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In nature, plants deform passively to withstand adverse weather conditions. The tall stems of
sunflowers twist and reorient the flower to avoid directly facing incoming wind [Fig. 1(a)]. Tree
leaves fold and wrap around themselves to streamline their shape and reduce the area exposed to the
wind [Fig. 1(b)]. This passive process of streamlining and reducing the wind-facing area is referred
to as reconfiguration and aids leaves in reducing their drag and staying attached to their branches,
even during stormy weather [1,2]. Engineers want to mimic this flow-induced reconfiguration and
deformation ability to design passive flexible valves [3,4], compact and stable parachutes [5,6],
gust alleviation measures [7,8], etc. The practical design of these bio-inspired solutions requires an
in-depth understanding of the unsteady interactions between the structural deformation of flexible
structures facing the flow, the formation of vortices in the wake, and the drag experienced.

To systematically study the fluid-structure interaction of reconfiguring objects, we designed an
experiment using thin disks of varying bending rigidity, which we translated vertically in quiescent
water. The disks started from rest and were accelerated rapidly to reach a constant terminal velocity.
We varied the terminal velocity, U , from 0.15 m/s to 0.5 m/s. This variation corresponds to a range
of diameter-based Reynolds numbers from 9000 to 30 000. We tested disks of different thickness,
h, to vary the bending rigidity, E. The disks had a diameter of 60 mm and thickness ranging from
25 µm to 175 µm. The thicker material has a higher bending rigidity. The bending rigidity of the
materials were determined using an elastogravity bending test.

Depending on the bending rigidity of the disks and their translation velocity, the disks bend
and reduce their projected area differently (Fig. 2). To allow the disks to bend in an axisymmetric
way, we added radial cuts every 45◦. We then overlapped two disks, offsetting the cuts, such that
there was no flow through the cuts of the disks. During the translation, we measured the temporal
evolution of the deformation of the disks along one radius using an optical setup with a laser sheet
and camera, and the drag force on the disks using a load cell.

Example results are presented in Fig. 2. Once the disks start moving, they deform, until they
reach an equilibrium state after a few disk diameters when the dynamic fluid pressure forces match
the disk’s bending restoring forces. Once this equilibrium state is reached, the diameter D of the

*karen.mulleners@epfl.ch

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

2469-990X/2023/8(11)/110509(4) 110509-1 Published by the American Physical Society

https://orcid.org/0000-0002-5505-2292
https://orcid.org/0009-0007-7859-1161
https://orcid.org/0000-0003-4691-8231
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.110509&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1103/APS.DFD.2022.GFM.V0070
https://doi.org/10.1103/PhysRevFluids.8.110509
https://creativecommons.org/licenses/by/4.0/


BASKARAN, HUTIN, AND MULLENERS

FIG. 1. Reconfiguration of a sunflower (a) and tree leaf (b) in response to low and high incoming wind
speeds traced from photographs. The small insets show the view from the leeward side.

deformed disk remains constant until the motion is stopped. Minor fluctuations in the shape are
associated to structural vibrations, and we focus here on the average diameter of the disk during the
constant translation velocity phase. The dynamic behavior during the acceleration of the disk will
be the topic of future work. The degree of deformation can be either increased by increasing the
translational velocity [Figs. 2(a)–2(d)], or by decreasing the bending rigidity [Figs. 2(a), 2(e), 2(f),
2(g)]. The Cauchy number is defined as the ratio between the fluid forces and the bending rigidity of
the disks: Ca = (ρU 2)/E , where ρ is the density of water at 20 ◦C, 998 kg/m3. The Cauchy number
governs not only the deformation of the disks but also its steady state drag coefficient [9].

When the disks deform, they experience a lower drag force than rigid disks at the same velocity.
The ratio of the drag force divided by the rigid disk drag is known in the literature as the recon-
figuration number, R = D/Drigid [11]. The evolution of the reconfiguration number with Cauchy
number is presented in Fig. 2(h) for four disks with a different material thickness, h. For Cauchy
numbers lower than unity, the disks behave like rigid disks. They barely deform, and the drag equals
the rigid disk drag, yielding R = 1. With increasing Cauchy number above unity, the disks deform
increasingly and their relative drag decreases. The rate of decrease of the relative drag with Cauchy
number is the same for all disks regardless of their thickness and is expressed by the Vogel exponent
(V ) [10,12]. The Vogel exponent is determined as twice the slope of the reconfiguration number as
a function of the Cauchy number in the log-log representation in Fig. 2(h). It indicates how the
flow-induced drag deviates from a quadratic relationship. For rigid objects the drag increases with
U 2. For reconfiguring objects, the drag increases with U (2+V ). For all our disks, the Vogel exponent
is approximately −0.80. The negative value of the Vogel exponent shows that the drag on deforming
disks grows at a reduced rate compared to the drag on their rigid counterparts. The Vogel exponent
illustrates how much the drag force deviates from scaling quadratically with the velocity. For the
deforming disks, the drag approximately grows as U 2−0.8 = U 1.2, highlighting the reduced drag
growth rate compared to the rigid case.

Existing models that predict the drag on reconfigurable disks typically assume a uniform pressure
distribution in the wake of the disk [9]. However, this pressure distribution is not uniform due to the
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FIG. 2. Snapshots of the disks after they have reached an equilibrium deformation. The degree of defor-
mation varies with the Cauchy number which was varied by varying the translational velocity of the disks, U
(a)–(d), or the bending rigidity, E , by changing the thickness of the disk material, h, [(a), (e)–(g)]. Evolution
of the reconfiguration number R, defined as the ratio of the drag force, D, on the deformed disks and the drag
on a rigid disk, Drigid, at the same velocity (h). The slope of the evolution of the reconfiguration number as a
function of the Cauchy number for Ca > 1 in the log-log plot is half of the Vogel exponent V [10]. For all
disks, the Vogel exponent is approximately −0.8.

presence of an axisymmetric vortex ring below the disk [13]. The drag force mainly results from
the difference in the pressure distribution upstream and downstream of the disk. A more accurate
model for calculating the drag should include the temporal evolution of the vortex strength and size,
which are directly linked to the disk’s deformation. In future work, we plan to compute the vortex
quantities from time-resolved velocity field measurements in the wake of the disks. The simple
setup highlighted in our video can offer insights into how vortex-structure interactions influence the
force and deformation of reconfigurable structures. This research can aid the design of robust and
resilient flexible structures which harness vortex-structure interactions, such as drones and other
aerial vehicles.

We acknowledge the Swiss National Science Foundation Grant No. 200021_175792 for funding
this research. We thank Naïs Coq (nais.coq@gmail.com) for the sketches of the disks included in
Fig. 2.
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