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Shape-induced pairing of spheroidal squirmers
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The “squirmer model” is a classical hydrodynamic model for the motion of interfacially
driven microswimmers, such as self-phoretic colloids or volvocine green algae. To date,
most studies using the squirmer model have considered spherical particles with axisym-
metric distribution of surface slip. Here, we develop a general approach to the pairing and
scattering dynamics of two spheroidal squirmers. We assume that the direction of motion of
the squirmers is restricted to a plane, which is approximately realized in many experimental
systems. In the framework of an analytically tractable kinetic model, we predict that, for
identical squirmers, an immotile “head-to-head” configuration is stable only when the
particles have oblate shape and a nonaxisymmetric distribution of surface slip. We also
obtain conditions for stability of a motile “head-to-tail” configuration: for instance, the
two particles must have unequal self-propulsion velocities. Our analytical predictions are
compared against detailed numerical calculations obtained using the boundary element
method.

DOI: 10.1103/PhysRevFluids.8.113103

I. INTRODUCTION

Self-assembly [1–4], clustering [5–9], and particle motility alignment [10–14] are among the
most discussed topics in the active matter community. In each of these phenomena, collective
behavior emerges from nonequilibrium interactions between self-motile microscopic particles.
These particles usually self-propel through liquid, making hydrodynamic interactions—interactions
mediated by flow in the suspending medium—an important and ubiquitous nonequilibrium effect
[15].

A broad class of synthetic and biological microswimmers propel themselves by driving flow
within a thin layer at the fluid/solid interface. For instance, ciliated microorganisms are covered
by a thin carpet of threadlike appendages that beat in a coordinated fashion. The squirmer model,
first introduced by Lighthill [16] and Blake [17], was originally developed to describe the motion
of ciliated, spherical microorganisms [18]. In the simplest version of this model, the detailed, time-
dependent motion of the cilia is coarse grained as a prescribed steady tangential slip velocity. This
slip velocity provides the interfacial actuation (i.e., thrust) needed for self-propulsion. Additionally,
the slip velocity drives flow in the surrounding solution, leading to long-ranged hydrodynamic
interactions between the squirmer and other objects in the solution. These features have made
the squirmer model a popular approach for understanding the flow-mediated interactions between
swimming microorganisms, as well as between microorganisms and bounding surfaces [19–25]. For
instance, Ishikawa et al. exhaustively cataloged the collision and scattering dynamics of squirmer
pairs [19]. As another example, various studies have addressed nutrient uptake (i.e., feeding) of
microorganisms in the framework of the squirmer model [26,27].
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Since its original development, the squirmer model has found applications well beyond its
initial purpose. For instance, synthetic active colloids driven by self-generated gradients of a
thermodynamic variable (e.g., temperature, chemical potential, or electrical potential [28–31]) can
often be approximated as “effective squirmers.” Instead of resolving the propulsion mechanism in
detail, a slip velocity on the surface of the particle is prescribed [32]. The slip determines two major
swimming properties, speed Us and stresslet S [33,34]. As an example that justifies this approach,
it was recently observed that metallodielectric Janus discoids, energized by AC fields, tend to
form “head-to-head” bound pairs [35]. Modeling of the propulsion mechanism (induced charge
electrophoresis [36,37]) revealed that hydrodynamic interactions dominated interactions between
particles, i.e., the particles behaved as effective squirmers.

One microscopic property that has proven to be important in active matter is particle geometry
[38–41]. Shape can impact the swimming speed of an active particle, the rate of working, and the
flow field sourced by the particle [42–47]. Collisions between rodlike particles can lead to nematic
ordering in an active suspension [48]. In view of the importance of shape, various studies have
considered non-spherical squirmers–usually prolate spheroids [23,42,49,50]. For instance, Ishikawa
and Hoto modeled the paramecium P. caudatum with a prolate spheroid actuated by interfacial
slip. The slip was assumed to be a superposition of five harmonic functions of the elevation angle
[51]. In an effort to fully generalize the squirmer model to both prolate and oblate spheroids, we
recently developed and characterized a complete set of orthogonal, axisymmetric squirming modes
in spheroidal coordinates [52]. We found that the odd-numbered squirming modes contribute to the
self-propulsion velocity, while the even numbered contribute to the the stresslet.

For interfacially driven microswimmers, a second means of controlling their motion is offered by
breaking symmetries of the slip velocity. This symmetry breaking can be imposed, as when a self-
phoretic particle is fabricated with nonaxisymmetric surface chemistry [53,54], or can emerge in
situ, due to effects of confinement [37,55] or symmetry-breaking fields [36,56]. So far, applications
of the squirmer model have mostly been restricted to axisymmetric slip, although more general
slip has been considered for spherical squirmers [57–60]. For instance, Burada et al. consider the
far-field interaction of two spherical squirmers with a chiral distribution of slip. They find that these
spheres can exhibit oscillatory “bounded states” in which they orbit around a common average
trajectory [61].

II. THEORY

In this work, we develop a framework to study the consequences of particle shape and non-
axisymmetry of the surface slip for interactions between interfacially-driven microswimmers. We
develop analytical predictions in a far-field, “point-particle” model, building on the Saintillan-
Shelley kinetic theory of microswimmers [62–65]. Our analytical predictions are supported by
high resolution numerical calculations using the squirmer model, which resolve the finite size
of the particle and near-field hydrodynamic interactions. We show that both nonspherical shape
and breaking of the axisymmetry are necessary conditions to form stable “head-to-head” bound
pairs. These immotile bound states are held together by (far-field) hydrodynamic interactions.
Similarly, we find that motile “head-to-tail” bound pairs can be stable only when the particles
are nonspherical (although they can be axisymmetric). Overall, we find good agreement between
theory and numerics, suggesting that our framework offers a promising approach for studying
self-organization in heterogeneous active suspensions.

A. Minimal model

We model swimmer α ∈ {1, 2} as a pointlike particle with swimming direction d̂ (α) and self-
propulsion velocity U (α)

s � 0. Swimmers are coupled by the flows they generate. The velocity of
swimmer α is

U(α) = U (α)
s d̂ (α) + u(xα ). (1)
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In the second term, the swimmer is advected by the ambient flow, evaluated at its position xα .
(The finite size of the swimmer is neglected). For the rotation of the swimmer, we write the Jeffery
equation [64]

˙̂d (α) = (I − d̂ (α)d̂ (α) ) · (�αE(xα ) + W(xα )) · d̂ (α). (2)

Here, �α is a shape parameter that is zero for a sphere, positive for a prolate spheroid that has its
major axis aligned with d̂ (α), and negative for an oblate spheroid that has its minor axis aligned with
d̂ (α). The tensors E(xα ) and W(xα ) are the rate-of-strain and vorticity, respectively, evaluated at xα ,
where E = 1

2 (∇u + ∇uT ) and W = 1
2 (∇u − ∇uT ). I is the identity tensor.

To model swimmer-generated flow, we associate an active “stresslet” with each swimmer. In
general, the stresslet provides the slowest decaying contribution of a force-free, rigid microswimmer
to the surrounding flow field. It can be obtained from the surface traction [19,66]:

S(α)
i j = 1

2

∫
�α

[σik n̂kx j + σ jk n̂kxi] dS − 1

3

∫
�α

σlk n̂kxl dS δi j . (3)

The integral is taken over the surface �α of particle α, n̂ points from the surface of the particle
into the surrounding fluid, and σ = −pI + μ(∇u + ∇uT ) is the stress tensor for a Newtonian fluid.
Here, p(x) is the pressure and μ is the dynamic viscosity of the fluid. The velocity field due to a
stresslet located at the origin is given by

ui = 1

8πμ

(
xiδ jk

r3
− 3xix jxk

r5

)
S(α)

jk , (4)

where r is distance from the origin and xi is a location in the fluid. For a swimmer with an
axisymmetric surface actuation, the stresslet can be written as [67]

S(α) = σ
(α)
0

(
d̂ (α)d̂ (α) − I

3

)
. (5)

The sign of σ
(α)
0 determines the “pusher” (σ (α)

0 < 0) or “puller” (σ (α)
0 > 0) character of the swimmer.

However, not all microswimmers have axisymmetric actuation. For instance, consider metal-
lodielectric particles that are energized by an AC electric field and swim via induced charge
electrophoresis (ICEP) [36]. The applied field can break axisymmetry. Thus, we consider a more
general stresslet, written in a frame aligned with the principal axes ĉ, d̂ , and ê of S(α):

S(α) = S(α)
cc ĉĉ + S(α)

dd d̂d̂ + S(α)
ee êê, (6)

with tr(S(α) ) = 0. Since S(α) is symmetric and real-valued, its principal axes are orthogonal, and we
define ĉ × d̂ = ê. This form of the stresslet tensor is generic. However, for simplicity, we make the
assumption that the direction of propulsion of an isolated particle is d̂ , i.e., aligned with a principal
axis. This assumption is realized by an ICEP particle with spheroidal shape and axisymmetric metal
coverage, swimming in unbounded solution [Fig. 1(a)]. If the electric field is in the ẑ direction and
the particle axis of symmetry is given by d̂ , the particle will rotate such that d̂ is perpendicular
to ẑ [36,40]. After rotation, the particle will swim strictly in d̂ with a stresslet tensor in the form
of Eq. (6). A detailed technical discussion of S and the assumption concerning d̂ is provided in
the Supplemental Material (SM) [68]. Additionally, we note that Eq. (6) reduces to Eq. (5) when
S(α)

dd = 2σ0/3 and S(α)
cc = S(α)

ee = −σ0/3.
In the following, we restrict our consideration to two swimmers moving in the xy plane, and

study conditions for obtaining stable bound states. The instantaneous configuration of the system is
specified by the center-to-center distance d and the angles φ1 and φ2, where φα is the angle between
d̂ (α) and a fixed axis, chosen as the x-axis (see Fig. 1 in the SM). We assume that ĉ(α) and d̂ (α) lie
within the xy plane. For convenience, we specify that swimmer 1 is instantaneously at x1 = (0, 0, 0).
Swimmer 2 has position x2 = (x, y, 0). We construct ẋ, ẏ, φ̇1, and φ̇2 as functions of x, y, φ1, and
φ2, and look for fixed point configurations at which these functions evaluate to zero, representing a
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FIG. 1. (a) An oblate particle that self-propels in the presence of an AC electric field (black arrow) by
ICEP. The background color indicates the electrostatic potential (arbitrary units) on the particle surface for the
half-period in which the field is pointing in the positive z′ direction. White arrows show the surface slip, which
is nonaxisymmetric. (b) Distribution of slip for the first squirming mode B1. (c) Distribution of slip for B2.
(d) Nonaxisymmetric slip for B̃, following the definition in Eq. (7). In all panels, re = 5.

bound state. For simplicity, we consider only bound states in which the propulsion axes are aligned
with the center-to-center axis.

The point-particle model is analytically tractable and yields a wealth of predictions. However,
we wish to compare these predictions against numerical results that account for finite size and do
not truncate the particle-generated flow field to the leading-order term.

B. Squirmer model

We consider N ∈ {1, 2} spheroidal particles in unbounded Newtonian fluid. Following Ref. [52],
for particle α, we take the length of the semiaxis of symmetry to define b(α)

y , and the length of the
other semiaxes to define b(α)

x . Thus, each particle has an aspect ratio r (α)
e defined by re ≡ bx/by, with

re < 1 for a prolate spheroid, re = 1 for a sphere, and re > 1 for an oblate spheroid. The quantity
�α is related to r (α)

e by � = (1 − r2
e )/(1 + r2

e ). The characteristic size of the particle, L(α)
0 , is chosen

as b(α)
y .

The center of particle α is located at xα . The fluid velocity u(x) is governed by the Stokes equa-
tion −∇p + μ∇2u = 0 and the incompressibility condition ∇ · u = 0. On the surface �α of particle
α, the velocity obeys u = U(α) + �(α) × (x − xα ) + v(α)

s (x). Additionally, |u| → 0 as |x| → ∞.
Each particle is force free and torque free:

∫
�α

σ · n̂ dS = 0 and
∫
�α

(x − xα ) × σ · n̂ dS = 0.
For each swimmer, the slip v(α)

s is fixed in a frame attached to the swimmer. It is specified via a
set of squirming mode amplitudes. In previous work, we generalized the axisymmetric squirming
modes to spheroidal particles. The amplitudes are denoted by B(α)

i , with i � 1 [52], and here are
assumed to be given in units of an arbitrary characteristic velocity. The first two modes are shown
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in Figs. 1(b) and 1(c). Here, in order to break axisymmetry, we develop a new squirming mode B̃(α)

inspired by the slip profile of ICEP particles. This squirming mode has slip distribution

v(α)
s (x) = B̃(α)[sign(z′)(cos(ϕ)êξ − êϕ (êξ · êz′ ))

− sign(x′)(sin(ϕ)êξ − êϕ (êξ · êx′ ))] · H (y′), (7)

shown in Fig. 1(d). Here, H (y′) is the step function, and êϕ and êξ are two surface tangential basis
vectors in a particle-centered spheroidal coordinate system. (The prime symbol is used to distinguish
the coordinate system in Fig. 1 from the coordinate system used for studying pair interactions).

We briefly discuss the properties of a single squirmer. From solution of the governing equations,
we obtain Us and S for a given re and set of squirming mode amplitudes. Due to the linearity of
the Stokes equation, the contribution of each squirming mode can be calculated individually and
superposed. For the axisymmetric modes, Fig. 2 in the SM shows how the Bi contribute to U (α)

s and
σ

(α)
0 . For the nonaxisymmetric mode, we show S(α)

cc , S(α)
dd , and S(α)

ee as a function of re in Fig. 5 in the
SM. This squirming mode makes no contribution to S(α)

dd or U (α)
s , and contributes antisymmetrically

to S(α)
cc and S(α)

ee .
For N = 2, we solve for the particle velocities numerically, using the boundary element method

(BEM) [69]. We obtain trajectories using a rigid body dynamics engine [42]. For simplicity, we
assume that L(1)

0 = L(2)
0 . (The point-particle model has no inherent length scale. Since Si j ∼ L3

0 and
Us ∼ L2

0 for a squirmer, differences in size can be straightforwardly accommodated in our model).

III. RESULTS

A. Head-to-head pairing

We look for fixed point solutions of the point-particle model with (x, y, φ1, φ2) = (d0, 0, 0, π ).
Through a detailed derivation in the SM, we obtain

d0 =
√√√√ −3

(
S(1)

dd + S(2)
dd

)
8πμ

(
U (1)

s + U (2)
s

) . (8)

Given that U (α)
s > 0, to obtain a finite separation d > 0, it is required that (S(1)

dd + S(2)
dd ) < 0. In

other words, the pair must have a net “pusher” character. In the SM, we present a general linear
stability analysis. Here, we discuss identical swimmers, i.e., U (1)

s = U (2)
s , S(1) = S(2), and �1 =

�2. As conditions for stability, we obtain � < −1/3 and [Scc(−1 + �) + Sdd (1 + 2�)][Scc(−1 +
�) − Sdd (1 + 4�)] < 0, given that Sdd < 0. Notably, the requirement � < −1/3 corresponds to
an oblate shape, recalling the discoidal particles in Ref. [35]. Intriguingly, head-to-head pairing
cannot be obtained for axisymmetric swimmers [Eq. (5)]. For Sdd = 2σ0/3 and Scc = See = −σ0/3,
with σ0 < 0, the second condition reduces to � > −1/9. This cannot be reconciled with � < −1/3.
Thus, this work completes the analysis of Ref. [35], which assumed an axisymmetric stresslet. Here,
we have shown that nonaxisymmetry is a necessary ingredient in the pairing observed in Ref. [35].

To further investigate deviation from axisymmetry, we consider stresslets of the form

S = Sax + σ0 δ(ĉĉ − êê), (9)

where Sax is equal to the right hand side of Eq. (5), and δ is dimensionless. We obtain � < −1/3 and
(−1 + 3�(−3 + δ) − 3δ)(1 + � + δ(−1 + �)) < 0. Notably, these requirements are independent
of σ0 and Us. In Fig. 2(a), the background color shows the predicted phase map. We also show two
types of numerical data. Crosses represent squirmers with a nonaxisymmetric squirming mode. This
mode introduces the perturbation δ in a controllable manner (see Fig. 5 in the SM). Circles show
the results for an effective squirmer model for ICEP particles. Red symbols indicate pairs without a
stable bound state. The theoretical and numerical results largely agree with each other. The one area
of significant mismatch is for � ≈ −1, i.e., oblate spheroids with large re. Recalling that by was
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FIG. 2. (a) Phase map for head-to-head pairs. The background colors show the stability predicted by
the analytical model. Crosses represent the results of numerical calculations for nonaxisymmetric squirmers
[Eq. (7)] with modes B(α)

1 = 0.1, B(α)
2 = −1 and varying B̃ and �. Circles indicate numerical data for the ICEP

effective squirmer model, and are connected by a line to guide the eye. Green and blue symbols indicate pairs
with with a stable bound state; red symbols represent unstable pairs. (b) Trajectory obtained for � = −0.835
and B̃ = 1.68.

chosen as a characteristic length, oblate particles with large re also have large bx. When bx 
 d0,
the point particle assumption is expected to be erroneous. In Fig. 2(b), we show pair formation for
� = −0.835 and B̃ = 1.68.

The condition � < −1/3 has a straightforward physical interpretation. At the location of a
particle, the rate-of-strain tensor E has two principal axes. Spheroidal particles tend to align their
long axes with the local axis of extension [70,71]. For an axisymmetric stresslet [Eq. (5)] located
at the origin and oriented in the x direction, we evaluate Eax at the position x = d , y = 0. From
the eigenvalues and eigenvectors of this quantity, we find that the axis of extension is indeed in the
y direction. Thus, the straining component of flow will tend to stabilize the orientation of oblate
spheroids in a head-on collision. Furthermore, we note that δ does not appear in the condition
� < −1/3. As a consistency check, we form the rate-of-strain tensor Eδ for the nonaxisymmetric
contribution to flow [the second term in Eq. (9)], assuming that d̂ = x̂ and ĉ = −ŷ. We find that
it indeed evaluates to zero at x = d , y = 0. Additionally, in Fig. 3(a), we plot the flow from the
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FIG. 3. (a) Flow field due to a nonaxisymmetric stresslet located at the origin, with ĉ in the x′ direction
and ê in the z′ direction. The direction of the flow is shown for the case σ0δ < 0. The flow is radially outward,
but the magnitude is anisotropic. An oblate spheroid is shown for comparison with (b). (b) Flow field due to
the nonaxisymmetric B̃ mode for the oblate spheroidal particle shown in Fig. 1(d). In both (a) and (b), the flow
velocity is zero at x′ = 0.

idealized nonaxisymmetric stresslet. On the d̂ axis (in the figure, the y′ axis), it evaluates to zero,
which explains why d0 is determined by the axisymmetric component of the stresslet [Eq. (8)].

The second requirement for linear stability, (−1 + 3�(−3 + δ) − 3δ)(1 + � + δ(−1 + �)) < 0,
is more difficult to interpret. The quantities � and δ are implicated, both individually and as a
product with each other. Additionally, by introducing dummy variables into the Jacobian, we have
confirmed that both vorticity and transverse advection (i.e., motion in y, transverse to the center-
to-center vector) contribute to this condition. Some insight can be obtained from the form of the
Jacobian in Eq. (40) of the SM. The stresslet component Scc appears only in off-diagonal terms
that couple transversal displacements and particle rotations. This suggests that the nonaxisymmetric
stresslet is important in the intricate dance in which particles simultaneously rotate to face each
other and slide laterally into register, as shown in Fig. 2(b). In contrast, it is known that spherical
squirmers in a head-on collision are unstable to maneuvering past each other in a process involving
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FIG. 4. (a) Phase map for head-to-tail pairs with �2 = −0.8 and V = 0.8, and varying S and �1. The
background colors show the stability predicted by our model and symbols represent the results of numerical
calculations. Green and blue symbols indicate pairs with a stable bound state; red symbols indicate pairs
without a stable bound state. (b) Snapshots of an example trajectory for S = 2.2 and �1 = −0.7. This pair
is represented by a blue cross in (a). The particles are initially separated by x2,initial = 3 and y2,initial = 20.

rotations and transversal motion [35]. Looking at the flow for the nonaxisymmetric stresslet in
Fig. 3(a), some stabilizing roles of this radially outward flow may be in hindering the particles from
moving past each other and in contributing to alignment. Regarding alignment, we recall that the
magnitude and sign of the contribution of the rate-of-strain tensor to rotation is controlled by the
shape parameter � [Eq. (2)]. We also note that while the flow fields close to the particle can differ
significantly between the idealized nonaxisymmetric stresslet in Fig. 3(a) and the nonaxisymmetric
squirming mode in Fig. 3(b), far from the particle, both flow fields are radially outward.

B. Head-to-tail pairs

Now we look for fixed point solutions with (x, y, φ1, φ2) = (d0, 0, 0, 0). We obtain

d0 =
√√√√ 3

(
S(1)

dd + S(2)
dd

)
8πμ

(
U (2)

s − U (1)
s

) . (10)

Notably, the two particles must have unequal speeds Us for d0 > 0. The bound pair moves with a
steady speed given by Eq. (27) in the SM. Regarding stability against displacements in x, we again
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obtain the “net pusher” condition (S(1)
dd + S(2)

dd ) < 0. From Eq. (10), this implies U (1)
s > U (2)

s . The
other stability conditions are S(2)

dd (1 + 3�1) + S(1)
dd (1 + �2) > 0 and Eq. (48) in the SM. For axisym-

metric swimmers, we can obtain stable pairing. Specifically, σ
(1)
0 + σ

(2)
0 + 3(σ (2)

0 �1 + σ
(1)
0 �2) > 0

and Eq. (13) in the SM. Overall, the phase behavior is determined by four parameters: �1, �2,
S ≡ σ

(2)
0 /σ

(1)
0 , and V ≡ U (2)

s /U (1)
s . For the slice of phase space in Fig. 4(a), we fix V = 0.8 and

�2 = −0.8, but vary �1 and S. In the numerics, B1 and B2 are chosen to vary S while keeping
V = 0.8. The model has good agreement with the numerics. There are two areas of significant
disagreement. Similar to head-to-head pairs, one is for oblate particles with large re. The other is
the slim area bordering S = −1, where d0 → 0. An example trajectory is shown in Fig. 4(b).

IV. CONCLUSIONS

We have shown that nonspherical active particles can form bound pairs through far-field hydrody-
namic interactions (Fig. 5). A surprising finding of our work is that squirmers with nonaxisymmetric
surface slip may be capable of pairing behaviors that are not obtainable for squirmers with axisym-
metric slip.

We restricted our consideration to swimmers moving in the plane containing their center-to-
center vector (the xy plane). For nonaxisymmetric particles defined by Eq. (9), a 90◦ rotation of
both particles around their d̂ axes will invert the sign of δ. Therefore, when head-to-head bound
states, aligned with x, are stable against perturbations in the xy plane, they will be unstable in the
yz plane. However, our quasi-2D assumption is realized in most active matter experiments. For
head-to-tail pairs of axisymmetric particles, the stability conditions found here apply to general
three-dimensional motions.

Future work could incorporate the effects of inertia and/or near-field hydrodynamic interactions
[25,72]. Lubrication interactions can induce bound states for spherical squirmers near contact
[21,25]. Additionally, making use of the Faxén relations for spheroids would account for the finite
size of a particle in its response to ambient flow [66,73]. Our model may have stable bound states in
which particle orientations are not aligned in the direction of propulsion. Finally, the bound states
found here may have implications for hierarchical self-organization and collective behavior. For
instance, Ref. [35] observed that initial formation of immotile head-to-head bound states locally
promoted formation of additional bound states in a feedback loop, ultimately leading to phase
separation. This mechanism could be studied in the framework of the present work.

FIG. 5. (a) Separation d for two squirmers forming a stable bound state. For the head-to-tail pair
�1 = −0.7, �2 = −0.8, S = 2.2, and U = 0.8, with x2,initial = 3 and y2,initial = 10. For the head-to-head pair,
B1 = 0.1, B2 = −1, B̃ = 1.6833, and � = −0.835, with xinitial = 2 and yinitial = 55. The particle parameters
correspond to Figs. 2(b) and 4(b), respectively. (b) The predicted and numerically calculated steady separations
for head-to-tail pairs with �1 = −0.7, �2 = −0.8, V = 0.8, and varying S, corresponding to the second row
from the bottom in Fig. 4(a). Symbols indicate values of S for which theory and numerics disagree concerning
stability.
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