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Many biological materials such as cervical mucus and collagen gel possess a fibrous
microstructure. This microstructure affects the emergent mechanical properties of the ma-
terial and hence the functional behavior of the system. We consider the canonical problem
of stretching a thin sheet of transversely isotropic viscous fluid as a simplified version of
the spinnbarkeit test for cervical mucus. We propose a solution to the model constructed
by Green and Friedman by manipulating the model to a form amenable to arbitrary
Lagrangian-Eulerian (ALE) techniques. The system of equations, reduced by exploiting the
slender nature of the sheet, is solved numerically, and we discover that the bulk properties
of the sheet are controlled by an effective viscosity dependent on the evolving angle of
the fibers. In addition, we confirm a previous conjecture by demonstrating that the center
line of the sheet need not be flat, and perform a short timescale analysis to capture the full
behavior of the center line.
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I. INTRODUCTION

Fluids can be classified as isotropic, or anisotropic, depending upon whether the mechanical
properties of the fluid are uniform in all directions or not. Most common fluids such as water are
isotropic. However, there are many examples of fluids that arise in biology and industry which
contain fibers or elongated particles, for example, collagen gels [1], cervical mucus [2], and nematic
liquid crystals [3]. The presence of fibers or particles within the fluid creates an underlying structure
that causes the fluid to exhibit anisotropy. The anisotropy of biological fluids means that they
can display interesting behaviors and possess unusual and evolving mechanical properties, which
influence how they perform their particular functions. For example, the anisotropy of cervical mucus
is suspected to play a role in fertility by controlling how easily sperm can migrate through to the
egg [4].

One of the first models of an anisotropic viscous fluid was formulated by Ericksen [5]. He
considered a type of anisotropy known as “transverse isotropy” where the material possesses a
single preferred direction which may vary both spatially and temporally; its physical properties
are symmetric in all directions normal to this preferred direction. While, in general, for a fibrous
material, one would need to consider the evolution (in time and space) of a probability distribution
describing the alignment of a fiber along a particular direction, the Ericksen model simplified
the problem by assuming that there is a unique fiber alignment at each point in space. Examples
of materials that have been modeled using this approach include fiber-reinforced composites [6],
entanglements of textile fibers used in the carding process [7], and a number of biological materials:
collagen gels [1], the extracellular matrix [8], and primary plant cell walls [9]. A significant number
of studies motivated by problems in composites manufacturing include the additional assumption
that the fluid is inextensible in the fiber direction [6,10,11]; these are termed “ideal” incompressible
fiber-reinforced fluids.
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In this paper we consider the extensional flow of a thin sheet of transversely isotropic viscous
fluid. One motivation for studying this problem is that it provides a simplified representation of the
“spinnbarkeit” or “spinnability” test, which is applied to cervical mucus as a means of assessing
fertility [12]. The test entails taking a sample of mucus and stretching it. Around ovulation, the
mucus has a lower pH and a higher concentration of water (which has the effect of lowering the
viscosity of the mucus), and the fibrous reinforcement takes a more parallel alignment that allows
sperm to migrate. At this point the mucus can be stretched the furthest, i.e., the fluid exhibits
maximum spinnbarkeit. Conversely, during the most infertile parts of the menstrual cycle, the mucus
does not stretch and simply breaks [13,14]. Understanding the dynamics of stretching a transversely
isotropic sheet can provide some basic insights into how factors such as fiber concentration and
alignment influence spinnbarkeit. A second motivation for studying this problem is that it provides
a simple prototype situation for investigating how the feedback between the macroscopic fluid flow
and the microstructure influences the mechanical behavior of anisotropic fluids. In particular, as
shown in [1], the model can be reduced to one dimension, with the changing orientation of the
fibers specified by a single angle.

Extensional thin film flows of incompressible Newtonian fluids, which arise in a number of indus-
trial and biological applications, have been extensively studied. The problem of a two-dimensional
(2D) thin film was considered by Howell [15], who employed an asymptotic expansion of the
Navier-Stokes and mass conservation equations in powers of an inverse aspect ratio to obtain a
reduced model (termed the Trouton model) which involves only the leading order longitudinal
fluid velocity and sheet thickness. Additionally, the roles of inertia and surface tension have been
considered, as well as the complementary problems of fluid threads (i.e., slender cylinder) or drops
[15–17]. In order to capture the full behaviors of the center line of the fluid of the sheet, a short
timescale analysis is carried out [15,18,19]. These models are not valid for sheets undergoing
deformation by bending and led to the development of a general theory for thin viscous sheets that
undergo deformation by stretching, bending, or an arbitrary combination of both by Ribe [20,21].
This work was able to explicitly quantify relations between bending and stretching of the sheet. A
complementary study considered sheets with an inhomogeneous viscosity [22]. One of their main
results was that “necking” of the sheet, where regions of the sheet thinned faster than others, could
be induced by in-plane variations of viscosity throughout the fluid. However, for a transversely
isotropic fluid, we are aware of only three studies of extensional flow: those of [9,23], wherein both
works modeled the primary plant cell wall as a thin axisymmetric fiber-reinforced viscous sheet
supported between rigid end plates, and that of [1], who used a similar approach to that of Howell
[19] to derive a transversely isotropic version of the Trouton model. The model presented in [1] is
referred to throughout as the Green and Friedman model and is of particular relevance to this paper.
They presented some analytical results for cases in which the equations simplify (e.g., when some
of the anisotropic stress terms are negligible) but did not tackle the general case—a problem we
pursue in this paper.

A number of studies have investigated transversely isotropic fluid flows in other geometries
to gain insight into how their behavior is affected by the microstructure. These include stud-
ies of the stability of a transversely isotropic fluid in a Taylor-Couette device with the aim of
understanding the behavior of suspensions of biomolecules, as well as treating the problem of
Rayleigh-Bernard convection [24,25]. It was found in both works that transversely isotropic effects
delay the onset of instabilities, primarily through the incorporation of an anisotropic shear viscosity.
In the context of modifying transversely isotropic fluid models to incorporate active swimming
suspensions, as in [2,26], transversely isotropic effects are also capable of increasing the size
of a developing instability, in particular where translation diffusion is neglected. Other studies
have focused on prototypical flows to give more generic insights into fluid-fiber interactions. For
example, Phan-Thien and Graham studied both the flow of a transversely isotropic fluid around
a sphere [27] and the squeezing flow of a layer of fluid compressed between two fixed plates
[28] (this latter problem was studied independently for the case of an ideal fiber-reinforced fluid
[11]).
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FIG. 1. Schematic of extensional flow of a sheet. The fluid is fixed to two plates at x∗ = 0, L, by a no-slip
boundary condition. The plate at x∗ = L∗ is moved at a prescribed speed L̇∗. The center line of the fluid is given
by H∗(x∗, t∗) and the thickness of the film by h∗(x∗, t∗), so that the free boundaries of the film are located at
y∗ = H∗ ± h∗

2 . Note that this figure is not to scale, as we model the thin film behavior of the sheet.

This paper uses a combination of analysis and numerical simulations to significantly extend
the previous work of [1] to include cases where all of the anisotropic terms in the fluid stress are
non-negligible, and the fiber alignment within the sheet may vary with depth. One issue of particular
interest was to verify their conjecture that, in contrast to the Newtonian case, the center line of
a transversely isotropic fluid sheet need not always be straight. As preliminary simulation of the
model indeed produced results with nonflat center lines, we sought to confirm this prediction by
additionally investigating the short timescale behavior of the sheet, similar to the work by [15,18]
on the Newtonian problem.

The paper is organized as follows. In Sec. II we briefly recap the thin film approach and governing
equations as given in [1], as well as introduce a short timescale. In order to present our solutions to
the full Green and Friedman model, the equations are manipulated so that they become amenable
to numerical strategies in Sec. III. We then present the arbitrary Lagrangian-Eulerian techniques
we use to solve the model in Sec. IV and validate the numerical techniques by comparison with
analytical results for short time, and we further present results primarily for a passive transversely
isotropic fluid. In Sec. V we present results for the behavior of the fluid on a short timescale. We
conclude with a discussion and suggestions for future work in Sec. VI.

II. MATHEMATICAL MODEL

We consider the extensional flow of an inertialess thin sheet of incompressible, transversely
isotropic, viscous fluid. As shown in Fig. 1, we use the 2D Cartesian coordinates (x∗, y∗) to describe
the horizontal and vertical axis, respectively, with t∗ denoting time (throughout this paper asterisks
denote dimensional quantities). The upper and lower boundaries of the fluid sheet are denoted
by y∗ = H±∗ = H∗ ± h∗

2 , where H∗(x∗, t∗) is the position of the center line and h∗(x∗, t∗) is the
thickness of the fluid sheet. The left- and right-hand side boundaries are given by x∗ = 0, L∗(t∗).
The right-hand side of the sheet, at x∗ = L∗, is pulled in the x∗ direction; we prescribe either the
speed of pulling, L̇∗, or the tension, T ∗, applied to the sheet.

We let u∗ = (u∗, v∗) be the fluid velocities in the x∗, y∗ directions, respectively, and denote the
stress tensor by σ∗. The equations of conservation of fluid mass and momentum are thus

∇∗ · u∗ = 0, (2.1)

∇∗ · σ ∗ = 0. (2.2)
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The constitutive law for σ∗ is

σ ∗
i j = −p∗δi j + 2μ∗e∗

i j + μ∗
1aia j + μ∗

2aia jakale
∗
kl + 2μ∗

3(aiale
∗
jl + a jame∗

mi ), (2.3)

where p∗ is the pressure, a is a unit vector describing the orientation of the fibers within the fluid,
and e∗ is the rate of strain tensor. This relationship was derived by Ericksen [5] as the most general
stress tensor that is linear in the rate of strain tensor e∗, invariant under the transformation −a → a,
and satisfies σ ∗ = σ ∗T . The constants μ∗, μ∗

2, μ
∗
3, are all viscosity-like parameters and μ∗

1 is the
active tension in the fiber direction [1,23,29]. In the context of suspensions, μ∗

1 has been interpreted
to model the contributions to stress caused by the active behavior of suspended particles [26].

We note first that by setting μ∗
1 = μ∗

2 = μ∗
3 = 0, one immediately recovers the stress tensor for

an incompressible, isotropic Newtonian fluid, with μ∗ as the familiar dynamic (shear) viscosity. The
physical interpretations of μ∗

2 and μ∗
3 can be identified by considering three deformations of a 2D

sheet of fibers in a Cartesian plane, as illustrated in [1,9,24]. In the same way as previous work, we
interpret μ∗

2 as the anisotropic extensional viscosity, and μ∗
3 the anisotropic shear viscosity. For the

case of a dilute suspension of ellipsoidal particles, Holloway et al. [26] were able to give relations for
μ∗, μ∗

2, and μ∗
3 in terms of the solvent viscosity, particle volume fraction, and aspect ratio. Similarly,

asymptotic values (in terms of the particle volume fraction and aspect ratio) were given for rodlike,
disklike, and nearly spherical particles by Phan-Tien and Graham [28]. However, as far as we are
aware, the accuracy of these predictions have never been tested against experimental results for any
type of transversely isotropic fluid-fiber suspension. Finally, we observe that there is no velocity
component to the μ∗

1 term, indicating that there exists stress in the fluid even when at rest and that
this stress must be a tensile stress as no stress is induced in the fibers when the fluid is compressed.

In addition to the constitutive law for σ ∗, we require an equation governing the evolution of the
fiber direction. We use the form given by Green and Friedman (for derivation, see [1]), which results
from allowing the fibers to advect with the fluid flow

∂a
∂t∗ + (u∗ · ∇∗)a + ζ ∗a = (a · ∇∗)u∗, (2.4)

where

ζ ∗(x∗, y∗, t∗) = a · (a · ∇∗u∗) (2.5)

is the fractional rate of extension of the fibers. The first two terms are the convective derivative of
the fiber orientation, and the third is the fractional rate of extension of the fiber in the direction of the
fibers, all of which balance with the effect of the fibers upon the flow velocity field on the right-hand
side. Equation (2.4) corresponds to the specific case of Ericksen’s equation in the long fiber limit
[1,2,5]. Since a is a unit vector and our model is 2D we write a = (cos θ, sin θ ), where θ (x∗, y∗, t∗)
is the angle the fiber direction makes with the x∗ axis.

In order to close the model, we must impose suitable boundary and initial conditions. At the ends
of the sheet, we set

u∗(0, y∗, t∗) = 0, u∗(L∗, y∗, t∗) = L̇∗,

H∗(0, t∗) = 0, H∗(L∗, t∗) = 0.

On the upper and lower free surfaces, we apply a no-stress boundary condition

σ∗ · n̂ = 0 on y∗ = H∗ ± 1
2 h∗,

together with the usual kinematic condition

v∗ = ∂H∗

∂t∗ ± 1

2

∂h∗

∂t∗ + u∗
(

∂H∗

∂x∗ ± 1

2

∂h∗

∂x∗

)
on y∗ = H∗ ± 1

2
h∗. (2.6)

Initial conditions must also be prescribed, however, since the number of initial conditions required
depends upon the timescale considered; this will be discussed later.
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A. Thin film approximation

We now introduce the assumption that the sheet is thin, which allows considerable simplification
of the governing equations. Full details of the derivation can be found in [1], but for the sake
of completeness, we recapitulate the main points here and give the model equations in full in
Appendix A. We let L0 and h0 be the initial length and typical initial thickness of the fluid sheet,
respectively, and let U be a typical value for the velocity of the fluid at the pulled boundary. We then
introduce the parameter ε = h0/L0 � 1, which is the initial inverse aspect ratio of the sheet. We are
interested in the behavior of the sheet as it undergoes significant changes in length, and so consider
the timescale t∗ ∼ L0/U . Following [1,19] we nondimensionalize as follows:

(x∗, y∗) = (xL0, εyL0), (u∗, v∗) = (uU, εvU ), p∗ = μ∗U
L0

p, t∗ = L0

U
t,

(H∗, L∗, h∗) = (εL0H, L0L, εL0h).

These scalings introduce the dimensionless material parameters

μ1 = μ∗
1L

μ∗U
, μ2 = μ∗

2

μ∗ , μ3 = μ∗
3

μ∗ .

At this point, we exploit the thin geometry of the sheet by expanding all of the dependent variables
as power series in terms of the inverse aspect ratio ε,

u = u(0) + εu(1) + · · ·
with similar expressions for the other dependent variables (here, unlike in Howell [19], we encounter
terms involving odd powers of ε). After some lengthy algebra, full details of which are given in [1],
we obtain a system of one-dimensional equations for the quantities h(0), H (0), u(0), u(1), v(0), θ (0).
As a consequence of the analysis, it is found that the leading order longitudinal velocity satisfies
u(0) = u(0)(x, t ) only (i.e., the flow is extensional). Conservation of mass yields

∂h(0)

∂t
+ ∂

∂x
(h(0)u(0) ) = 0. (2.7)

Taking a depth-averaged force balance over the sheet leads to the following equation for u(0):

∂

∂x

∫ H (0)+

H (0)−
4(1 + μ3)

∂u(0)

∂x
+ μ1 cos 2θ (0) + μ2

(
cos2 2θ (0) ∂u(0)

∂x
+ 1

4
sin 4θ (0) ∂u(1)

∂y

)
dy = 0.

(2.8)

In the case of prescribing an applied tension, T (t ), to the ends of the sheet in place of L(t ), taking
the first integral of Eq. (2.8) equals this tension in the same way as the Newtonian Trouton model
[19]. Consideration of the momentum equations and associated no-stress boundary conditions on
the upper and lower boundaries of the fluid at higher order gives an equation governing the center
line of the fluid, H (0):

∂

∂x

∫ H (0)+

H (0)−

∂

∂x

∫ y

H (0)−
4(1 + μ3)

∂u(0)

∂x
+ μ1 cos 2θ (0)

+ μ2

(
cos2 2θ (0) ∂u(0)

∂x
+ 1

4
sin 4θ (0) ∂u(1)

∂y

)
ds dy = 0. (2.9)

We note first that s is a dummy variable, and we are integrating over the second argument
of the functions in the integrand twice, so that the quantities in the integrand of Eq. (2.9) are
θ (0)(x, s, t ), u(1)(x, s, t ), and u(0)(x, t ) (to emphasize this, the dummy variable is not used in [1]).
Additionally, we note that Eq. (2.9) is a particularly unusual form of an integro-differential equation,
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wherein one of the variables of integration appears in the limit of one of the integrals. Equation (2.4)
yields

∂θ (0)

∂t
+ u(0) ∂θ (0)

∂x
+ v(0) ∂θ (0)

∂y
= − 2 sin θ (0) cos θ (0) ∂u(0)

∂x
− sin2 θ (0) ∂u(1)

∂y
, (2.10)

as an evolution equation governing the behavior of the fiber director field. The leading order trans-
verse velocity is found by integrating the incompressiblity condition and applying the kinematic
condition (2.6)

v(0) =∂H (0)

∂t
+ ∂

∂x
(H (0)u(0) ) − y

∂u(0)

∂x
, (2.11)

consideration of the x-momentum equation at O(ε) with its associated boundary condition supplies

∂u(1)

∂y
= −μ1

2 sin 2θ (0)

4 + 4μ3 + μ2 sin2 2θ (0)
− μ2

sin 4θ (0)

4 + 4μ3 + μ2 sin2 2θ (0)

∂u(0)

∂x
, (2.12)

as the next-order correction term for u. In this form, one can observe that in the case of μ1 = μ2 =
μ3 = 0, we return to the Trouton model for a Newtonian fluid. In the case of μ1 = μ2 = 0, the fluid
behaves very similarly to a Newtonian fluid, with the only modification being a modified Trouton
ratio, which effectively only changes the tension required to be applied to the sheet to achieve
the same behavior as a Newtonian fluid. In these cases, the model can be solved by means of a
Lagrangian transformation, as detailed in [1,19].

The boundary conditions for the leading order longitudinal velocity are then

u(0)(0, t ) = 0, u(0)(L, t ) = L̇. (2.13)

We assume that the sheet is being extended in the x direction and that the end points of the center
line remain fixed to y = 0, thus

H (0)(0, t ) = H (0)(L, t ) = 0. (2.14)

The kinematic boundary condition yields

v(0) = ∂H (0)

∂t
± 1

2

∂h(0)

∂t
+ u(0)

(
∂H (0)

∂x
± 1

2

∂h(0)

∂x

)
on y = H (0) ± 1

2
h(0). (2.15)

We will need to prescribe initial conditions for the thickness, h(0), and the fiber direction, θ (0), in
the sheet. As in the Newtonian problem (see [19]), we do not need to prescribe an initial condition
for H (0) as we are unable to satisfy an arbitrary initial condition for H (0), as noted in [1]. In order to
study the behavior of sheets that do not initially obey Eq. (2.9) we must consider a shorter timescale
than L0

U . We turn to such a timescale in the next subsection.

B. Short timescale model

Similarly to the Newtonian problem, we have a singular perturbation problem for H (0) in t , the
outer solution of which is determined by the solution of (2.9). As suspected by Green and Friedman
[1], we discover that the center line is not necessarily straight (unlike the Newtonian case). In order
to study the evolution of a sheet with an arbitrary initial condition for H (0), we follow a similar
approach to Howell and Buckmaster et al. [18,19] by considering a timescale of ε2 L0

U .
We note from (2.15), that in addition to rescaling time, we must also rescale the velocity v; hence,

we introduce

τ = t

ε2
, v = V

ε2
. (2.16)
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As in the previous section, we exploit the slender geometry of the sheet by expanding variables
as a power series of ε. At leading order the continuity equation gives

∂V (0)

∂y
= 0, (2.17)

which, combined with the kinematic condition at the same order

V (0) = ∂H (0)

∂τ
± 1

2

∂h(0)

∂τ
on y = H±, (2.18)

gives

V (0) = ∂H (0)

∂τ
,

∂h(0)

∂τ
= 0, (2.19)

since if V (0) is independent of y, it must take the same value on the upper and lower free surfaces.
Hence, we have an expression for V (0) in terms of H (0), and note that there is no thinning of the
sheet on this timescale. Additionally we obtain the equation for θ (0),

∂θ (0)

∂τ
+ ∂H (0)

∂τ

∂θ (0)

∂y
= 0. (2.20)

Consideration of the x-momentum equation and the associated no-stress boundary condition at O(ε)
yields a result for u(0):

u(0) = ū(x, τ ) + (H (0) − y)
∂2H (0)

∂τ∂x
, (2.21)

where ū(x, t ) is an as yet unknown function arising from integration. This is precisely the same
result as for a Newtonian fluid [19]. Consideration of the y-momentum equation at the same order
yields an identity which is already satisfied. Next, the y-momentum equation at O(ε2) yields an
expression for pressure

− ∂ p(0)

∂y
+ ∂2V (0)

∂x2
+ ∂2V (2)

∂y2
+ μ1

∂

∂y
(sin2 θ (0) ) + μ2

∂

∂y

[
sin2 θ (0) cos2 θ (0) ∂u(0)

∂x

+ cos θ (0) sin3 θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ sin4 θ

∂V (2)

∂y

]

+ 2μ3
∂

∂y

[
2 sin2 θ (0) ∂V (2)

∂y
+ cos θ (0) sin θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]
= 0, (2.22)

with the associated boundary condition

− p(0) + 2
∂V (2)

∂y
+ μ1 sin2 θ (0) + μ2

[
sin2 θ (0) cos2 θ (0) ∂u(0)

∂x

+ cos θ (0) sin3 θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ sin4 θ

∂V (2)

∂y

]

+ 2μ3

[
2 sin2 θ (0) ∂V (2)

∂y
+ sin θ (0) cos θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]
= 0 on y = H (0)± . (2.23)

A number of terms involving H (1) arise in the calculation of (2.23), these terms are multiplied by a
term that is identically zero and are thus omitted. We can directly integrate (2.22) and apply (2.23)
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to obtain an equation for pressure

p(0) = −2
∂u(0)

∂x
+ μ1 sin2 θ (0) + μ2

[
sin2 θ (0) cos2 θ (0) ∂u(0)

∂x
+ cos θ (0) sin3 θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)

− sin4 θ
∂u(0)

∂x

]
+ 2μ3

[
−2 sin2 θ (0) ∂u(0)

∂x
+ sin θ (0) cos θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]
, (2.24)

where O(ε2) continuity has been used to eliminate the V (2) terms. This result for pressure is
essentially a Newtonian pressure enhanced by the presence of the fibers; should we choose
μ1 = μ2 = μ3 = 0, we recover the Newtonian pressure. We have also introduced u(1) and V (1)

terms, which must now be eliminated. The O(ε2) x-momentum equation is

∂2u(1)

∂y2
+ μ1

∂

∂y
(cos θ (0) sin θ (0) ) + μ2

∂

∂y

[
cos3 θ (0) sin2 θ (0) ∂u(0)

∂x

+ cos2 θ (0) sin2 θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+cos θ (0) sin3 θ (0) ∂V (2)

∂y

]
+ μ3

∂

∂y

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
= 0,

(2.25)

with the associated boundary condition

∂u(1)

∂y
+ ∂V (1)

∂x
+ μ1 cos θ (0) sin θ (0) + μ2

[
cos3 θ (0) sin2 θ (0) ∂u(0)

∂x

+ cos2 θ (0) sin2 θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ cos θ (0) sin3 θ (0) ∂V (2)

∂y

]

+ μ3

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
= 0, on y = H (0)± . (2.26)

Combining these yields the following compatibility condition:

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
(1 + μ2 cos2 θ (0) sin2 θ (0) + μ3) + μ1 cos θ (0) sin θ (0)

+ μ2
∂u(0)

∂x
(cos3 θ (0) sin θ (0) − cos θ (0) sin3 θ (0) ) = 0. (2.27)

We note that in the analysis, the terms V (1), u(1) only appear together. We can thus view (2.27) as an
expression which allows us to eliminate both V (1) and u(1). Hence, we can now write leading order
pressure in terms of θ (0) and u(0) only.

In order to close the model, we must go to yet higher orders in order to obtain equations for ū and
H (0). Our approach is similar to Green and Friedman, [1]: we integrate the relevant equations over
the depth of the sheet and apply the no-stress boundary conditions at y = H (0)± . The expressions
involved are rather cumbersome, but substituting for previously determined quantities produces
considerable simplification; full details can be found in Appendix D. We finally obtain the following
equation for ū:

∂

∂x

∫ H (0)+

H (0)−

μ1 cos 2θ (0) + (4 + 4μ3 + μ2)
[

∂ ū
∂x + (H (0) − y) ∂H (0)3

∂x2∂τ
+ ∂H (0)

∂x
∂2H (0)

∂x∂τ

]
4 + 4μ3 + μ2 sin2 2θ (0)

dy = 0. (2.28)
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The equation for H (0) is

∂2

∂x2

⎛
⎝∫ H (0)+

H (0)−

∫ y

H (0)−

μ1 cos 2θ (0) + (4 + 4μ3 + μ2)
[

∂ ū
∂x + (H (0) − y) ∂H (0)3

∂x2∂τ

]
4 + 4μ3 + μ2 sin2 2θ (0)

ds dy

⎞
⎠

= ∂

∂x2
(H (0)+ )

⎛
⎝∫ H (0)+

H (0)−

μ1 cos 2θ (0) + (4 + 4μ3 + μ2)
[

∂ ū
∂x + (H (0) − y) ∂H (0)3

∂x2∂τ
+ ∂H (0)

∂x
∂2H (0)

∂x∂τ

]
4 + 4μ3 + μ2 sin2 2θ (0)

dy

⎞
⎠.

(2.29)

We have now derived a system of equations for θ (0), ū, and H (0), namely, (2.20), (2.28), and (2.29),
respectively. We note that (2.29) now includes a ∂5H (0)

∂x4∂τ
term. We must prescribe two more boundary

conditions for H (0), in addition to the those discussed in the previous section. We set

∂H (0)

∂x
(0, τ ) = ∂H (0)

∂x
(L, τ ) = 0. (2.30)

Much like the Green and Friedman model, Eqs. (2.20), (2.28), and (2.29) must be solved
numerically. The numerical approach to the short timescale problem is more straightforward than
that used for the Green and Friedman model (the details of which we will present in Sec. III).

III. ARBITRARY LAGRANGIAN-EULERIAN METHODS

Although the Green and Friedman system, (2.7)–(2.12), and the short timescale system, (2.20)
and (2.28)–(2.29), are both significant simplifications compared to the full 2D problem, they are too
complex to allow significant analytical progress and must be solved numerically. In this section we
reformulate the Green and Friedman and short-timescale equations into an arbitrary Lagrangian-
Eulerian (ALE) formulation. ALE methods involve the construction of a reference domain together
with mappings from this domain to both the Lagrangian and Eulerian descriptions of the flow.
Unlike numerical techniques based on either a purely Lagrangian description, where the nodes of the
computational mesh follow an associated material particle throughout the motion, or upon a purely
Eulerian description, where the computational mesh is fixed and the motion of the continuum is with
respect to the grid, ALE methods allow freedom in moving the mesh in a way that is not necessarily
fixed to a material particle. This can provide accurate solutions when modeling greater distortions
of a flow problem than can ordinarily be handled by numerical techniques upon a Lagrangian
description, with more resolution than is often attainable by a purely Eulerian description [30].

Our approach largely follows [30], but we outline the details here for completeness. We introduce
Lagrangian, Eulerian, and reference domain variables which we denote by X = (X,Y ), x = (x, y),
and x′ = (x′, y′), respectively. Converting between Eulerian and Lagrangian descriptions of flow
fields is well established and has been employed in Newtonian extensional flow problems [1,19,31].
We define the map ϕ from the Lagrangian to the Eulerian descriptions such that

(x, t ) = (ϕ(X , t ), t ),

where the material velocity υ is given by

∂ϕ

∂t
= υ(X , t ), (3.1)

so that the familiar material time derivative of an arbitrary scalar field (e.g., pressure) is

D f (X , t )

Dt
= ∂ f (x, t )

∂t
+ ∂ f (x, t )

∂x
∂ϕ

∂t
= ∂ f

∂t
+ (υ · ∇x) f . (3.2)
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Now, it remains only to define the map from the reference domain to the Eulerian domain, which
we denote by �. This satisfies

(x, t ) = (�(x′, t ), t ).

The mesh velocity, umesh, is given by

umesh(x′, t ) = ∂�

∂t
.

We obtain the relations between physical quantities, such as pressure, in the reference and Eulerian
descriptions in the same way we do between Lagrangian and Eulerian descriptions. In particular,
the time derivative of an arbitrary scalar field f is

∂ f (x′, t )

∂t
= ∂ f (x, t )

∂t
+ (umesh · ∇x) f , (3.3)

so that the transformation from the reference to the Eulerian description behaves very much like a
familiar transformation between Lagrangian and Eulerian frames. For convenience, we rewrite (3.3)
as

∂ f (x′, t )

∂t
− ∂x′

∂x
(umesh · ∇x′ ) f = ∂ f (x, t )

∂t
. (3.4)

As a final note, if � = ϕ, then the reference description is the same as the Lagrangian description
and thus umesh = υ. If � = x′, then the reference description is the same as the Eulerian description,
and umesh = 0. For further explanation of ALE techniques, we direct the reader to [30].

A. Employing ALE upon the Green and Friedman model

Henceforth we drop the superscript notation on leading order terms. We first employ ALE
techniques upon the equations governing the t ∼ L0

U timescale, Eqs. (2.7)–(2.15). We define the
reference domain, Dref, to be

(x′, y′) ∈ Dref = [0, 1] × [− 1
2 , 1

2

]
. (3.5)

We define the mapping from the reference variables to the Eulerian variables � : Dref → [0, L] ×
[H−, H+] such that

(x, y) = �
(
x′, y′) =

[
Lx′, H

(
Lx′

L(0)
, t

)
+ h

(
Lx′

L(0)
, t

)
y′

]
. (3.6)

This choice of map maintains equidistant spacing in the mesh in both horizontal and vertical direc-
tions. Therefore, our discretization of Dref can be a simple equidistant grid. As already discussed,
the mesh velocity is readily obtained by differentiating the mapping � with respect to time. Written
in terms of Eulerian variables, we have

∂�

∂t
= umesh =

{
L̇

x

L
, L̇

x

L

[
∂H

∂x
(x, t ) + y − H (x, t )

h(x, t )

∂h

∂x
(x, t )

]
+ ∂H

∂t
(x, t ) + y − H (x, t )

h(x, t )

∂h

∂t
(x, t )

}
.

(3.7)

We now account for the introduction of the moving mesh by using (3.4) and (3.6), we first modify
the equation for θ , (2.10). Using (2.12) to eliminate u(1), this equation becomes

∂θ

∂t
+

(
u − umesh

L

)
∂θ

∂x′ +
(

v − vmesh

h

)
∂θ

∂y′ = sin 2θ
[
2μ1 sin2 θ − 1

L (1 + 2μ2 sin2 θ ) ∂u
∂x′

]
4 + 4μ3 + μ2 sin2 2θ

. (3.8)

This form of (3.8) allows us yet further simplification. As explicitly demonstrated in Appendix B,
this equation corresponds to advection purely in a horizontal direction on the reference domain,
which significantly eases implementation. We note that this also decouples θ from H , and since v
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does not arise in any other equation, we need not prescribe an initial H and can simply compute the
transverse velocity on demand. To summarize the model in the ALE form, we have

∂h

∂t
+

(
u − umesh

L

)
∂h

∂x′ + 1

L

∂u

∂x′ = 0, (3.9)

∂θ

∂t
+

(
u − umesh

L

)
∂θ

∂x′ = sin 2θ
(
2μ1 sin2 θ − 1

L

[
4 + 4μ3 + 2μ2 sin2 θ

)
∂u
∂x′

]
4 + 4μ3 + μ2 sin2 2θ

, (3.10)

∂

∂x′

∫ 1
2

− 1
2

μ1 cos 2θ + 1
L (4 + 4μ3 + μ2) ∂u

∂x′

4 + 4μ3 + μ2 sin2 2θ
h dy′ = 0, (3.11)

∂2

∂x′2

∫ 1
2

− 1
2

∫ y′

− 1
2

μ1 cos 2θ + 1
L (4 + 4μ3 + μ2) ∂u

∂x′

4 + 4μ3 + μ2 sin2 2θ
h2 ds′ dy′

=
(

∂2H

∂x′2 + 1

2

∂2h

∂x′2

)∫ 1
2

− 1
2

μ1 cos 2θ + 1
L (4 + 4μ3 + μ2) ∂u

∂x′

4 + 4μ3 + μ2 sin2 2θ
h dy′, (3.12)

for (x′, y′) ∈ Dref. The associated boundary and initial conditions now become

u(0, t ) = 0, u(1, t ) = 1, (3.13)

H (0, t ) = 0, H (1, t ) = 0, (3.14)

h(x′, 0) = hi(x
′), θ (x′, y′, 0) = θi(x

′, y′). (3.15)

We exclude the equation for the transverse velocity v, since this quantity is readily calculated from
(2.11) at any (x′, y′, t ) once the model (3.9)–(3.12) is solved.

In order to solve this model we use the following algorithm. Given initial conditions, Eq. (3.11)
is solved to obtain u(x′, 0), using the trapezoidal rule and a finite difference approximation. We
note that this particular equation can be approached in either ALE or Eulerian variables, since
applying the trapezoidal rule to solve the integral (3.11) effectively decouples H from the system
(see Appendix C). Once solved, Eqs. (3.9) and (3.10) can be used to update h, θ to the next time step,
at which point the process is repeated until the required end time is reached. The quantities v, H can
then be computed at any time using (2.11) and (3.12), respectively, as well as any other quantities
of interest. In our implementation, we solved Eqs. (3.9)–(3.12) in the ALE form given above. Since
the ALE framework acts like a simple substitution on the integral equations, it is equally possible
to discretize and solve Eqs. (3.11) and (3.12) in their Eulerian forms, and indeed the discretization
is similar. We include the discretizations of Eqs. (3.11) and (3.12) in Appendix C.

B. Validation of numerical method

In order to validate the approach, we consider the early-time behavior of the sheet for which an
analytical expression is available [1]. Introducing the short timescale t ′ = δ−1t , where ε � δ � 1,
assuming constant initial film thickness, hi, and alignment angle, θi, and performing a Taylor
expansion on the variables so that

h = hi + ĥt ′δ + O(δ2),

θ = θi + θ̂t ′δ + O(δ2),

where ĥ, θ̂ are the changes in thickness and fiber direction, respectively, it is possible to derive an
analytical expression for the evolution of the fiber angle in the sheet for constant initial conditions
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(a)

μ1 increasing

(b)

μ2 increasing

(c)

μ1 increasing

(d)
μ2 increasing

FIG. 2. Comparison of the analytical result for θ̂ at t ′ = 0.05, with θi ∈ [0, π ] for a) μ1 = 0, 1, 10 (blue,
red, and yellow, respectively) with μ2 = μ3 = 1 fixed and b) μ2 = 0, 1, 10 (blue, red, and yellow, respectively)
with μ1 = μ3 = 1 fixed. The analytical results from (3.16) are solid lines; the dotted lines are numerical results
obtained by solving (3.9)–(3.12). The absolute errors between the numerical and analytical results are given
for (c) varied μ1 and (d) varied μ2, with step sizes given by �x = 0.0033, �t ′ = 0.000167.

for thickness and fiber direction; see [1]. The result is

θ̂ = −2 sin 2θi + 2 sin2 θi

4 + 4μ3 + μ2 sin2 2θi

(
μ1 sin 2θi + μ2

2
sin 4θi

)
, (3.16)

where t ′θ̂ is the total change in the fiber angle over the short time τ , and θi is the constant initial
condition. In [1], the authors note that a consequence of this analysis is that so long as μ1, μ2, T
are all sufficiently small, the fibers will align with the direction of pulling as long as θi �= π

2 , 3π
2 .

In Fig. 2 we plot the numerical solution of (3.9)–(3.12) against Eq. (3.16) up to t ′ = 0.05. The
maximum absolute error in Fig. 2(b) is 0.0033 and occurs at θi = 1.4556, 1.6860, for μ2 = 10.

C. Employing ALE to the short timescale

We again define the reference domain and mapping from the reference to the Eulerian domain
by (3.5) and (3.6). In Sec. II B we determined that on the short timescale there is no extension or
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thinning of the sheet, which gives the simpler mesh velocity

umesh =
(

0,
∂H

∂t
(x, t )

)
. (3.17)

The fiber director equation on the short timescale (2.20) becomes

∂θ

∂τ
= 0, (3.18)

hence there is no evolution in θ in the ALE framework on this timescale. Next, Eq. (2.28) gives

∂

∂x′

∫ 1
2

− 1
2

μ1 cos 2θ + (4 + 4μ3 + μ2) ∂ ū
∂x′

4 + 4μ3 + μ2 sin2 2θ
h dy′ + 1

L

∂

∂x′

(
∂H

∂x′
∂2H

∂x′∂τ

∫ 1
2

− 1
2

(4 + 4μ3 + μ2)

4 + 4μ3 + μ2 sin2 2θ
h dy′

− ∂3H

∂x′2∂τ

∫ 1
2

− 1
2

(4 + 4μ3 + μ2)y′

4 + 4μ3 + μ2 sin2 2θ
h2 dy′

)
= 0, (3.19)

with the momentum equation (2.29) becoming

∂2

∂x′2

(∫ 1
2

− 1
2

∫ ỹ

− 1
2

μ1 cos 2θ + (4 + 4μ3 + μ2) 1
L

∂ ū
∂x′

4 + 4μ3 + μ2 sin2 2θ
h2 dỹ′ dỹ + ∂H

∂x′
∂2H

∂x′∂τ

×
∫ 1

2

− 1
2

∫ ỹ

− 1
2

4 + 4μ3 + μ2

4 + μ3 + μ2 sin2 2θ
h2 dỹ′ dỹ − ∂3H

∂x′2∂τ

∫ 1
2

− 1
2

∫ ỹ

− 1
2

(4 + 4μ3 + μ2)ỹ′

4 + 4μ3 + μ2 sin2 2θ
h3 dỹ′ dỹ

)

=
(

∂2H

∂x′2 + 1

2

∂2h

∂x′2

)(∫ 1
2

− 1
2

μ1 cos 2θ + (4 + 4μ3 + μ2) 1
L

∂ ū
∂x′

4 + 4μ3 + μ2 sin2 2θ
h dỹ

+ ∂H

∂x′
∂2H

∂x′∂τ

∫ 1
2

− 1
2

4 + 4μ3 + μ2

4 + 4μ2 + μ2 sin2 2θ
h dỹ − ∂3H

∂x′2∂τ

∫ 1
2

− 1
2

(4 + 4μ3 + μ2)ỹ

4 + 4μ3 + μ2 sin2 2θ
h2 dỹ

)
.

(3.20)

As the equation for θ , (3.18), shows that there is no evolution of θ in the ALE framework, we now
need only to solve (3.19) and (3.20) for ū and H , respectively. As ∂ ū

∂x depends on only x′, τ , it can
be removed from the integrals, the integral coefficients are precomputable at each time step, which
significantly eases the numerical implementation.

The strategy is as follows: given an initial condition for θ, H , we simultaneously solve for ū
at the current time step, and H at the next time step using a forward time-centered space finite
difference discretization. We repeat this until we reach the desired time. We give the discretizations
of Eqs. (2.20), (3.19), and (3.20) and details of the construction of the resulting linear system in
Appendix E.

IV. RESULTS ON THE EXTENSIONAL FLOW TIMESCALE

We first examine the behaviors of the sheet on the t ∼ L0
U timescale. Green and Friedman

considered special cases where further analytical insight into the behavior of the model is possible.
They considered two cases: where the sheet is not extending (L̇ = 0), in which the fibers tend to
align parallel to the y axis, and the case of an extensional flow with μ1 = μ2 = 0. In the second case,
the equations imply that H ≡ 0 and are amenable to further progress via Lagrangian transformation.
It is found that the fibers align with the direction of extension (i.e., parallel to the x axis) [1].
Throughout the next section we assume that μ1 = 0 in order to examine the contributions of the
anisotropic viscosities μ2, μ3 to the behavior of the sheet.
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A. Solutions for initially uniform transversely isotropic sheets with μ1 = 0

We now aim to study the effect of the anisotropic viscosities μ2, μ3 upon the fluid as the sheet is
stretched. We first turn our attention to transversely isotropic sheets that have an initially constant
thickness and μ1 = 0. For clarity of exposition, we introduce the quantity

G(x′, y′, t ) = hG1 + h

L

∂u

∂x′ G2 =
∫ y′

− 1
2

μ1 cos 2θ + (4 + 4μ3 + μ2) 1
L

∂u
∂x′

4 + 4μ3 + μ2 sin2 2θ
h dy′, (4.1)

so that

G1(x′, y′, t ) =
∫ y′

− 1
2

μ1 cos 2θ

4 + 4μ3 + μ2 sin2 2θ
dy′, (4.2)

G2(x′, y′, t ) =
∫ y′

− 1
2

(4 + 4μ3 + μ2)

4 + 4μ3 + μ2 sin2 2θ
dy′. (4.3)

The definitions of G1 and G2 are readily obtained in the physical domain by performing the inverse
of the transformation � and reintroducing dimensional parameters. We start by considering sheets
with no tension in the fiber direction when the fluid is at rest, that is, μ1 = 0, in which case the
equation for u in ALE variables (3.11) becomes

∂

∂x′

[
h

∂u

∂x′ G2

(
x′,

1

2
, t

)]
= 0. (4.4)

This is of the same form as the longitudinal momentum equation in the Trouton model, with G2

playing the role of a spatially varying viscosity (setting μ2 = μ3 = 0 gives G2 = 4, the Trouton ratio
for a Newtonian thin sheet [19]). We interpret G2 as a heterogeneous, time-dependent, “effective
viscosity.” As we shall show, we see the effect of G2 is to induce “necking” in the sheet (the sheet
undergoes thinning at a greater rate in some areas of the sheet than others, generating a “neck”).
This behavior has been observed in Newtonian fluids which possess an inhomogeneous viscosity.

We also note that if the fiber angle is independent of x′, or if μ1 = μ2 = 0 [1], then G2 as it
appears in Eq. (4.4) does not possess x′ dependence. Hence, a fluid that does not possess tension in
the fiber direction when at rest and has a uniform fiber direction will behave like a Newtonian fluid,
with a modified viscosity. In this case, the center line of the fluid is always a straight line, and the
model can be solved by transforming to Lagrangian variables, as detailed in [1,19].

A first integral of (4.4) yields

h
∂u

∂x′ G2

(
x′,

1

2
, t

)
= T (t ), (4.5)

where T is the tension applied to the sheet. Directly from (4.5) we see that G2 may induce
nonlinear behaviors in u. For a Newtonian fluid, or a transversely isotropic fluid where only
μ3 �= 0, choosing an initial condition of constant thickness across the sheet yields that u must
be linear in x′. In that case, as shown by Howell, u = L̇x for all time, and h is a function of t
only [19] (using a similar approach, the same result was shown for a fluid with μ1 = μ2 = 0,

[1]). However, for a transversely isotropic sheet with μ2 �= 0, the existence of the trigonometric
terms inside G2 prohibits this. When μ2 > 0, with h(x′, 0) constant, if θ (x′, y′, 0) depends upon x′,
this will result in u becoming nonlinear in x′, and by (3.9), this will cause h to become spatially
nonuniform. In Fig. 3 we illustrate the early evolution of the thickness of the sheet and the behavior
of 1/G2, for h(x′, 0) = 1, θ (x′, y′, 0) = cos(4πx′y′) − 0.1, μ1 = μ3 = 0, μ2 = 5. Notice that the
sheet thickness immediately becomes nonuniform, and the location of the peaks and troughs in
1/G2 correlates with the locations of local minima and maxima of the thickness of the sheet when
t �= 0.
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(a)

t increasing

(b)

t increasing

(c)

FIG. 3. Evolution of (a) the thickness of the sheet and (b) the function 1
G2

at the times t = 0, 0.125, 0.25,

0.375, 0.5, pulling at L(t ) = 1 + t , with the initial conditions θ (x′, y′, 0) = cos(4πx′y′) − 0.1 [plotted in (c)],
h(x′, 0) = 1, and parameter values μ1 = μ3 = 0, μ2 = 5.

1. Effect of varying the extensional and shear viscosities μ2, μ3 with μ1 = 0

In this section we continue to use the initial conditions h(x′, 0) = 1, θ (x′, y′, 0) = cos(4πx′y′) −
0.1, μ1 = 0, but now vary μ2 and μ3 and compare the state of the sheet at t = 5. First, we note that
varying μ3 with μ2 = 0 simply changes the value of the constant obtained from G2. We plot in
Fig. 4 the thickness and velocity u in the sheet for varied μ2 and notice that for these choices of
θ (x′, y′, 0) and h(x′, 0) that we see a global increase in the longitudinal velocity for increasing μ2.
Additionally, we see that there are regions of the sheet that thin more quickly for increasing μ2, and
other regions that thin more slowly. Intuition based upon the behavior of a pipe flow would lead
one to expect that in regions where the sheet is thicker, the velocity would be lower. This is not true
here, and as in the previous subsection, this behavior is linked to the behavior of G2 as we shall now
demonstrate. Integrating (4.5) and using that u(L) = 1, we may write

1 = T
∫ L

0

1

hG2
(
x′, 1

2 , t
) dx′. (4.6)

We note that by (4.3) and (4.6), as the fibers within the fluid sheet flatten out, G2 increases
everywhere and hence so does the tension, T . In addition, the tension will increase with increasing
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(a) μ2 increasing (b)
μ2 increasing

(c)
μ2 increasing

FIG. 4. Comparison of (a) thickness, (b) longitudinal velocity, and (c) G2 at t = 5, pulling with
L(t ) = 1 + t , for μ2 = 0, 1, 2, 3, 4, 5, 10, 15, with the conditions h(x′, 0) = 1, θ (x′, y′, 0) = cos(4πx′y′) −
0.1, μ1 = μ3 = 0. Notice that more extreme behavior in G2 correlates with greater change in the thickness
and velocity profile across the sheet and increases with μ2.

μ2. Eliminating tension from Eq. (4.6) gives a result for u,

u =
∫ x′

0
1

hG2(s, 1
2 ,t ) ds∫ L

0
1

hG2(x′, 1
2 ,t ) dx′ , (4.7)

and so u behaves as a cumulative integral. If G2 is fixed, the longitudinal velocity does behave as
a pipe flow intuition would expect (in regions where h is small, 1/h is large, and u will increase).
However, when G2 is not fixed (i.e., μ2 �= 0), the behavior of the longitudinal velocity is more
complex. The derivative ux is dependent on the behavior of hG2. We see this in Fig. 4, where we
give results for μ3 = 0 and see that for increasing μ2, hG2 decreases (despite the increase in G2),
which leads to a greater ux on the left-hand side of the domain. Where hG2 is larger, around x = 3,
we see the gradient of u decrease below that of μ2 = 0.

If we allow μ2, μ3 �= 0, we find that increasing μ3 has the effect of globally increasing the value
of G2 and hence the tension applied to the ends of the sheet and inhibits the uniformity-breaking
behavior of μ2.

That is, increasing the μ3 term drives the fluid to behave in a “more Newtonian” manner, albeit
with a higher tension, while increasing μ2 drives the non-Newtonian behavior of breaking the
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(a)

μ3 increasing

(b)

μ3 increasing

(c) μ3 increasing

FIG. 5. Comparison of (a) thickness of the sheet, and (b) longitudinal velocity of the sheet at t = 5 and
(c) G2 at t = 5, θ (x′, y′, 0) = cos(4πx′y′) − 0.1, for μ1 = 0, μ2 = 5, and μ3 = 0, 1, 2, 3, 4, 5.

uniformity of the sheet previously discussed. As an illustrative example, in Fig. 5 we plot the
behavior of the sheet at t = 5 for varying μ3 with μ2 = 5 and initial conditions h(x′, 0) = 1,

θ (x′, y′, 0) = cos(4πx′y′) − 0.1. Notice that increasing μ3 causes the thickness of the sheet to
exhibit less deviation from uniformity, and the longitudinal velocity to tend towards u = x′, the
solution for a Newtonian fluid.

B. Behavior of the fiber

1. Uniform initial fiber director field

We now turn our attention to the fiber behavior within the sheet. In [1] Green and Friedman
considered two special cases that validate our results. It is found that for the case of an extensional
flow with μ1, μ2 = 0 the fibers align with the direction of extension (i.e., parallel to the x axis) and
that for the special case of not extending the sheet (L̇ = 0) with μ1, μ2, μ3 �= 0, the fibers tend to
align parallel to the y axis.

For μ1 = 0, we start by extending the results obtained for early time with a constant initial fiber
direction described in Sec. 6 of Green and Friedman [1]. If hi, θi are uniform, then we can see from
Eqs. (3.10) and (3.11) that ∂u

∂x′ = 1, and θ and h must be functions of time only. Moreover, Eq. (3.10)
yields

dθ

dt
= − sin 2θ (4 + 4μ3 + 2μ2 sin2 θ ) 1

L

4 + 4μ3 + μ2 sin2 2θ
, (4.8)
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(a) (b)

FIG. 6. Evolution of (a) the fiber angle θ and (b) the left-hand side of (4.10) (blue), with the threshold
2 + 2μ3, (red), for the choices of θi = π

4 , Li = hi = 1, μ1 = 5, μ2 = 0, μ3 = 1. Note the reversal in the
direction of rotation when Lμ1 sin2 θ � 2 + 2μ3.

which implies that the behavior of the fibers is determined by the sign of sin 2θ . For 0 < θ < π
2 ,

we have ∂θ
∂t < 0, while for π

2 < θ < π , ∂θ
∂t > 0. Therefore, much like the case μ1 = μ2 = 0 studied

in [1], the fibers tend to orient themselves with the direction of extension, regardless of the value
of μ2, given uniform initial conditions for h and θ . Additionally, we note that θ = ±π

2 are unstable
fixed points of Eq. (4.8), while θ = 0, π are stable fixed points.

We now consider the case μ1 �= 0, for an initially constant hi and θi. We again have that ∂u
∂x′ = 1

and h, θ remain uniform for all time. However, Eq. (3.10) now yields

dθ

dt
= sin 2θ

[
2μ1 sin2 θ − (4 + 4μ3 + 2μ2 sin2 θ ) 1

L

]
4 + 4μ3 + μ2 sin2 2θ

, (4.9)

and so the evolution of the fiber direction is less clear. By again considering the cases 0 < θ < π
2 ,

π
2 < θ < π , −π

2 < θ < 0, −π < θ < −π
2 we find that in order for the fibers to align along the x

axis with time, we require

sin2 θ (Lμ1 − μ2) < 2 + 2μ3. (4.10)

If this condition is satisfied, fibers with angles between −π
2 < θ < π

2 will rotate towards the positive
x axis, with fibers outside of this range rotating towards the negative x axis, similarly to the above.
However, since this expression includes L(t ), it is possible for fibers that initially rotate towards
the longitudinal orientation to reverse their evolution as Lμ1 grows with time to violate (4.10). We
illustrate this behavior in Fig. 6. For the choices of θi = π

4 , Li = hi = 1, μ1 = 5, μ2 = 0, μ3 = 1,
we give the evolution of the fiber angle and evolution of the left-hand side (4.10).

2. Nonuniform initial fiber angles

Consider now the extension of the sheet with θ (x′, y′, 0) = cos(4πx′y′) − 0.1, h(x′, 0) = 1 and
L(t ) = 1 + t . We see in Fig. 7 that as the sheet is stretched, the fibers evolve towards alignment in
the direction of the sheet when μ1 = 0. We also note that the rate at which the fibers align in this
direction is enhanced in the regions of the sheet that undergo fastest thinning of the fluid.

C. Special cases for sheets possessing active behavior

Here we briefly examine two special cases for the sheet for which μ1 > 0. We start by pre-
scribing L(t ) = 1 + t , hi = 1, μ1 = 5, μ2 = μ3 = 0, and we test two choices for the initial fiber
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(a) (b)

FIG. 7. (a) Initial thickness of the sheet and orientation of the fibers and (b) the thickness of the sheet and
orientation of the fibers at t = 5, for the initial conditions h(x′, 0) = 1, θ (x′, y′, 0) = cos(4πx′y′) − 0.1 and
choices of μ1 = μ3 = 0, μ2 = 5.

angle, θi = 0, corresponding to the fibers being aligned in the direction of extension, and θi = π
2 ,

corresponding to the fibers being aligned in the transverse direction in the sheet. In Fig. 8 we plot
the tension required to be applied to the sheet to achieve the prescribed rate of pulling for these
two choices. First, we note that there is no evolution in θ with time. Next, we notice that for fibers
arranged in the transverse direction of the sheet, the tension applied to the sheet is negative. To
explain this we begin with the equation for u in spatial variables,

T =
∫ H+

H−

μ1 cos 2θ + (4 + 4μ3 + μ2) ∂u
∂x

4 + 4μ3 + μ2 sin2 2θ
dy. (4.11)

Now, since θ has no evolution for these particular choices of θi as they are fixed points of Eq. (3.8),
then for θi = π

2 ,

T = 1

4(1 + μ3)

[
(4 + 4μ3 + μ2)

∂u

∂x
− μ1

]
h. (4.12)

(a) (b)

FIG. 8. Evolution of the tension applied to the sheet for two initial choices of fiber direction, (a) θi = 0 and
(b) θi = π

2 up to t = 5 with h(x′, 0) = 1, μ1 = 5, μ2 = μ3 = 0, and prescribed pulling L = 1 + t .
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It is possible that μ1 > (4 + 4μ3 + μ2)ux and hence T < 0. We interpret this as being due to the
fibers in the transverse direction attempting to contract the sheet, which due to mass conservation
would generate a compression in the longitudinal direction, as the sheet attempts to extend longitu-
dinally. If we define the total tension required to move the sheet at the prescribed speed as TL, the
tension caused by the fibers as Tf and the tension applied to the sheet as T , then we expect that

TL = T + Tf . (4.13)

If the rate of extension is too slow to compensate for the compression generated by the fibers pulling
in the transverse direction, then T < 0. As discussed by Howell for the Newtonian case [19], when
the sheet is in compression we expect buckling to occur, and the curvature of the center line will
in time become significant. Thus, in this case, the nearly straight center line scaling assumed in the
Green and Friedman model may be violated, and the model will no longer be valid.

D. Behavior of the center line

1. Conditions for a flat center line

In the Newtonian problem, it was shown by Howell [19] that the center line of the sheet
straightens on a timescale shorter than L0

U [18,19] (and is therefore generally taken to simply
be H = 0). This is not necessarily true for a transversely isotropic fluid. It is noted in [1] that
should θ = θ (x′, t ) and μ1 = μ2 = 0, then Eqs. (3.11) and (3.12) together with the requirement
that H (0, t ) = H (L(t ), t ) = 0 imply that the center line must be flat. We will now demonstrate that
this is also true when μ1, μ2 �= 0. Supposing θ = θ (x′, t ), the integrand of Eqs. (3.11) and (3.12)
can be evaluated explicitly, yielding

∂

∂x′ (h f ) = 0, (4.14)

∂2

∂x′2

(
1

2
h2 f

)
=

(
∂2H

∂x′2 + 1

2

∂2h

∂x′2

)
h f , (4.15)

where

f (x′, t ) = μ1 cos 2θ + 1
L (4 + 4μ3 + μ2) ∂u

∂x′

4 + 4μ3 + μ2 sin2 2θ
. (4.16)

Expanding the second derivative on the left-hand side of Eq. (4.15) and using (4.14) yields that

∂2H

∂x′2 = 0, (4.17)

and therefore H must be a straight line. It is then possible to choose our coordinate system such that
H (x′, t ) ≡ 0.

Now let us consider what happens when θ (x′, y′, 0) = θi(y′), and μ1 = 0. In this case the
equation of the center line can be written as

(
∂2H

∂x′2 + 1

2

∂2h

∂x′2

)
hG2

(
1

2
, t

)
= ∂2

∂x′2

(
h2

∫ 1
2

− 1
2

G2(y′, t ) dy′
)

. (4.18)

We recall that, from Sec. IV A, if we choose θi = θi(y′) only and the initial thickness hi to be
uniform, then G2 will not possess x′ dependence and h will also remain uniform for all time. As
a result we once again obtain (4.17), so that asymmetry in the fiber angles over the center line is
not sufficient to cause an initially uniform sheet with μ1 = 0 to deflect. We will now consider the
conditions under which the center line of the sheet will not be straight.

113301-20



THIN FILM EXTENSIONAL FLOW OF A TRANSVERSELY …

t increasing

FIG. 9. Evolution of the center line of the sheet under the initial conditions h(x′, 0) = 1, θ (x′, y′, 0) =
sin(4πx′y′) − 0.1 with μ2 = 5, μ1 = μ3 = 0. Plotted at t = 0, 0.25, 0.5, 0.75, 1.

2. Conditions for a nonzero center line

For sheets possessing μ1 = 0 and a uniform condition for the thickness of the sheet, hi, the
choice of θ (x′, y′, 0) = θi(x′, y′) being a prescribed function that is nonsymmetric (i.e., ∂θ

∂y′ |y′=0 �= 0)
is required to obtain center line deflection. In Fig. 9 we give a plot of the center line evolution for
the initial conditions θ (x′, y′, 0) = sin(4πx′y′) − 0.1 with μ2 = 5, μ1 = μ3 = 0. We see that the
center line initially possesses deflection and tends to 0. This behavior is driven by the right-hand
side of (4.18) becoming small. Once this occurs, the behavior of the center line is then dominated
by the ∂2h

∂x′2 term, which itself possesses an implicit dependence on G2 through u. Additionally, for a
transversely isotropic fluid with μ1 = 0, the deflection is small and decays quickly. Since the center
line does not instantaneously collapse to 0, this suggests that considering the behavior of the fluid on
a short timescale may yield some interesting behavior that is markedly different from a Newtonian
fluid.

If we consider a condition for h(x′, 0) that is not uniform, we find that there will exist a small
deflection when θ (x′, y′, 0) = θi(y′) only, since endowing h with x′ dependence will impart x′
dependence on ∂u

∂x through Eq. (3.11), and hence θ will gain x′ dependence after the first time step
through Eq. (3.10).

V. RESULTS ON THE SHORT TIMESCALE

We now examine the behaviors of the sheet over a short timescale of t ∼ ε2 L0
U . For a Newtonian

fluid, it was demonstrated by Howell [19] that the leading order equations for the extensional flow
of a slender, viscous, Newtonian sheet predict that the center line of the sheet is straight. Hence, the
model cannot satisfy an initial condition in which the center line is not straight. In order to study the
behavior of initially curved sheets, a short-timescale analysis is performed. The required timescale
must be ε2 L0

U [18]. In the transversely isotropic problem it is similarly impossible to satisfy an
arbitrary initial condition for the center line and, as we have demonstrated, there exist choices of the
key parameters and initial distribution of fiber angles that give rise to a center line that is nonzero
on the flow timescale. This indicates that there may exist interesting behaviors, different from the
Newtonian case, over a short timescale.

A. Short-time evolution of the center line

First, we check that the long-time behavior of the short time model is consistent with the
Green and Friedman model. In Fig. 10 we give the evolution of the center line over the short
timescale for the initial conditions of μ1 = μ3 = 0, μ2 = 5, L(0) = 1, θ (x, y, 0) = sin(4πxy) − 0.1,

113301-21



HOPWOOD, HARDING, GREEN, AND DYSON

(a) (b)

τ increasing

(c) (d)

τ increasing

FIG. 10. Position of the center line (a) at t = 0, the initial time in the Green and Friedman model (red) and
τ = 200 000 (blue) and (b) at τ = 100, 500, 1000, 2500, 10 000, 200 000, where τ = 0 is omitted as H (x, 0) =
0, In (c) we plot the maximum of the absolute difference between the evolving center line on the short timescale
and the Green and Friedman result, and in (d) we give the center line at τ = 2.5, 5, 10, 15, 25. The condi-
tions for all of the above are H (x, 0) = 0, h(x, 0) = 1, θ (x, y, 0) = sin(4πxy) − 0.1, μ1 = μ3 = 0, μ2 = 5,
L(0) = 1.

H (0)(0, τ ) = H (0)(L, τ ) = ∂H (0)

∂x (L, τ ) = ∂H (0)

∂x H (L, τ ) = 0, up to τ = 200 000, and compare the
values of H (x, τ = 200 000) with H (x, t = 0). We see that the short-timescale result closely
matches the result produced by the solver for the Green and Friedman model. In Fig. 10(b) we
give the evolution of the center line over τ . Notice in Fig. 10(b) that the center line converges to
the Green and Friedman model fairly quickly, and there is a small absolute difference between the
center line at τ = 10 000 and τ = 200 000.

For a Newtonian fluid, Howell was able to obtain a analytical expression for the decay of the cen-
ter line of an initially curved sheet undergoing stretching by use of eigenfunction expansions [19],
assuming the same boundary conditions we use in this section, H (0, τ ) = H (1, τ ) = ∂H

∂x (0, τ ) =
∂H
∂x (1, τ ) = 0. It is found that the center line decays exponentially to H = 0. The behavior for a
transversely isotropic fluid is more complex. The results plotted in Fig. 10 began with the initial
condition H (x, τ = 0) = 0, and we immediately see from Fig. 10(c) that the convergence to the
Green and Friedman center line is not exponential for all time. Indeed, there is an initial lag, as
the center line evolves away from the flat initial condition to adopt a similar shape of the center
line predicted by the Green and Friedman model, before decaying to the expected result. As an
illustrative example, we include Fig. 10(d). This figure shows the formation of the peaks and troughs
of the general shape of the center line given by the Green and Friedman model.
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FIG. 11. Decay of the maximum value of H (x, τ ) for μ3 = 0 (blue), and μ3 = 10 (red) with the conditions

H (x, 0) = 1
20 e− (x−0.5)2

0.01 , μ1 = μ2 = 0, h(x, 0) = 1, L = 1.

B. Effect of key parameters upon convergence

In this subsection we discuss the effect of increasing μ2, μ3 upon the convergence of the short
timescale center line to the result from the Green and Friedman model. First, we note that if μ2 = 0,
μ3 has no effect upon convergence. In Fig. 11 we give a plot of the decay of the maximum value of

H (x, τ ) for the initial conditions of H (x, 0) = 1
20 e− (x−0.5)2

0.01 , θ (x, y, 0) = sin(4πxy), h(x, 0) = 1, L =
1. There is no difference in the decay of the center line to flat between the Newtonian case and
μ3 = 10.

Now choosing μ2 > 0, in Fig. 12 we plot the maximum absolute difference across the
sheet between the center line on the short timescale and the result obtained by solving
Eq. (3.12) for varied values of μ2, μ3 with the conditions h(x, 0) = 1, θ (x, y, 0) = sin(4πxy) − 0.1,

μ1 = 0, μ2 = 5, L(0) = 1. First, in Fig. 12(a) we fix μ3 = 0 and vary μ2 (note the case of μ2 = 5
corresponds to the example given above). We see that as μ2 increases, the difference between the

(a)

μ2 decreasing

(b)

μ3 increasing

FIG. 12. Maximum absolute difference across the sheet between the center line on the short timescale and
the result obtained by solving Eq. (3.12) for (a) μ3 = 0, μ2 = 1, 2, 3, 4, 5 and (b) μ2 = 5, μ3 = 1, 2, 3, 4, 5,
with the conditions H (x, 0) = 0, h(x, 0) = 1, θ (x, y, 0) = sin(4πxy) − 0.1, μ1 = 0, L(0) = 1.
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flat initial condition of the center line and the result of the Green and Friedman model also increases.
This is due to the deepening of the trough around x = 0.5 seen in Fig. 10(a). We note that changing
μ2 does not appear to affect the length of the lag as the center line is adopting the correct general
shape before decaying, but as μ2 increases, the decay is faster. In Fig. 12(b) we fix μ2 = 5 and vary
μ3 (as before, the case of μ3 = 0 corresponds to the example given above). Once again, we see that
the effect of increasing μ3 has little affect upon the timing of the convergence of the center line, and
that the behavior we see here is a consequence of the role of μ3 in moderating the effects of μ2 in
the Green and Friedman model as discussed in Sec. IV.

VI. DISCUSSION

In this paper we have constructed and employed a numerical strategy to solve the model proposed
by Green and Friedman for the extensional flow of a thin 2D sheet of a fiber-reinforced fluid,
first reducing the model by eliminating u(1) and then employing an arbitrary Lagrangian-Eulerian
method. We have shown how the distribution of fibers within the fluid can cause interesting
non-Newtonian behaviors such as driving nonuniformity in the development of the thickness of
an initially uniform sheet and deflection of the center line even with the implicit assumption that the
center line is nearly straight. Our results also show that the bulk properties of a passive transversely
isotropic fluid sheet are controlled largely by the behavior of a derived “effective viscosity.”

As far as the behavior of an active transversely isotropic fluid is concerned, preliminarily we
have seen that allowing μ1 �= 0 allows the fibers to develop towards alignments that are not in the
direction of extension of the fluid. However, if the fibers are aligned in the longitudinal direction of
the sheet and possesses active behavior, the tension within the sheet is increased. Active behavior
giving rise to greater tension has been observed in the seeding of hydrogels with a suspension of
self-aligning cells [32]. Future work in this area could include constructing a more biologically
realistic multiphase model that incorporates the work in this paper as a fibrous extracellular matrix
or hydrogel, with the cells exhibiting active behavior instead of the fibers. This could result in a
model of how different experimental setups lead to different alignment patterns of cells and could
determine the best conditions to grow neural tissue.

There are a number of other avenues for further work related to this paper. We model sheets
that are nearly straight, with the employment of a Cartesian coordinate system restricting the model
to examining sheets which are initially slightly curved, i.e., H

L0
is small. Where this is not the case,

future work could entail the use of a curvilinear coordinate system to approach sheets with curvature
in the center line in work similar to Ribe [21]. As the sheet starts to become very thin, there may
be a new regime where the μ1 term in (3.11) dominates the ∂u

∂x′ term. Perhaps the behavior of the
sheet in this regime may shed light upon how the active behavior of the fluid may drive breakup
of the sheet. Simpler modifications could include prescribing the tension applied to the ends of the
sheet, rather than prescribing the length. Furthermore we could also modify the model to include
the effects of surface tension, inertia, and body forces.
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APPENDIX A: MODEL EQUATIONS IN FULL

To briefly summarize, the dimensionless equations are

∂u

∂x
+ ∂v

∂y
= 0, (A1)
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for conservation of mass, with the momentum equation (2.2) yielding in the x direction:

− ε2 ∂ p

∂x
+ ∂2u

∂y2
+ ε2 ∂2u

∂x2
+ ε2μ1

∂

∂x
(cos2 θ ) + εμ1

∂

∂y
(cos θ sin θ )

+ μ2
∂

∂x

[
ε2 cos4 θ

∂u

∂x
+ cos3 θ sin θ

(
ε
∂u

∂y
+ ε3 ∂v

∂x

)
+ ε2 cos2 θ sin2 θ

∂v

∂y

]

+ 2μ3
∂

∂x

[
2ε2 cos2 θ

∂u

∂x
+ cos θ sin θ

(
ε
∂u

∂y
+ ε3 ∂v

∂x

)]

+ μ2
∂

∂y

{
cos θ sin θ

[
ε cos2 θ

∂u

∂x
+ cos θ sin θ

(
∂u

∂y
+ ε2 ∂v

∂x

)
+ ε sin2 θ

∂v

∂y

]}

+ μ3
∂

∂y

(
∂u

∂y
+ ε2 ∂v

∂x

)
= 0,

while in the y direction we have

− ε
∂ p

∂y
+ ε3 ∂2v

∂x2
+ ε

∂2v

∂y2
+ εμ1

∂

∂y
(sin2 θ ) + ε2μ1

∂

∂x
(cos θ sin θ )

+ μ2
∂

∂y

[
ε sin2 θ cos2 θ

∂u

∂x
+ cos θ sin3 θ

(
∂u

∂y
+ ε2 ∂v

∂x

)
+ ε sin4 θ

∂v

∂y

]

+ 2μ3
∂

∂y

[
2ε sin2 θ

∂v

∂y
+ cos θ sin θ

(
∂u

∂y
+ ε2 ∂v

∂x

)]

+ μ2
∂

∂x

[
ε2 sin θ cos3 θ

∂u

∂x
+ cos2 θ sin2 θ

(
ε
∂u

∂y
+ ε3 ∂v

∂x

)
+ ε2 cos θ sin3 θ

∂v

∂y

]

+ μ3
∂

∂x

(
ε
∂u

∂y
+ ε3 ∂v

∂x

)
= 0, (A2)

with the fiber director field being given by

ε
∂θ

∂t
+ εu

∂θ

∂x
+ εv

∂θ

∂y
= −ε sin θ cos θ

∂u

∂x
− sin2 θ

∂u

∂y
+ ε2 cos2 θ

∂v

∂x
+ ε sin θ cos θ

∂v

∂y
. (A3)

APPENDIX B: SIMPLIFICATION OF THE EQUATION FOR θ

In the main text, we claimed that Eq. (3.8) permitted great simplification by noting that the
equation corresponded only to advection in a purely horizontal direction of the reference domain.
To demonstrate this simplification, suppose θ̃ (x′, y′, t ) is a function defined over Dref that satisfies
the advection equation

∂θ̃

∂t
+ ũ

∂θ̃

∂x′ = f̃ , (B1)

where ũ(x′, t ) and f̃ (x′, t ) are a horizontal advection velocity and forcing term, respectively. We can
relate θ (x, y, t ) = θ̃ (x(x′, t ), y(x′, y′, t ), t ), and using the mapping �, which gives

∂θ̃

∂t
= ∂θ

∂t
+ L̇x

L

∂θ

∂x
+

{
∂H

∂t
+

(
y − H

h

)
∂h

∂t
+ L̇x

L

[
∂H

∂x
+

(
y − H

h

)
∂h

∂x

]}
∂θ

∂y
, (B2)

∂θ̃

∂x′ = L
∂θ

∂x
+ L

[
∂H

∂x
+

(
y − H

h

)
∂h

∂x

]
∂θ

∂y
. (B3)
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Substituting (B2) and (B3) into (B1) then yields

∂θ

∂t
+ ∂θ

∂x

(
Lũ + L̇x

L

)
+ ∂θ

∂y

{
∂H

∂t
+

(
y − H

h

)
∂h

∂t
+

[
∂H

∂x
+

(
y − H

h

)
∂h

∂x

](
Lũ + L̇x

L

)}
= f̃ ,

(B4)

and we now choose u(x, t ) = Lũ + L̇x
L , in order to recover the correct coefficient of ∂θ

∂x . Examining
the coefficient of the ∂θ

∂y term we note that

∂H

∂t
+

(
y − H

h

)
∂h

∂t
+ u

[
∂H

∂x
+

(
y − H

h

)
∂h

∂x

]
(B5)

= ∂H

∂t
+ u

∂H

∂x
+

(
y − H

h

)(
−h

∂u

∂x

)
(B6)

= ∂H

∂t
+ ∂

∂x
(uH ) − y

∂u

∂x
= v, (B7)

where we have used the equation for conservation of mass, (2.7), to obtain (B6). Here we have
demonstrated that the coefficient of θy is precisely v when mapping back from Dre f to the original
domain. Therefore, we have shown that the advection of θ is purely horizontal upon the reference
domain, with velocity ũ(x′, t ) = u−L̇x′

L = u−umesh
L .

APPENDIX C: DISCRETIZATION OF THE GREEN AND FRIEDMAN INTEGRAL EQUATIONS

In what follows, the treatment of the integral equations is in the Eulerian framework. The
integral equations (3.11) and (3.12) require further treatment before being discretized and solved.
We discretize with

θ (0)(xi, y j, τk ) = θ k
i, j, etc., (C1)

where i = 1 : M + 1, j = 1 : N + 1, k = 1 : T + 1 where M, N are the number of steps in the
x, y directions and T is the number of time steps. The Green and Friedman model was typically
solved with �x = 1

M ,�y = 1
N ,�t = 1

2T , M = N = 800, T = 1600, with the Courant-Friedrichs-
Lewy condition checked at each time step. Now, introduce

F (x, y, t ) = μ1 cos 2θ + (4 + 4μ3 + μ2)ux

4 + 4μ3 + μ2 sin2 2θ
, (C2)

and it will be convenient to write F = F1 + uxF2, where

F1 = μ1 cos 2θ

4 + 4μ3 + μ2 sin2 2θ
, F2 = 4 + 4μ3 + μ2

4 + 4μ3 + μ2 sin2 2θ
; (C3)

in much the same way, we also introduce notation for the integrals of F by defining G = G1 + uxG2,

where

Gm(x, y, t ) =
∫ y

H−
Fm(x, s, t ) ds, (C4)

for m = 1, 2. Equation (3.11) can now be written as

0 = ∂

∂x
[G1(x, H+, t ) + ux(x, t )G2(x, H+, t )], (C5)
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using the trapezoidal rule,

Gm(x, H+, t ) = h(x, t )

N − 1

(
Fm(x, y0, t ) + Fm(x, yN−1, t )

2
+

N−2∑
i=1

Fm(x, yi, t )

)
, (C6)

where N is the number of nodes in the y direction. We note that upon substituting the trapezoidal
rule into (C5), the result does not depend on H . That is, its presence in the integration limits is
redundant and effectively just describes a vertical translation. Therefore, H is decoupled from the
rest of the system, and we can solve the equations for u and θ and then compute H as required at
a desired time. For completeness, we include the discretization for Eq. (C5). First, introduce the
notation

[Gm]k
i,N−1 = Gm

(
xi, Hk

i + hk
i

/
2, tk

)
; (C7)

now (C5) gives, through centered finite differences,

[G1]k
i−1,N−1 − [G1]k

i+1,N−1

2L/(M − 1)

= [G2]k
i+1,N−1 − [G2]k

i−1,N−1

2L/(M − 1)

uk
i+1 − uk

i

2L/(M − 1)
+ uk

i − 2uk
i + uk

i−1

(L/(M − 1))2 [G2]k
i,N−1, (C8)

where N, M are the number of nodes in the vertical and horizontal directions, respectively, so that
i = 0 : M − 1, j = 0 : N − 1. Noting that uk

0 = 0, uk
M−1 = L̇(tk ), and that Gm is readily precom-

puted at each time step k, yields a tridiagonal system for uk . If we now consider the equation for H
(3.9), this is the only equation in the model that is indeed easier to treat in the Eulerian framework
than the ALE. Using Eq. (2.12) and the Leibniz rule we may write Eq. (2.9) as

0 = −
(

Hxx + hxx

2

)
G(x, H+, t ) + ∂2

∂x2

∫ H+

H−
G(x, y, t ) dy; (C9)

in order to proceed, one must apply the trapezoidal rule twice to each Gm. Applying it once yields

∫ H+

H−
Gm(x, y, t ) dy = h(x, t )

N − 1

⎛
⎝Gm(x, y0, t ) + Gm(x, yN−1, t )

2
+

N−2∑
j=1

Gm(x, y j, t )

⎞
⎠, (C10)

then, for each j > 0,

Gm(x, y j, t ) = h(x, t )

N − 1

⎛
⎝Fm(x, y0, t ) + Fm

(
x, y j, t

)
2

+
j−1∑
i=1

Fm(x, yi, t )

⎞
⎠, (C11)

for the case j = 0, Gm(x, y0, t ) = 0. Substitution of (C11) into (C10) yields

∫ H+

H−
Gm(x, y, t ) dy =

(
h

N − 1

)2
⎛
⎝2N − 3

4
Fm(x, y0, t ) + 1

4
Fm(x, yN−1, t )

+
N−2∑
j=1

(N − 1 − j)Fm(x, y j, t )

⎞
⎠. (C12)

Finally, we require the introduction of the notation

[IGm]k
i =

∫ H+

H−
Gm(xi, y, tk ) dy, (C13)
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for m = 1, 2. Clearly, we use (C12) to precompute [IGm] at the required nodes as necessary. The
discretization of Eq. (C9) is then

Hk
i−1 − 2Hk

i + Hk
i+1

[L(tk )/(M − 1)]2

(
[G1]k

i + uk
i+1 − uk

i−1

2L(tk )/(M − 1)
[G2]k

i

)

= − hk
i−1 − 2hk

i + hk
i+1

2[L(tk )/(M − 1)]2

(
[G1]k

i + uk
i+1 − uk

i−1

2L(tk )/(M − 1)
[G2]k

i

)
+ [IG1]k

i−1 − 2[IG1]k
i + [IG1]k

i+1

[L(tk )/(M − 1)]2

+ uk
i+2 − 2uk

i+1 + 2uk
i−1 − uk

i−2

2[L(tk )/(M − 1)]3 [IG2]k+1
i + uk

i+1 − 2uk
i + uk

i−1

[L(tk )/(M − 1)]2

[IG2]k
i+1 − [IG2]k

i−1

2L(tk )/(M − 1)

+ [IG2]k
i+1 − 2[IG2]k

i + [IG2]k
i−1

[L(tk )/(M − 1)]2

uk
i+1 − uk

i−1

2L(tk )/(M − 1)
. (C14)

Equation (C14) contains wholly precomputable quantities on the right-hand side. Therefore, similar
to the equation for u, this creates a tridiagonal system to be solved for H . For the specific cases of
i = 0, M − 1, we have the boundary condition that Hk

0 = Hk
M−1 = 0. For the cases of i = 1, M − 2,

the discretization must be modified slightly as the stencil for uxxx is too wide. This can be done in a
number of ways and is omitted.

APPENDIX D: DERIVATION OF THE SHORT-TIMESCALE INTEGRAL EQUATIONS

In order to close the model, we must go to yet higher orders in order to obtain equations for
u(0), H (0). Our approach is to integrate the relevant equations over the depth of the sheet and apply
the no-stress boundary conditions at y = H (0)± . We find that a number of higher order terms in
the boundary conditions will be eliminated by substitution of previously obtained quantities. The
O(ε3) x-momentum equation is

∂

∂x

{
−p(0) + 2

∂u(0)

∂x
+ μ1 cos2 θ (0)

+ μ2

[
cos4 θ (0) ∂u(0)

∂x
+ cos3 θ (0) sin θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ cos2 θ (0) sin2 θ (0) ∂V (2)

∂y

]

+ 2μ3

[
2 cos2 θ (0) ∂u(0)

∂x
+ cos θ (0) sin θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]}
− ∂2u(0)

∂x2

= − ∂

∂y

{
∂u(2)

∂y
+ ∂V (2)

∂x
+ μ1(θ (1) cos 2θ (0) ) + μ2

[
cos3 θ (0) sin θ (0) ∂u(1)

∂x

+ θ (1)(cos4 θ (0) − 3 sin2 θ (0) cos2 θ (0) )
∂u(0)

∂x
+ cos2 θ (0) sin2 θ (0)

(
∂u(2)

∂y
+ ∂V (2)

∂x

)

+ 1

2
θ (1) sin 4θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ cos θ (0) sin3 θ (0) ∂V (3)

∂y

+ θ (1)(3 sin2 θ (0) cos2 θ (0) − sin4 θ (0) )
∂V (2)

∂y

]
+ μ3

(
∂u(2)

∂y
+ ∂V (2)

∂x

)}
+ ∂2V (2)

∂x∂y
, (D1)
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and its associated no-stress boundary condition is

∂u(2)

∂y
+ ∂V (2)

∂x
+ μ1θ

(1) cos 2θ (0)

+ μ2

[
cos3 θ (0) sin θ (0) ∂u(1)

∂x
+ θ (1)(cos4 θ (0) − 3 sin2 θ (0) cos2 θ (0) )

∂u(0)

∂x

+ cos2 θ (0) sin2 θ (0)

(
∂u(2)

∂y
+ ∂V (2)

∂x

)
+ 1

2
θ (1) sin 4θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)

+ cos θ (0) sin3 θ (0) ∂V (3)

∂y
+ θ (1)(3 sin2 θ (0) cos2 θ (0) − sin4 θ (0) )

∂V (2)

∂y

]
+ μ3

(
∂V (2)

∂x
+ ∂u(2)

∂y

)

=
(

∂H (0)

∂x
± 1

2

∂h(0)

∂x

){
−p(0) + 2

∂u(0)

∂x
+ μ1 cos2 θ (0)

+ μ2

[
cos4 θ (0) ∂u(0)

∂x
+ cos3 θ (0) sin θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ cos2 θ (0) sin2 θ (0) ∂V (2)

∂y

]

× 2μ3

[
2 cos2 θ (0) ∂u(0)

∂x
+ cos θ (0) sin θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]}
on y = H (0)± . (D2)

We note that the remaining terms outside of the derivatives in (D1) cancel due to the continuity
equation at O(ε2). Integrating Eq. (D1) over the depth of the sheet yields

∫ H (0)+

H (0)−

∂

∂x
[−p(0) + g1(x, τ )] dy = −

[
∂u(2)

∂y
+ ∂V (2)

∂x
+ g2(x, τ )

]y=H (0)+

y=H (0)−
, (D3)

where g1, g2 are functions containing the collected μ1, μ2, μ3 terms from (D1) and are readily
obtained by inspection. Application of (D2) now yields∫ H (0)+

H (0)−

∂

∂x

(−p(0) + g1
)

dy

=
(

∂H (0)

∂x
− 1

2

∂h(0)

∂x

)
(−p(0) + g1)y=H (0)− −

(
∂H (0)

∂x
+ 1

2

∂h(0)

∂x

)(−p(0) + g1
)

y=H (0)+ , (D4)

and hence by use of the Leibniz rule, we now obtain an equation for ū,

∂

∂x

∫ H (0)+

H (0)−

{
4
∂u(0)

∂x
+ μ1 cos 2θ (0) + μ2

[
cos2 2θ (0) ∂u(0)

∂x

+1

4
sin 4θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)]
+ 4μ3

∂u(0)

∂x

}
dy = 0. (D5)

A similar process at O(ε4) yields an equation for H ,

∂

∂x

∫ H (0)+

H (0)−

∂

∂x

∫ y

H (0)−

[
4
∂u(0)

∂x
+ μ1 cos 2θ (0) + μ2 cos2 2θ (0) ∂u(0)

∂x

+ μ2

4
sin 4θ (0)

(
∂u(1)

∂y
+ ∂V (1)

∂x

)
+ 4μ3

∂u(0)

∂x

]
dy′ dy = 0. (D6)

We note that these equations are of the same form as Eqs. (2.8) and (2.9), with the difference being
that u(0) now possesses y dependence. Substitution of (2.12) and (2.27) into both (D5) and (D6) and
use of the Liebniz rule upon (D6) yield Eqs. (2.28) and (2.29).
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APPENDIX E: DISCRETIZATION OF THE SHORT TIMESCALE MODEL

In this Appendix we give the discretization of the integral equations in the system of the short
timescale equations, namely, (3.19) and (3.20). As before, we drop the superscript notation for
leading-order quantities. We discretize using the same notation as detailed in Appendix C. As
before, the short timescale was typically solved with �x = 1

M ,�y = 1
N , M = N = 800, with the

Courant-Friedrichs-Lewy condition checked at each time step. The length of the time step was
varied. The range of size of time steps was �τ = 1

1600 for τ < 100 up to �τ = 100 for τ = 200 000.
Similarly to the discretization of the Green and Friedman model equations, we define

Z1(x, y, τ ) =
∫ y

− 1
2

μ1 cos 2θ

4 + 4μ3 + μ2 sin2 2θ
h dỹ, (E1)

Z2(x, y, τ ) =
∫ y

− 1
2

4 + 4μ3 + μ2

4 + 4μ3 + μ2 sin2 2θ
h dỹ, (E2)

J (x, t ) =
∫ 1

2

− 1
2

(4 + 4μ3 + μ2)h2y′

4 + 4μ3 + μ2 sin2 2θ
dỹ, (E3)

and we note that the definitions of Z1, Z2 here are similar to G1, G2 in Appendix C but are not
precisely the same. It is possible to obtain G1, G2 from Z1, Z2 by undoing both the transformation
y = H + hỹ and the short timescale. Since the ALE transformation in Sec. III acts as a linear
transformation on the integral equations, one may treat Z1, Z2 as the integrals in ALE form on
the short timescale. We may now rewrite Eq. (3.19) as

Z2

(
x,

1

2
, τ

)
∂2ū

∂x2
+ ∂Z2

(
x, 1

2 , τ
)

∂x

∂ ū

∂x
+ ∂2H

∂x∂τ

(
∂Z2

(
x, 1

2 , τ
)

∂x

∂H

∂x
+ Z2

(
x,

1

2
, τ

)
∂2H

∂x2

)

+ ∂3H

∂x2∂τ

(
Z2

(
x,

1

2
, τ

)
∂H

∂x
− ∂J

∂x

)
− J

∂4H

∂x3∂τ
= −∂Z1

(
x, 1

2 , τ
)

∂x
. (E4)

We choose to use a FTCS finite difference method, hence the discretization of (E4) is

[Z2]k
i,N−1

ūk
i+1 − 2ūk

i + ūk
i−1

�x2
+ [Z2]k

i+1,N−1 − [Z2]k
i−1,N−1

2�x

ūk
i+1 − ūk

i−1

2�x

+
(
Hk+1

i+1 − Hk+1
i−1

) − (
Hk

i+1 − Hk
i−1

)
2�τ�x

(
[Z2]k

i+1,N−1 − [Z2]k
i−1,N−1

2�x

Hk
i+1 − Hk

i−1

2�x

+ [Z2]k
i,N−1

Hk
i+1 − 2Hk

i + Hk
i−1

�x2

)

+
(
Hk+1

i+1 − 2Hk+1
i + Hk+1

i−1

) − (
Hk

i+1 − 2Hk
i + Hk

i−1

)
�τ�x2

(
[Z2]k

i,N−1

Hk
i+1 − Hk

i−1

2�x

− Jk
i+1 − Jk

i−1

2�x

)
− Jk

i

(
Hk+1

i+2 − 2Hk+1
i+1 + 2Hk+1

i−1 − Hk+1
i−2

) − (
Hk

i+2 − 2Hk
i+1 + 2Hk

i−1 − Hk
i−2

)
2�τ�x3

= − [Z1]k
i+1,N−1 − [Z1]k

i−1,N−1

2�x
. (E5)

This discretization can be written in the matrix form

�τ�x2b + MHHk = MHHk+1 + �τ�xMŪūk, (E6)

113301-30



THIN FILM EXTENSIONAL FLOW OF A TRANSVERSELY …

where Hk = (Hk
1 , Hk

2 , . . . , Hk
N+1)T , ūk = (ūk

1, ūk
2, . . . , ūk

N+1)T , and MH , MŪ are matrices whose
entries are the coefficients of the Hk+1 and ūk terms, respectively, and are dependent upon the
choice of discretization of the x derivatives of H, ū. We note that the left-hand side of (E6) is known
and precomputable at each time step. Due to the ∂H4

∂x3∂τ
term, the stencil must be adjusted at the ends

of the domain by using biased finite differences.
Next, we define more functions for notational convenience:

IZ1(x, τ ) =
∫ 1

2

− 1
2

∫ ỹ

− 1
2

μ1 cos 2θ

4 + 4μ3 + μ2 sin2 2θ
h2 dỹ′ dỹ, (E7)

IZ2(x, τ ) =
∫ 1

2

− 1
2

∫ ỹ

− 1
2

4 + 4μ3 + μ2

4 + 4μ3 + μ2 sin2 2θ
h2 dỹ′ dỹ, (E8)

K (x, τ ) =
∫ 1

2

− 1
2

∫ ỹ

− 1
2

(4 + 4μ3 + μ2)h3ỹ′

4 + 4μ3 + μ2 sin2 2θ
dỹ′ dỹ. (E9)

With the introduced functions, we may express (3.20) as

IZ2
∂3ū

∂x3
+ 2

∂IZ2

∂x

∂2ū

∂x2
+ ∂ ū

∂x

[
∂2IZ2

∂x2
− Z2

(
∂2H

∂x2
+ 1

2

∂2h

∂x2

)]
− K

∂5H

∂x4∂τ
+ ∂4H

∂x3∂τ

(
IZ2

∂H

∂x
− 2

∂K

∂x

)

+ ∂3H

∂x2∂τ

[
2IZ2

∂2H

∂x2
+ 2

∂IZ2

∂x

∂H

∂x
+ J

(
∂2H

∂x2
+ 1

2

∂2h

∂x2

)
− ∂2K

∂x2

]

+ ∂2H

∂x∂τ

[
IZ2

∂3H

∂x3
+ 2

∂IZ2

∂x

∂2H

∂x2
+ ∂2IZ2

∂x2

∂H

∂x
− Z2

∂H

∂x

(
∂2H

∂x2
+ 1

2

∂2h

∂x2

)]

= Z1

(
∂2H

∂x2
+ 1

2

∂2h

∂x2

)
− ∂2IZ1

∂x2
. (E10)

The discretization of (E10) is

[IZ2]k
i

ūk
i+2 − 2ūk

i+1 + 2ūk
i−1 − ūk

i−2

2�x3

+ [IZ2]k
i+1 − [IZ2]k

i−1

�x

ūk
i+1 − 2ūk

i + ūk
i−1

�x2
+ ūk

i+1 − ūk
i−1

2�x

[
[IZ2]k

i+1 − 2[IZ2]k
i + [IZ2]k

i−1

�x2

− Z2i

(
Hk

i+1 − 2Hk
i + Hk

i−1

�x2
+ 1

2

hk
i+1 − 2hk

i + hk
i−1

�x2

)]
+

(
Hk+1

i+1 − Hk+1
i−1

) − (
Hk

i+1 − Hk
i−1

)
2�τ�x

×
[

[IZ2]k
i+1 − 2[IZ2]k

i + [IZ2]k
i−1

�x2

Hk
i+1 − Hk

i−1

2�x
+ [IZ2]k

i+1 − [IZ2]k
i−1

�x

×Hk
i+1 − 2Hk

i + Hk
i−1

�x2
+ [IZ2]k

i

Hk
i+2 − 2Hk

i+1 + 2Hk
i−1 − Hk

i−2

2�x3
− Zk

2i

Hk
i+1 − Hk

i−1

2�x

×
(

Hk
i+1 − 2Hk

i + Hk
i−1

�x2
+ 1

2

hk
i+1 − 2hk

i + hk
i−1

�x2

)]

+
(
Hk+1

i+1 − 2Hk+1
i Hk+1

i−1

) − (
Hk

i+1 − 2Hk
i + Hk

i−1

)
�τ�x2

[
2[IZ2]k

i

Hk
i+1 − 2Hk

i + Hk
i−1

�x2

+ IZ2i+1 − IZ2i−1

�x

Hk
i+1 − Hk

i−1

2�x
− Kk

i+1 − 2Kk
i + Kk

i−1

�x2
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+Jk
i

(
Hk

i+1 − 2Hk
i + Hk

i−1

�x2
+ 1

2

hk
i+1 − 2hk

i + hk
i−1

�x2

)]

+
(
Hk+1

i+2 − 2Hk+1
i+1 + 2Hk+1

i−1 − Hk+1
i−2

) − (
Hk

i+2 − 2Hk
i+1 + 2Hk

i−1 − Hk
i−2

)
2�τ�x3

×
(

IZk
2i

Hk
i+1 − Hk

i−1

2�x
− Kk

i+1 − Kk
i−1

2�x

)

− Kk
i

(
Hk+1

i+2 − 4Hk+1
i+1 + 6Hk+1

i − 4Hk+1
i−1 + Hk+1

i−2

) − (
Hk

i+2 − 4Hk
i+1 + 6Hk

i − 4Hk
i−1 + Hk

i−2

)
�τ�x4

= Zk
1i

(
Hk

i+1 − 2Hk
i + Hk

i−1

�x2
+ 1

2

hk
i+1 − 2hk

i + hk
i−1

�x2

)
− IZk

2i+1
− 2IZk

2i
+ IZk

2i−1

�x2
. (E11)

As before, we may write (E11) in the form

�τ�x2c + M′
HHk = M′

HHk+1 + �τ�xM′
Ūūk, (E12)

where the coefficients of all Hk+1, ūk terms are entries within M′
H , M ′̄

U
, respectively.

In our implementation, the matrices M ′̄
U
, M′

H are a quintuple banded matrices. The additional
derivative in H does not change the size of the stencil. We include the boundary conditions for H in
the first two and final two lines of both matrices, so that it is not necessary to adjust the stencil near
the endpoints of the domain. Hence, we can construct the linear system(

MH �τ�xMŪ

M′
H �τ�xM′

Ū

)(
Hk+1

ūk

)
=

(
�τ�x2b + MHHk

�τ�x2c + M′
HHk

)
. (E13)

This linear system is solved at each k, with Eq. (II.20) requiring Hk+1 in order to update θ k → θ k+1.
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