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Internal waves are ubiquitous in the ocean and play an essential role in the transport
of energy and mixing. Their peculiar reflection enables the concentration of energy on a
limit cycle. With wave beams viewed as rays, this reflection on an inclined slope shrinks its
width and generically brings closer two initially different trajectories eventually reaching
a limit cycle called an attractor. Following previous studies, a ray-tracing algorithm is
used to track the convergence of wave beams onto such a structure in a 3D axisymmetric
domain. This information is used to design experiments using a truncated conical shaped
tank in order to form an inertia-gravity waves attractor in a 3D axisymmetric geometry.
By increasing the amplitude of the forcing, an evolution of the attractor characteristics
can be observed. The occurrence of waves at frequencies lower than the forcing frequency
ω0 suggests triadic resonant instability in a rotating or in a stratified case. Experiments
performed in a stratification-only or a rotation-only case indicate two distinct behaviors.
The existence of easily excited standing waves, resonant modes of the tank, at frequencies
lower than the forcing one enables sharp triadic resonance instability for internal gravity
waves, which is not possible for inertial waves. The effect of the symmetry axis is also
investigated by adding a cylinder of sufficient diameter at the center of the domain for
the wave to reflect on and thereby avoid the interaction on the singularity. Without it, the
large amplitude of the waves on the axis triggers nonlinear effects and mixing, denying the
access to the wave turbulence regime.

DOI: 10.1103/PhysRevFluids.8.104802

I. INTRODUCTION

Inertia-gravity waves exist in stratified rotating fluids. In the ocean, internal waves are generated
by the interaction of the tides with topography [1]. Globally, a third of the kinetic energy is dissipated
in the near field [2], and two thirds travel long distances [3]. Such waves propagate until they
break or are totally damped, causing transfer of energy between scales and mixing [4,5]. Such
phenomena are crucial for the energy budget of the oceans [6,7]. While internal waves mostly
propagate as modes (or internal tides) in the oceanographic context [8], wave beams are also
observed [9], and they can be more convenient to probe some properties of internal gravity waves
[10]. In the laboratory, a stably stratified fluid of density ρ(z) rotating at a frequency � can exhibit
internal waves when excited at frequency ω0 that will propagate at an angle θ with the vertical (the
gravity g = −gez and the rotation � = �ez being aligned along this axis), verifying the dispersion
relation

ω2
0 = N2 sin2 θ + f 2

c cos2 θ (1)
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FIG. 1. 2D trapezoid of height h, length L, and slope angle α with respect to the gravity g, and an inertia-
gravity wave with a group velocity making an angle θ with respect to the horizontal.

with fc = 2� the Coriolis parameter and N2 = −(g/ρ0) dρ

dz the square of the buoyancy frequency
with ρ0 a density reference and g the norm of the gravitational field. In this article, the stratification
will be considered as linear N (z) = N0. Inertia-gravity waves propagate only if min( fc, N ) < ω0 <

max( fc, N ). We call them internal gravity waves when fc = 0 and inertial waves when N = 0.
In a linearly stratified fluid and/or a rotating fluid, inertia-gravity waves propagate at a fixed angle

with the vertical. Consequently, unlike electromagnetic waves, they do not obey the Snell-Descartes
laws of reflection, causing the focusing (or defocusing) of a wave beam at the reflection on an
inclined (not horizontal nor vertical) slope [11,12]. At a reflection on a slope making an angle α to
the vertical, the wave beam width is modified by a factor

γ =
∣∣∣∣cos (θ − α)

cos (θ + α)

∣∣∣∣. (2)

Now thinking about the trajectory of the wave beam, or ray [13], an inclined slope can bring closer
two trajectories, suggesting a dynamical system approach. In the case of a closed domain, in a
2D trapezoid or in a paraboloid, consecutive focusing reflections may lead to a closed orbit, limit
cycle for any initial condition called an attractor [14]. In a trapezoidal domain of height h, length
L, and slope angle α (see Fig. 1), an internal wave beam propagating at an angle θ can be simply
described by a geometrical problem with two nondimensional parameters d = 1 − (2h/L) tan α

and τ = (2h/L)
√

1/ sin2 θ − 1 that predict if a limit cycle exists [15–17]. In three dimensions, the
reflection of an internal wave beam occurs on a cone; Pillet et al. [18] have thoroughly calculated
the formula for a 3D reflection and applied their results on a Cartesian 3D geometry with an
invariance property. The symmetry breaking showed the possibility of a true, localized attractor
in three dimensions [19]. Other studies in three dimensions have considered the formation of
attractors and normal modes in spheres and/or spherical shells [20–22], relevant to astrophysics.
It is still debated whether such a structure can be found in the ocean [23–25], but experimentally,
the attractor helps to reach nonlinear regimes by increasing the energy density via the focusing
reflections. As such, they have been used as tools to study triadic resonant instability (TRI) and
try to reach the weakly nonlinear regime of wave turbulence [26]. Most of those experiments have
been done in two dimensions [27,28], while 3D experiments [29–32] on wave turbulence did not
use attractors. One recent exception is the study of the formation of attractors in an annulus with a
conical bottom [33,34]. Previously, the propagation of inertial modes in a cone had been observed
[35] and computed numerically [36]. In the present paper, we study experimentally the existence of
2D attractors in an axisymmetric setup and check on the differences with the 2D trapezoid case. We
show that inertial and internal gravity waves behave differently in this particular setup.

In Sec. II we present the experimental setup and the analysis of the problem. We then exhibit
the formation of attractor in Sec. III A and their articulation with standing waves in Sec. III B.
Section III C shows how TRI occurs in this experimental setup, and the effect of the rotation axis is
discussed in Sec. III D. Section IV concludes the paper.
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FIG. 2. (a) Sketch of the experimental setup. (b) Decomposition of the movement of the forcing plate, from
left to right, top to bottom. (c) Data points in black (one every ten is represented) and linear fit in dashed red of
density as a function of height.

II. SETUP AND METHODS

A. Experimental setup

A sketch of the experimental setup is presented in Fig. 2. A conical frustum of radius r0 =
268 ± 2 mm and side angle α = 30 ± 1 ◦ is filled up to h = 31 ± 1 cm with water at room tem-
perature. Salt and two controlled pumps have been used to obtain a constant stable stratification
N (z) = N ; an example is given in Fig. 2(c). An adapted double-bucket method similar to [37,38]
has to be used as the horizontal section of the tank is not constant. The density profile is measured
with a calibrated conductivity-temperature probe. To limit optical deformations due to the cone
curvature, this tank is placed within a square-bottom tank of dimension L × L × H = 900 mm ×
900 mm × 450 mm filled with freshwater at density ρ0. The whole setup is mounted on a rotating
table slowly put into rotation to avoid mixing [39].

The velocity field is measured with PIV. Two lasers, turquoise 488 nm and green 532 nm,
illuminate 10 µm hollow glass spheres of density 1.1 and 10 µm silver-coated hollow glass spheres
of density 1.4 (Dantec) along two perpendicular planes: the vertical one (x̂, ẑ) going through the
center, and the horizontal one (x̂, ŷ). Silver-coated particles, more reflective, are needed for the
visualization of the horizontal plane with a bigger area than the vertical one. The horizontal sheet,
whose height can be set with a vertical translation stage, is viewed from the side thanks to a 45 ◦
mirror. Through interference filters to block the other laser’s light, two cameras record images which
are then treated with the UVMAT software [40] to obtain the velocity fields vx(x, y, t ) and vy(x, y, t )
in an horizontal plane at z = z0, or vx(x, z, t ) and vz(x, z, t ) in a vertical plane at y = 0.

Energy is injected into the system by a moving plexiglass plate of the same radius as the top
base of the cone Rh = R(h) = 440 ± 2 mm. Two pistons 90 ◦ apart and in phase quadrature give
the plate a precession movement as depicted in Fig. 2(b). Using cylindrical coordinates at position
z = 0 (r, ϕ), the movement of the plate is described by

a = a0(r/Rh) cos (ω0t − mϕ), (3)

with m = −1 the azimuthal wave number, ω0 the forcing frequency, and a0 the amplitude of the
forcing. The plate precession is clockwise (note that in Fig. 2, the rotation is clockwise when viewed
from the top). The plate is not parallel to the fluid surface and is slightly immersed in the experiments
shown in this paper. A closely related way of forcing inertial waves was used in the 1970s [41].
In a nonrotating homogeneous experiment (N = 0 and � = 0), the generated velocity field can
be compared to a rotating seiche mode. At any given time t , it is composed of two movements:
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TABLE I. Experimental parameters: N the buoyancy frequency, fc = 2� the Coriolis parameter (positive
values are clockwise rotations, negative are anticlockwise), θ the angle of propagation tuned by the forcing
frequency, and a0 the amplitude of the forcing.

Experiment N ( rads−1) fc ( rads−1) sin θ a0( mm)

A 0.0 0.0 – 0, 2, 4, 5, 8, 9, 10
B 0.0 ±1.052 0.31, 0.64, 0.66, 0.68, 0.7, 1, 2, 3, 5, 6, 8, 9, 10

0.72, 0.75, 0.79, 0.85, 0.92
C 0.0 −0.838 0.64 0, 1, 2, 3, 5, 10
D 0.0 −0.838 Impulse 10
E 0.63–0.81 0.0 0.32,0.49, 0.57, 0.6, 1, 2, 3, 4, 5,

0.64, 0.74, 0.82, 1.5 6, 7, 8, 9, 10
F 1.031 0.0 0.48, 0.61–0.68, 0.72, 0.84 1
G 0.73 0.0 Impulse 10
H 0.77 0.0 0.64 Increase from 0 to 10
I 0.78 0.040 0.64, 0.61 1, 2
J 0.76 0.076 0.55, 0.61, 0.64 0, 2, 4, 5, 6, 8
K 0.76 0.152 0.60, 0.63, 0.80 0, 2, 4, 6, 9, 10
L 0.78 −0.392 0.85, 0.61, 0.41, 0.22 2, 6, 9
M 0.78 −1.566 0.69, 1.1 1, 2
N 1.031 0.344 0.58, 0.64–0.68 1, 3, 6, 9

a horizontal one with fluid going from the point where a = −a0 to the point where a = a0 and a
vertical one with fluid going down in one half of the tank (at the points near a = −a0) and up in the
other half. In experiments where either N , � or both are nonzero, the vertical movement imposed
by the forcing and the lateral slope gives birth to waves. Table I presents the different parameters
(N , fc, sin θ , and a0) used in the experiments.

B. Ray tracing

The experimental setup was built as an axisymmetric version of the usual trapezoidal tank
generating attractors to study dissipation of energy or nonlinear effects in a 3D domain. The method
to reach the nonlinear regimes relied on the geometric focusing and the geometric formation of
attractors with clues, but no proof that such mechanisms would hold in three dimensions [18,34].
To understand 3D propagation, in addition to experiments, it is possible to develop an algorithm
simulating the propagation of a wave beam in a confined domain. Considering the geometry of
the experimental setup, one could expect an axisymmetric structure. A first step is to study the
propagation in a plane containing the axis of symmetry. This comes back to consider the 2D
trapezoid as in [14]. With constant N and/or fc, a wave beam is represented as a ray, which is a
straight line making an angle θ with the horizontal.

In two dimensions, a ray is defined by its direction, a velocity v = (vx, vz ). A superscript i,
respectively r, denotes the incident ray with respect to a reflection, respectively, the reflected ray.

The ray-tracing algorithm is then build as straightforwardly as possible: from an initial condition,
it computes the intersection of the ray and the boundaries and imposes the boundary conditions
(vr

x = −vi
x at x = 0, vr

z, = −vi
z at z = 0 and z = h, vr

x = −vi
x if the reflection is subcritical on the

slope, or vr
z = −vi

z if the reflection is super-critical). From two close initial conditions separated
initially by a distance e0, the distance e between two trajectories can be followed as a function of
time, and the Lyapunov exponent λ defined as e = e0 exp (−λn), with n the number of reflections, is
computed. Repeated for 1024 × 1024 values of (d , τ ) as shown Fig. 3(a), this basic algorithm that
does not enforce the geometric focusing explicitly exhibits the same features as in [15]. The bottom
left of the diagram is the zone of point attractors [supercritical reflections on the slope lead all the
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FIG. 3. (a) Lyapunov exponent for 2D trajectories as a function of the parameters (d, τ ). Each pixel is either
white or black if the Lyapunov exponent is larger (resp. lower) than −2, indicating short, quickly converging
attractors (resp. long, slowly converging). The red dashed line is the value of d fixed by the setup’s geometry.
(b) Values of the Lyapunov exponent λ along the red dashed line in the (d, τ ) diagram. Each point is a numerical
computation; the minimum value of λ has been set to −4 for visualization purposes. In both figures, the black
dashed line is the critical reflection (θ = α).

rays to a corner of the domain, at coordinates (Rh, h)], and the rest of the diagram is composed of
Arnold tongues in white corresponding to short closed orbits and quick focusing attractors. In the
experiments described in this paper, the geometric parameters (L, h, α) of the tank are fixed, with
only θ varying, corresponding to a cut at d = 0.217 in Fig. 3(a). The variation of the Lyapunov
exponent λ along this cut is represented in Fig. 3(b); it indicates two main zones where attractors
can be expected:

(1) 0.582 < sin θ < 0.748: (1,1) attractors, the ones with the shorter perimeter with only one
reflection on the top and one on the slope

(2) 0.809 < sin θ < 0.867: (2,1) attractors, with two reflections on the top and one on the slope
Those two zones are therefore the ones targeted in the experiments as shown in Table I. One

could argue that they should be named (2,2) and (4,2) if we stick to the strict definition given in
[14]. Considering the symmetry of the domain, we chose to name the attractor as their 2D-trapezoid
counterpart. This is possible because, with the geometry of this basin, only attractors with an even
number of reflection at the top or bottom boundary are possible. When the number is odd, focusing
at one sloping wall is compensated by defocusing at the opposite wall. It is a neutrally stable case,
with a Lyapunov exponent of zero.

This reasoning has been done in a vertical plane containing the symmetry axis, but out-of-plane
rays are still to be considered.

Using the properties of reflections of inertia-gravity waves in three dimensions introduced earlier,
one could expect that in the axisymmetric case any ray will align with a diameter of the cone as the
gradient of the slope is always directed radially. To verify this property numerically, the previous
algorithm has been adapted to a propagation inside a 3D domain taking into account new boundary
conditions. A xy projection of the situation is represented in Fig. 4; quantities at the reflection n have
an index n and a superscript i (respectively r) for “incident” before the reflection (resp. “reflected,”
after the reflection). At z = 0 and z = h, vr

z,n = −vi
z,n, and using the formula proposed in [18,42]

for the reflection on the slope

v′r
x,n =

(1 + s2)v′i
x,n − 2 s

tan(θ )v
′i
z,n

1 − s2
, (4)
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FIG. 4. Scheme of a reflection projected horizontally (top view). � is the horizontal direction of the ray, ϕ

the azimuthal position of the reflection, and R(z) the radius of the cone at the reflection height. n is the number
of reflections on the slope, and i stands for incident ray and r for reflected.

v′r
y,n = v′i

y,n, (5)

v′r
z,n = −(1 + s2)v′i

z,n + 2s tan(θ )v′i
x,n

1 − s2
, (6)

with v′ = (v′
x, v

′
y, v

′
z ) the velocity field in the rotated frame of reference such that (e′

x, e′
y) = (er, eϕ)

at the reflection point and s = tan α/ tan θ . Figures 5(a) and 5(b) show projections in the xy and xz
planes of a trajectory with parameters

(x0, y0, z0, sin θ, φ0) = (0, 0.93r0, 2h/3, 0.61, 50 ◦) (7)

with φ the azimuthal direction of the ray defined by cos φ = vx/
√

v2
x + v2

y . With this set of
parameters, a clear convergence can be seen to an attractor composed of two (1,1) attractors in
a vertical plane passing through the revolution axis of the cone. A quantitative way to measure the
convergence to a plane is to look at the evolution of χ , the angle between the direction of the ray
and the diameter of the circle, as a function of the number of slope reflections n, a bottom or a top
reflection being neutral.

A naive model would be a geometric evolution of χ in the local frame of the reflection with
a coefficient γφ such that φr

n − ϕn = χ r
n = γφχ i

n, with ϕ the azimuthal coordinate of the reflection
point (see Fig. 4). In a cone, two successive reflection angles are related by R(zn+1) cos χ i

n+1 =
R(zn) cos χ r

n , with R(zn) the radius at the reflection point. With a sufficient number of reflections
randomly distributed those factors should compensate, and we will consider that χ i

n+1 = χ r
n and so

χn = γ n
φ χ0, (8)

with n the number of focusing reflections. Finally,

�χn = χ r
n − χ i

n = (1 − γφ )γ n−1
φ χ0. (9)

According to this model, with |γφ| < 1 the ray tends toward a diameter (χ = 0) with an exponential
decay of rate �φ = ln γφ .

Figure 6(a) is a semilogarithmic plot of �χ with the same parameters as above and varying
φ0. It displays a clear exponential decay. On the contrary, in the case sin θ = 0.292 represented in
Fig. 6(b), no convergence is observed, and different behaviors are observed depending on φ0.

To investigate further the effect of θ , we computed �φ for 1000 × 90 values of (sin θ, φ0).
Figure 7(b) presents log �φ as a function of sin θ and φ0. Values closer to zero correspond to faster
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FIG. 5. (a) Horizontal plane projection of a trajectory in 3D space for an inertia-gravity wave with sin θ0 =
0.61 inside the experimental setup computed by a ray tracing algorithm with N = 20 reflections. The gray
dashed line is the bottom base circle; the black dashed line is the top base circle. (b) Vertical projection of the
same trajectory. (c) Same as (a) for sin θ0 = 0.292 and N = 100. (d) Vertical projection.

convergence, and black pixels correspond to parameters for which the convergence is slow or where
there is no convergence. The two bright zones where the convergence is the fastest are exactly the
same as the ones described for the 2D attractor formation, and similarly the other bands correspond
to the smaller Arnold tongues of Fig. 3, which has been reproduced in Fig. 7(a). It appears from this
comparison that there is a coupled mechanism for convergence both in the horizontal plane and in
the vertical plane. The flaw in the previous description is to consider only focusing reflections when
vz < 0 at the reflection leading to γφ < 1. In the case vz > 0, the reflection is defocusing (γφ > 1),
not leading to convergence in the xy plane, with limit cycles or chaotic-like behavior as shown in
Fig. 5(c) and Fig. 5(d). The formation of an attractor in the xz plane ensures focusing reflections on
the slope and so convergence in the two planes.

FIG. 6. (a) Semilogarithmic evolution of the azimuthal angle difference χ r
n − χ i

n as a function of the
reflection number n for sin θ = 0.61 and three different initial angles φ0 (0 ◦ line; 40 ◦ dashed, and 80 ◦ dotted).
(b) Same plot with sin θ = 0.292.
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FIG. 7. (a) Reproduction of Fig. 3(b), values of the Lyapunov exponent in the 2D case as a function of
sin θ . Crosses are the numerical points colored according the value of log λ. The hatched region corresponds
to values of τ > 6 not computed, and the black line corresponds to the critical reflection θ = α. (b) Value of
log �φ as a function of (φ0, sin θ ).

This result implies that the predictions of the 2D model are useful to tailor the formation of an
attractor: if a wave is forced at ω0 such that sin θ is in the (1,1) or the (2,1) regions, we expect an
attractor to form in every vertical plane, forming a 3D structure invariant under rotation. Yet this
structure is not a true localized attractor in the mathematical sense as all initial conditions do not
lead to the same limit cycle [19], but a continuous collection of 2D attractors.

III. RESULTS

A. Formation of attractors

Using the previous model, we forced a linearly stratified fluid with N = 0.76 ± 0.05 rads−1

without rotating the tank ( fc = 0), choosing T0 = 2π/ω0 = 12.93 s so that sin θ0 = 0.64 lies in
the middle of the (1,1) region (experiment E in Table I). Let us first consider a linear attractor
formation by forcing at small amplitudes, i.e., a0 = 1 mm. Figure 8 shows vx along a period of
forcing at relative phases 0, π/2, π and 3π/2, in a vertical cut through the center of the tank
after around 100T0 of forcing, after the stationary regime is well established. The velocity field is
composed of two usual trapezoidal (1,1) attractors that are classically observed in two dimensions.
The observed structure, overlapping with the limit cycle computed by the 2D ray-tracing algorithm,
confirms the insights of the numerical analysis. The numeric limit cycle has been displayed with a
value of sin θexp = 0.622 fitted to maximize the overlap with the kinetic energy ec = (v2

x + v2
z )/2

averaged over one period of forcing. The relative difference (θexp − θ0)/θ0 = 3.5% indicates a good
agreement within error bars mainly due to the measure of N .

The main difference with [43] is the interaction at the center, which can be seen both as a
reflection on the rotation axis or a wave crossing with an increase of the velocity amplitude from
the sides to the center, which is expected with energy conservation as they are cylindrical waves.
Also, a node on the axis of reflection is present in this regime. An increase in the velocity amplitude
is also observed at the reflections on the slope which was already the case in two dimensions, and
theoretically expected from the reflection law.
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FIG. 8. Snapshots of vx field, in a vertical cut through the center of the tank after around 100T0 of forcing
for an internal gravity wave fc = 0 (experiment E in Table I, with sin θ0 = 0.64).The velocity filed is filtered
around the forcing frequency with a window 0.05 N wide. In the lower left corner is indicated the relative phase
to the first snapshot. The thick lines are, respectively, the boundaries of the inner tank (the cone). The dotted
thick black line is the limit cycle computed with the 2D ray-tracing algorithm using the best fit to the kinetic
energy.

Horizontal views in Fig. 9 of the velocity field filtered around the forcing frequency for an inertial
wave (experiment B in Table I) show that this structure is 2π -periodic, following the periodicity of
the forcing corresponding to an azimuthal number of −1. Each row is a cut at height z = 15 cm,
20 cm, and 25 cm from bottom to top. vr and vϕ have a phase difference of π/2 as expected. The 3D
structure is a continuously phase-shifted 2D attractor. The reflection on the rotation axis is located
around z = 20 cm. The direction of the spiral is given by the phase velocity, which is inward if
z > 20 cm and outward when z < 20 cm; those structures all rotate clockwise following the forcing
in the stationary regime.

B. Linear response function

One way to characterize the system in the linear regime is to look at the response function to an
impulse. The closest forcing to an impulse in our setup is one cosine oscillation in 5 s with amplitude
a0 = 10 mm, injecting a significant proportion of energy in the range of frequencies of interest. The
velocity field is then recorded for 5 min. The experiment was done for both a stratified fluid without
rotation (experiment G in Table I) and a rotating homogeneous fluid (experiment D in Table I). The
linear response function of the system or transfer function is the output, the power spectral density

ẽc =
〈
ṽ2

x

〉 + 〈
ṽ2

z

〉
2

, (10)

divided by the input, the squared velocity of the plate (ωã)2. This quantity is represented in
Fig. 10(a) for the stratified nonrotating fluid (N case: N �= 0 and fc = 0) and in Fig. 10(b) for
the homogeneous rotating fluid ( fc case: N = 0 and fc �= 0) with a retrograde forcing.

In both cases, the response of the system is not smooth as peaks are present in the system. The
peaks have been characterized by filtering the velocity field around those frequencies as shown in
Fig. 10(c). Two different classes can be clearly distinguished, standing waves that resonate in the
tank [middle and right columns of Fig. 10(c), in red for the N case and blue for the fc case] and
attractors [left column of Fig. 10(c), in green, observed only in the N case]. The peak at ω/ fc = 0.26
is not shown here and corresponds to a seiche mode in a privileged direction.
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FIG. 9. Horizontal views with a laser sheet at height z = 25 cm, 20 cm, and 15 cm from top to bottom,
showing vr (left) and vϕ (right). In this experiment N = 0, fc = −1.05 rads−1 (experiment B in Table I) and
ω0/ fc = 0.767. The velocity field is filtered around the forcing frequency with a window 0.05 fc wide.

1. The modes

The resonant modes are standing waves due to the presence of the tank boundaries and are
presented in increasing mode number from top to bottom in Fig. 10(c). In a attempt to describe
those standing waves, we will make a first approximation, that in the z direction kz can be written as

kz,n = n
π

h
, with n ∈ N∗, (11)

similar to any wave trapped between two nodes distant of h. In the radial direction, a Bessel function
is adapted to the axisymmetric geometry such that

vx(r, θ, z) = a cos (kzz)J0(krr), (12)

kr being defined by the first zero of the Bessel function krR � 2.4. The geometry being a cone and
not a cylinder, the choice of R is arbitrary, so we considered it to be between the two radii r0 and
Rh of the bases of the frustum. This first approximation gives good results for inertial waves but
is not convincing for internal gravity waves. We will therefore use the more complete description
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FIG. 10. (a, b) Linear response function ẽc/(ωã)2 of the system, in the N case (experiment G in Table I)
(a) and the fc case (experiment D in Table I) (b). The gray region is the (1,1) Arnold tongue. (c) Snapshots
of the velocity field vx at attractor frequencies (green, left), standing waves frequencies in the N case (red,
middle), and mode frequencies in the fc case. The filtered frequency is indicated above each snapshot and is
represented with the corresponding colors in (a) and (b). The peak at ω/ fc = 0.26 in (b) is a seiche mode in
a privileged direction due to the forcing. The color scale has been normalized and centered independently for
each snapshot. The values of vm are given in mm/s: (first row) 0.2, 1, 1.25; (second row) 0.2, 0.6, 1; (third row)
0.3, 0.4, 0.6; (fourth row) 0.15, 0.2, 0.15.

of inertia-gravity waves in a cylindrical confined geometry [44]. The calculation assumes for vz an
axisymmetric mode m = 1 in the azimuthal direction with amplitude vz,0:

vr (r, z, θ, t ) = i
kzvz,0

4krω
[( fc − 2ω)J0(krr) + ( fc + 2ω)J2(krr)]ei(ωt−kz,nz−θ ) + c.c., (13)

vz(r, z, θ, t ) = vz,0J1(krr)ei(ωt−kz,nz−θ ) + c.c. (14)

The impermeability condition is

	v · 	n = vz(R(z)) sin α − vr (R(z)) cos α = 0, (15)
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FIG. 11. (a) Measure of the frequency of mode number n. Points are experimental data, in red for the N
case and in blue for the fc case. Colored regions are the predicted spans of the model. (b) Radial wavelength
deduced from the experiments, the dashed lines are the diameter (r0, R) of the two bases of the frustum.

where R(z) is the radius of the frustum at height z. kr is defined by the first zero of this sum of
Bessel functions, which is denoted by ζ , i.e., kr = ζ/R. Since the geometry is not cylindrical but
frustoconical, the choice of R is arbitrary and can reasonably be chosen between r0 and Rh, the radii
of the two bases of the frustum. By inserting the dispersion relation for internal gravity waves or
inertial waves, the model predicts the frequencies at which these standing waves should be found.
For internal gravity waves it gives

ω2
n

N2
= sin2 θ = k2

r

k2
r + k2

z,n

= 1

1 +
(

π
h

R
ζ

)2
n2

, (16)

and for inertial waves

ω2
n

f 2
c

= cos2 θ = k2
z,n

k2
r + k2

z,n

= n2

n2 + (
h
π

ζ

R

)2 . (17)

The expressions (13) and (14) are out of phase by π/2, so the impenetrability condition can be
verified only if vr (R) = 0 and vz(R) = 0. The first one leads to ζ = 1.84 for internal gravity waves
and ζ = 1.33 for inertial waves, the second to ζ = 3.8 in both cases. The two relationships (16)
and (17) correspond to the two colored regions in Fig. 11(a), in red for the N case and blue for the
fc case. The experimental points are obtained from the location of the peaks in the power spectral
density. The model, represented by the color span, shows good agreement by taking ζ = 1.84 for
the internal gravity waves. In the other case, the agreement is bad, and we used ζ = 2.4, the first
zero of the Bessel function J0, the first approximation we made. The dispersion relation for inertia-
gravity waves makes it possible to unify the two descriptions, as shown in the insert. Another way
of comparing the experimental results and the model is to invert the relationship (16) to deduce an
effective radius of the cylinder at each frequency peak corresponding to the Bessel function of the
n mode. In Fig. 11(b) these effective diameters are well within the radii of the cone bases.

This model is still an approximation, taking the solutions and the boundary conditions for a
cylinder, but still helps to describe the peaks in the linear response function.

The shape of the mode n = 1 differs strongly from one that could be expected in a cylinder. Being
the mode with the largest vertical wavelength, it is expected to be more affected by the effect of the
slope. Another explanation could be the vicinity of the n = 1 mode’s frequency to the boundary of
the (1,1) attractor region, especially in the fc case, the attractor consisting of a line between an high
corner of the cone and the center of the bottom base [the first snapshot in Fig. 10(c) is an example].
The description seems to hold in this case.
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2. The attractors

In Fig. 10 the gray region is the (1,1) Arnold tongue of Fig. 3 and Fig. 7(b), which encompasses
as expected the (1,1) attractor pictured in green in Fig. 5(c). In the N case, the energy in this region is
high with a clear-cut at the region boundary ω/N = 0.75 while being an order of magnitude smaller
than the n = 1 modes. The fourth peak (ω/N = 0.92) is a noisier (2,1) attractor. On the attractors of
Fig. 10(c), the ray-tracing algorithm at the corresponding frequency has been superimposed. In the
fc case [Fig. 10(b)], the influence of the attractors is less clear, and the only clue is the asymmetry
of the n = 1 mode’s peak at ω/ fc = 0.84.

Finally, one can remark that the mode description for the N case, the fc case, or even intermediate
cases is the same using the dispersion relation

sin θ =
√

ω2 − f 2
c

N2 − f 2
c

, (18)

as shown in the inset of Fig. 11(a). It is still important to note that for inertia-gravity waves, the
attractor regions that can be seen experimentally have frequencies higher than the standing waves
observed if N > fc (a behavior close to internal gravity waves) but lower frequencies in the case
fc > N (a behavior closer to inertial waves).

C. Weakly nonlinear regime

1. Global picture

In experiments with sinusoidal forcing at moderate amplitude a0 ranging from 3 mm to 6 mm,
there is a spontaneous generation of two secondary waves with frequencies ω1 and ω2 smaller than
the forcing frequency ω0, characterized by peaks in the power density spectra. Such a spectrum is
displayed in Fig. 12(a) and Fig. 13(b), for an experiment with nonrotating stratified fluid (exper-
iment E in Table I) with a window of 120T0 centered around T = 340T0 and averaged spatially
over the whole domain. This spectrum shows that ω0 = 0.64 ± 0.01 N , ω1 = 0.22 ± 0.01N , and
ω2 = 0.43 ± 0.01N . Those frequencies satisfy the relation ω0 = ω1 + ω2, the temporal resonance
condition of the triadic resonance instability (TRI). The amplitude of internal gravity waves on
the attractor corresponding to the chosen forcing frequency is high enough to trigger nonlinear
effects and especially TRI, generating so-called subharmonics. On this point, we recover the same
results as previously obtained in 2D tanks [45]. Looking at the energy transfer efficiency, the ratio
ẽc(ω1)/ẽc(ω0) is of order 0.05, similar to other studies [43,46], synonymous of a weak energy
transfer.

2. Rotation and stratification

The description made previously holds for internal gravity waves ( fc = 0, N case) sufficiently
forced, but differences are observed even in the qualitative description of the TRI in the case of
homogeneous rotating fluid ( fc case, inertial). For inertial waves, the energy transfer is even weaker,
and no clear peak can be distinguished.

Figure 12(a) displays the time-frequency diagram corresponding of an internal gravity wave
(N case) experiment, with a0 = 3 mm and frequency ω0/N = 0.64. For each time t the power
density spectrum ẽc is computed from the Fourier transform of the velocity field with a window
of width 120T0, averaged spatially over the whole domain. The cumulative power density spectrum
is represented on the right. Figures 13(a) and 13(b) are cuts around, respectively, t = 80T0 and
340T0 of this diagram indicated by white dashed lines in Fig. 12(a). Correspondingly, in Fig. 12(b)
is represented the time-frequency diagram for an experiment with inertial waves with forcing
amplitude a0 = 3 mm and frequency ω0/ fc = 0.768 such that sin θ =

√
1 − (ω0/ fc)2 = 0.64, thus

creating the same attractor. Figures 13(c) and 13(d) are cuts around, respectively, t = 60T0 and
110T0. Note that Fig. 12(a) and Fig. 12(b) have a different color scale.
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FIG. 12. (a, b) Time-frequency diagram with a window of 120T0 for experiments with a0 = 3 mm,
sin θ = 0.64, and, respectively, (N, fc ) = (0.77, 0) rads−1 (N case, experiment E in Table I) and (N, fc ) =
(0, 1.05) rads−1 ( fc case, (experiment B in Table I)). The white dashed lines are placed at t = tmax/10 and
9tmax/10. Note that (a) and (b) have a different color scale, whose range is indicated above the spectra.

In comparison to the description of Fig. 13(b), differences are observed in Fig. 13(d) in the fc

case(experiment B in Table I): instead of two sharp peaks, a wider range is observed for the couple
(ω1, ω2), forming two wide peaks, coherent with observation made by [47,48]. It can also be noted
that the energy transfer is weaker. The time evolution between Fig. 13(c) and Fig. 13(d) shows a
slight increase of the energy at the forcing and the subharmonic frequencies, whereas the peak at
ω = ωn=1 = (0.85 ± 0.01) fc, which is the first resonant mode, decreases, indicating that it has been
generated at the start of the experiment.

The filtered velocity field at ω1 and ω2 for both cases represented in Fig. 14 shows very different
patterns for internal gravity waves (a and b) and inertial waves (c and d). The amplitude of the
subharmonics of inertial waves is larger near the center and decays radially both because of viscosity
and the cylindrical geometry. Experiments with inertial waves did not show as clear structures as
internal gravity waves when TRI is involved, so an experiment has been made with cameras placed
closer to get a better spatial resolution. This could indicate generation of the waves at the center of
the tank where the amplitude of the forcing attractor is the largest.

The internal gravity wave subharmonic shows clearly a mode resonating in the tank; it would be
described by a mode number n = 4 according to the numbering of Sec. III B and an azimuthal
number m = 0 described better by a Bessel function of order 1, the difference with Sec. III B
being the symmetry around the rotating axis. The main frequency selection mechanism for the
subharmonics is not the growth rate but the resonance with the tank for at least one of ω1 and ω2.
The specificity of the internal gravity waves is encoded in their linear response function, where
it is clear in Fig. 10 that the attractor frequency span is above the resonant modes frequencies as
opposed to inertial waves for which the resonant modes lie close to fc. Therefore TRI, which excites
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FIG. 13. (a, b) Power density spectra of the kinetic energy in the N case at t = tmax/10 and 9tmax/10 with
window 120T0, corresponding to vertical slices of Fig. 12(a). (c, d) The equivalent for Fig. 12(b) in the fc case.

lower frequencies, can produce resonant, peaked modes for the internal gravity waves and not in the
inertial waves case where the frequency selection reflects the growth rate of the instability. A recent
study [49] showed that inhibiting the modes in the internal gravity waves makes the behavior of the
TRI closer to the inertial case. Also, in the case of inertial waves, some energy can be transferred
to the geostrophic mode when the forcing amplitude is high enough, which in return shifts the
frequencies of the daughter waves, inhibiting TRI [30].

In the internal gravity wave time-frequency diagram presented in Fig. 12(a), the dominant
subharmonic couple is not the same at the beginning and the end of the experiment, which is clear
comparing Figs. 13(a) and 13(b), explaining the presence of more subharmonics in the cumulative
spectrum than in Fig. 13(b) [50]. The mode structure is less clear when filtering the velocity field
at the two other possible subharmonic frequencies ω′

1 = 0.19 and ω′′
1 = 0.26. At the beginning, the

amplitude of the peak at ω′
1 = 0.19 is bigger, suggesting a higher growth rate, while at the end, the

peak at ω1 = 0.22 is dominant. The resonant mode has a lower growth rate but accumulates energy
over time, increasing its interaction term with the forcing wave until it becomes the predominant
triad for TRI.

D. Axis dissipation

TRI is a robust phenomenon constituting a first step toward energy transfer between scales. With
hope to obtain a continuous spectrum close to a weak wave turbulence regime, the amplitude a0

has been increased up to 10 mm. It has been shown in two dimensions [27,46] that TRI could
build the spectrum by successive triadic interactions, which is not observed in our experiments as,
at most, two TRI steps have been reported. Actually, observations tend to show the opposite: an
increase in the forcing amplitude past the TRI threshold is associated with an increase of the width
of the attractor and especially an increase in the wavelength, and subharmonics disappear from the
power spectral density. Furthermore, the overall structure of the attractor is lost as the amplitude is
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FIG. 14. Snapshots of the velocity field vx . (a, b) For the N case, filtered at ω1/N = 0.22 (a), ω1/N =
0.46(b), the subharmonics for internal gravity waves. (c, d) For the fc case, filtered at ω1/ fc = 0.27 (c), ω2/ fc =
0.46(d), the subharmonics for inertial waves.

increased. These two phenomena were not observed in the 2D case, leading us to point as the main
factor for the differences to the interaction on the symmetry axis where the amplitude of the velocity
field is maximum.

To investigate the effect of the rotation axis reflection, a solid cylinder is placed at the center of
the tank preventing the divergence of the amplitude at the axis and the interaction of waves coming
from all directions. Two different cylinders have been used, of respective diameters d = 2 cm and
11 cm, in order to probe the characteristic length of the axis interaction. All experiments have been
conducted with inertial waves of parameter fc = 1.05 rads−1 (experiment E in Table I), forcing
amplitudes a0 of 1 mm and 2 mm, respectively, and

√
1 − (ω0/ fc)2 of 0.75 and 0.69, respectively,

to keep the forcing frequency in the middle of the (1,1) Arnold tongue as the geometry changes.
Figure 15 represents the x-velocity field filtered at their respective forcing frequency with the
same frequency span δω/ fc of 0.05. Qualitatively, the width of the attractor beams decreases
when the diameter goes from 2 cm to 11 cm and the wavelength of the wave inside the attractor
envelope decreases. Usually in 2D attractor experiments, the width of an attractor is given by the
balance between the focusing at the inclined slope and the viscous dissipation along the propagation
trajectory [52] and thus should not be influenced by the presence of the cylinder, which is not the
case, here underlining the importance of the reflection on the rotation axis.

In 2D experiments, the reflection on the vertical wall is equivalent to the reflections on the
horizontal ones [51] as shown in Fig. 15(e). Figure 15(b) shows the kinetic energy ec averaged
over ten periods of forcing. As in two dimensions, there is an increase of the energy at the reflection
on the slope, but a difference arises at the reflection on the axis as the interaction zone is wider.

The wide zone of interaction can be seen in Fig. 16(a), showing a vertical cut of the kinetic
energy of Fig. 15(b), and in two snapshots with a π/2 phase difference (dotted and dashed). The
region is about 10 cm wide, and the waves propagate in this envelope. Figure 16(b) compares this
envelope in the open domain and with a tube at the center. The zone of interaction is bigger in the
case without the tube.

Figures 15 and 16 are clues that the reflection on the axis indeed affects the attractor. Experiments
with different tube diameter show that the tube has to be large enough, approximately 10 cm in
diameter, for the differences to be clear.
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FIG. 15. Snapshot of vx in an homogeneous fluid in rotation with fc = −1.05 rads−1 (experiment B in
Table I), without cylinder (a), and the corresponding kinetic energy ec averaged over 10T0 (b). A cylinder has
been placed at the center with a diameter d of 2 cm (c) and 11 cm (d). The velocity is filtered around their
respective forcing frequency with δω = 0.05 fc. (e) Kinetic energy averaged over T0 in an experiment with
internal gravity waves in the 2D case, extracted from [51].

IV. CONCLUSION

Through laboratory experiments and ray tracing algorithm, the present study displays some
properties of inertia-gravity waves in an axisymmetric 3D tank. The inclined slope of the frustum
induces a convergence in the vertical plane [a 2D-(m, n) attractor of the trapezoid], while the circular
shape and the 3D properties of reflection of inertia-gravity waves ensure the convergence in the
horizontal plane (in a diameter). In the right frequency span, a coupled convergence leads any
trajectory to a limit cycle, an attractor. In the (1,1) convergence zone, the attractor is actually
a collection of 2D-(1,1) attractors organized around as a rhombus shaped torus. Experimental

FIG. 16. (a) Profile along a vertical cut, of the kinetic energy ec for an inertial wave experiment with fc =
−1.05 rads−1, 1 cm away from the middle of the tank. The dotted line and the dashed line are instantaneous
profiles with a relative phase shift of π/2 in the stationary regime. The solid line is the mean profile over 50T0.
(b) Profile along a vertical cut, of the normalized mean kinetic energy ec/ec,max for the situation without a tube
(solid) and with an 11 cm tube (dashed).
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observations of such structures have been made, for inertial, internal gravity, and inertia-gravity
waves. In the linear regime, the attractor is a continuous 3D structure, where each cross section is a
2D attractor whose phase follows the m = −1 azimuthal wave number of the forcing.

An impulse experiment reveals experimentally the zones of attractors and the existence of
standing waves that are easily excited. Constant amplitude experiments at larger amplitude induce
triadic resonance instability (TRI), due to the focusing of the energy by the attractor and the
convergence to the center of the tank. This well-known and well-studied instability [10] triggers
differently internal gravity waves and inertial waves. On the one hand, for internal gravity waves,
one of the daughter waves is an easily excited standing wave. On the other hand, for inertial waves,
the standing waves cannot be excited as their frequency is above the (1,1) Arnold tongue.

The mechanism of interaction on the axis of symmetry remains open. Experiments suggest that
the convergence on this point triggers mixing and destroys the structure of the attractor for internal
gravity waves. The loss of structure is also reported for inertial waves at large forcing amplitudes.
Yet at small amplitudes, a behavior closer to the 2D case can be retrieved by adding a cylinder of
sufficient diameter at the center of the domain for the wave to reflect on. The main mechanism is
the widening of the convergence zone with larger velocities.

Contrary to a previous study in the 2D case [27], no wave turbulence has been observed nor a
cascade of TRI. The energy is dissipated through wave interactions only at medium amplitude, but
through turbulence and wave breaking at the center at large amplitudes.

ACKNOWLEDGMENTS

The authors acknowledge support from the Simons Foundation through Grant No. 651475.
The experiments performed in Lyon were supported by LABEX iMUST (ANR-10-LABX-0064)
of the Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX0007),
and by DisET (ANR-17-CE30-0003), operated by the French National Research Agency (ANR).
Experimental analyses were achieved thanks to the resources of PSMN from ENS de Lyon. E.E.
thanks ENS de Lyon and CNRS for visiting professorship invitations.

[1] J. A. MacKinnon, Z. Zhao, C. B. Whalen, A. F. Waterhouse, D. S. Trossman, O. M. Sun, L. C. St. Laurent,
H. L. Simmons, K. Polzin, R. Pinkel et al., Climate process team on internal wave–driven ocean mixing,
Bull. Am. Meteorol. Soc. 98, 2429 (2017).

[2] K. L. Polzin, An abyssal recipe, Ocean Model. 30, 298 (2009).
[3] C. de Lavergne, S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, Toward global maps of internal

tide energy sinks, Ocean Model. 137, 52 (2019).
[4] C. Wunsch and R. Ferrari, Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev.

Fluid Mech. 36, 281 (2004).
[5] O. Bühler and M. Holmes-Cerfon, Decay of an internal tide due to random topography in the ocean,

J. Fluid Mech. 678, 271 (2011).
[6] W. H. Munk, Abyssal recipes, Deep Sea Res. Oceanogr. Abs. 13, 707 (1966).
[7] F. Pollmann, Global characterization of the ocean’s internal wave spectrum, J. Phys. Oceanogr. 50, 1871

(2020).
[8] C. Garrett, Internal tides and ocean mixing, Science 301, 1858 (2003).
[9] S. Cole, D. Rudnick, B. Hodges, and J. Martin, Observations of tidal internal wave beams at Kauai

Channel, Hawaii, J. Phys. Oceanogr. 39, 421 (2009).
[10] T. Dauxois, S. Joubaud, P. Odier, and A. Venaille, Instabilities of internal gravity wave beams, Annu. Rev.

Fluid Mech. 50, 131 (2018).
[11] O. M. Phillips, The Dynamics of the Upper Ocean (Cambridge University Press, Cambridge, 1966).

104802-18

https://doi.org/10.1175/BAMS-D-16-0030.1
https://doi.org/10.1016/j.ocemod.2009.07.006
https://doi.org/10.1016/j.ocemod.2019.03.010
https://doi.org/10.1146/annurev.fluid.36.050802.122121
https://doi.org/10.1017/jfm.2011.115
https://doi.org/10.1016/0011-7471(66)90602-4
https://doi.org/10.1175/JPO-D-19-0185.1
https://doi.org/10.1126/science.1090002
https://doi.org/10.1175/2008JPO3937.1
https://doi.org/10.1146/annurev-fluid-122316-044539


OBSERVATION OF INERTIA-GRAVITY WAVE …

[12] L. Gostiaux, T. Dauxois, H. Didelle, J. Sommeria, and S. Viboud, Quantitative laboratory observations of
internal wave reflection on ascending slopes, Phys. Fluids 18, 056602 (2006).

[13] R. H. Nazarian and S. Legg, Internal wave scattering in continental slope canyons, part 1: Theory and
development of a ray tracing algorithm, Ocean Model. 118, 1 (2017).

[14] L. R. Maas and F.-P. A. Lam, Geometric focusing of internal waves, J. Fluid Mech. 300, 1 (1995).
[15] L. R. Maas, D. Benielli, J. Sommeria, and F.-P. A. Lam, Observation of an internal wave attractor in a

confined, stably stratified fluid, Nature (London) 388, 557 (1997).
[16] N. Grisouard, C. Staquet, and I. Pairaud, Numerical simulation of a two-dimensional internal wave

attractor, J. Fluid Mech. 614, 1 (2008).
[17] M. Brunet, T. Dauxois, and P.-P. Cortet, Linear and nonlinear regimes of an inertial wave attractor, Phys.

Rev. Fluids 4, 034801 (2019).
[18] G. Pillet, E. Ermanyuk, L. Maas, I. Sibgatullin, and T. Dauxois, Internal wave attractors in three-

dimensional geometries: Trapping by oblique reflection, J. Fluid Mech. 845, 203 (2018).
[19] B. Favier and S. Le Dizes, Inertial wave super-attractor in a truncated elliptical cone (unpublished).
[20] M. Rieutord, B. Georgeot, and L. Valdettaro, Inertial waves in a rotating spherical shell: Attractors and

asymptotic spectrum, J. Fluid Mech. 435, 103 (2001).
[21] B. Dintrans, M. Rieutord, and L. Valdettaro, Gravito-inertial waves in a rotating stratified sphere or

spherical shell, J. Fluid Mech. 398, 271 (1999).
[22] J. He, B. Favier, M. Rieutord, and S. Le Dizès, Internal shear layers in librating spherical shells: The case

of periodic characteristic paths, J. Fluid Mech. 939, A3 (2022).
[23] W. Tang and T. Peacock, Lagrangian coherent structures and internal wave attractors, Chaos 20, 017508

(2010).
[24] P. Echeverri, T. Yokossi, N. Balmforth, and T. Peacock, Tidally generated internal-wave attractors between

double ridges, J. Fluid Mech. 669, 354 (2011).
[25] Y. Guo and M. Holmes-Cerfon, Internal wave attractors over random, small-amplitude topography,

J. Fluid Mech. 787, 148 (2016).
[26] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics Vol. 825 (Springer-Verlag, Berlin, Heidelberg,

2011).
[27] G. Davis, T. Jamin, J. Deleuze, S. Joubaud, and T. Dauxois, Succession of resonances to achieve internal

wave turbulence, Phys. Rev. Lett. 124, 204502 (2020).
[28] C. Brouzet, I. Sibgatullin, H. Scolan, E. Ermanyuk, and T. Dauxois, Internal wave attractors examined

using laboratory experiments and 3D numerical simulations, J. Fluid Mech. 793, 109 (2016).
[29] E. Yarom and E. Sharon, Experimental observation of steady inertial wave turbulence in deep rotating

flows, Nat. Phys. 10, 510 (2014).
[30] T. Le Reun, B. Favier, and M. Le Bars, Experimental study of the nonlinear saturation of the elliptical

instability: Inertial wave turbulence versus geostrophic turbulence, J. Fluid Mech. 879, 296 (2019).
[31] E. Monsalve, M. Brunet, B. Gallet, and P.-P. Cortet, Quantitative experimental observation of weak

inertial-wave turbulence, Phys. Rev. Lett. 125, 254502 (2020).
[32] C. Rodda, C. Savaro, G. Davis, J. Reneuve, P. Augier, J. Sommeria, T. Valran, S. Viboud, and N. Mordant,

Experimental observations of internal wave turbulence transition in a stratified fluid, Phys. Rev. Fluids 7,
094802 (2022).

[33] M. Klein, T. Seelig, M. V. Kurgansky, A. Ghasemi, I. D. Borcia, A. Will, E. Schaller, C. Egbers, and U.
Harlander, Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder, J. Fluid
Mech. 751, 255 (2014).

[34] S. Boury, I. Sibgatullin, E. Ermanyuk, N. Shmakova, P. Odier, S. Joubaud, L. R. Maas, and T. Dauxois,
Vortex cluster arising from an axisymmetric inertial wave attractor, J. Fluid Mech. 926, A12 (2021).

[35] R. Beardsley, An experimental study of inertial waves in a closed cone, Stud. Appl. Math. 49, 187 (1970).
[36] G. A. Henderson and K. D. Aldridge, A finite-element method for inertial waves in a frustum, J. Fluid

Mech. 234, 317 (1992).
[37] B. Bourget, Ondes internes, de l’instabilité au mélange. Approche expérimentale, Ph.D. thesis, École

normale supérieure physique Lyon, 2014.

104802-19

https://doi.org/10.1063/1.2197528
https://doi.org/10.1016/j.ocemod.2017.07.002
https://doi.org/10.1017/S0022112095003582
https://doi.org/10.1038/41509
https://doi.org/10.1017/S002211200800325X
https://doi.org/10.1103/PhysRevFluids.4.034801
https://doi.org/10.1017/jfm.2018.236
https://doi.org/10.1017/S0022112001003718
https://doi.org/10.1017/S0022112099006308
https://doi.org/10.1017/jfm.2022.138
https://doi.org/10.1063/1.3273054
https://doi.org/10.1017/S0022112010005069
https://doi.org/10.1017/jfm.2015.648
https://doi.org/10.1103/PhysRevLett.124.204502
https://doi.org/10.1017/jfm.2016.119
https://doi.org/10.1038/nphys2984
https://doi.org/10.1017/jfm.2019.646
https://doi.org/10.1103/PhysRevLett.125.254502
https://doi.org/10.1103/PhysRevFluids.7.094802
https://doi.org/10.1017/jfm.2014.304
https://doi.org/10.1017/jfm.2021.703
https://doi.org/10.1002/sapm1970492187
https://doi.org/10.1017/S0022112092000806


CORENTIN PACARY et al.

[38] D. Hill, General density gradients in general domains: The “two-tank” method revisited, Exp. Fluids 32,
434 (2002).

[39] P. Maurer, S. Joubaud, and P. Odier, Generation and stability of inertia–gravity waves, J. Fluid Mech. 808,
539 (2016).

[40] A. Fincham and G. Delerce, Advanced optimization of correlation imaging velocimetry algorithms, Exp.
Fluids 29, S013 (2000).

[41] A. McEwan, Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech. 40, 603 (1970).
[42] A. Rabitti and L. R. Maas, Meridional trapping and zonal propagation of inertial waves in a rotating fluid

shell, J. Fluid Mech. 729, 445 (2013).
[43] G. Davis, Attracteurs d’ondes internes de gravité: Des résonances en cascade, Ph.D. thesis, École normale

supérieure physique Lyon, 2019.
[44] S. Boury, P. Maurer, S. Joubaud, T. Peacock, and P. Odier, Triadic resonant instability in confined and

unconfined axisymmetric geometries, J. Fluid Mech. 957, A20 (2023).
[45] H. Scolan, E. Ermanyuk, and T. Dauxois, Nonlinear fate of internal wave attractors, Phys. Rev. Lett. 110,

234501 (2013).
[46] C. Brouzet, E. Ermanyuk, S. Joubaud, I. Sibgatullin, and T. Dauxois, Energy cascade in internal-wave

attractors, Europhys. Lett. 113, 44001 (2016).
[47] G. Bordes, F. Moisy, T. Dauxois, and P.-P. Cortet, Experimental evidence of a triadic resonance of plane

inertial waves in a rotating fluid, Phys. Fluids 24, 014105 (2012).
[48] D. O. Mora, E. Monsalve, M. Brunet, T. Dauxois, and P.-P. Cortet, Three-dimensionality of the triadic

resonance instability of a plane inertial wave, Phys. Rev. Fluids 6, 074801 (2021).
[49] N. Lanchon, D. O. Mora, E. Monsalve, and P.-P. Cortet, Internal wave turbulence in a stratified fluid with

and without eigenmodes of the experimental domain, Phys. Rev. Fluids 8, 054802 (2023).
[50] K. M. Grayson, S. B. Dalziel, and A. G. W. Lawrie, The long view of triadic resonance instability in

finite-width internal gravity wave beams, Phys. Rev. Fluids 953, A22 (2023).
[51] G. Davis, T. Dauxois, T. Jamin, and S. Joubaud, Energy budget in internal wave attractor experiments,

J. Fluid Mech. 880, 743 (2019).
[52] J. Hazewinkel, P. Van Breevoort, S. B. Dalziel, and L. R. Maas, Observations on the wavenumber spectrum

and evolution of an internal wave attractor, J. Fluid Mech. 598, 373 (2008).

104802-20

https://doi.org/10.1007/s00348-001-0376-5
https://doi.org/10.1017/jfm.2016.635
https://doi.org/10.1007/s003480070003
https://doi.org/10.1017/S0022112070000344
https://doi.org/10.1017/jfm.2013.310
https://doi.org/10.1017/jfm.2023.58
https://doi.org/10.1103/PhysRevLett.110.234501
https://doi.org/10.1209/0295-5075/113/44001
https://doi.org/10.1063/1.3675627
https://doi.org/10.1103/PhysRevFluids.6.074801
https://doi.org/10.1103/PhysRevFluids.8.054802
https://doi.org/10.1017/jfm.2022.914
https://doi.org/10.1017/jfm.2019.741
https://doi.org/10.1017/S0022112007000031

