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We carry out direct numerical simulations of horizontally or vertically vibrated
Rayleigh–Bénard (RB) convection over a wide range of Rayleigh number (Ra) and di-
mensionless vibration frequency (ω) at fixed Prandtl number Pr = 4.38 and dimensionless
vibration amplitude a = 1.52 × 10−3. It is shown that the global heat transport (measured
by the Nusselt number Nu) is close to the value of standard RB convection in buoyancy-
dominant regime at small ω, whereas it is significantly enhanced by horizontal vibration or
suppressed by vertical vibration in the vibration-dominant regime at large ω. The division
between the two regimes yields a critical vibration frequency ω∗, which indicates the onset
of vibration-induced Nu enhancement or Nu reduction. The values of ω∗ are obtained
based on the fitting between the numerical data and our proposed crossover functions.
The dependence of ω∗ on Ra is then studied. It is found that the fitted critical frequency
exhibits two close scaling relations: ω∗ ∼ Ra−0.164 in horizontally vibrated RB convection
and ω∗ ∼ Ra−0.172 in vertically vibrated cases. Moreover, based on the competition of the
kinetic energy production between buoyancy-dominant and vibration-dominant regimes,
a physical model is proposed to predict the scaling behavior between ω∗ and Ra, i.e.,
ω∗ ∼ Ra−1/6, which agrees well with the measured scaling exponents of our numerical
data.

DOI: 10.1103/PhysRevFluids.8.113501

I. INTRODUCTION

Thermally driven convection [1–3], as an effective way to transport heat and mass, is ubiquitous
in nature and in many industrial applications. The properties of heat transport, the fundamental
features of convective structures and multiscale fluctuations in thermal convection, have been
extensively studied in the past few years [1–7]. The control of convective heat transport is also
an outstanding topic of the field in past decades with fundamental scientific interests. Additionally,
stabilizing or destabilizing convective instability as well as enhancing or suppressing heat transport
are crucial in numerous engineering domains. Thus the key question is how to effectively enhance
or reduce the dimensionless Nusselt number Nu, which characterizes the global heat flux of the
system, at a fixed Rayleigh number Ra that quantifies the intensity of buoyancy effects and describes
the convective flow regime [8].
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In recent years, various approaches have been investigated for tackling the problem of heat
transport control, including the temporal or spatial modulation [9–12], the imposition of magnetic or
electric field [13–16], the superimposition of shear, oscillating, or rotating flows [17–20], using wall
roughness [21–24], through artificial intelligence method [25,26], etc. Perhaps the most promising
approach is the active precise control of heat transport using an implementable method. The most
relevant of these active approaches to the control is the introduction of external vibration, which
has been proven to be an effective way for achieving significant Nu enhancement or Nu reduction
through creating an “artificial gravity” to dynamically destabilize or stabilize thermal convection
[27,28].

It is known that vibration has the ability to drive a supplementary flow when it is applied in a
fluid layer subjected to a temperature gradient, which is the so-called thermal vibrational convection
(TVC) [28]. Gershuni and Lyubimov [28] synthesized the TVC theory with finite and high vibration
frequency, and pointed out that the governing equations of streaming flows can be theoretically
deduced using the averaging technique in limit of small amplitude and high frequency. Vibration
is usually used to strengthen or diminish thermal convection depending on mutual direction of
vibration and temperature gradient [29–31]. Most of the previous works focused on the investigation
of the interaction of vibration with thermal convection at low Rayleigh numbers. Demin et al. [32]
investigated the influence of the angle between the temperature gradient and vibration direction
on the onset of instability in an infinite plane layer. Gershuni and Lyubimov [28] found that
vibration perpendicular to the temperature gradient has the ability to generate a nonzero mean
flow at any amplitude. Farooq and Homsy [33] studied the effect of vibration parallel to the
temperature gradient in natural convection, and found the possibility of resonances between the
basic flow and vibration-induced higher-order streaming at finite frequency. Cissé et al. [34] inves-
tigated the Rayleigh-Bénard (RB) convection under vibration of arbitrary direction, and found that
high-frequency vibration parallel to the temperature gradient can postpone convective instability;
conversely, vibration nonparallel to the temperature gradient generates an average convective flow
and influences convective flow. Carbo et al. [35] further showed that vertical vibration can postpone
the convective instability through the analysis by their proposed computational model. This result is
also confirmed by their experiments at low Rayleigh numbers [36]. The influence of vibrational on
heat transport has also been addressed at low Rayleigh numbers [37–39]. Forbes et al. [37] showed
that vibration can enhance the convective heat transport in a rectangular enclosure. Zidi et al. [39]
showed that vibration aligned to temperature gradient reduces the intensity of the streaming flow
and suppresses both the heat and mass transport.

Recently, the investigation of vibrational effects on thermal convection has been extended to
the high-Ra (i.e., turbulent) regime [40–46]. The suppression of Rayleigh-Taylor turbulence in the
zero-gravity condition is achieved after long-time development under the action of the time-periodic
vibration aligned to temperature gradient [40]. It is found that vibration parallel to temperature gra-
dient produces a dynamically averaged “antigravity” to stabilize convective flows and significantly
suppress heat transport in turbulent RB convection, when the vibration frequency exceeds a critical
value [45]. It is also found that vibration perpendicular to the temperature gradient induces the
boundary-layer destabilization and achieves a massive enhancement of convective heat-transport
rate in both RB convection [41] and vertical convection [42], when the frequency is higher than
a critical value. Such massive heat-transport enhancement induced by horizontal vibration is also
observed in RB convection over rough surfaces for large vibration frequency [44].

As a typical parameter for the vibrational convective heat transport, the critical frequency
ω∗ indicates the onset of Nu-enhancement or Nu-reduction achieved by the action of vibration.
Therefore, it is of great interest and fundamental importance to reveal its dependence on the control
parameters of the system. In this paper, we chose the paradigm of thermal convection, i.e., turbulent
RB convection, and carried out a series of direct numerical simulations of RB convection under the
action of horizontal or vertical vibrations over a wide range of Rayleigh number Ra and vibration
frequency ω. We investigated the effects of vibration on the global heat transport of the system
and reveal the dependence of the critical vibration frequency ω∗ on Ra. The reminder of this
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paper is organized as follows. Section II gives a brief description of the governing equations and
numerical approach of turbulent RB convection with horizontal or vertical vibration. In Sec. III, we
show the transition from buoyancy-dominant regime to vibration-dominant regime, analyze the Ra
dependence of ω∗, and then propose a physical model to physically understand the measured ω∗-Ra
scaling. Finally, the conclusion is given in Sec. IV.

II. NUMERICAL METHODS

In this section, we give the details of our numerical methods. We consider turbulent RB convec-
tion filled with water. All solid walls of the convection cell satisfy the nonslip boundary conditions.
Four sidewalls are adiabatic and a uniform temperature is imposed at the top (Tcold) and bottom
(Thot) plates. To control the convective heat transport, we apply an external harmonic vibration
A cos(�t )evib to the system, where A is the vibration amplitude, � is the frequency, and evib is the
unit vector in the vibration direction. In the reference frame associated to the imposed vibration,
an additional inertial acceleration A�2 cos(�t )evib is introduced to the fluid of the RB system. In
this work, all physical quantities have been made dimensionless with respect to the cell’s height H ,
the temperature difference between the bottom and top plates � = Thot − Tcold, the free-fall velocity√

αg�H , and the free-fall time scale
√

H/(αg�), where α is the thermal expansion coefficient
of water and g is the gravitational acceleration. Hence, the fluid motion in vibrated turbulent RB
convection is governed by the dimensionless equations:

∇ · u = 0, (1)

∂t u + (u · ∇ )u = −∇p + (Ra/Pr)−1/2∇2u + θ (ez − aω2 cos(ωt )evib), (2)

∂tθ + (u · ∇ )θ = (RaPr)−1/2∇2θ, (3)

where u denotes the velocity field, p the kinematic pressure field, θ the temperature field, and ez the
unit vector in the vertical direction. From Eqs. (1)–(3), it is known that the dynamics of the vibrated
RB system is regulated by four nondimensional control parameters: the Rayleigh number Ra, the
Prandtl number Pr, the dimensionless vibration amplitude a, the dimensionless vibration frequency
ω, i.e.,

Ra = αg�H3

νκ
, Pr = ν

κ
, a = α�A

H
, ω =

√
�2H

αg�
, (4)

where ν and κ are the kinematic viscosity and thermal diffusivity of the working fluid, respectively.
For horizontally vibrated convection, we solve the governing equations, in a rectangular cell

of aspect ratio 1 : 1 : 0.3, using the open source spectral element code Nek5000, which has been
well validated in numerical simulations of turbulent RB convection [47,48]. The Rayleigh number
ranges from Ra = 106 to Ra = 108, and the dimensionless vibration frequency ranges from ω = 0
to ω = 1700. For vertically vibrated convection, we solve the governing equations, in a cubic
cell, using a second-order finite difference code, which has been validated in our previous works
[43,45,49]. The Rayleigh number ranges from Ra = 107 to Ra = 109, and the dimensionless vibra-
tion frequency ranges from ω = 0 to ω = 700. In both cases, the dimensionless vibration amplitude
is set to a constant small value of a = 1.52 × 10−3 and the Prandtl number is fixed at Pr = 4.38,
which correspond to a small pulsating displacement A = 0.1H and the working fluid of water
with mean temperature 40K, the thermal expansion coefficient α = 3.8 × 10−4, the temperature
difference � = 40K. The RB convection containing water under small amplitude vibrations is easily
achieved experimentally in practice. Further details of the numerical methods and parameters can
be found in our previous works [41,45]. Note that the numerical data have been reported in our
previous works [41,45], but here we perform new analysis and focus on the Ra dependence of the
critical vibration frequency ω∗, which provides new insights into the problem.
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FIG. 1. The normalized Nusselt number Nu(ω)/NuRB as a function of the vibration frequency ω in
horizontally vibrated RB convection at fixed Rayleigh number Ra = 108, where NuRB is the Nusselt number of
classical thermal turbulence without any vibration. The two inserts show the snapshots of instantaneous flow
structures visualized by the volume rendering of the temperature field at (a) ω = 100 and (b) ω = 1700.

III. RESULTS

A. Transition from buoyancy-dominant to vibration-dominant regimes

We first examine the vibrational effects on heat transport and flow structures in turbulent RB
convection. Figure 1 shows the variation of the normalized Nusselt number Nu(ω)/NuRB as a
function of vibration frequency ω at fixed Ra = 108, where NuRB is the Nusselt number of classical
thermal turbulence without any vibration. The insets (a) and (b) depict the typical snapshots of
instantaneous flow structures visualized by the volume rendering of the temperature field at two
typical frequencies ω = 100 and ω = 1700, respectively. Here, the Nusselt number is calculated
by Nu = √

RaPr〈u3θ〉 − ∂x3〈θ〉, where u3 is vertical velocity and 〈·〉 denotes an average over space
and time. When the horizontal vibration is applied, the Nusselt number characterizing the global
heat-transfer efficiency of the system initially keeps the value of NuRB for classical RB convection
at small frequency ω, and then is dramatically enhanced when ω exceeds a certain critical frequency.
At small frequency (e.g., ω = 100), the vibrational effects are too small to modify the flow pattern,
and the overall flow structures are similar to those of classical RB convection as shown in the inset
(a) of Fig. 1: the buoyancy effects that yield the convective instability destabilize thermal boundary
layers and facilitate the emissions of thermal plumes from the bottom or top plates; those detached
plumes move into the bulk regime and then self-organize into the large-scale circulation, which
transports heat from the bottom to top plates. At large frequency (e.g., ω = 1700), on the other hand,
the vibration effects become so significant. The fast vibration of horizontal plates induces a strong
shear to the fluid in the near-wall regions, intensifies the destabilization of thermal boundary layers,
triggers massive emissions of thermal plumes, and even breaks the large-scale flow structures, i.e.,
these detached plumes merge and group together and then form coherent giant plumes as shown in
the inset (b) of Fig. 1, which in turn greatly enhances the convective heat transport compared to that
in classical RB convection [41].

When the vibration is applied in the vertical direction, the opposite effects of vibration on heat
transport are observed as depicted in Fig. 2. It is seen that under the action of vertical vibration,
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FIG. 2. The normalized Nusselt number Nu(ω)/NuRB as a function of the vibration frequency ω in
vertically vibrated RB convection at fixed Rayleigh number Ra = 3 × 108. The two inserts show the snapshots
of instantaneous flow structures visualized by the volume rendering of the temperature field at (a) ω = 40 and
(b) ω = 700.

the ratio of the Nusselt number Nu(ω)/NuRB is initially close to unity, but starts to decrease with
increasing ω when exceeding a certain critical frequency. For small frequency (e.g., ω = 40), the
vibration effects are too small to balance the gravity and thus the system is still in a state of
classical RB turbulence, as shown in the inset (a) of Fig. 2. For large frequency (e.g., ω = 700),
vibration-induced dynamical averaging effects (referring to “antigravity” in Ref. [45]) dominate the
convective flow, stabilize thermal boundary layers, and suppress the plume ejections as shown in
the inset (b) of Fig. 2, which thus reduces the heat-exchange capability of the system.

Briefly, it is found that the vibrational effects on the convective heat transport depend on the
relative orientation of vibration to that of temperature gradient. For cases under horizontal vibration,
i.e., the vibration direction is perpendicular to that of the temperature gradient (or the gravitation
direction), vibration-induced dynamical destabilization results in massive heat-transport enhance-
ment, whereas for cases under vertical vibration, i.e., the vibration direction is parallel to that of
temperature gradient, vibration-induced dynamical stabilization leads to significant heat-transport
suppression. One sees clearly in Figs. 1 and 2 that for both cases, there exists a critical vibration
frequency, denoted as ω∗, below which the buoyancy effect is dominant and vibration nearly does
not change the heat-transfer capability, but above which the the vibration effects are significant and
vibration can achieve heat-transport enhancement or suppression. The critical vibration frequency
ω∗, representing the intensity of the imposed vibration at fixed amplitude a, indicates the transition
from the buoyancy-dominant to vibration-dominant regimes in both horizontally and vertically
vibrated turbulent RB convection.

B. Scaling between the critical vibration frequency and Ra

To reveal the dependence of the critical vibration frequency ω∗ on the Rayleigh number, we
carried out a series of three-dimensional simulations of both horizontally and vertically vibrated RB
turbulence for various Ra. Figures 3(a) and 3(b) show the normalized Nusselt number Nu(ω)/NuRB

as a function of ω for different Ra in horizontally and vertically vibrated RB convection, respec-
tively. Both Nu enhancement by horizontal vibration and Nu suppression by vertical vibration are
observed for all Ra studied, suggesting that the effects of vibration on controlling heat transport
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FIG. 3. The normalized Nusselt number Nu(ω)/NuRB as a function of the vibration frequency ω for various
Ra in RB convection under (a) horizontal and (b) vertical vibration. In (a) the dashed lines are the best fits of
the crossover function y = log10[101/4 + (ω/ω∗)n/4]4 to the respective data. In (b), the dashed lines are the best
fits of the crossover function y = 1/ log10[10 + (ω/ω∗)n] to the respective data.

are rather robust in the turbulent regime. In addition, we note that for horizontally vibrated
cases, Nu(ω)/NuRB keeps nearly unchanged in the buoyancy-dominant regime (small ω), i.e.,
Nu(ω)/NuRB ≈ 1, whereas Nu(ω)/NuRB grows rapidly with increasing ω in the vibration-dominant
regime (large ω), exhibiting a roughly linear relation with log10(ω) as depicted in Fig. 3(a), i.e.,
Nu(ω)/NuRB ≈ n log10(ω) = log10(ωn), where n is an unknown parameter. To crossover from
Nu(ω)/NuRB ≈ 1 in the buoyancy-dominant regime to Nu(ω)/NuRB ≈ log10(ωn) in the vibration-
dominant regime, we propose an crossover function Nu(ω)/NuRB = log10[101/4 + (ω/ω∗)n/4]4,
where ω∗ represents the critical vibration frequency. The fitted curves of the crossover function
to the respective data as a function of ω are plotted as the dashed lines in Fig. 3(a). Similarly,
for cases of vertically vibrated RB convection, we propose a crossover function Nu(ω)/NuRB =
1/ log10[10 + (ω/ω∗)n] to describe the dependence of Nu(ω)/NuRB on ω. The corresponding fitted
curves are presented as the dashed lines in Fig. 3(b). It is seen in Figs. 3(a) and 3(b) that all fitted
curves agree well with the respective data for both horizontal and vertical vibrations, indicating that
these proposed crossover functions can indeed characterize the dependence between the normalized
Nu(ω)/NuRB and ω.

To better compare the measured Nu(ω)/NuRB at different Ra, we adopt the fitted values of ω∗
to normalize the data and the results are displayed in Figs. 4(a) and 4(b). It is clearly seen that not
only the Nu data of horizontal vibration at different Ra collapse well on top of each other, but also
the vertical vibration data are nicely coincident together. It is also shown that above the critical
frequency ω∗, the Nu enhancement or Nu reduction becomes so significant, and under the normal-
ization of ω∗, the dependence of Nu on ω exhibits some kind of universal properties for all cases
studied. This implies that the critical frequency ω∗, signaling the onset of the vibration-dominant
regime, is a key parameter for characterizing the vibration-induced enhancement or suppression of
the convective heat transport.

Next, we examine the dependence of ω∗ on Ra. The fitted ω∗ as a function of Ra is shown in
Fig. 5. Both ω∗-Ra data sets exhibit a scaling relation and the best power-law fit yields a scaling
ω∗ ∼ Raβ with a fitted scaling exponent β = −0.164 for horizontal vibration and β = −0.172 for
vertical vibration. Taking advantage of the scaling of ω∗, the vibration effects on thermal turbulence
can be categorized into two regimes: when ω < ω∗, the classical RB regime is recovered and the
vibration effects are too feeble to change the values of Nu; when ω > ω∗, on the other hand,
the vibrational effects dominate the convective flow, and thus the vibration-induced dynamical
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FIG. 4. The normalized Nusselt number Nu(ω)/NuRB as a function of the normalized frequency ω/ω∗ for
different Ra in turbulent RB convection under (a) horizontal and (b) vertical vibrations. The critical vibration
frequency ω∗ is obtained through the fitting of the crossover function to the respective data.

destabilization (or stabilization) results in significant Nu enhancement when vibration is applied
in the horizontal direction (or Nu reduction when vibration is applied in the vertical direction).

C. Physical model

It is interesting to understand the scaling behaviors of ω∗ shown in Figs. 5(a) and 5(b), above
which the vibration effects become significant. Note that any physical variable can be divided into
a slow part and a fast (pulsational) part, i.e., ui = Ui + u′

i, θ = � + θ ′. Here, the time scale for slow
parts (Ui, �) is much larger than the vibration period τω, whereas the characteristic time scale of
fast parts (u′

i, θ ′) is comparable to τω. The slow parts can be obtained by taking the average of the
corresponding physical variables over a vibration period, i.e., Ui = 〈ui〉τω

, � = 〈θ〉τω
and P = 〈p〉τω

.
Here, the averaging operator over a vibration period 〈φ(t )〉τω

can be expressed by

〈φ(t )〉τω
= 1

τω

∫ t+τω

t
φ(t ′)dt ′, (5)

FIG. 5. The fitted critical vibration frequency ω∗ as a function of Ra in turbulent RB convection under
(a) horizontal and (b) vertical vibrations. The best power-law fit to ω∗ yields a scaling ω∗ ∼ Ra−0.164 in (a) and
ω∗ ∼ Ra−0.172 in (b).
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where τω = 2π/ω is the vibrational period. Applying this decomposition into the momentum
equation, i.e., Eq. (2), allows to write

∂tUi + Uj∂ jUi = −∂iP + �δi3 − 〈aω2 cos(ωt )θ ′〉τω
δi3 + (

√
Ra/Pr)−1∂ j∂ jUi + ∂ jτi j, (6)

where τi j = −〈u′
iu

′
j〉τω

is the vibrational stress. Multiplying Ui to Eq. (6), we obtain the transport
equation of kinetic energy K = UiUi/2, namely,

∂t K = P + ∂kTk − ε, (7)

where P is the kinetic energy production, Tk is spatial transport flux, and ε is the dissipation. In the
production term P, it consists of two parts: one is Pgra driven by the gravitation-induced buoyancy,
and the other is Pvib by the vibrational buoyancy and stress, i.e.,

P = U3�︸︷︷︸
Pgra

+ (−U3〈aω2 cos(ωt )θ ′〉τω
− τi jSi j )︸ ︷︷ ︸

Pvib

, (8)

where Si j = (∂ jUi + ∂iUj )/2 is the strain tensor.
To quantitatively determine the relative importance of vibrational and gravitational effects in

vibrated turbulent RB convection, we introduce their corresponding production terms in Eq. (8)
with taking the time- and space-average: the averaged energy production driven by gravitational
buoyancy Pgra = 〈U3�〉 and the averaged production by the vibration-induced buoyancy and stress
Pvib = 〈−U3〈aω2 cos(ωt )θ ′〉τω

− τi jSi j〉. According to the classical averaging theory of TVC [28],
one of the solutions for the vibrational parts u′

i and θ ′ can be found as

u′
i = −aω sin(ωt )Ni, (9a)

θ ′ = −a cos(ωt )Nj∂ j�, (9b)

where Ni = �δi3 − ∂i� with ∂ j∂ j� = ∂x3� and δi j denoting the Kronecker δ tensor. Substituting
Eq. (9) into Pvib yields Pvib = 〈a2ω2(U3Nj∂ j� + NiNjSi j )/2〉.

We next estimate the magnitudes of Pgra and Pvib. From the Nu definition, it readily obtains
Pgra ∼ 〈U3�〉 ∼ NuRa−1/2Pr−1/2. Assuming |Ni| ∼ |�δi3| ∼ 1, together with U3 ∼ ReRa−1/2Pr1/2,
|∂ j�| ∼ ε

1/2
th , |Si j | ∼ ε

1/2
u , it allows to write Pvib ∼ a2ω2 (ReRa−1/2Pr1/2ε

1/2
th + ε

1/2
u ). Here, | · |

takes off the magnitude of variables, εu = 〈Si jSi j〉 and εth = 〈∂ j�∂ j�〉, respectively. According
to the relative importance between Pgra and Pvib, two regimes can be described as: Pvib < Pgra

for the buoyancy-dominant regime and Pvib > Pgra for the vibration-dominant regime. There-
fore, at the critical vibration frequency ω∗, one expects a balance between the gravitational and
vibrational productions, i.e., Pvib ≈ Pgra. Combining the exact relations in vibrating RB con-
vection, i.e., εu = Ra1/2Pr−1/2(Pgra + Pvib), εth − 1 = Ra1/2Pr1/2Pgra, and Pvib ≈ Pgra, it readily
obtains εu ≈ 2Pr−1(εth − 1) at the critical frequency. Therefore, the balance Pvib ≈ Pgra yields
ω∗ ∼ a−1Nu1/2Ra−1/4ε

−1/4
th (ReRa−1/2Pr + 2)−1/2. As vibration at the critical frequency has a slight

influence on the RB system, including the Nusselt number and the Reynolds number, we think that
the dependency of Re and Nu on Ra in vibrating RB systems at the critical frequency is very close to
that in the standard RB system. Hence, together with Re ∼ Ra1/2 and εth = Nu ∼ Ra1/3 of classical
thermal convection [50], we have

ω∗ ∼ Ra−1/6, (10)

which remarkably agrees well with those of ω∗ ∼ Ra−0.164 and ω∗ ∼ Ra−0.172 as shown in Fig. 5
within numerical uncertainty.

IV. CONCLUSIONS

In summary, we considered the issue of controlling heat transport in three-dimensional turbulent
RB convection by applying external vibration to the convection cell, and focused on the dependence
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of the critical vibration frequency ω∗ on Ra, one important control parameter of the RB system. We
carried out a series of direct numerical simulations of RB convection under the action of horizontal
or vertical vibration over a wide range of the vibration frequency and the Rayleigh number, i.e.,
0 � ω � 1700 and 106 �Ra � 108 in horizontally vibrated convection, and 0 � ω � 700 and
107 � Ra � 109 in vertically vibrated cases. It is found that with increasing ω, the transition from
the buoyancy-dominant to vibration-dominant regimes is robustly observed for all Ra studied in both
horizontally and vertically vibrated cases. Then, the critical vibration frequency ω∗ is proposed to
indicate the onset of the vibration-dominant regime, i.e., the onset of Nu enhancement induced by
the horizontal vibration or the onset of Nu reduction by the vertical vibration. The values of ω∗ are
approximately obtained through the fitting of the proposed crossover functions to the corresponding
numerical data. It is shown that ω∗ and Ra exhibit a close scaling relation, i.e., ω∗ ∼ Ra−0.164 in
horizontally vibrated cases and ω∗ ∼ Ra−0.172 in vertically vibrated cases. Furthermore, based on
the competition of the energy production between the buoyancy-dominant and vibration-dominant
regimes, we proposed a physical model and theoretically deduced the scaling relation of the critical
vibration frequency, i.e., ω∗ ∼ Ra−1/6, which agrees well with our numerical results. The present
work gives the fundamental basis and practical guideline for the application of the external vibration
to control the convective heat transport.
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