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Particles in inertialess flows of shear thinning fluids are a model representation for
several systems in biology, ecology, and microfluidics. In this paper, we analyze the motion
of a spheroid in a pressure-driven flow of a shear thinning fluid. The shear thinning
rheology is characterized by the Carreau model. We use a combination of perturbative
techniques and the reciprocal theorem to delineate the kinematics of prolate and oblate
spheroids. There are two perturbative strategies adopted, one near the zero shear Newtonian
plateau and the other near the infinite shear Newtonian plateau. In both limits, we find
that a reduction in effective viscosity decreases the spheroid’s rotational time period in
pressure-driven flows. The extent to which shear thinning alters the kinematics is a function
of the particle shape. For a prolate particle, the effect of shear thinning is most prominent
when the spheroid projector is aligned in the direction of the velocity gradient, while for
an oblate particle the effect is most prominent when the projector is aligned along the flow
direction. Last, we compare the tumbling behavior of spheroids in pressure-driven flow to
those in simple shear flow. While the time period decreases monotonically with Carreau
number for pressure-driven flows, the trend is nonmonotonic for shear flows where time
period first increases at low Carreau number and then decreases at high Carreau numbers.
Shear thinning does not resolve the degeneracy of Jefferey’s orbits.

DOI: 10.1103/PhysRevFluids.8.113302

I. INTRODUCTION

Rigid, orientable particles experience a bevy of interesting phenomena when placed in highly
viscous, structureless fluids [1]. For example, a single rod sediments at the same initial orientation in
such fluids, while a single rod tumbles in a periodic orbit (Jeffrey orbit) in shear flow. The reason for
these behaviors arise from the symmetry, linearity, and reversibility of the Stokes equations [2–4].
When the assumptions of the Stokes equations break down, i.e., when fluid inertia is present or the
fluid exhibits non-Newtonian rheology, the above behavior may no longer be valid [5].

By now, there are plenty of studies that investigate how different particle shapes (e.g., fibers,
sheets, spheres, spheroids) move under sedimentation, linear flows, and quadratic flows when the
fluid has small but nonzero inertia. For example, a fiberlike particle was analyzed in shear flow of a
Newtonian fluid with weak inertia using a slender body approximation and the reciprocal theorem
[6]. It was shown that the fiber drifts towards the velocity-shear gradient plane due to inertia and
then stops rotating altogether above a critical Reynolds number. A similar analysis was performed
for spheroids in simple shear flow [7]. The analysis was later extended to general linear flows, which
are a combination of extensional and rotational flows [8]. The analyses showed that both fluid and
particle inertia forced the prolate particle to tumble in a velocity-velocity gradient plane, while the
oblate particle was forced into a log rolling motion. A linear stability analysis validated the stability
of these orientations for prolate and oblate particles [9,10].
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When the suspending fluid is no longer Newtonian, the fluid can experience phenomena such as
normal stress differences, shear thinning, extensional thickening, and/or time-dependent viscoelas-
ticity. Each of these effects play a major role in altering the motion of rigid, orientable particles. We
will not provide a complete survey on the microhydrodynamics of such particles in non-Newtonian
fluids; instead, we refer the readers to treatises [11,12] and provide a brief summary here. Generally,
much of the effort on the past few decades has focused on the effect of normal stresses on particle
motion [13–15]. Normal stresses give rise to two different phenomena in low-Reynolds-number
flows—namely cross stream migration and steady-state orientation. Cross-stream migration refers
to the lift forces on particles flowing in channel. This phenomenon occurs when there is a gradient
in normal stresses and thus is generally observed when there is a gradient in strain rates, i.e., a
quadratic flow [16]. During sedimentation and/or shear flow, normal stresses can also give rise to a
hydrodynamic torque on orientable particles. This situation leads to a stable orientation [16,17]. The
analytical solution for the sedimentation of spheroids in a quiescent background of a second-order
fluid was furnished by Kim [18], while those for linear flows by Brunn [19]. Recently, these studies
were extended by Tai et al. [20], who furnished analytical formulas for the polymeric force and
torque on a spheroid, in quadratic flows of second-order fluids in the limit of small Weissenberg
number. A recent survey of the research into viscoelastic microhydrodynamics is furnished in
Ref. [12].

There has been interest in the microhydrodynamics of particles in fluids with variable viscosity,
where the variation in viscosity is either spatial [21–23] or due to the shear thinning rheology of
the fluid [24,25]. Of the two, the focus in this paper is the motion of spheroids in shear thinning
fluids; such systems are prevalent in biology, microfluidics, and ecology [26,27]. There particularly
has been work done for microswimming (active particles) [28], due to the intuitive but naive
speculation that a reduction in viscosity afforded by shear thinning allows the swimmer to swim
faster without expending as much as energy [27,29]. For spherical squirmers, an asymptotic analysis
revealed both enhancement and reduction of swimming velocity depending on the surface actuation
of swimmers [30,31]. There are shear rates at which the swimming velocity gets optimized [31].
Thus, the naive hypothesis that shear thinning enhances the swimming speed is faulty and must be
used with caution [30,31]. Very recently, the swimming characteristics of Purcell’s swimmer in a
shear thinning fluid was analyzed where it was revealed that unequal arm rotation rates induce a net
vertical displacement, which is not present in Newtonian fluids [32].

Despite the recent progress on particle dynamics in shear thinning fluids, it is clear that this
area of research is relatively underexplored with many challenging problems remaining to be
investigated. For instance, most of the asymptotic analyses of particle dynamics explore the Carreau
model of fluid rheology, performing a perturbation expansion in the small-Carreau-number (i.e.,
low shear rate) limit [24,25]. We still do not know what happens when the Carreau number
is not small. Moreover, for passive particles, the analysis has been restricted to spheres, with
the notable exception of Ref. [25]. Other particle shapes, like oblate spheroids, have not been
investigated with respect to their interaction with shear thinning flows. Finally, we understand that
microhydrodynamics of particles during sedimentation [24] and linear shear flows [25] of shear
thinning fluids has been analyzed, but more complicated flows like pressure-driven flows have not
been discussed. In this context, we propose to answer the following research questions in this paper:
How does the orientational kinematics of prolate and oblate spheroids vary in pressure-driven flows
of shear thinning fluids in both the small- and large-Carreau-number limits? How is this behavior
different than in the simple shear flow case?

The paper is organized as follows. First we introduce the problem formally in Sec. II. The
definition of prolate and oblate spheroids are discussed here as well as the fluid rheological model
(Carreau model). Next, in Sec. III, we show how the pressure-driven flow is altered due to shear
thinning alone, without the presence of any particle. This section also introduces the particle into this
flow field and uses the reciprocal theorem to quantify the shear thinning correction to the particle
kinematics. In the next section, we discuss the algorithm of the code (Sec. IV), which we use to
obtain the results in Sec. V. In Sec. VI, we present some results pertaining to the tumbling time
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FIG. 1. System geometry in a shear thinning fluid. (a) Lab coordinate system. The channel has half height h
and length l , and the coordinate axes are placed at the center of the channel inlet. A spheroid is initially placed
at location (x0, y0, z0) and its position and orientation is tracked over time. The dimensions are not to scale.
(b) Particle coordinate system. When solving for the particle’s rigid body motion, we assume the particle is in
an unbound fluid with a velocity u∞

i given by the flow in the channel. The coordinates align with the particle’s
semiaxes and the origin is the particle’s center of mass

period of spheroids in simple shear flows in both the small- and large-Carreau-number regimes
and discuss the difference between the trends observed in shear flows vis-à-vis those observed in
pressure-driven flows. A discussion and conclusion follow in Sec. VII.

II. PROBLEM STATEMENT

A. Problem geometry and particle definition

The system under investigation is a spheroid in a pressure-driven flow of a shear thinning fluid.
The flow is steady and inertialess, and the particle is neutrally buoyant and passive. Figure 1(a)
illustrates the geometry of the system. We investigate a slitlike channel of length l , height 2h, and
infinite width. The coordinate system is positioned such that the x axis aligns with the midplane of
the channel while the y axis aligns with the height of the channel. A pressure p = �P is imposed at
the inlet of the channel x = 0, while the outlet pressure at x = l is p = 0.

The spheroid will start at a position (x0, y0, z0) in the channel. The lengths of the three semiaxes
are a, b, and c, where b = c. The unequal axis, i.e., the direction of the a axis, is known as the
projector. A prolate spheroid has its unequal axis the longest (a > b), while an oblate spheroid
has its unequal axis the shortest (a < b). Apart from the semiaxes (a, b, c), it is also possible to
parametrize the spheroid shape using two other quantities R and AR. R is the radius of the equivalent
sphere with the same volume as the spheroid, which means V = 4

3πR3 = 4
3πabc. The quantity AR

is the ratio of the projector axis to the other two axes: AR = a/b. By this definition, prolate spheroids
have AR > 1, while oblate spheroids have AR < 1. The two systems of particle parametrization are
connected by

a = RA2/3
R , b = c = RA−1/3

R . (1)

The orientation of the spheroid is characterized by the ordered pair (θ, φ). Here θ ∈ (0, π ) is the
angle from the z axis, also denoted as the colatitude angle or the polar angle, while φ ∈ (0, 2π ) is
the angle in x-y plane from the x axis, also known as the azimuth angle. Figure 2 summarizes the
geometrical definitions for the spheroids.
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FIG. 2. Definition of the particle shape and orientation for both (a) prolate and (b) oblate spheroids. The
projector makes an angle φ (azimuth) in the x-y plane with flow direction x and an angle θ (polar) with the
z direction. For both prolate and oblate spheroids, the relationship is also shown between the two different
systems of parametrizations, based on a, b, c and on R and AR, respectively.

We will solve for the motion of the spheroid in the limit when the particle size is much smaller
than the channel height, i.e, R � h. In this situation, one can neglect the hydrodynamic interaction
with the wall and treat the particle as if it were in an unbound fluid with a background velocity u∞

i
given by the flow field in the channel. This approximation incurs an error of O((R/h)3) for the rigid
body motion (see Kim and Karilla [4, Ch. 12]). Thus, in this problem, we will often switch between
two coordinate systems. When solving the translational and rotational velocity of the particle, we
will use Fig. 1(b) and treat the particle in an unbound medium with the origin at the particle’s center
of mass and local coordinate system aligned with the particle’s semiaxes. Once we determine these
quantities, we will go back to the channel coordinates [Fig. 1(a)] and update the particle position
and orientation over a time step �t . The process will repeat until we track the particle motion for a
given time interval. The next subsection describes the rheological model for the fluid in the channel.

B. Fluid rheology

1. Carreau-Yasuda model

The background fluid is shear-thinning, i.e., the fluid exhibits a reduction in the apparent viscosity
with increase in the applied shear stress. Such fluids are also called pseudoplastics and common
examples include polymers, blood, and ketchup among others [33]. The constitutive equation for
the stress is the same as a Newtonian fluid, except that the viscosity is a function of the strain rate,

τi j = η(γ̇ )γ̇i j − pδi j . (2)

In the above equation, p is the pressure, γ̇i j = ∂ui
∂x j

+ ∂u j

∂xi
is twice the rate of strain tensor, and η

is the viscosity. The viscosity is a function of the magnitude of strain rate, given by γ̇ =
√

1
2 γ̇i j γ̇i j ,

where Einstein convention is assumed.
Rheological models for shear thinning viscosity include the power-law model of Ostwald–de

Waele and the Carreau-Yasuda model [34]. Here we employ the Carreau-Yasuda model, mainly
because this model captures both Newtonian plateaus at the beginning and the end of shear thinning
regimes. The constitutive equation for the Carreau-Yasuda model is given as

η = η∞ + (η0 − η∞)
[
1 + λ2

t γ̇
2
] (n−1)

2 . (3)

In this model, the fluid behaves Newtonian at low and high shear rates, with a power-law region
in between. The quantities η0 and η∞ are the zero shear rate and infinite shear rate viscosities,
respectively. The index n < 1 determines the rate of decay in the power-law region, while λt is the
time constant that determines the strain rate at which the power-law region occurs.

113302-4



DYNAMICS OF SPHEROIDS IN PRESSURE-DRIVEN …

TABLE I. Summary of dimensionless rheological parameters for Carreau shear thinning fluid.

Dimensionless rheological
parameter Definition Relevance Values

Cu Cu = λt γ̇c Ratio of characteristic strain rate 0 � Cu < ∞
and critical strain rate

n Power-law index Slope of shear thinning region 0 < n < 1
β β = η∞

η0
Ratio between infinite shear viscosity β � 1
and zero shear viscosity

ε 1 − β Relative viscosity drop ε ∼ 1

2. Nondimensional form of Carreau-Yasuda model

The dimensionless form of the Carreau-Yasuda model is given by

η = 1 − ε + ε[1 + Cu2γ̇ 2]
(n−1)

2 , (4)

where the viscosity is rendered dimensionless by η0 and the shear rate γ̇ is rendered dimensionless
by a characteristic shear rate γ̇c. The characteristic shear rate is determined by the problem under
consideration (such as shear flow or pressure-driven flow). There are two new dimensionless
numbers introduced above. The relative viscosity drop,

ε = 1 − β = η0 − η∞
η0

, (5)

represents the fractional drop in viscosity between the zero and infinite shear rate limits. This
number is close to unity for most shear thinning fluids. The Carreau number

Cu = λt γ̇c (6)

describes the shear-thinning regime at the characteristic strain rate γ̇c. When Cu � 1 or Cu �
1, the characteristic shear rate is located near the Newtonian plateaus, while for Cu ∼ O(1) the
characteristic shear rate is in the power-law regime. A summary of the dimensionless numbers in
the Carreau model is shown in Table I. For illustration, typical values of the rheological parameters
of Carreau model pertaining to aqueous solution of 0.3% xanthan gum (molar mass = 933.748
g/mol) are n = 0.402, λt = 239 s, and β = 1.35 × 10−4 [35] (see also Ref. [36]).

3. Perturbation expansion for constitutive equation

The rheological model under consideration [Eq. (4)] is nonlinear in γ̇ , Cu, and n. In anticipation
of the subsequent microhydrodynamical study, we will express the nondimensional viscosity in the
following form [5]:

η = μ + δA[γ̇ ], (7)

where μ is a (constant) Newtonian viscosity, A is a function of the shear rate, and δ is a small
parameter such that when δ → 0, the Newtonian limit is recovered. We will examine two different
perturbative limits.

a. Small Carreau number. When Cu2γ̇ 2 � 1, one can Taylor expand the viscosity around the
zero shear rate plateau. The small parameter is δ = Cu2 in the perturbation expansion. We find
μ = 1 and A[γ̇ ] = 1

2ε(n − 1)γ̇ 2, which yields

η = 1 + 1
2ε(n − 1)Cu2γ̇ 2 + O(Cu4). (8)

b. Large Carreau number. When Cu2γ̇ 2 � 1, one can Taylor expand the viscosity around its
infinite shear rate plateau. Here the small parameter is δ = Cu(n−1) in the perturbation expansion.
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FIG. 3. Viscosity of Carreau fluid for n = 0.3 and ε = 0.9. The full rheological equation [Eq. (4)] is com-
pared against the perturbation results in the small-Carreau-number limit [Eq. (8)] and the large-Carreau-number
limit [Eq. (9)].

We find μ = β and A[γ̇ ] = εγ̇ (n−1), which yields

η = β + Cu(n−1)εγ̇ (n−1) + O(Cu2(n−1)). (9)

In Fig. 3, we compare the full rheological equation [Eq. (4)] to the asymptotic limits discussed
above. Overall, we see that the small-Carreau-number limit does a reasonable job capturing the
rheology for Cu2 < 0.1, while the large-Carreau-number limit does a reasonable job for Cu > 10.

III. THEORY

A. Overview of steps and nondimensionalization

The aim of this work is to analyze the microhydrodynamics of spheroids in shear thinning fluids.
We will segregate our analysis into two parts. First, we will calculate the background flow field of
the shear thinning fluid without the particle. This analysis will be followed by an investigation of
a spheroid in this flow field. The reciprocal theorem will be used to obtain corrections to the rigid
body motion in the limits of small and large Carreau numbers.

From here onward, we will write results in nondimensional form. All distances will be scaled by
the channel half height h. The viscosity will be scaled by the zero-shear rate viscosity η0, while the
stresses will be scaled by τc = h�P

2l . The shear rate will be scaled by γ̇c = τc/η0 = h�P
2η0l , the time

will be scaled by γ̇ −1
c , while the velocities will be scaled by Vc = γ̇ch. The Carreau number for this

geometry will be defined as

Cu = λt h�P

2η0l
. (10)

B. Background flow field

In this subsection, we will use the coordinate system in Fig. 1(a) and solve for the flow field in
the channel. The quantities in this subsection will have a superscript “∞,” indicating that they are
solved in the absence of a particle.

When the flow is steady, inertialess, and incompressible, the momentum and continuity equa-

tions state that
∂τ∞

i j

∂x j
= 0 and ∂u∞

i
∂xi

= 0 (Einstein convention assumed). The flow is unidirectional
[i.e., u∞

x = u∞
x (y) only], which simplify the equations considerably. The differential equation for
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(a) (b)

FIG. 4. Pressure-driven flow of shear thinning fluids in limits of (a) Cu � 1 [Eq. (12)] and (b) Cu � 1
[Eq. (13)]. The rheological parameters are ε = 0.9 and n = 0.3.

the flow field is as follows:

∂τ∞
xy

∂y
= −2, (11)

where τ∞
xy is given by the Carreau model [Eqs. (2) and (4)] with local shear rate γ̇ ∞ = ∂u∞

x
∂y . The

differential equation is subject to the boundary conditions u∞
x = 0 at the top wall (y = 1) and ∂u∞

x
∂y =

0 at the center plane (y = 0).
Below we state the results for the velocity field in terms of the nondimensional quantities of

the Carreau model (Table I). These results were obtained by performing a regular perturbation
expansion in Cu2 for small Carreau number and Cu(n−1) for large Carreau number. For small Carreau
number (Cu � 1), the velocity field is as follows:

u∞
x = u∞,(0)

x + Cu2u∞,(1)
x + O(Cu4), (12a)

u∞,(0)
x = 1 − y2; u∞,(1)

x = ε(1 − n)(1 − y4), (12b)

while for large Carreau number (Cu � 1) the velocity field is as follows:

u∞
x = u∞,(0)

x + Cu(n−1)u∞,(1)
x + O(Cu2(n−1)), (13a)

u∞,(0)
x = 1 − y2

β
; u∞,(1)

x = − 2nε

β (n+1)(n + 1)
(1 − |y|(n+1)). (13b)

For both cases, the shear stress is τxy = −2y. Figure 4 plots the flow field in the two perturbative
limits. The small Carreau approximation captures the deviation from the first Newtonian plateau,
where the normalized viscosity μ = 1. A perturbation around that plateau gives rise to a reduced
effective viscosity, ultimately resulting in a higher flow rate. Compare this with the large-Carreau-
number approximation, which captures deviations around the second Newtonian plateau with a
normalized viscosity μ = β. A perturbation around this plateau gives rise to a higher viscosity,
which reduces the flow rate.

C. Microhydrodynamics

When the spheroid’s size is much smaller than the channel height (i.e., R � h), one can determine
the motion of the spheroid by assuming it is in an unbound fluid with a background velocity given
by Eqs. (12) and (13). Here we will use the coordinate system in Fig. 1(b) to compute the particle’s
rigid body motion. The coordinate xi represents the position from the particle’s center of mass, while
u∞

i is the background flow from the previous section, transformed to the particle coordinate system.
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We will use the reciprocal theorem to approximate expressions for the rigid body motion in the limit
of small and large Carreau numbers.

1. Problem setup, reciprocal theorem, and perturbation expansion

Suppose we have an inertialess, incompressible fluid that satisfies the Carreau constitutive
relationship Eqs. (2). This stress tensor can be decomposed into two components:

τi j = τN
i j + τ ex

i j , (14a)

τN
i j = μγ̇i j − pδi j, (14b)

τ ex
i j = (η − μ)γ̇i j, (14c)

where τN
i j is a Newtonian stress tensor with constant viscosity μ, while τ ex

i j is an extra stress tensor
that depends on the shear-thinning viscosity η described in Eq. (4).

When we place a spheroid in such a fluid with far-field velocity u∞
i , the continuity and momen-

tum equations outside the particle can be written as

∂ui

∂xi
= 0;

∂τN
i j

∂x j
+ bi = 0, (15)

where

bi = ∂

∂x j

(
τ ex

i j

)
(16)

is an effective body force on a Newtonian fluid. Far away from the particle (|xi| → ∞), the velocity
and stress fields are u∞

i , τN,∞
i j , and τ ex,∞

i j , which also satisfy the above relationship (15) throughout
the entire domain. On the surface Sp of the particle, the velocity is rigid body motion:

ui = Ui + εi jk� jxk on xi ∈ Sp, (17)

where Ui and �i are the translational and rotational velocities of the particle. The force and torque
balance also need to be satisfied. The external force and torque on the particle are

F ext
i =

∫
Sp

τi jn jdS, (18a)

T ext
i =

∫
Sp

εi jkx jτkmnmdS, (18b)

where the normal vector ni points inward to the particle. In this problem, F ext
i = T ext

i = 0. The force
and torque on the particle are also zero from the far-field stress τ∞

i j = τN,∞
i j + τ ex,∞

i j .
We note that the above problem is formulated as the Stokes flow around a particle with a far-field

velocity u∞
i and a fluid body force bi. In this situation, one can employ the reciprical theorem to

obtain an expression for the rigid body motion (Ui,�i ). This theorem has a celebrated history in the
Stokes flow community—see classical texts [2,4]. Below we provide the final formula for (Ui,�i ),
a detailed derivation can be found in Appendix A.

The expression for the particle’s rigid body motion satisfies the following relationship:[
RFU

i j RF�
i j

RTU
i j RT �

i j

][
Uj

� j

]
=

[
F eff

i

T eff
i

]
. (19)

In the above equation, the quantities RFU
i j , RF�

i j , RTU
i j , and RT �

i j are the Stokes-flow resistance
tensors for the particle with Newtonian viscosity μ. This formula states that the the translation and
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rotation of the particle is equal to its motion in Stokes flow with an effective force and torque:

F eff
i = F ext

i + F flow
i + F NN

i , (20a)

T eff
i = T ext

i + T flow
i + T NN

i . (20b)

The first terms in the above expression correspond to the external force and torque (F ext
i , T ext

i )
on the particle, which are zero for this problem. The second terms correspond to the effective force
and torque from the external flow u∞

i . These quantities are as follows:

F flow
k =

∫
Sp

u∞
i �trans

i jk n jdS, (21a)

T flow
k =

∫
Sp

u∞
i �rot

i jkn jdS. (21b)

In the above formula, the quantities �trans
i jk and �rot

i jk are the the i j components of the stress field
on the particle surface in Stokes flow due to unit translation or unit rotation in the k direction. The
normal vector n j points into the particle, and the expression is integrated over the particle surface
Sp.

The last terms in Eq. (20) are the effective force and torque from the non-Newtonian stress. These
quantities are as follows:

F NN
k = −

∫
V

∂vtrans
ik

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV, (22a)

T NN
k = −

∫
V

∂vrot
ik

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV, (22b)

where the volume of integration is outside the particle. The quantities vtrans
ik and vrot

ik represent the
Stokes velocity field outside the particle in the i direction due to unit translation or unit rotation in
the k direction. The quantity τ ex

i j is the extra stress outside the particle, while τ ex,∞
i j is the extra stress

in the absence of the particle.
We will now perform a perturbation expansion to estimate the rigid body motion (Ui,�i ) in the

limits of small and large Carreau numbers. We will expand the velocity fields as follows:

ui = u(0)
i + δu(1)

i + O(δ2), (23a)

u∞
i = u∞,(0)

i + δu∞,(1)
i + O(δ2), (23b)

and similarly expand the viscosity of the fluid as

η = μ + δA[γ̇ (0)] + O(δ2). (24)

In the above equations, δ is a small parameter, where δ = Cu2 for small Carreau number (Cu � 1)
and δ = Cu(n−1) for large Carreau number (Cu � 1). For small Carreau number, the constant
viscosity is μ = 1, while the nonlinear function is A[γ̇ ] = 1

2ε(n − 1)γ̇ 2. This situation corresponds
to a weak departure from the zero shear rate plateau. For large Carreau number, the constant
viscosity is μ = β, while A[γ̇ ] = εγ̇ (n−1). This situation corresponds to a weak departure from
the infinite shear rate plateau.

We will now plug in the above expansions into Eqs. (19)–(22) to obtain the particle’s translation
and rotational velocity (Ui,�i ) to O(δ). We specifically require the far-field velocity u∞

i up to O(δ)
for the flow force and torque [Eq. (21)]. The expression for u∞

i is found in Eqs. (12) and (13), which
needs to be transformed to the particle coordinate system. We also require the extra stress tensor
τ ex

i j − τ ex,∞
i j up to O(δ) for the non-Newtonian force and torque [Eq. (22)]. The expression for this

quantity is

τ ex
i j − τ ex,∞

i j = δA[γ̇ (0)]γ̇ (0)
i j − δA[γ̇ ∞,(0)]γ̇ ∞,(0)

i j + O(δ2), (25)
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where, as mentioned before, A[γ̇ ] = 1
2ε(n − 1)γ̇ 2 in the small-Carreau-number limit (Cu � 1),

while A[γ̇ ] = εγ̇ (n−1) in the large-Carreau-number limit (Cu � 1). The above expression depends
on the O(1) shear rate tensors γ̇

(0),∞
i j and γ̇

(0)
i j , which are spatial derivatives of the O(1) velocity

fields. The O(1) velocity field u(0)
i is the Stokes flow around the particle with a far-field velocity

u∞,(0)
i . For the specific case where the particle is an ellipsoid and the far-field velocity is parabolic

[e.g., Eqs. (12) and (13) at O(1)], the solution to u(0)
i is known [37,38].

2. Formulae for ellipsoids

Equations (19)–(22) describe the rigid body motion of a particle in a non-Newtonian fluid. For a
specified velocity field u∞

i and extra stress tensor τ ex
i j , one can compute the particle’s translational

and rotational velocity (Ui,�i ). Performing this calculation requires knowledge of the particle’s
Stokes flow behavior. Specifically, one needs to know the velocity fields (vtrans

ik , vrot
ik ) and stress

fields (�trans
i jk , �rot

i jk ) outside the particle arising from rigid body motion, and one needs to know the
resistance tensors (RFU

i j , RF�
i j , RTU

i j , RT �
i j ). These quantities are well known for an ellipsoid.

Let us consider an ellipsoid with semiaxes (a, b, c) = (a1, a2, a3), and let us choose a particle
coordinate system that aligns with these axes. In this situation, Eqs. (19)–(22) simplify considerably
for the particle’s rigid body motion. For the case when the external force and torque are zero (F ext

i =
T ext

i = 0), we obtain

Ui = U Faxen
i + 1

RFU
ii

F NN
i (no summation over i), (26a)

�i = �Faxen
i + 1

RT �
ii

T NN
i (no summation over i), (26b)

where U Faxen
i and �Faxen

i are the translational and rotational velocities from Faxen’s formula for an
ellipsoid. These quantities are as follows:

U Faxen
i = − 1

3Vp

∫
Sp

u∞
i (n jx j )dS, (27a)

�Faxen
i = − 1

Vp
Pi jε jrk

∫
Sp

xru∞
k (nmxm)dS, (27b)

where Vp = 4π
3 abc is the particle volume and Pi j is a diagonal tensor. The 11 component of

this tensor is P11 = 1
a2

2+a2
3

with the other diagonal components obtained from index cycling. If
we Taylor expand the velocity field around the center of mass (xi = 0), then one can get an
approximate expression for the Faxen’s velocities up to O((R/h)2), which is within the current
current approximation of our model. This procedure yields

U Faxen
i = u∞

i (0) + 1

6

3∑
k=1

a2
k

∂u∞
i

∂xk∂xk
(0) + · · · , (28)

where the far-field velocity u∞
i and its derivatives are evaluated at the center of mass. For the

rotational velocity, one obtains:

�Faxen
1 = 1

2
ω∞

1 (0) + a2
2 − a2

3

a2
2 + a2

3

E∞
23 (0) + · · · , (29)

where ω∞
i = εi jk

∂u∞
k

∂x j
is the vorticity evaluated at the center of mass and E∞

i j = 1
2 γ̇ ∞

i j is the rate of
strain tensor evaluated at the center of mass. The other components for the rotational velocity are
obtained by index cycling.
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In Eq. (26), the resistance tensors RFU
ii and RT �

ii take the following form:

RFU
11 = 16πμabc

1

χ0 + α1a2
1

, (30a)

RT �
11 = 16πμabc

3

a2
2 + a2

3

a2
2α2 + a2

3α3
. (30b)

In the above equations, χ0 and (α1, α2, α3) are elliptic integrals given in Ref. [38]. If one wants
to obtain the other components of the diagonal tensor, then one changes the indices for ai and αi

appropriately. For example, for for RFU
22 , one changes the index to “2” while for RT �

22 one changes
the indices to “1” and “3.”

To evaluate the non-Newtonian force F NN
i and torque T NN

i on the particle, one uses Eq. (22),
which uses the Stokes velocity fields vtrans

ik and vrot
ik outside the particle due to unit translation and

unit rotation. Full expressions for vtrans
ik and vrot

ik are given in Appendix B. This formula also requires
knowledge of the extra stress tensor τ ex

i j − τ ex,∞
i j [Eq. (25)], which involves the O(1) velocity field

around the particle. The solution to the O(1) velocity field around an ellipsoid is calculated in
Refs. [37,38] (see also Ref. [16]). We will refer readers to these works for the full expressions.

IV. CODE DEVELOPMENT AND VERIFICATION

Given a particle’s initial position (x0, y0, z0) and orientation (θ0, φ0) in the channel [Fig. 1(a)],
we track its position and orientation over a time as follows.

(1) Transform from laboratory coordinates to particle coordinates: We transform from labo-
ratory coordinates [Fig. 1(a)] to particle coordinates [Fig. 1(b)], where the origin is now at the
spheroid’s center of mass and the axes are aligned with the spheroid’s semiaxes. We transform the
channel velocity field u∞

i [Eqs. (12) and (13)] to this coordinate system as well. This velocity field
is evaluated up to O(δ), where δ = Cu2 for the small-Carreau-number limit and δ = Cu(n−1) for the
large-Carreau-number limit.

(2) Evaluate Faxen velocities: Using the expression for u∞
i , we evaluate the Faxen velocities

U Faxen
i and �Faxen

i using Eqns. (28) and (29).
(3) Calculate non-Newtonian force and torque: We calculate the non-Newtonian force and

torque on the spheroid using Eq. (22). For each component of the non-Newtonian force and torque,
we numerically evaluate the volume integral in ellipsoidal coordinates using Gaussian quadrature.
We typically use 15 quadrature points in the radial direction, 10 quadrature points in the latitude
direction, and 35 quadrature points in the longitude direction. In the integrand, we use the expression
for the extra stress τ ex

i j − τ ex,∞
i j described in Eq. (25). Note that the integrand also involves the

quantities from the auxiliary problem (vtrans
ik , vrot

ik ), which has been solved and tabulated separately
beforehand.

(4) Calculate rigid body motion: Using the Faxen velocities and the non-Newtonian force/torque,
we calculate the rigid body motion of the particle in the particle coordinate frame [Eqs. (26) and
(30)].

(5) Transform back into laboratory coordinates and update particle position and orientation:
We transform the rigid body velocities (Ui,�i ) back to the laboratory coordinates. We then update
the particle’s position and orientation. The equation governing the particle’s center of mass is

dxc.m.
i

dt
= Ui (31)

The equation governing the time evolution of the projection vector is d pi

dt = εi jk� j pk . If written in
terms of the orientation angles (θ, φ) of the spheroid, then these equations become

dθ

dt
= �y cos φ − �x sin φ

dφ

dt
= �z − �x cos φ cot θ − �y sin φ cot θ, (32)
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FIG. 5. Sedimentation velocity of a sphere in a shear thinning fluid. The y axis shows the fractional increase
in the sedimentation speed U compared to the Newtonian value UN at zero Carreau number (Cu = 0). The solid
lines are results from the theory of Ref. [24], while the dots are the results of the reciprocal theorem–based
numerical simulation carried out in this paper. Note that the curves corresponding to n = 0.5, ε = 0.3 and
n = 0.7, ε = 0.5 overlap completely and hence are indistinguishable.

We update the particle’s position and orientation angles using the above equations (31) and (32).
We perform forward Euler time-stepping, with the time step chosen between 10−3 < �t < 10−2 in
dimensionless units.

(6) Repeat the above steps: Repeat steps 1–5 until we have simulated the particle motion over a
sufficient period of time.

We developed a MATLAB code to execute this algorithm. The code was initially developed and
used for the analysis of an ellipsoid in a second-order viscoelastic fluid in a previous publication
[16]. For this paper, we modified the code to account for shear thinning effects in both the low-
Carreau- and high-Carreau-number limits. To test the code, we simulated the sedimentation of a
falling sphere in a shear thinning fluid in the low-Carreau-number limit. Figure 5 show the results
of our simulation and theoretical results provided in Ref. [24]. The exact match between the results
serves to verify our code.

V. RESULTS AND DISCUSSION

In our discussion, we will stick to the orientational dynamics of spheroids and forego a discussion
of translational motion. We find that for translational motion, no novel phenomena are revealed like
cross stream migration or particle lift [24,25]. We will first discuss the results in the small-Carreau-
number limit, followed by the results in the large-Carreau-number limit.

Unless otherwise noted, we will examine a particle with equivalent particle radius R = 0.1 when
rendered dimensionless by the channel height h. The initial position of the particle is at [x0, y0, z0] =
[0,−0.5, 0].

A. Orientation dynamics: Small-Carreau-number limit (Cu � 1)

1. General observations—Effect of AR, Cu, and n

Figure 6 shows the influence of the shape parameter (AR) on the orientational dynamics of
spheroids in Newtonian and shear thinning fluids. First and foremost, we remark that the further
a particle deviates from a spherical shape, the larger is the time period for its tumbling. For a prolate
particle (AR > 1), the time period increases as AR increases. For an oblate particle (AR < 1), the
time period increases as AR decreases. These trends are clearly an artefact of Newtonian flow, where
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(a) (b)

(c) (d)

FIG. 6. Effect of shape parameter (AR) on the orientation trajectories of prolate and oblate spheroids in
the small-Carreau-number limit (Cu � 1). In all these plots, the initial orientation is θ0 = π/4, φ0 = π/4.
The plots on the left show prolate spheroids (AR > 1) and those on the right show oblate spheroids (AR < 1).
The solid curves denote shear thinning fluids with Cu2 = 0.1 and n = 0.3, while the dashed curves denote
Newtonian fluids (Cu2 = 0).

the time period scales as T ∼ (AR + 1/AR). Next, we observe that the shear thinning reduces the
tumbling time period compared to a Newtonian fluid—see the solid (shear thinning) and dashed
(Newtonian) curves in Fig. 6. Additionally, shear thinning reduces the amplitude of oscillations in
θ for the particles. These trends are contrary to the trends observed for prolate spheroids in linear
flows of shear thinning fluids, as shown in the Cu2 � 1 limit in Ref. [25]. In their case, shear
thinning increases the time period of revolution for prolate spheroids and increases the oscillation
amplitude for θ . This dichotomy in the trends is explained below.

For pressure-driven flows analyzed here, the deviatoric stress field balances the pressure gradient
across the channel imposed on its ends. Since the imposed pressure drop is independent of the shear
thinning correction, the stress induced in the flow does not change due to shear thinning. Since
the stress field induced in the fluid is the same as that in the Newtonian case, a shear thinning
fluid, being less viscous, has to deform more than a Newtonian fluid to sustain the same stress and
pressure drop. Because the time period T and the oscillation amplitude for θ scale as the inverse of
strain rate/deformation, both these quantities decrease with an increase in shear thinning as shown
in Fig. 6.

On the other hand, the linear (shear) flows studied in Ref. [25] are kinematically controlled,
wherein the velocity field of the background flow remains unchanged between Newtonian and shear
thinning rheologies. Therefore, the stress field induced in a shear thinning flow field is weaker than
that of a Newtonian field. A weaker stress field in turn imposes a diminished hydrodynamic torque
on the particle, slowing down its rotation and increasing its oscillation amplitude θ . The discussion
of tumbling behavior of spheroids in shear flows and their comparison with the pressure-driven
flows is further elaborated upon in Sec. VI.
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(a) (b)

FIG. 7. Tumbling time period for both prolate and oblate particles in the Cu � 1 limit for different values
of (a) shape parameter AR and (b) power-law index n. The initial orientation is θ0 = π/4, φ0 = π/4 for both
the plots. The solid lines show the results from the reciprocal theorem–based numerical estimation while the
dotted lines show the result using Jeffrey’s formula using the local shear rate, i.e., T = 2π (AR + 1/AR )γ̇ −1

loc ,
where γ̇loc = ∂

∂y [u∞,(0)
x + Cu2u∞,(1)

x ].

Figure 7 plots the tumbling time period for prolate and oblate spheroids for different values of
Carreau number (Cu), power-law index (n), and shape parameter (AR). A couple of trends can be
noticed here. First, we clearly see that increased shear thinning (i.e., an increase in Cu or a decrease
in n) reduces the time period of tumbling, and this effect is amplified the further the particle deviates
from a sphere. Even in the case of linear shear flows in Ref. [25], the effects of shear thinning are
similarly enhanced at higher aspect ratios for prolate particles. The straightforward reason is that as
the aspect ratio (AR) of a prolate particle increases (for the same volume), the projection of the long
axis along the velocity gradient y axis (given by a sin θ sin φ) also becomes larger, and the particle
is exposed more strongly to the shear thinning tendency of the flow. A similar argument holds for
oblate particles as well. Interestingly, we see that time period is exactly equal when comparing the
AR = 3, 4, 5 prolate particles to the AR = 1

3 , 1
4 , 1

5 oblate particles. This observation suggests that the
just like Newtonian case, the time period T is a function of (AR + 1/AR).

The last point we illustrate is that the decrease in the tumbling time period cannot be wholly
explained by the reduction in the effective shear rate around the particle. In a Newtonian flow, the
time period of tumbling is given by the classical Jeffrey formula T = 2π (AR + 1/AR)γ̇ −1

loc , where the
γ̇loc is the local strain rate at the particle’s center of mass y = y0. A naÃ¯ve approach to estimating
the tumbling time period in a shear thinning fluid would be to use the same formula, noting that γ̇loc

increases in the channel as Cu increases or n decreases. Figure 7 shows the time period estimated
using this approach, plotted as dotted lines. Overall, while we see this approach accounts for some
of the decrease in the particle’s time period, it does not match the simulations well. This indicates
that one cannot use simple modifications of Jeffrey’s theories to predict the time period of spheroids
in shear thinning flows.

2. Effect of initial orientation (θ0, φ0) and initial position (y0)

Next, we analyze the effect of initial orientation (θ0, φ0) on the spheroid’s trajectory in both
Newtonian and shear thinning flows. There are six pairs of initial orientations we study: (θ0, φ0) =
((π/4, 0), (π/4, π/4), (π/4, π/2), (π/3, 0), (π/3, π/4), (π/3, π/2)). Both prolate and oblate
particles are analyzed.

First we observe from Figs. 8(a) and 8(b) that the evolution of the azimuth angle φ over time
is independent of the initial orientation θ0; in other words, curves for both θ0 = π/4 and θ0 = π/3
coincide for the same initial angle φ0. For the prolate particle, the spheroid spends more time in
φ = mπ configuration (m = 0, 1), while the oblate particle spends more time in the φ = (m + 1

2 )π
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(a) (b)

(c) (d)

FIG. 8. Effect of initial orientation (θ0, φ0) on the orientation trajectories of prolate and oblate spheroids in
the small-Carreau-number limit (Cu � 1). The plots on the left show prolate spheroids with AR = 5 and those
on the right show oblate spheroids with AR = 0.2. The solid lines denote shear thinning flows with power-law
index n = 0.3 and Cu2 = 0.1, while the dashed lines denote Newtonian fluids (Cu2 = 0).

configuration (m = 0, 1). The regions with φ = (m + 1
2 )π (prolate particles) and φ = mπ (oblate

particles) show the largest deviation between Newtonian and shear thinning trajectories. We can
understand these trends by noting that the rotation of the spheroid is actuated by the hydrodynamic
torque from the shear stresses. This torque arises from a traction in the x direction and a moment arm
(projection of particle length) along the y axis. Thus, configurations with the smallest moment arm
(e.g., φ = mπ for prolate particle, φ = (m + 1

2 )π for oblate particle) have the smallest rotation rate
and longest residence time, while configurations with the longest moment arm [e.g., φ = (m + 1

2 )π
for prolate particle and φ = mπ for the oblate particle] have the largest rotation rate and hence
largest influence of shear thinning.

At this juncture, we compare the evolution of φ in this flow with spheroids in other kinds of flow.
For prolate spheroids in pure shear flow of shear thinning fluids, the trend is the same as observed
here wherein the prolate spheroid rotates the fastest at φ = (m + 1

2 )π and slowest in the φ = mπ

configuration (see Fig. 4(b) and Fig. 4(c) in Ref. [25]). On the other hand, for the case of spheroids
in quadratic flow of nonlinear viscoelastic fluids, the reverse is true. For prolate (oblate) spheroids
in such flows, the maxima (minima) of φ̇ occurs at φ = 0 or φ = π , while the minima (maxima)
occurs at φ = π/2 (see Fig. 6 and the relevant discussion in Sec. IV c in Ref. [16]). The reason
behind this dichotomy is explained by considering the fact that in nonlinear viscoelastic flows, the
hydrodynamic torque acting on the spheroid is induced by normal stresses, as opposed to shear
stresses in shear thinning flows. These normal stresses give rise to a traction in the y direction and a
moment arm in the x direction. Consequently, when the spheroid is oriented such that its longest axis
is aligned with the x axis, the hydrodynamic torque acting on the spheroid is the largest, resulting in
higher rotation rate in this configuration.
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(a) (b)

(c) (d)

FIG. 9. Effect of position of the spheroid y0 on the orientation trajectories of prolate and oblate spheroids
in the small-Carreau-number limit (Cu � 1). In all these plots, the initial orientation is θ0 = π/4, φ0 = π/4.
The plots on the left show prolate spheroids (AR = 5) and those on the right show oblate spheroids (AR = 1/5).
The solid curves denote shear thinning fluids with Cu2 = 0.15 and n = 0.3, while the dashed curves denote
Newtonian fluids (Cu2 = 0).

We next analyze the evolution of θ in time for both Newtonian and shear thinning flows
[Figs. 8(c) and 8(d)]. From the classical treatment of a Jefferey orbit in a Newtonian fluid, we

understand that θ̇ varies as A2
R−1

A2
R+1

sin 2θ sin 2φ. We also observe similar features of this equation in

shear thinning fluids. For example, we see θ̇ change between prolate and oblate particles of the same

initial orientation due to the sign change in A2
R−1

A2
R+1

[compare the same color curves in the Figs. 8(c)

and 8(d)]. We also see that a spheroid initially released at θ0 = π/2 or θ0 = 0 will have θ̇ = 0, and
therefore remain at the initial angle. Overall, we see shear thinning reduces the period and amplitude
of θ ; however, the influence of the initial orientation on these quantities is seen to be less dominant
than the other effects discussed earlier (AR, Cu, and n). Therefore, we do not comment on this effect
further in the paper.

To ascertain the effects of initial position y0, we carried out some simulations for different values
of y0, and the results for both prolate and oblate spheroids in the small Cu regime are shown in
Fig. 9. First, we note that the further the object is from the center, the lower is its time period. This
trend is attributed to the fact that a spheroid further away from the center experiences higher strain
rate in the flow. As before, shear thinning reduces the time period of tumbling for both prolate and
oblate spheroids. We observe that the difference between the shear thinning and Newtonian tumbling
behavior is most prominent the furthest the particle is from the channel center (e.g., y0 = −0.6 in
the figure) as the strain rates are highest there.
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3. Scale for time period

In this subsection, we develop a scaling analysis for the tumbling time period of a spheroid in
a pressure-driven flow in the Cu � 1 regime. The equation governing the time evolution of the
spheroid’s projector is given as

d pi

dt
= εi jk� j pk, (33)

where pi is the projector, εi jk is the Levi-Civita tensor, and �i is the the angular velocity. The angular
velocity can be decomposed into

� j = �
(0)
j + �

(1),Faxen
j + �

(1),Reciprocal
j . (34)

Here �
(0)
j is the angular velocity in Newtonian flow, with the time period given by the Jefferey

orbit formula. �
(1),Faxen
j is the angular velocity at O(Cu2) due to the shear thinning component of

background flow, while �
(1),Reciprocal
j is the angular velocity at O(Cu2) due to the non-Newtonian

torque. To elaborate,

�
(1),Reciprocal
j = MjkT NN

k , (35)

where Mjk is the Stokes torque-rotation mobility tensor for the spheroid and T NN
k is the non-

Newtonian torque given by Eq. (22). From symmetry considerations, the general form of the
mobility tensor is

Mjk = c1 p j pk + c2(δ jk − p j pk ), (36)

where c1, c2 are constants depending on shape (in case of spheroids, aspect ratio) of the particle.
Therefore,

d pi

dt
= εi jk� j pk = εi jk

[
�

(0)
j + �

(1),Faxen
j + �

(1),Reciprocal
j

]
pk, (37)

= εi jk
[
�

(0)
j + �

(1),Faxen
j + (c1 − c2)p j pmT NN

m + c2T NN
j

]
pk, (38)

= εi jk
[
�

(0)
j + �

(1),Faxen
j + c2T NN

j

]
pk . (39)

The scale for the time period may be expressed as

T ∼ 1

|� j | = 1∣∣�(0)
j + �

(1),Faxen
j + c2T NN

j

∣∣ , (40)

which may be simplified as

T ∼ 1∣∣�(0)
j

∣∣[1 + |�(1),Faxen
j |
|�(0)

j | + |c2T NN
j |

|�(0)
j |

] , (41)

∼ 1∣∣�(0)
j

∣∣
[

1 −
∣∣�(1),Faxen

j

∣∣∣∣�(0)
j

∣∣ −
∣∣c2T NN

j

∣∣∣∣�(0)
j

∣∣
]
, (42)

∼ 1∣∣�Faxen,tot
j

∣∣ − c2

∣∣T NN
j

∣∣∣∣�(0)
j

∣∣2 . (43)

Here �
Faxen,tot
j = �

(0)
j + �

(1),Faxen
j . Equation (43) may be written as the sum of

T = TFaxen + Treciprocal, (44)
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where TFaxen is due to �
Faxen,tot
j while Treciprocal = −c2

|T NN
j |

|�(0)
j |2 is due to the non-Newtonian torque

estimated via the reciprocal theorem. To estimate TFaxen, we write Eq. (12) as

u∞
x = (1 − y2) + Cu2ε(1 − n)(1 − y4), (45)

so that TFaxen given from Jefferey’s formula is

TFaxen = 2π (AR + 1/AR)γ̇ −1
loc , (46)

where γ̇loc = ∂u∞
x

∂y |y=y0 = −2y0 − 4Cu2ε(1 − n)y3
0 so that |γ̇ −1

loc | = | 1
2y0

|[1 − 2Cu2ε(1 − n)y2
0] +

O(Cu4). This expression yields the following estimate for TFaxen:

TFaxen = 2π (AR + 1/AR)

∣∣∣∣ 1

2y0

∣∣∣∣[1 − 2Cu2ε(1 − n)y2
0

] + O(Cu4). (47)

The last contribution to the particle’s tumbling time period is Treciprocal, which arises from the
non-Newtonian torque from Eq. (22b), reproduced here as

T NN
k = −

∫
V

∂vrot
ik

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV. (48)

Here

τ ex
i j − τ ex,∞

i j = Cu2
(
A[γ̇ (0)]γ̇ (0)

i j − A[γ̇ ∞,(0)]γ̇ ∞,(0)
i j

)
(49)

and A[γ̇ ] = 1
2ε(n − 1)γ̇ 2. Here γ̇

(0)
i j is the strain rate tensor due to the disturbance flow field, while

γ̇
∞,(0)
i j is the strain rate tensor due to the Newtonian part of the background flow. These tensors have

components linear in y0 (from rotation and rate of strain) and constant in y0 (from quadratic flows).
Therefore τ ex

i j − τ ex,∞
i j scales as

τ ex
12 − τ ex,∞

12 ∼ Cu2ε(1 − n)
(
C0 + C1y0 + C2y2

0 + C3y3
0

)
, (50)

where C0, C1, C2, and C3 are constants which depend on the aspect ratio and the orientation of the
spheroid. Therefore, ∣∣T NN

k

∣∣ ∼ Cu2ε(1 − n)
(
C0 + C1y0 + C2y2

0 + C3y3
0

)
. (51)

To validate Eq. (51), we have plotted the non-Newtonian torque as a function of position y0

for different aspect ratios AR in Fig. 10. This figure shows the torque is a third degree polynomial
function of the position y0, thereby validating Eq. (51). Therefore, Treciprocal is given as

Treciprocal = −c2

∣∣T NN
k

∣∣∣∣�(0)
j

∣∣2 ∼ −
(

c2

y2
0

)
Cu2ε(1 − n)

(
C0 + C1y0 + C2y2

0 + C3y3
0

)
. (52)

Finally, we bring Eqs. (44), (47), and (52) together to obtain the following scale for tumbling:

T ∼ 2π (AR + 1/AR)

∣∣∣∣ 1

2y0

∣∣∣∣[1 − 2Cu2ε(1 − n)y2
0

] −
(

c2

y2
0

)
Cu2ε(1 − n)

(
C0 + C1y0 + Ĉ2y2

0 + C3y3
0

)
.

(53)
As mentioned earlier, C0, C1, C2, and C3 are arbitrary constants which appear to be functions of

AR + 1/AR, as evidenced by data in Fig. 7.

B. Orientation dynamics—Large-Carreau-number limit (Cu � 1)

We now analyze the rotational dynamics of a spheroid in the large-Carreau-number limit
(Cu � 1), which captures deviations in the fluid viscosity from the lower Newtonian plateau η = β.
There are a couple of differences between the mathematical behavior in the Cu � 1 limit and the
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FIG. 10. The non-Newtonian torque T NN
1 acting on the spheroid for different shape parameter AR as a

function of position y0. The colored circles are the result of the reciprocal theorem–based simulation while the
dashed curves denote the cubic interpolation of the torque as a function of the position y0 [see Eq. (51)]. All
the circles lie on the dashed lines, thereby validating Eq. (51).

Cu � 1 limit. First, since the Cu � 1 limit captures the deviation from the second Newtonian
plateau, any perturbation from this plateau will increase the effective viscosity of the fluid. Second,
for the large-Carreau-number limit, the second Newtonian plateau is recovered solely in the limit
Cu → ∞ but not in the limit n → 1. This is in contrast to the small-Carreau-number limit where
the upper pleateau is recovered by n → 1 or Cu → 0 or both.

1. General observations—Effect of AR, Cu, and n

Figure 11 plots the angle trajectories (φ(t ), θ (t )) for oblate and prolate particles at the second
Newtonian pleateau (Cu → ∞ limit) and the shear-thinning region (Cu � 1 but finite). Different
values of shape parameter (AR) are considered. A few key observations can be made. First, the
figure shows that the time period and the amplitude for θ are smaller in the Newtonian plateau
regime (Cu → ∞) than the shear thinning regime (Cu finite). The reason behind these trends is that
the shear thinning regime has a larger viscosity than the Newtonian plateau, which leads to lower
strain rates in the fluid and hence larger time periods for tumbling and larger oscillation amplitude
for θ as discussed previously. The figure also shows that the further the particle shape deviates
from a sphere (AR > 1 for prolates and AR < 1 for oblates), the difference in dynamics amplifies
between the Newtonian plateau case and the shear thinning case. Last, orientation-wise, the angle φ

behaves similarly in both the large-Carreau- and the small-Carreau-number limits (compare Fig. 11
with Fig. 6). In both cases, the spheroid likes to spend more time with the long axis aligned in the
flow (x) direction, which corresponds to φ = mπ for prolate particles and φ = (m + 1

2 )π for oblate
particles. In these orientations, the difference in shear thinning and Newtonian cases is minimum
[see Figs. 11(a) and 11(b)], while the orientations with the largest moment arm exhibit the largest
differences between the shear thinning and Newtonian cases.

Figure 12 plots the tumbling time period of spheroids in the large-Carreau-number regime for
different values of the shape parameter (AR), Carreau number (Cu), and power-law index (n). These
plots show that the time period decreases to a constant value as the Carreau number increases,
reaching a Newtonian plateau independent of Cu as Cu → ∞. The changes in the period, however,
are much more modest than what was seen in the small-Carreau-number limit (compare Fig. 7 to
Fig. 12). The reason for this observation is that changes in the viscosity scale as ε(n − 1)Cu2 in the
small-Carreau-number limit, while the changes scale as εCu(n−1) in the large-Carreau-number limit,
which exhibits a weaker variation with respect to both Cu and n. Similarly to what was observed
before, we find the time period is the same for prolate and oblate particles of the same aspect ratio,
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(a) (b)

(c) (d)

FIG. 11. Effect of shape parameter (AR) on the orientation trajectories of prolate and oblate spheroids in
the large-Carreau-number limit (Cu � 1). The plots on the left show prolate spheroids and those on the right
show oblate spheroids. The solid lines denote shear thinning flows with Cu = 1000 and n = 0.3, while the
dashed lines denote the Newtonian plateau (Cu → ∞) with dimensionless viscosity β = 0.1. For all the plots,
the initial orientation is θ0 = π/4, φ0 = π/4.

(a) (b)

FIG. 12. Tumbling time period for both prolate and oblate spheroids in the Cu � 1 limit for different
values of (a) shape parameter AR and (b) power-law index n. The initial orientation is (θ0 = π/4, φ0 = π/4)
and the dimensionless viscosity in the infinite shear rate plateau is β = 0.1. For (a) n = 0.3, and for (b) AR = 5.
The solid lines show the results from the reciprocal theorem–based numerical estimation while the dotted
lines show the result using Jeffrey’s formula using the local shear rate, i.e., T = 2π (AR + 1/AR )γ̇ −1

loc , where
γ̇loc = ∂

∂y [u∞,(0)
x + Cu(n−1)u∞,(1)

x ].
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FIG. 13. Spheroid in a Couette flow of a shear thinning fluid. The apparatus is same as that for pressure-
driven flow with the difference being that the flow is actuated by the motion of the top wall.

and the effects of shear thinning are enhanced the further the particles deviate from a sphere. Last,
in Fig. 12 we also plot the period computed from the classic Jeffrey orbit equation T = 2π (AR +
1/AR)γ̇ −1

loc , where γ̇loc is the local shear rate at the center of mass of the particle. One would expect
that γ̇loc will change with Carreau number (Cu) and power-law index (n) and thus explain some
of the trends seen in the graph. We see that while the equation does explain some of the trends,
it does not overlap with the simulation results, although the agreement appears to be better than
the small-Carreau-number limit in Fig. 7. Again, these results suggest that one cannot use simple
ideas from Stokes flow to model the tumbling behavior of particles in shear thinning fluids. The
last point we would like to illustrate is that the time period in Fig. 12 has different axes than plot
in the small-Carreau-number limit (Fig. 7). The tumbling period in the Cu → ∞ limit is β times
smaller than the Cu = 0 limit, due to the fact that the shear rate in the channel is 1/β times larger.
This will play a role in the trends discussed next section when we compare the tumbling behavior
of spheroids in pressure-driven flows versus simple shear flow.

VI. COMPARISON WITH MICROHYDRODYNAMICS
OF SPHEROIDS IN SIMPLE SHEAR FLOW

In this section, we explore the motion of a spheroid in a Couette flow of a shear thinning fluid.
Such a flow is shown schematically in Fig. 13, where like before, the coordinate axes are placed in
the center of the channel. However, here the flow is actuated by the top wall moving at a constant
velocity 2Uc. We nondimensionalize all lengths by height h, velocities by Uc, shear rates by γ̇c =
Uc/h, times by γ̇ −1

c , viscosities by η0, and stresses by τc = η0γ̇c. The velocity field in the absence
of the particle is given in dimensionless terms as

u∞
x = 1 + y (54)
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(a) (b)

FIG. 14. Time period of revolution for prolate and oblate spheroids in linear flows in both the (a) small-
Cu and (b) large-Cu regimes. The solid curves show the shear thinning solution obtained using reciprocal
theorem–based simulations, while the dashed curves show the Newtonian solution in the zero shear rate and
infinite shear rate limits using the Jeffrey orbit formula. Rheological parameters include n = 0.3 and β = 0.1
while the initial orientation is given by (θ, φ) = (π/4, π/4).

and the Carreau number is given by

Cu = λt γ̇c = λtUc/h. (55)

We observe that the undisturbed velocity field is independent of viscosity and is therefore same for
both Newtonian as well as for the perturbative shear thinning cases [O(Cu2) and O(Cu(n−1))].

The introduction of a spheroid into the linear background flow perpetuates a disturbance field
around the particle, in addition to the undisturbed background flow. As before, to delineate the
particle motion, we perturb the disturbance field in two limits: small Carreau number (with Cu2 as
the perturbation parameter) and large Carreau number (with Cu(n−1) as the perturbation parameter).
In both these perturbative solution schemes, the leading-order problem is Newtonian, whose solution
has already been known in literature and is available in standard textbooks [39, Ch. 3]. For the shear
thinning correction, we appeal to the reciprocal theorem and solve for the particle’s rigid body
motion at O(Cu2) for the small-Carreau-number limit and at O(Cu(n−1)) for the large-Carreau-
number limit.

The result of this analysis leads us to the tumbling period of a spheroid in Couette flow of a shear
thinning fluid in both the small-Carreau-number and large-Carreau-number perturbative schemes.
The results have been plotted in Fig. 14. Here we observe that for the small Cu case in Fig. 14(a), the
time period increases with an increase in shear thinning. This result has also been reported earlier in
Ref. [25]. In the Newtonian limit of viscosity (Cu → 0), the time period also reduces to that given
by the Jefferey orbit formula (see dotted curve). More interesting for the current analysis is the result
pertaining to the large-Cu-number perturbative limit, as plotted in Fig. 14(b). As far as we know, this
is a result not published before in the literature. Here we observe that as the fluid around the particle
continues to shear thin, the time period begins to decrease. At extremely large Carreau numbers, the
time period then decreases back to its Jefferey orbit formula. We note that in the Newtonian limit
of both these perturbative schemes (Cu → 0 and Cu → ∞), the time period reduces to the same
constant value.

In comparison to the pressure-driven flow as discussed in the previous sections, we notice the
following differences in the microhydrodynamics of spheroids in linear flows of shear thinning
fluids:

(i) In pressure-driven flows, the time period decreases monotonically with an increase in the Car-
reau number. On the other hand, in the case of linear flows, the time period shows a nonmonotonic
behavior. In the low-Carreau-number regime, the time period increases with increase in Carreau
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FIG. 15. Cartoon of the time period of revolution for spheroids in linear (top) and pressure-driven (bottom)
flows of shear thinning fluids (figure not to scale). The solid red curves illustrate known behavior from the
perturbative analysis based on the reciprocal theorem, while the dotted red curves are hypothesis. The dotted
black lines show the corresponding Newtonian plateaus. TNewtonian2 = β × TNewtonian1.

number; while, on the other hand, in the high-Carreau-number case, the time period decreases with
increases in Carreau number.

(ii) In the pressure-driven flows, the time period at the two Newtonian limits (low and high
Carreau) are different because the background flow and the Newtonian viscosity at these two limits
are different. In the linear flow, the time period at the two Newtonian limits are the same, because
the background flow at these two limits are also the same.

These two differences are schematically shown in Fig. 15.

VII. CONCLUSION

In this paper, we analyzed the motion of a spheroid in a pressure-driven flow of a shear thinning
fluid. The shear thinning rheology is captured by the Carreau model. We employ a perturbative
approach in conjunction with the reciprocal theorem to delineate the orientational dynamics of
prolate and oblate spheroids. First, an approximate version of the Carreau model is rendered in
both the small- and large-Carreau-number limits. Next, the classical pressure-driven (Poiseuille)
flow equations are amended to take into account the shear thinning corrections due to rheology.
Finally, using the reciprocal theorem and mobility relationships for ellipsoids in Newtonian flow,
the orientational kinematics of the problem are evaluated numerically.

We have the following conclusions to make:
(i) Spheroids in shear thinning fluids tumble in a periodic fashion. In other words, shear thinning

does not resolve the degeneracy of Jeffrey’s orbits found in Newtonian fluids. The degeneracy of
Jefferey’s orbits is attributed to the symmetry of the momentum equations for a Newtonian fluid.
The shear thinning rheology, even though nonlinear, still preserves the symmetry of the momentum
equations.

(ii) In the small-Carreau-number limit (Cu � 1), we find the spheroid’s tumbling behavior to
be very different in a pressure-driven flow versus a linear shear flow. In a pressure-driven flow,
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shear thinning (Cu > 0) gives rise to a smaller tumbling time period compared to a Newtonian
fluid (Cu = 0). When the particle is in a shear flow, shear thinning gives rise to the opposite
trend, i.e., a larger tumbling time period compared to its Newtonian counterpart [25]. The reason
for these opposing trends is that in the pressure-driven flow studied here, the flow is pressure
controlled, while in a shear flow, the flow is kinematically controlled. In the former case, shear
thinning gives rise to a larger shear rate on the particle and hence a faster tumbling period. In
the latter case, shear thinning gives rise to a lower stress on the particle and hence a slower
tumbling period.

(iii) We also observe a very different rotational behavior between spheroids in a shear thinning
fluid and a viscoelastic fluid. In a shear thinning fluid, we find that the rotational speed is the fastest
for prolate particles when they are aligned with the shear-gradient direction and slowest when they
are aligned with the flow direction. The converse is true for prolate particles in a Boger fluid (e.g.,
second-order fluid [16,20]). This tendency is attributed to the fact the hydrodynamic torque is due
to shear stresses for the case of shear thinning flows while the torque is due to normal stresses for
the case of viscoelastic flows. The different origins of the hydrodynamic torque thus implies that the
torque’s moment arm is the largest when the prolate particle is oriented along the flow direction for
viscoelastic fluids, while the moment arm is the largest when the prolate particle is oriented along
the shear direction for shear thinning fluids. Similar trends are also seen for oblate particles as well.

(iv) In a simple shear flow, the time period of tumbling of spheroids follow a nonmonotonic
trend with respect to Carreau number. At small Carreau number, the time period increases from
its Newtonian value, and then at high Carreau number it decreases back to the same Newtonian
value. On the other hand, in the case of pressure-driven flow, the time period of tumbling decreases
monotonically with Carreau number. Moreover, the time period in the different Newtonian limits
(Cu → 0) and (Cu → ∞) are different for pressure-driven flows. The time period in the Newtonian
limit of high Carreau Cu → ∞ is β times the time period in the Newtonian limit of low Carreau
(Cu → 0) for pressure-driven flows.

The results in this paper are likely to hold for fluids where strong shear thinning effects are
present, but normal stresses are negligible, e.g., xanthan gum solutions. When both of these effects
are simultaneously present (e.g., PEO solutions), the results are likely to differ substantially from
those in this paper as the particles will no longer tumble periodically and instead reach a steady
orientation at long times, similarly to a Boger fluid (a fluid with no shear thinning but normal
stress differences). Previous numerical [40,41] and experimental [42] studies suggest that shear
thinning enhances the effect of viscoelasticity and the elastic normal stresses become stronger due to
shear thinning [41]. Boger fluids and viscoelastic shear thinning fluids thus attain similar long-time
orientations [42]; however, due to enhancement of normal stresses compared to shear stresses, the
time taken to reach the equilibrium orientation for viscoelastic shear thinning fluids is lower than
that in Boger fluids [42].

In the future, the present analysis may be extended to incorporate the effects of other inelas-
tic non-Newtonian fluids like those with a spatially varying viscosity [23,43] or with spatially
varying density [44–46]. Similarly, instead of spheroids and ellipsoids, particles of other shapes
like sheets [47], slender bodies [6] and non-fore-aft symmetric particles [48] may be analyzed
with the same theoretical framework. Other types of flow problems beyond pressure-driven
flows, like sedimentation [18] for shear thinning fluids, may be analyzed. Finally, higher-order
effects like those of inertia [6–8], particle size [49], and effect of walls may also be taken into
account.
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APPENDIX A: DERIVATION OF RECIPROCAL THEOREM FOR RIGID
BODY MOTION AROUND PARTICLE

Suppose we have two velocity fields in the same control volume V of a liquid. Both velocity
fields satisfy the Stokes equations with a body force, i.e.,

∂ui

∂xi
= 0;

∂τN
i j

∂x j
+ bi = 0, (A1)

where τN
i j = μγ̇i j − pδi j is the standard Newtonian stress tensor with viscosity μ and bi is a spatially

varying body force. We will add superscripts to the symbols above to demarcate the two flow fields;
(α) is flow field one, while (χ ) is flow field two. These flow fields are related to each other via
Green’s second identity, which states that∫

S
u(α)

i τ
N,(χ )
i j n jdS +

∫
V

u(α)
i b(χ )

i dV =
∫

S
u(χ )

i τ
N,(α)
i j n jdS +

∫
V

u(χ )
i b(α)

i dV. (A2)

In the above expression, S is the surface of the control volume and ni is the outward pointing
normal vector for the control volume. While this expression appears esoteric, it is quite powerful. It
states that if one knows information about one flow field [e.g., flow (χ )], one can obtain information
about the other flow field [e.g., flow (α)]. This expression can also be extended to non-Newtonian
fluids, as will be illustrated below.

We will let the two flow fields for our problem be the following.
a. Flow 1: Non-Newtonian flow around rigid particle. We will choose flow one (with superscript

α) to be the disturbance flow around a particle with background velocity u∞
i and body force bi =

∂
∂x j

(τ ex
i j ). Thus, we let

u(α)
i = ui − u∞

i , (A3a)

τ
N,(α)
i j = τN

i j − τN,∞
i j , (A3b)

b(α)
i = ∂

∂x j

(
τ ex

i j − τ ex,∞
i j

)
. (A3c)

In the above expression, quantities with the superscript “∞” denote velocity and stress fields in
the absence of the particle (i.e., due to u∞

i only), while quantities without the superscript are fields
with the particle present. We choose disturbance quantities for convenience, as it will simplify the
algebra later.

b. Flow 2: Stokes flow around particle from rigid body motion. We will let flow two (with
superscript χ ) be Stokes flow around the same particle undergoing rigid body motion. In other
words, we let

u(χ )
i = vi, (A4a)

τ
N,(χ )
i j = �i j, (A4b)

b(χ )
i = 0, (A4c)

where vi and �i j are the velocity and stress fields around the particle from rigid body motion. On
the particle surface, vi = Vi + εi jkω jxk , where xk is the position vector from the particle’s center of
mass, while Vi and ωi are the translational and rotational speeds. The external force and torque on
the particle will be F aux

i and T aux
i . These will be related to the translational and rotational speed

through known resistance relationships.
Let us now substitute the information about the two flows into the integral expression (A2) above.

We will choose the control volume V to be the volume outside of the particle. Since we are dealing
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with disturbance quantities, we do not have to integrate over surfaces at infinity. We obtain∫
Sp

(
ui − u∞

i

)
�i jn jdS =

∫
Sp

vi
(
τN

i j − τN,∞
i j

)
n jdS +

∫
V

vi
∂

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV, (A5)

where Sp is particle surface and ni is the normal vector pointing into the particle (this is the outward
pointing vector for the control volume V ). We can simplify the above expression using integration
by parts on the last integral, noting that the total stress tensor is τi j = τN

i j + τ ex
i j . This yields:∫

Sp

(
ui − u∞

i

)
�i jn jdS =

∫
Sp

vi
(
τi j − τ∞

i j

)
n jdS −

∫
V

∂vi

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV. (A6)

The next step in the derivation is to note that the velocity fields are rigid body motion on the par-
ticle surface. Thus, on the surface, ui = Ui + εi jk� jxk , while for the other flow, vi = Vi + εi jkω jxk .
Substituting these expressions gives

UiF
aux

i + �iT
aux

i = ViF
ext

i + ωiT
ext

i +
∫

Sp

u∞
i �i jn jdS −

∫
V

∂vi

∂x j

(
τ ex

i j − τ ex,∞
i j

)
dV. (A7)

In the above expression, F ext
i and T ext

i are the external force and torque on the particle in the
non-Newtonian flow (i.e., flow ui), while F aux

i and T aux
i are the external force and torque on the

particle from the other flow (i.e., flow vi).
In the last part of the derivation, we note that all quantities associated with the flow field vi are

linear in the rigid body translation and rotation (Vi, ωi). In other words, we can write the flow field
vi and stress field �i j in terms of these rigid body motions,

vi = vtrans
ik Vk + vrot

ik ωk, (A8a)

�i j = �trans
i jk Vk + �rot

i jkωk . (A8b)

In the above expression, vtrans
ik is the flow field in the “i” direction due to unit translation in the

“k” direction. Similar notation follows for the other quantities. For the force and torque F aux
i and

T aux
i , we write them as

F aux
i = RFU

i j Vj + RF�
i j ω j, (A9a)

T aux
i = RTU

i j Vj + RT �
i j ω j, (A9b)

where RFU
i j , RF�

i j , RTU
i j , and RT �

i j are the Stokes-flow resistance tensors for the particle. If we
substitute the above two expressions (A8) and (A9) into the integral expression (A7) and perform
some algebra, then we obtain the final expression for the translational and rotational velocity of the
particle in a non-Newtonian fluid,[

RFU
i j RF�

i j

RTU
i j RT �

i j

][
Uj

� j

]
=

[
F eff

i

T eff
i

]
. (A10)

The effective force and torque are given by Eqs. (20)–(22) in the main text.

APPENDIX B: VELOCITY FIELDS FROM UNIT TRANSLATION AND ROTATION

From Kim and Karilla [4], the velocity fields vtrans
ik and vrot

ik are given by the following expressions.
In these formulas, no summation is assumed for repeated indices unless explicitly stated,

vtrans
ik = 1

16πμ
RFU

kk

[
δikG0 − xk

∂G0

∂xi
+ a2

k

2

∂2G1

∂xi∂xk

]
, (B1a)

vrot
ik = 3

32πμ
RT �

kk

3∑
j=1

3∑
m=1

ε jkm
∂

∂xm

[
δi jG1 − x j

∂G1

∂xi
+ a2

j

4

∂2G2

∂xi∂x j

]
. (B1b)
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In the above expressions, the expression for Gn is

Gn(x, y, z) =
∫ ∞

λ

(
x2

a2 + t
+ y2

b2 + t
+ z2

c2 + t
− 1

)n
dt

�(t )
, (B2)

with �(t ) =
√

(a2 + t )(b2 + t )(c2 + t ) and λ(x, y, z) being the positive root of

x2

a2 + t
+ y2

b2 + t
+ z2

c2 + t
= 1. (B3)
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