-selective surfaces under a uniform
magnetic field.

where U and H are the characteristic velocity and length scales, η is the magnetic diffusivity. The
governing equations include the Nernst-Planck equation for ion transport, the Poisson equation for
the electric potential, and the Stokes equation for the incompressible flow,

∂c±

∂t
+ ∇ · I± = 0, I± = uc± − D∇c± ∓ DF

RT
c±(∇� − u × B), (1a)

−εε0∇2� = ρ, ρ = F (c+ − c−), (1b)

−∇p + μ∇2u − ρ∇� + I × B = 0, (1c)

∇ · u = 0, (1d)

where c± represents the concentrations of cations and anions; I± is the ion flux density; including
contributions from convection, diffusion, migration, and electromagnetic induction; � is the electric
potential; B is the magnetic field intensity; u is the fluid velocity; p is the pressure; I = F (I+ − I−)
is the electric current density; ρ is the charge density; μ is the fluid viscosity; D = D+ = D− is
the diffusivity for cations and anions; and ε, ε0, R, T , and F are the dielectric constant, vacuum
permittivity, gas constant, temperature, and Faraday constant, respectively.

On the ion-selective surfaces, the boundary conditions are

at y = 0 : u = 0, � = 0, I−
y = 0, c+ = c0, (2)

representing the conditions of no-slip and no-penetration conditions for fluid, the grounded electric
potential, zero flux of anions, and a fixed cation concentration c0 at the bottom surface. On the other
side, the conditions are

at y = H : u = 0, � = VH , I−
y = 0, c+ = c0. (3)

Periodic boundary conditions are used for all variables on the left and right sides of the simulation
domain.

The above equations are nondimensionalized as follows: lengths by the gap distance H , velocity
by U0 = εε0(RT )2/(F 2μH ) derived by balancing the characteristic electric Maxwell stress and the
viscous stress, time by H2/D, ion concentration by c0, ion flux density by Dc0/H , electric current
density by FDc0/H , potential by RT/F , pressure and stresses by μU0/H , and magnetic field by its
magnitude |B|. The dimensionless (represented by ∗) governing equations and boundary conditions
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are

∂c±∗

∂t∗ + ∇ · I±∗ = 0, I±∗ = Peu∗c±∗ − ∇c±∗ ∓ c±∗(∇�∗ − Au∗ × B∗), (4a)

−2δ2∇2�∗ = ρ∗, (4b)

−∇p∗ + ∇2u∗ + ∇2�∗∇�∗ + MI∗ × B∗ = 0, (4c)

∇ · u∗ = 0. (4d)

at y = 0: u∗ = 0, �∗ = 0, I−∗
y = 0, c+∗ = 1, (4e)

at y = 1: u∗ = 0, �∗ = V = VH F

RT
, I−∗

y = 0, c+∗ = 1. (4f)

In what follows, the superscript ∗ will be dropped for brevity.
The dimensionless governing equations involve five key dimensionless parameters in this

study: the Peclet number Pe = U0H/D, which describes the coupling strength between electric
and hydrodynamic effects, the magnetic field strength describing the ratio of electromagnetic
force to viscous force M = DFc0BH/(μU0), the normalized voltage V , the dimensionless double
layer thickness δ =

√
εε0RT/(2F 2c0)/H , and A = εε0|B|RT/(μF ), which represents the relative

strength of the electromagnetic induction current compared to the applied current. For typical
electrolytes, A ∼ 10−8 and therefore the induction current can be neglected [8]. In literature, the
magnetohydrodynamics is typically characterized by the Hartmann number Ha = BH

√
σ/μ, where

σ = DF 2c0/RT is the electric conductivity of the solution. The Hartmann number characterizes
the ratio of electromagnetic force to the viscous force using a different characteristic velocity
U ′

0 = DFc0/
√

σμ. For liquid electrolytes, M/Ha = U ′
0/U0 is typically on the order 10−5. In typical

experiments, the channel width H ∼ 0.1 − 1 mm, the fluid viscosity μ ∼ 10−3 Pa s, conductivity
σ ∼ 0.5 S/cm, ion concentration c0 ∼ 10−3 M for dilute electrolyte, ion diffusivity D ∼ 10−9 m2/s,
the dielectric constant of typical electrolytes ε ∼ 1 − 102, the applied voltage ranges from 0 to 2
volts, and the maximum magnetic field |B| ∼ 1 T. Based on these parameters, we estimate the
values of the dimensionless parameters and choose Pe = 0.5, δ = 10−5 − 10−3, V = 20 − 80, and
M = 0 − 200, corresponding to Ha = 0 − 2 × 10−3 in this paper.

The governing equations are numerically solved using a hybrid spectral-finite-volume method
for a two-dimensional rectangular domain. In this method, the equations are solved in Fourier space
along the x direction and in physical space in the y direction [15,20]. The domain width in the x
direction is set to L = 12 unless otherwise specified. In the range of voltages studied, this domain
size is sufficiently larger than the typical correlation length scale in the x direction [15]. More details
about the numerical method can be found in Ref. [16]. The grid is uniform along the x direction and
stretched in the y direction, with the grid size of 	x = 5.86 × 10−3,	ymin = 1 × 10−4,	ymax =
1.576 × 10−2, and the time step 	t = 1 × 10−7. The 1D steady ion concentration and potential
profiles are used as the initial state for the simulations. The numerical validation can be found in our
previous work [22].

III. RESULTS AND DISCUSSION

In this section, we will examine the influence of a uniform magnetic field on EC and ion transport.
The magnetic field, which is applied perpendicular to the gradient of the electric potential, generates
a Lorentz force that drives the electrolytes to flow from left to right. In the absence of EC, this
flow resembles the pressure-driven flow since the Lorentz force arises from a constant current
[36]. However, when the applied voltage exceeds a critical value, the emergence of EC vortices
leads to a nonuniform distribution of the Lorentz force, which in turn modifies the EC. Qin and
Bau [36] have shown that a uniform magnetic field perpendicular to a 2D electroneutral fluid
generates an irrotational body force, which is equivalent to applying a pressure gradient. However,
this equivalence no longer holds in nonelectroneutral regions. To observe this effect, we take the
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FIG. 2. (a) Time history of the x-averaged current density I under different magnetic fields for V = 40 and
80. (b) Time frequency of I for V = 80 at (black) M = 0 and (blue) M = 200.

curl of the Lorentz force and find that

∇ × (I × B) = (B · ∇)I + I(∇ · B) − (I · ∇)B − B(∇ · I) = B
∂ρ

∂t
, (5)

where the first three terms vanish due to the orthogonality between the magnetic field and electric
current, Gauss’s law for magnetism, and the constancy of the magnetic field, while the last term
remains nonzero and is directly associated with the time variation of the charge density. This result
suggests that the ion transport may be largely modified inside the EDL and ESCL.

We first examine the effects of the Lorentz force on the current passing through the ion-selective
membranes. Figure 2(a) shows the time history of x-averaged current density I = −〈Iy〉 under
different voltages and magnetic fields, where brackets represent the spatial average over the x
direction. At V = 40 and M = 0, the EC may exhibit multiple steady states with vortices of different
sizes coexisting in the electrolyte, and the current density is sensitive to the dynamics of the vortices
[44]. Around t ∼ 0.025, the current nearly doubles from I ∼ 10 to I ∼ 20, corresponding to the
coalescence of small vortices into larger ones throughout the channel. Applying a magnetic field
can delay or even inhibit this process. Our results show that the coalescence time first increases
with M, reaching complete suppression at approximately M ∼ 60 − 80. As M increases further, the
coalescence time decreases. It demonstrates that the magnetic field can reduce the secondary insta-
bility and regulate the ion transport. At a higher voltage V = 80, the magnetic field has a relatively
weaker effect on the magnitude of the current. Its main influence is to change the fluctuation of the
current density (see inset). Without the magnetic field, the total current is wide-banded in frequency
with multiple major peaks at f = 21.9, 52.4, and 90.7, and more peaks at higher frequencies
[see Fig. 2(b)]. At M = 200, the high-frequency fluctuations at f � 100 are substantially sup-
pressed, and the current shows two peaks at f = 77.6 and 89.6. This is mainly because the
magnetic-induced flow controls the size of the vortices near ESCL and stabilizes the chaotic EC.

Figure 3(a) compares the time- and x-averaged current density Ī at different voltages under
the influence of magnetic field or pressure gradient, where the overbar denotes the time average.
At a small voltage V = 20, the current density monotonically decreases with increasing M, and
it eventually reaches the limiting current by fully suppressing the EC. This result demonstrates
that a strong magnetic field can effectively stabilize the convective instability, achieving similar
effects as applying a pressure gradient [26]. Since the Lorentz force is a noncontact force, it offers
greater flexibility in different application scenarios; for instance, it can be used to drive a flow
inside a closed annular conduit [37]. At a higher voltage V = 80, the average current exhibits
a nonmonotonic variation with increasing the magnetic field strength. In our simulation, the EC
is not fully suppressed at V = 80 regardless of the presence of a magnetic field or a pressure
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FIG. 3. (a) Time- and x-averaged current density Ī versus the magnetic field strength M for different
voltages. In pressure-driven cases, the equivalent magnetic field strength M is calculated from the mean body
force and current density. (b) The average currents normalized by their values at M = 0.

gradient. However, we found that the current density fluctuation decreases (up to around 35%) with
increasing magnetic intensity. Similar results are also observed for cases with thinner double layers.
At V = 80, δ = 10−4, and δ = 10−5, the variations in the average current and current fluctuations
are around 10%. At an intermediate voltage V = 40, the current is sensitive to the flow conditions
[44]. By reducing the channel length, we found that the current density at V = 40 and M = 60
increases to Ī = 10.8 for L = 12 and Ī = 19.2 for L = 6, corresponding to a increment of the vortex
width. This result highlights that a large computational domain is required to accurately capture the
influences of crossflow on the EC at intermediate voltages. Figure 3(b) shows the average current
normalized by their values at M = 0. The magnetic and pressure fields can reduce the current by
a maximum of about 40% at V = 20 and increase it by a maximum of about 20% at V = 80. At
an intermediate voltage V = 40, both current increase and decrease are possible, depending on the
details of the EC vortices [44].

Next, we investigate the influence of the applied magnetic field on the flow structures of EC.
Figure 4 shows snapshots of the fully developed flow fields at two voltages, V = 20 and 80, and
different values of M. For better visualization, only half the computational domain is shown in the
x direction. At both voltages, the magnetic field exhibits a suppressing effect on the EC vortices

FIG. 4. Flow fields of EC at various magnetic strengths and voltages. Only half of the computational
domain is displayed in the x-direction. The contour plots show the distribution of cation concentration c+,
the black solid and dotted lines mark the regions of high and low ion fluxes, and light grey lines represent the
instantaneous streamlines.
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FIG. 5. Spatialtemporal evolution of the flow structures at a fixed y location for various magnetic field
strengths and voltages. The contour plots show the cation concentration c+, the black lines mark the regions
of high cation flux with I+

y = −8 for (a), (b) and I+
y = −50 for (c)–(f). The black dashed lines denote the

maximum average velocity of the channel flow with (b) 〈ū〉 = 58 for and (d), (f) 〈ū〉 = 1028. The blue dashed
lines indicate the local average velocity with (d) 〈ū〉 = 700 and (f) 〈ū〉 = 117.

within the bulk region, as indicated by the patterns of streamlines. At V = 20, the EC is steady
with stationary vortex pairs filling the entire channel [Fig. 4(a)]. The aspect ratio (height/width)
of the largest vortices is around 0.9, meaning the vortices are slightly wider than the gap distance
between the two surfaces, consistent with previous findings [15,44]. The vortices induce upward
and downward flows, directly influencing the convection of free charges. This results in alternating
regions of high and low current fluxes, represented by solid and dotted black lines. The magnetic-
induced crossflow suppresses the counterclockwise vortices and elongates the clockwise vortices
along the flow direction. In Figs. 4(b) and 4(c), the aspect ratios of the vortices reduce to 0.3 and
0.2, respectively, causing significant reductions in the total ion flux rate near the ESCL and reducing
the current variation across the channel. When M exceeds a critical threshold, the EC is completely
suppressed, and the electrolyte exhibits a simple Poiseuille flow with one-dimensional ion transport
cross the channel [Fig. 4(d)].

At V = 80, the EC becomes chaotic, with unsteady vortices continuously forming, dissipating,
splitting, and merging at various length scales [Fig. 4(e)]. The ESCL experiences significant
distortion due the strong electro-hydrodynamic interaction with the EC vortices, which cause
substantial ejection of ions from the top surface into the bulk region. These ion injections further
advect towards the bottom surface and form corridors with higher conductivity than the surrounding
regions, creating local channels of extremely high ion flux rates [23]. In the absence of the magnetic
field, these high-flux channels exhibit random deformation and migration across the channel. The
magnetic field influences these high-flux channels in three ways: it narrows the widths of the
channels, advects them along the direction of the Lorentz force, and distorts them into parabolic
shapes [Figs. 4(f)–4(h)]. As we will discuss later, these three effects combined lead to a reduction
in current fluctuations. Similar to the cases of V = 20, the magnetic-induced flow suppresses the
formation of large counterclockwise vortices. Near the bottom wall, numerous small vortices are
generated inside the ESCL and lead to a more uniform current distribution across the channel.

To quantitatively assess the dynamic effects of the magnetic field on EC, we analyze the spatial-
temporal evolution of the flow structures at fixed y locations for different simulations. Figures 5(a)
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FIG. 6. Same as in Fig. 5 for V = 80 and δ = 10−5. The black dashed lines represent the maximum average
velocity 〈ū〉 = 206, the blue dashed lines represent the local velocities (b) 〈ū〉 = 128 and (d) 〈ū〉 = 0.24.

and 5(b) illustrate the results at V = 20 and y = 0.2, with magnetic field strengths of M = 0 and
100. Consistent with our previous findings [20], the high ion flux regions are directly associated
with the high ion concentrations due to EC. At M = 100, the Lorentz force advects the steady
vortex pairs at a constant velocity 〈ū〉 = 58. The applied magnetic field also modifies the sizes and
numbers of the flow structures. At a higher voltage V = 80, the flow structures become unstable
[Fig. 5(c)]. Their duration times t ∼ 0.003 are approximately determined by the eddy turnover
time of EC vortices. At y = 0.032, the high concentration regions become smaller and exhibit finer
filament structures, indicating the random emergence of small vortices moving away from both
sides of the high concentration regions near the bottom surface [Fig. 5(e)]. In comparison, under the
influence of the Lorentz force, the EC flow structures are consistently convected downstream. At
both y = 0.2 and y = 0.032, the advection velocity 〈ū〉 = 1028 of the large flow structures matches
the maximum velocity of channel flow, as denoted by the two black dashed lines in Figs. 5(d) and
5(f). This suggests that the high-ion-flux channels experience a combined effect of advection and
deformation by the shear flow. Fine filamentlike structures can be observed along the trailing side of
the high-ion-flux regions, particularly at y = 0.032. This represents the quasiperiodic separation of
small vortices from the large flow structures, which then advect downstream at a local flow velocity
〈ū〉 = 117 at y = 0.032 (blue dashed lines). In Fig. 6, EC with thinner double layer thickness
δ = 10−5 generates smaller vortex structures near the ESCL. These small vortices form clusters
and collectively migrate downstream with the maximum flow velocity.

Figure 7(a) illustrates the normalized average velocity distribution 〈ū〉/Uthe over the channel,
where Uthe = Fx/8 represents the maximum velocity of the theoretical Poiseuille flow uthe =
Fx(y − y2)/2, where Fx = MIB and Fx = −d p/dx for a flow driven by magnetic field or pressure
gradient, respectively. To enable a direct comparison, the pressure gradient is set to −d p/dx = 433
for V = 20 and −d p/dx = 1016 for V = 80, matching the average body force of the magnetic
field. Interestingly, the two cases exhibit almost identical profiles for the time-averaged velocity,
indicating that the key influence of the Lorentz force on EC occurs in the electroneutral bulk region.
At V = 20, the velocity profile is exactly the same as the Poiseuille velocity, suggesting that the
EC is weak compared to the crossflow. However, at a higher voltage V = 80, the velocity is larger
in the bulk region and the maximum velocity slightly shifts towards the bottom side of the channel
due to the persistence of small clockwise vortices near the bottom surface. While these vortices
do not alter the linear shear flow for y < 0.03, they increase the fluid velocity in the bulk region
(see inset). This phenomenon is caused by an electric force near the ESCL due to the fluctuation
of ion concentration and electric potential. Figure 7(b) shows the dependence of the maximum
flow velocity on the magnitude of the applied body force Fx. The maximum average velocity of
the transverse flow under strong EC effects is 〈Ū 〉 � 1.1Uthe. The Lorentz force and the pressure
gradient have no essential difference in driving the crossflow. We also compare our results with
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(a) (b)

FIG. 7. (a) The time- and x-averaged flow velocity 〈ū〉/Uthe verse the wall normal distance y, Uthe is the
theoretical maximum velocity of the equivalent Poiseuille flow. (b) The dependence of the maximum flow
velocity 〈Ū 〉 on the average magnitude of the driving force Fx .

previous simulations and experiments of electromagnetically driven flows [2,45,46]. It is seen that
our simulation results exhibit a reasonably close agreement with the mean flow velocities reported
in literature, particularly for channels with a relatively large aspect ratio of 2:1.

The transverse flow across the channel has an unexpected influence on the horizontal current
flux density Ix. Figure 8 shows the distribution of Ix inside the channel at the same time instants as
Fig. 4, the vectors show the current field, and the solid and dashed lines show regions of high and
low current fluxes Iy. At V = 20, the current field exhibits a periodic variation due to the distribution
of steady vortices inside the channel. At V = 80, these vortices induce strong downward flows,
generating extremely high current flux compared to other regions. In the absence of the magnetic
field, the current lines in high current regions contract at the top surface and expand near the bottom
surface, and the opposite occurs in the low current regions. This is because the downward flows
increase the local electric conductivity by transporting more ions from the top surface to the lower
half of the channel, thereby attracting more electric field lines towards these regions. In Figs. 8(b)
and 8(d), the shear flow transforms the high conductivity regions into stripe bands with parabolic
shapes and significantly modifies the distribution of Ix.

On time average, the horizontal current flux Īx should vanish at M = 0 with sufficient sampling.
However, at M = 200, the crossflow induces net positive and negative current fluxes, respectively,
at the upper and lower halves of the channel [see Fig. 9(b)]. To better understand this result, we
decompose the average flux 〈Īx〉 into three components: the diffusive flux −〈∂x(c+ − c−)〉 which
vanishes, the electromigration flux −〈(c+ + c−)∂x�〉, and the convective flux Pe〈u(c+ − c−)〉. We
find that the electromigration flux has a dominant contribution in the bulk fluid region, while
the convective flux has a stronger effect near the ESCL. Further decomposition of the fluxes

FIG. 8. Distribution of horizontal current density Ix (contour plot) at different voltages and magnetic field
strengths M. The vectors represent the current field, and solid and dashed lines show the regions of high and
low current densities Iy in the vertical direction.
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FIG. 9. The time-averaged horizontal current density Īx fields for (a) V = 80, M = 0 and (b) V = 80,

M = 200. (c), (d) Components of the average horizontal current flux 〈Īx〉 due to advection and electromigration
for V = 80 and M = 200.

demonstrates that the net horizontal flux is mainly caused by the spatial correlation between the
fluctuations of salt concentration and electric potential.

The influence of the magnetic field on the ion transport can be clearly visualized in the plot of
the joint probability density function (JPDF) of the two current flux components. Figure 10 shows
the JPDF of Ix and Iy in the region of 0.017 � y � 0.042, corresponding to the ESCL. For steady
EC at V = 20, the magnetic field reduces the range of both Ix and Iy and causes a biased distribution
of negative Ix. At a high voltage V = 80, the magnetic field significantly suppresses the intermittent
events of extremely high current density (Iy < −200).

To analyze the influence of the Lorentz force on the length scales of the flow structures, we
compute the spatial spectra for various fields by averaging the squared summation of the Fourier
transformation of the vector fields’ x and y components. The results are presented in both linear-
log and log-log scales to provide a more comprehensive understanding. Figure 11(a) compares the
spatial spectra of kinetic energy at V = 80 for different y locations. For both cases at M = 0 and
M = 200, the kinetic energy is characterized by a power-law decay than by the exponential decay. In
the region near the ESCL, a power law approximately following E ∼ k−5/3 emerges at intermediate
wave numbers k � 50, and E ∼ k−8 at large wave numbers. The magnetic field reduces the kinetic
energy distribution for k � 3 while enhancing the flow structures at k ∼ 50, showing that magnetic
field induces more smaller structures in the velocity field near the bottom surface, confirming the
observations in Fig. 4. In the bulk region, the power-law regions are less visible, where the kinetic
energy decays fast with the wave number due to the coalescence of the small vortices into larger
ones. The magnetic field decreases the strength of the EC vortices while not affecting their scalings.

We further examine spectra of quantities related to the electric energy dissipation. The detailed
derivation for the energy-balancing equation can be found in the work of Druzgalski et al. [15].
Here, we only summarize the key results. The average input power per unit width of the channel is

Pin = IV, (6)

where I = −〈Īy〉 is the average current density, V is the applied voltage. The energy loss Ploss = Pin

in the electrolyte is composed of three parts,

Ploss = Pelec + Pvisc + Pmag, (7)
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FIG. 10. Joint probability density function distributions of horizontal component Ix and vertical component
Iy of current density in ESCL for V = 20 at (a) M = 0, (b) M = 100 and V = 80 at (c) M = 0, and (d)
M = 200.

where

Pelec =
∫ 1

0
〈pelec〉 dy, Pvisc =

∫ 1

0
〈pvisc〉 dy, Pmag =

∫ 1

0
〈pmag〉 dy, (8a)

pelec = c(∇�)2 + ∇� · ∇ρ, pvisc = 2Peδ2(∇u)2, pmag = −2Peδ2Mu · (I × B). (8b)

The first term Pelec represents the electrical dissipation, which contains an Ohmic loss term and
an unconventional term ∇� · ∇ρ related to flux of free ions; c = c+ + c− is the dimensionless
conductivity of the electrolyte. The second and third terms are viscous disspation and magnetic
dissipation, which are both three to four orders of magnitude smaller than the electrical dissipation.
The magnetic dissipation arises from the misalignment between fluid velocity and current flux and
is proportional to the strength of the applied magnetic field. The electrical dissipation can also be
expressed as follows:

pelec = 1

c
[I · I + Pe2ρ2u · u − (∇ρ)2 − 2PeρI · u] − ∇� · ∇ρ, (9)

where the conductivity appears in the denominator of the expression.
Figures 11(b)–11(d) illustrate the spectra for I · I, ∇� · ∇� and ∇ρ · ∇ρ, where the exponential

decaying characteristics is more prominent than the kinetic energy. The power spectrum of the
current shows the scaling of ∼ exp(−0.052k) at small wave numbers and a power-law ∼k−8 at
large wave numbers. This result is consistent with the previous experiment by Malraison and
Atten [47], who studied the power spectra of current for a dielectric liquid with a space-limited

113701-12



DIRECT NUMERICAL SIMULATION OF …

(a) (b)

(c) (d)

FIG. 11. Spatial spectra of (a) kinetic energy, (b) current density, (c) Ohmic loss, and (d) concentration
gradient potential for V = 80 at y = 0.033 (solid lines), y = 0.154 (dashed lines), y = 0.5 (dash-dot lines),
and y = 0.806 (dash-double-dot lines).

injection of unipolar ions near the electrode surface and observed similar scaling dependencies on
the temporal frequency: exponential decay at low frequencies and power-law decay with a power
exponent ∼7.7 − 8 at high frequencies. These two spectra have been, respectively, related to viscous
and inertial dominated flows. Our results, which are limited to low Reynolds flows (the maximum
Reynolds number based on the cross-flow velocity is order of 0.1), show that similar effects can
be generated by pure electromagnetoconvection instability. The magnetic field reduces the power
density at low wave numbers and slightly increases the wave number for the spectra peak.

IV. CONCLUDING MARKS

To summarize, we investigate the effects of a perpendicular magnetic field on the EC instabilities
in a liquid electrolyte between two ion-selective surfaces. Our paper shows that the Lorentz force
drives a net crossflow similar to a Poiseuille flow driven by a pressure gradient. We observe no
notable difference between the flows driven by the pressure gradient and the Lorentz force, even
though the Lorentz force is rotational in the ESCL. At a voltage slightly above the critical value
for the onset of EC, such as V = 20, the current density is decreased with increasing the magmatic
field strength until it fully suppresses EC, resulting in an 1D ion-transport. This effect shares a
similar physical mechanism with the pressure-driven channel suppressing EC and is consistent with
previous findings [26]. On the other hand, at a high voltage, strong EC cannot be fully suppressed.
The flow structures advect with the maximum speed of the crossflow and small vortices near the
ESCL move with the local fluid velocity, leading to the separation of small structures from the
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backside of the high-ion-flux regions. The induced crossflow is stronger than the corresponding
Poiseuille flow driven by a body force with the same average magnitude of the Lorentz force. Our
analysis reveals that the fluctuation of ion concentration near the ESCL generates an additional body
force and enhances the velocity. Furthermore, the crossflow causes a net ion flux perpendicular to
the electric field and reduces the ion flux along the direction of the electric field by suppressing the
emergence of extremely high ion fluxes. The spatial spectrum of the current density shows that the
magnetic field tends to reduce the size of the flow structures.

Several directions can be taken in future research to overcome the limitations of this paper. First,
our current study on liquid electrolytes indicates that even though the Lorentz force is rotational
inside the ESCL, it mainly has indirect effects on the EC instability by causing the crossflow
similar to a pressure gradient. This is probably because the Lorentz force has a small influence
on the ion mobility in a liquid electrolyte with a small conductivity ∼1 − 10 S m−1, where the
charge density ∼10−7 − 10−4 mM in the ESCL and ion mobility ∼10−8 − 10−7 m2V−1s−1. In
comparison, the liquid metals and ionic gases have much larger conductivity ∼106 S/m and ion
mobility ∼10−5 − 10−4 m2V−1s−1, and the magnetic field is found to have a much larger influence
on the flow instability [48]. The Lorentz force may also have stronger effects on EC in a dielectric
liquid with strong ion injection, where the density of the accumulated free charges can reach high
levels ∼10−1 − 1 mM at elevated voltages [49]. Future investigations focusing on such systems can
explore the direct impacts of magnetic fields on EC instability. Second, our two-dimensional model
is limited to the EC flows in channels of high aspect ratio. While previous studies have shown that
by reducing the aspect ratio of the channel, the two-dimensional EC vortices transforms into helical
vortex pairs, resulting in nonmonotonic increase of overlimiting current density with respect to
the channel’s aspect ratio [50]. Three-dimensional simulations are necessary to explore this effect.
Finally, it would be intriguing to extend the current paper to simulate the influences of the applied
magnetic field on the ion transport and electrodeposition on a metal surface, considering interplay
between EC and the morphological evolution of an electrode surface.
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