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Low-aspect-ratio revolving wings find applications in miniature robotic flyers and turbo-
machinery. At a high angle of attack, the flow separates from a wing’s leading edge,
forming a leading-edge vortex. On a revolving wing, the leading-edge vortex (LEV) is
stabilized by strong rotational acceleration and is known to be the primary source of
high and stable aerodynamic forces acting on the wing. While previous studies have
characterized the performance of revolving wings, the effects of perturbations on the
flow profile and performance have not been explored. This study combined experiments
and computational fluid dynamics simulations to investigate the lift, drag, and power
coefficients of a wing revolving at a Reynolds number of Re = 2500 and undergoing
pitch perturbations. Perturbations were systematically varied to investigate the effects of
the wing’s initial angle, the amplitude and duration of perturbation, and the location of the
pitch axis. Simulations provided insights into the flow structures around the wing and their
effects on the wing-surface pressures and the aerodynamic forces. Finally, a quasisteady
model was used to decompose the effects of wing rotation and pitch perturbations on the lift
and drag forces. The decomposition revealed a consistent dependency of the variations in
the lift on the pitch angular velocity across all perturbations, irrespective of the initial angle.
The transition from the LEV-dominant to the rotation-dominant flow occurs at very low
pitch rates, the values of which were found to depend on the initial angle of the revolving
wing. For lower initial angles, the transition occurred at lower pitch rates. During the
rotation-dominant perturbations, changes in the vortical structures around the wing were
found to have a minimal effect on the lift and drag compared to the quasisteady effects.
Moreover, the oscillations in the lift and drag during the perturbation could be reduced
by appropriately shifting the pitch axis location. These findings highlight the dominant
role of inviscid effects on the variations in loads acting on a revolving wing during pitch
perturbations.

DOI: 10.1103/PhysRevFluids.8.104701

I. INTRODUCTION

Fluid dynamics of revolving wings are of high interest to engineers for their applications in
turbomachines, rotorcrafts, and microair vehicles. The geometry of a revolving wing can be broadly
defined by the ratio of the wingspan (b) to the mean wing chord (c), also known as the aspect ratio
(AR = b/c). In the context of revolving wings, the Rossby number is also an important parameter,
defined as Ro = Rg/c, where Rg is the wing’s radius of gyration. The kinematics of the wing is
characterized by its Reynolds number (Re = Urefc/ν), where Uref is the reference velocity, typically
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at the radius of gyration of the wing, and ν is the kinematic viscosity of the fluid around the wing.
Motivated by the flight of winged seeds and insect wings at low Reynolds numbers (Re < 105),
the aerodynamics of small-aspect-ratio wings (AR < 5) have been investigated for their possible
small-size engineering applications [e.g., Refs. 1–3].

The flow over unperturbed low-Reynolds-number revolving wings is significantly different from
that over translating wings, as has been revealed by several studies motivated by flapping wings of
insect [e.g., Refs. 4–7]. In this Reynolds numbers regime, at a high angle of attack, the flow over a
revolving wing separates at its leading edge, forming a leading-edge vortex (LEV) over the wing’s
suction surface [5]. Due to the spanwise gradient of the flow during the wing’s rotation (sweep
motion), the LEV also varies in size along the span, causing it to be smaller near the wing root and
larger towards the wing tip. For a wing held at a constant angle (α) and rotating with a constant
angular velocity (φ̇), the LEV is stabilized in its place and size throughout the wing’s rotation.
Such a rotational motion of the wing with constant α and φ̇ has also been called sweep, rotational
translation or sometimes just translation in the literature [e.g., Refs. 8–10]. The mechanism behind
the stability of the LEV has been investigated over several decades. The extra vorticity fed into
the LEV of a revolving wing by the flow separated from its leading edge is carried away radially
outward, contributing to the vorticity in the wake deposited from the wing tip [7]. Maxworthy [4]
has attributed this to the spanwise pressure gradient over a revolving wing. However, more recent
studies have attributed this to the action of strong centripetal and Coriolis accelerations [7,11].
Moreover, the vortex tilting has also been observed to be contributing to the stability of the LEV
[12–14].

During rotational translation, the stably attached LEV creates a stable suction pressure on the
wing surface beneath the LEV. Consequently, the forces on the revolving wing are also found to be
stable [6,15]. However, a change in the wing’s angle of attack due to the wing’s rotation about its
spanwise axis (pitch motion) may disturb the stability of the LEV, affecting the wing performance.
Such disturbance may arise in the case, for example, of pitching-flapping perturbed revolving wings
employed in microair vehicles [16] or during the pitch-oscillations in the flapping motion of wings
[17]. However, the effects of such pitch perturbations on the flow and the forces on the wing remain
under-explored. A systematic investigation of the effects of the kinematics of pitch perturbations on
a revolving wing is necessary. Moreover, a deeper understanding of the factors responsible for the
effects of pitch perturbations on wing performance is important so that the appropriate controls can
be applied in robotic flyers with revolving wings undergoing pitch oscillations.

Many researchers in the past have explored the effects of pitch oscillations on linearly translating
wings [e.g., Refs. 18–21]. In the absence of any oscillations, steady flow over such a wing exerts
lift force on the wing, which increases with an increase in the wing’s angle of attack until it reaches
a stall angle. At or beyond the stall angle, the flow over the wing separates at its leading edge,
causing a sudden drop in the lift. However, when a linearly translating wing is set to undergo pitch
oscillations, the flow periodically reattaches and detaches from the wing surface, which causes the
instantaneous lift values to differ from the static values at the same wing angles. These values’ cycle
undergoes a hysteresis during a pitching oscillation [22]. This phenomenon is commonly called
dynamic stall [18]. Furthermore, at high angles of attack, the shear layer separated from the leading
edge oscillates with a phase difference from the wing’s pitch oscillations [23,24]. In such a case, the
forces acting on the wing vary in magnitude depending on the strength and phase of the shear-layer
oscillations. However, this does not explain the pitch-perturbation effects on revolving wings at low
Reynolds numbers, which, unlike linearly translating wings, do not experience a static stall due
to the stable attachment of the LEV. Hence, the possibility of a dynamic stall in revolving wings
needs to be examined. It also remains unclear if prevailing quasisteady models developed for wings
operating in quiescent conditions can predict wing performance during and after the perturbation.
The use of such models will be highly beneficial for predicting the forces on perturbed revolving
wings operating in realistic conditions.

In the past few years, Chen et al. [16,25] reported on the dynamic behavior of forces acting on a
revolving wing at Re = 1500 during its pitch and flapping perturbations. The initial angle of attack
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of the wing (α0) in these studies were 0◦ and 20◦ where the flow is nominally attached to the wing.
The lift and drag on revolving wings depend highly on α [8], and at higher angles of attack a stable
LEV is formed [5,7]. Accordingly, the response of revolving wings to perturbations may also be
different from that of linearly translating wings. More recently, Chen et al. [26] studied the pitch-up
motion on a revolving wing and the associated vorticity dynamics for a fixed initial angle and
perturbation amplitude. They showed that the LEV breaks up during sudden pitch-up manoeuvres
while the vortex-tilting-based mechanisms are attenuated. Moving the pitch axis closer to the
leading edge results in lift enhancement. However, the role of the relative velocity vector and the
resulting local drag appears to be important here, which was not explored. Moreover, investigating
wider ranges of α0 and pitching amplitudes (�α) is necessary to improve our understanding of the
LEV and its dynamics applicable to a larger number of studies.

The present study focused on the effects of pitch perturbations on a revolving wing by systemat-
ically varying the initial pitch angle (α0), the amplitude (�α), the duration of perturbation (Tp), and
the combinations thereof. The effects of the pitch-axis location were also examined for a chosen
case. This investigation required the measurement of forces and torques over the wing to analyze its
performance and relate them to the surface pressure and flow field data to analyze the effects of the
perturbation. The forces and torques were measured experimentally, for a wide parameter space. The
surface pressure and flow-field data were evaluated for a subset of cases using computational fluid
dynamics (CFD) simulations. Finally, the quasisteady model developed for flapping wings by Lee
et al. [27] was explored for its applicability to pitch-perturbed revolving wings. The experimental
and computational methods, and the quasisteady model are described in Sec. II. The forces acting
on an unperturbed and perturbed wing are analyzed in Sec. III. The pressure and flow-field data
from CFD are discussed in detail along with power-transfer calculations in Sec. IV, followed by the
conclusions in Sec. V.

II. METHODS

A. Experimental method

Experiments were conducted on a rectangular wing of span b = 150 mm and chord c = 50 mm
placed at the center of a water tank of size 900×900×600 mm3. This size was large enough to have
minimal effects from sidewalls [28]. The schematic of the experimental setup is shown in Fig. 1(a).
The wing was cut from a 1-mm-thick aluminium sheet and was provided with a root cutout of
35×21 mm2 to accommodate a force/torque sensor (ATI Nano17 IP68 F/T sensor) at its root, as
shown in Fig. 1. The wing along with the sensor was attached to a timing pulley near the bottom of
the main shaft of a flapping mechanism, driven by a timing belt and another pulley at the top. The
motion of the main shaft about the sweep (Y ) axis and that of the timing pulley about the pitching
(Z) axis was provided by two identical RoboStar SBRS-5314HTG servo motors, as described by
Ref. [29]. Due to the pulley and the attachments, the wing root was offset from the axis of rotation
by b0 = 20 mm. The normalized offset b0/b = 0.13 was within the range of having a negligible
effect on the LEV over the wing [30].

The wing was initially held at rest at a constant angle of attack α0 and was then rotated about
the Y axis with the Reynolds number of Re = ρUrefc/μ = 2500, where the reference velocity is
Uref = 0.75Rφ̇, R is the wing-tip radius with respect to the sweep axis (R = b + b0), φ̇ is the constant
rotational velocity of the wing and ρ = 1000 kg/m3 and μ = 8.9×10−4 Pa-s are, respectively, the
density and viscosity values of the water in the tank. In each experiment, the wing was rotated
by 160 degrees in time T = 9 s, involving the first 0.5 s of acceleration from rest, 8 s of constant
rotation velocity φ̇, and the last 0.5 s of deceleration to rest. After the end of the motion, the wing
was retracted to its initial position, followed by a rest period of 2 min to allow the disturbed water to
settle back to its near-quiescent state. During the sweep motion at a constant φ̇, after time t1 = 0.4T ,
the wing’s angle of attack was increased by the amplitude �α using a constant pitch angular velocity
until t2 = t1 + Tp/2 and was returned to the original angle α0 by t3 = t1 + Tp. Thus, Tp represents the
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FIG. 1. The schematic shows (a) the rotating wing experimental setup in a water tank (not to scale), (b) the
front view of the wing showing its initial angle α0 and the magnitude of perturbation �α, and (c) recorded
time traces of the wing angle α, also showing the time period of the perturbation Tp and the time period of the
rotational stroke T . A typical raw recorded signal for the normal force FN and the same obtained after filtering
it are shown in panel (d) for the case α0 = 15◦, �α = 52◦, and τ = 0.2.

total duration of the perturbation. The smooth variations in α during the changes in pitch velocities
can be approximated by the smoothing function given by Ol et al. [21].

The forces and torques acting on the wing were measured by the ATI Nano17 IP68 F/T sensor
at the sampling rate of 1000 Hz using a National Instruments PCI-6143 DAQ board linked to a PC.
With the SI-50-0.5 calibration, the ATI sensor was capable of measuring forces in three dimensions
with an accuracy of 12.5 mN and torques in three dimensions with an accuracy of 0.0625 mNm.
Thus, the uncertainty in the force and torque measurements in the experiments were estimated to be
±6.25 mN and ±0.0312 mNm, respectively. The servo motors’ potentiometer signals were recorded
to estimate the wing’s actual angular positions simultaneously with the force data. The total duration
of an experiment included recording the forces and torques during the first 3 s of rest before the start,
9 s of wing rotation, and 3 s of rest after stopping the wing. Each experiment was repeated five times
and the filtered lift and drag data were found to be highly repeatable within the margin of 3% for
the largest pitch perturbation of the chosen parameter space.

The recorded raw data were processed using an in-house Python code. The raw data were filtered
at the cutoff frequency of fc = 4/Tp using a fourth-order Butterworth filter. A comparison of a raw
recorded normal force FN and the filtered force data can be seen in Fig. 1(d). The recorded forces
were considered to be the sum of the translational, rotational, gravitational, inertial, and added-mass
forces. Thus, to isolate the fluid-mechanical forces, it was necessary to subtract the remaining force
components. The gravitational forces were obtained by recording the forces while the wing was
held in water in its steady state. The inertial forces were obtained by repeating the experiments in
air and subtracting the weight in the air, since the fluid-mechanical forces are negligible in air. For
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analyzing the translational and rotational components of the fluid-mechanical forces, as discussed
later in the results, the added-mass forces were subtracted from the measurements. The added-mass
force and torque were estimated by the expressions given by [27]

Fam = faρ
π

4

[
φ̈ sin α

∫ R

0
c(r)2rdr + α̈

∫ R

0
c(r)2

(
c(r)

2
− xrot

)
dr

]
and

τam = − ftρ
π

128
α̈

∫ R

0
c(r)4dr, (1)

respectively, where fa = 0.773 + 1.903Re−0.687 and ft = 1.056 + 7.49Re−0.855 are the Reynolds-
number correction factors, c(r) is the local chord length at a spanwise distance r, xrot is the
chordwise distance of the pitch axis from the leading edge, φ is the sweep-angular displacement,
and α is the pitch-angular displacement. The fluid-mechanical forces obtained after subtracting the
gravitational, inertial, and added-mass components were used to compute the lift (L) and drag (D)
forces acting along the Y and X directions, respectively, in the rotating frame of reference, as shown
in Fig. 1(b). Here, the lift and drag coefficients are defined as

CL = 2L

ρU 2
refS

and CD = 2D

ρU 2
refS

, (2)

respectively, where S is the wing area. The CL and CD throughout this work represent the coefficients
of fluid-mechanical forces without the added mass component.

The initial angle α0 and the perturbation amplitude �α were both systematically varied in the
range [0◦–90◦] in the steps of 15◦. Both pitch-up and pitch-down perturbations were investigated.
Two different values of the normalized duration of perturbation τ = Tp/T = 0.2 and 0.4 were
chosen. Note that the actual recorded values of �α with τ = 0.2 were found to be, approximately,
in the multiples of 13◦ and those with τ = 0.4 were found to be, approximately, in the multiples
of 14.5◦ due to the limitation of the motor’s acceleration to quickly reach the target constant pitch
speed.

B. Numerical method

The numerical method used here has been adopted from that of Refs. [31,32], which has been
validated for rotating and flapping wings in the range of the Reynolds numbers 150 � Re � 4000.
Flow over the wing was simulated by directly solving Navier-Stokes equations in a noninertial
rotating frame of reference using the commercial code Ansys CFX 21.1.

In this method, a rectangular wing, offset from the rotation axis similar to that in experiments,
was located at the center of a cylindrical domain of diameter 18R and height 48c, as shown by the
schematic in Fig. 2(a). The rotation axis of the wing was aligned with the axis of the cylinder. The
domain was split into the outer “rotary” subdomain and the inner “pitching” subdomain. The inner
spherical pitching subdomain of diameter 2.4R was situated at the center of the cylindrical domain.
The entire domain was discretized using an unstructured tetrahedral mesh with triangular prism
elements near the wing surface. Following the recommendations of Ref. [31], a time step of T/(2φA)
was used, where T is the total duration of the rotational stroke and φA is the total rotation amplitude
in degrees. Grid convergence was ensured by repeating the case with α0 = 15◦, �α = 52◦, and
τ = 0.2, using coarse, medium, and fine grids obtained by changing the grid spacing by a factor of
2 in each refinement. The timetraces of CL and CD for the three grids are shown in Figs. 2(b) and
2(c), respectively. Both instantaneous and mean variations in CL and CD were observed to be within
3% between the medium and fine grids. Hence, the medium grid was chosen for all simulations in
the study. The overall mesh consisted of approximately 8 million elements, with a grid spacing of
0.0145c on the wing surface.

The top and bottom faces of the cylinder were modelled as Dirichlet boundaries, each held at zero
gauge pressure. The cylindrical surface was modelled as a free-slip wall. The wing surfaces were
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FIG. 2. The schematic of the computational domain is shown in panel (a). The time traces of (b) CL

and (c) CD from coarse (minimum grid spacing, �x = 0.0289c), medium (�x = 0.0145c), and fine
(�x = 0.00725c) grids are compared for the case with α0 = 15◦, �α = 52◦, and τ = 0.2.

modelled as no-slip walls. The mesh in the inner spherical subdomain was fixed with respect to the
wing and was allowed to rotate about the wing’s pitching axis with the angular velocity α̇ using
the “Mesh Motion” tool in Ansys CFX. A general grid interface (GGI) connection was applied at
the interface between the two nonconformal subdomains.

The wing was initially set to be at rest at an angle α0 with the horizontal plane. It was then
accelerated within the first 0.5 s to the rotational velocity φ̇ = 20 deg/s and was then rotated with
a constant rotational velocity until t = 8.5 s, followed by a deceleration to φ̇ = 0 deg/s within
the final 0.5 s. The pitch angle α underwent one perturbation �α during this motion, the same
as that described in the experimental method. As mentioned earlier, the actual variation in α in
experiments was observed to be different from the target profile. Hence, the variation in α in the
numerical simulations was specified using the cosh function with its smoothing coefficient and
amplitude adjusted to closely match the experimental data of α, as shown in Fig. 3(a).

Two cases were simulated for validating the numerical method; first, with �α = 13◦, and second,
with �α = 52◦. In both cases, α0 = 15◦ and τ = 0.2 were chosen to be the same. Figures 3(b) and
3(c) show the time traces of CL and CD predicted by CFD. For both cases, the time traces of CL match
the experimental data better than the time traces of CD. The dimensional drag forces produced by the
wing for �α = 13◦ are very small, which fall within the range of uncertainty of our measurements.
For the case of �α = 52◦, the mean CD in experimental measurements are lower compared to CFD;

FIG. 3. Time traces of (a) α, (b) CL , and (c) CD are shown for two different perturbation amplitudes,
�α = 13◦ and 52◦. In both cases, α0 = 15◦ and τ = 0.2. The CFD predictions are compared with the
experimental data and the quasisteady model predictions [27].
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however, their peak-to-peak variations are similar. Overall, noting a higher discrepancy between the
experiments and simulations in the mean CD values, the results and discussions in this work rely
primarily on the analysis of CL values, which show a better match with CFD simulations.

C. Quasisteady model

Several quasisteady (QS) models have been developed in the past [e.g., by Refs. 27,33–35],
predicting the forces and torques on rotating and flapping wings. The QS model proposed by Lee
et al. [27] takes into account the effects due to the wing’s Reynolds number, aspect ratio, and Rossby
number, which are important parameters having coupled effects on the wing performance [36]. The
QS model of Lee et al. [27] was derived for a 3D flapping wing under the assumption that the
wing operates at sufficiently low Rossby numbers (Ro) at which “the LEV is highly stable and
vortex shedding is prevented.” While the early development of the LEV is similar between 2D and
3D wings, its structure in the later stages is remarkably different [9,12]. The LEV on low-Ro 3D
revolving wings is stabilized due to the action of the strong spanwise flow driven by the centripetal
and Coriolis accelerations [7,11], typically absent in 2D wings. This assumption is also valid for
the revolving wing in our study with Ro = 2.27. Thus, the applicability of a QS model has been
explored to predict the forces on pitch-perturbed revolving wings in this study.

The model of Lee et al. [27] was employed here to evaluate the feasibility of simplified QS
models to predict the transient force response to perturbations on the wing. Comparisons between
experimental, simulation and model predictions would also provide insights into the force genera-
tion mechanism by decomposing the forces into various components. For the purpose of analyzing
various force components and their dependence on the wing’s kinematic parameters, the relevant
equations in the model of Lee et al. [27] are described in the Appendix for reference.

This model considers the instantaneous lift and drag acting on the wing as combinations of
contributions from quasisteady effects due to the wing’s rotation about the span-normal axis (called
the translational effects) and about the pitching axis (called the rotational effects) as well as the
added mass effects. Moreover, the wing in this model is assumed to be rigid, flat, and thin. The
rotational effects are assumed to result in the forces acting only in the wing-normal direction.
Correction factors have been proposed by Lee et al. [27] to account for the changes in the results
based on the wing’s Reynolds number, aspect ratio, and Rossby number, as described in the
Appendix. Overall, it can be seen that the predictions of CL and CD from the QS model bear
good similarity to the CFD predictions. The differences between the experimental data and QS
model predictions observed for some cases are within the experimental uncertainty limits, similar
to the differences between the experimental data and CFD predictions mentioned in Sec. II B. The
decomposition of forces using the QS model was used to analyze various effects, as discussed in the
results.

III. RESULTS

A. Unperturbed revolving wing

For a rotationally translating wing, the values of CL and CD are directly related to the angle of
attack α0, which would remain constant throughout the rotation in the absence of any perturbations.
Several previous studies have reported constant values of CL and CD with a constant α0 during
rotation [e.g., Refs. 6,37,38]. Studies, such as Refs. [6,39,40], have shown that the mean values
of CL and CD vary similar to those shown in Fig. 4(b). As an example, timetraces of CL and CD

for the case α0 = 60◦ are shown in Fig. 4(a). During the initial acceleration from rest, both CL

and CD experienced a sudden increase followed by a decrease until reaching a plateau. Even with
such a high α0, both CL and CD could be seen to be nominally stable. Several studies in the past
[e.g., Refs. 6,7,30,38,39] have shown that the LEV over a steadily rotating wing remains stably
attached to the wing and is responsible for the stable aerodynamic forces experienced by the wing
even at high angles. The oscillations in the values observed in Fig. 4(a) during this time are within
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FIG. 4. The timetraces of CL and CD of the wing in pure rotation at α0 = 60◦ are shown in panel (a). The
mean steady values in the shaded region in panel (a), i.e., CL,tr and CD,tr are shown as functions of α0 in panel
(b). Here, the red and blue continuous lines show the fits to (sin 2α0) for the CL,tr data and to (1 − cos 2α0) for
the CD,tr data, respectively. The filled colored symbols represent the present data. The thin dashed lines with
open symbols represent the predictions using the quasisteady model of Lee et al. [27]. The data for a revolving
fruitfly wing at Re = 136 by Dickinson et al. [6] and a translating NACA0015 airfoil at Re = 2000 by Menon
and Mittal [41] have been compared. The dash-dot lines show the CL–α relation for a translating wing of an
infinite aspect ratio (slope 2π ) and a finite aspect ratio (slope aAR).

the experimental uncertainties due to vibrations and noise. Unlike the linearly translating wings,
revolving wings do not experience stall even at high angles.

The stabilized values of CL and CD were averaged over the period 0.4 < t/T < 0.7 to obtain
their steady values CL,tr and CD,tr, respectively. By changing the wing angle α0 in different sets of
experiments, the values of CL,tr and CD,tr were obtained as functions of α0, as shown in Fig. 4(b).
In the case of 2D wings, for example, Menon and Mittal [41] have shown that a linearly translating
NACA0015 wing, characterized by Ro = ∞, at Re = 2000 experiences mild stall at 20◦ � α �
25◦, as can be seen in Fig. 4(b). At higher angles (α � 35◦), it experiences deep stall, apparent
from the sudden drop in CL. However, the changes in CL,tr with α for revolving wings are gradual.
Moreover, a 2D wing’s performance can be seen to be significantly different from that of a 3D wing.
As expected, the CL,tr data from experiments fit well to the (sin 2α0) function and the CD,tr data fit
well to the (1 − cos 2α0) function, in line with the relation shown by the QS model [see Eq. (A5)].
These fits show a close match to the predictions of the QS model except at high angles, i.e., α0 >

70◦, as can be seen in the figure. Moreover, there is an agreement between the experimental data of
Dickinson et al. [6] and the present data. For the purpose of the comparison with common reference
scales (Uref = 0.75Rφ̇), the data of Dickinson et al. [6] was scaled by the factor R2

g/(0.75R)2. The
actual values might still differ due to the differences in their wing shape (Drosophila wing planform)
and Reynolds number (Re = 136). In this figure, a line representing the CL = 2πα function for a
translating wing of an infinite aspect ratio has also been shown for reference. Moreover, a line for a
translating finite-aspect-ratio wing has also been shown to match the current AR. The slope of this
line is given by

aAR = a0

1 + a0
πAR

, (3)

where a0 = 2π is the slope of the line for an infinite aspect ratio. Overall, the CL–α relation for
revolving (or rotationally translating) wings highly deviates from the CL = 2πα relation given by
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FIG. 5. Time traces of (a) CL and (b) CD are shown for various α0. Across all the cases compared here,
�α = 52◦ and τ = 0.2. The start and end of perturbations are shown by dashed lines. The mean values CL

and CD, and the peak-to-peak variations �CL and �CD during the pitch perturbation are shown as functions of
the mean pitch perturbation angle αp in panel (c). Using the QS model, �CD values are further decomposed
into the variations in the contributions from the translational effects (�CD,tr) and rotational effects (�CD,rot) in
panel (d).

the thin airfoil theory for linearly translating wings. Furthermore, these results are in line with the
result from the previous studies [6,39,40] that a small-aspect-ratio wing revolving at low Reynolds
numbers does not experience stall as a linearly translating wing does.

B. Effect of initial angle on a perturbed wing

A pitch perturbation introduced during steady rotation changes the instantaneous α, which would
alter the CL and CD experienced. The effect of the initial angle of attack on the variation in CL

and CD due to a perturbation was analyzed by keeping �α = 52◦ and τ = 0.2 as constant, and
varying α0 in the steps of 15◦. Note that �α = 52◦ has been chosen as a representative case and
similar results were observed with other values of �α. Figure 5 shows that both CL and CD were
affected by α0. As expected, both CL and CD initially increased when the wing was accelerated from
rest, and they reached nearly stable values close to t/T = 0.2. From this point until the start of
the pitch perturbation, the wing was in the pure rotational translation where the CL and CD were
nominally steady, similar to the unperturbed cases discussed earlier. The variations observed in
both CL and CD are due to the noise in the measurements. Note that the variation of 0.5 in CD

corresponds to the actual force value of ∼3.4 mN, which is a very small value to be detected in
the experimental measurements. Such variations are also seen in other notable experimental studies,
for example, by Refs. [40,42]. The CFD results in Fig. 3 confirm that those variations do not exist
in simulations and the LEV flow structure is indeed stable, similar to that observed in previous

104701-9



SHANTANU S. BHAT et al.

studies [e.g., Refs. 6,30,39,40]. The corresponding values of CL and CD in this region are denoted
by CL,tr and CD,tr, respectively. As per the QS model [27], CL,tr ∝ sin(2α) and CD,tr ∝ 1 − cos(2α);
see Eq. (A5).

The values of both CL and CD varied during the pitch perturbation and returned to values
close to their original stable values after the perturbation was stopped, at around t/T ∼ 0.75. The
peak-to-peak variations in CL and CD, i.e., �CL and �CD, respectively, changed depending on
the initial angle α0 even when the perturbation magnitude �α was kept constant. The maximum
variation in CL was observed for α0 = 0◦, which reduced with an increase in α0. This can be
explained by considering the translational force Ftr and normal force Fn,rot acting on the wing and
their contributions to the lift and drag at different wing angles. As can be seen in Eqs. (A6)–(A10),
the force Fn,rot scales with the pitch angular velocity α̇ and acts in the direction normal to the wing
surface. Thus, the contribution of Fn,rot to the lift can be given by Fn cos α and that to the drag can be
given by Fn sin α. Its effect on �CL and �CD can be analyzed against the mean perturbation angle,
defined by

αp = 1

Tp

∫ t1+Tp

t1

α dt . (4)

The contribution of Fn to the lift, i.e., Fn cos α, is expected to reduce with αp and that to the
drag, i.e., Fn sin α, is expected to increase with αp, until αp = 90◦, as has been confirmed by
the observations in Fig. 5(c). The figure also shows the lift and drag coefficients averaged over
the period of perturbation, i.e., CL and CD, respectively, to represent the contributions by the
translational effects. The difference in the magnitudes of the translational effects and rotational
effects seen in Fig. 5(c) confirms that the rotational effects have a significantly stronger in-
fluence on aerodynamic force variations during the perturbations than the translational effects
do.

The peak value of �CD is observed at αp ∼ 75◦. To understand this trend, the values of CD

were further decomposed using the QS model into the translational component CD,tr and rotational
component CD,rot. Note that the variations in CD,tr and CD,rot were not in phase. Thus, the peak-to-
peak variation �CD is not the sum of �CD,tr and �CD,rot. As per the model, CD,tr is proportional to
(1 − cos 2α). Its peak-to-peak variation �CD,tr shown in Fig. 5(d) is in line with the peak-to-peak
variations in (1 − cos 2α). It can also be seen that the contribution of �CD,tr is much lower compared
to that of �CD,rot. The rotational component is derived from two parts, namely, Frot,1 and Frot,2 [see
Eqs. (A6)–(A10)]. These components are dependent on the wing’s geometrical parameters and φ

profile, which are constant across all cases compared in this figure. Thus, as α is changed, Frot,1

varies proportional to fαα̇ [see Eq. (A7)] and Frot,2 varies proportional to α̇|α̇| [see Eq. (A10)].
Since these components act in the wing-normal direction, their contributions to CD are proportional
to fαα̇ sin α and α̇|α̇| sin α, respectively. Between the range 45◦ � α � 135◦, fα = √

2 cos α [see
Eq. (A8)]. Thus, the drag contributions from Frot,1 and Frot,2 are proportional to (α̇ sin 2α) and
(α̇|α̇| sin α), respectively.

The terms α̇, sin α, and sin 2α are not in phase. Their combined effect results in the variation in
�CD,rot with αp, as seen in Fig. 5(d). Here, it can be seen that the variation in �CD with αp is in line
with the variations in the rotational component �CD,rot. The maximum value of �CD is observed
around αp = 75◦, similar to the maximum �CD,rot, followed by a gradual reduction. At very high
angles, αp > 100◦, the influence from the translational component contributes to the change in the
trend. Nevertheless, the variations in CD are largely influenced by the variations in the rotational
effects.

Furthermore, the peak-to-peak variation in Fn,rot itself can be changed by changing the α̇ profile.
This can be achieved either by perturbing the pitch with a different magnitude in the same time
period Tp or by changing the time period Tp for a given perturbation magnitude. Both of these are
explored in the following subsections.
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FIG. 6. The time traces of (a) α, (b) α̇/φ̇, (c) CL , and (d) CD are shown for α0 = 15◦ and various �α. The
solid lines represent the pitch-up perturbations while the dashed lines represent the pitch-down perturbations.

C. Effect of perturbation amplitude

The amplitude of the pitch perturbation �α was systematically varied to observe its effects on
CL and CD. The initial angle and the duration of perturbation were maintained at (α0 = 15◦) and
(τ = 0.2) respectively, see Fig. 6. Both pitch-up and pitch-down perturbations were examined by
varying the target �α in steps of 15◦. Due to the limitations in the acceleration of the servomotors,
the resulting �α in the actual experiments showed a variation in steps of ∼13◦.

During the pitch-up perturbations, CL was observed to rise and fall during the first half of the
perturbation when α increased from α0 to α0 + �α. During the remaining half, CL decreased to the
values lower than CL,tr and returned to the original value at the end of perturbation, even though
α was always greater than α0 during this phase. This indicated that the instantaneous values of
CL depended more on the instantaneous α̇ rather than on α itself, as can be seen in Figs. 6(b)
and 6(c). Similarly, during the pitch-down perturbations, the shape of the waveform of CL was
observed to be inverted, in accordance with the waveform of α̇. Note that the magnitudes of the
peaks in the waveform are different in pitch-up and pitch-down perturbations since the translational
force component contributes positively to CL in both cases. Moreover, the peak-to-peak variations
in CL were directly proportional to �α in both pitch-up and pitch-down perturbations. This can be
attributed to the fact that during the same τ , achieving a higher �α would require a higher α̇ and this
would increase the force component Fn,rot. During the pitch-down perturbations, the value of α̇ is
reversed, causing Fn,rot also to change its direction. The net value of instantaneous CL is an addition
of the contribution from the Fn,rot and CL,tr. The variation in Fn,rot is expected to be antisymmetrical
during the pitch-up and return stroke, whereas CL,tr remains always positive throughout this motion
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FIG. 7. Schematic shows the side view of a wing and alignment of the normal-force coefficient (Cn, rot)
during the pitch-up and pitch-down perturbations. Its components contributing to the lift (CL,rot) and drag
(CD,rot) are also shown. The blue arrows represent the direction of the relative flow velocity. The black dot
shows the location of the pitch axis.

due to α being positive [see Eq. (A5)]. As a consequence, for pitch-up perturbations, the positive
peak of CL is greater in magnitude than its negative peak.

CD was also observed to vary similar to CL during the pitch-up perturbations, reaching higher
magnitudes with larger �α. However, in the pitch-down perturbations, the waveform of CD was not
inverted. This can be explained with the help of a schematic shown in Fig. 7. During a pitch-up
perturbation, the angle α would remain positive. Here, the normal force coefficient Cn,rot is pointed
in the direction such that its contributions to both CL and CD will be positive. However, since the
initial angle α0, in this case, is small, the value of α during the pitch-down perturbation would be
negative. Hence, the normal force would act in the downward direction, contributing to the negative
CL. However, its component contributing to the drag would still be along the same direction as
the flow, as shown in the schematic. This would cause CD to be positive even in the pitch-down
perturbation. In the later half of the perturbation, the wing returns to its original position. During
this time, the sign of α̇ would be reversed, causing Cn,rot also to reverse its direction. Thus, its
contribution to CL and CD would also have reverse signs.

Pitch perturbations on a linearly translating wing are known to experience the phenomenon
of dynamic stall when the angle of attack exceeds the static stall angle [18,43–45]. During rapid
excursions in pitch angle, dynamic stall contributes to hysteresis in the variation in CL as a function
of α. The same effect was also investigated in the case of a rotationally translating wing here, as
shown in Fig. 8(a). Here, the data for the instantaneous CL for pitch-up perturbations from Fig. 6
have been plotted in relation to the instantaneous α. The black line in Figs. 8(a) and 8(b) represent
the stabilized CL values as functions of α for an unperturbed wing at different angles. Nevertheless,
even in the case of rotating wings, the pitch perturbations were observed to introduce hysteresis in
CL around the measurements for the unperturbed cases. The size of the hysteresis loop increased
with �α. The QS model predictions show a reasonable match with most CL values.

The large deviations in the experimental data from the QS model predictions observed in the
case of �α = 53◦ in this figure are not observed when plotted as functions of time; see the same
data plotted in Fig. 3(b). When plotted as functions of time, the difference between the data and
the QS model predictions is within the range of uncertainty, as is mentioned in Sec. II C. When
plotted as functions of α, the deviations appear to be larger at a given α due to the slight time delay
observed in the experimental data with respect to the QS predictions. For the case �α = 53◦, the
wing experiences the highest pitch-rotation rate in the explored range (α̇max/φ̇ ∼ 4). Thus, a small
time delay, in this case, would result in a larger change in α compared to that in other cases. For
lower �α, the deviations are lower due to a lower pitch rate.

The QS model is further used to decompose CL into the contributions from translational effects
(CL,tr) and rotational effects (CL,rot), as shown in Fig. 8(b). Note that in Fig. 8(b), dashed lines
represent CL,tr and dash-dot lines represent CL,rot. Since the translational lift coefficient is only a
function of α [see Eq. (A5)], it was expected to follow the CL–α relation for the unperturbed case, as
confirmed by the close overlap of all CL,tr values during the perturbations with the line representing
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FIG. 8. Variations in CL with α are shown in panel (a) for various �α, where the solid lines represent
experimental data and the dashed lines represent the QS model predictions. The black line shows the data
without any pitch perturbations. The QS model predictions are further decomposed in panel (b) showing the
translational component CL,tr (dashed lines) and rotational component CL,rot (dash-dot lines). In these cases,
�α is varied while maintaining α0 = 15◦ and τ = 0.2.

the unperturbed wing at various angles. The deviation from this relation is introduced purely by the
rotational effects since all CL,rot curves show a large hysteresis increasing in size with �α. As the
rotational forces scale with α̇ [as per Eqs. (A6)–(A10)], a higher α̇ required for higher �α results in
higher magnitudes of CL,rot, and hence, in larger hysteresis loops. Overall, this analysis reveals that
the quasisteady component related to the pitch-rotational velocity is the reason behind the hysteresis
observed in CL.

While the aerodynamics of an unperturbed revolving wing are characterized by a stable 3D
LEV structure, all pitch perturbations in this study exhibit significantly higher rotational effects
dominating the perturbed-wing flow profile and performance. It can be hypothesized that at lower
pitch rates, the stability of the LEV might not be disturbed by perturbations and hence, the forces
acting on the wing as a result of the stable LEV would dominate over the rotational effects.
This was investigated using computational simulations for cases with low amplitudes of pitch-up
perturbations, i.e., �α = 2.7◦, 5.3◦, 8.1◦, and 11.6◦ when the initial angles of the wing were set
to α0 = 15◦, 45◦, and 75◦. The normalized duration of perturbation τ = 0.2 was maintained to be
constant across all these cases.

To quantify the magnitude of force perturbations with respect to the stable-LEV-generated forces,
the variations in both lift and drag coefficients (i.e., �CL and �CD) were normalized with the mean
lift and drag coefficients (i.e., CL,tr and CD,tr), respectively, of the unperturbed wing at the respective
α0. Accordingly, the quantities �CL/CL,tr and �CD/CD,tr were observed to vary with �α, as shown
in Figs. 9(a) and 9(b). As expected, the force perturbations increased with �α due to the increased
pitch-rotation rates. These values are also found to be dependent on α0. The values of �CL are
expected to decrease with α0 as the normal force generated by the rotational effects will be oriented
more along the drag at higher wing angles. The value of CL,tr is maximum at α0 = 45◦, as discussed
in Sec. III A. Thus, the variation in �CL/CL,tr shows lower values at α0 = 45◦ than those from the
other two angles compared here. Similarly, �CD is expected to increase with α0 due to the increased
contribution from the rotational effects. CD,tr is also expected to increase with α0 as discussed in
Sec. III A. Due to a higher rise in CD,tr than in �CD, the ratio �CD/CD,tr is observed to decrease
from α0 = 15◦ to 45◦ with a minimal change at 75◦. The higher increase in CD,tr at high wing angles
indicates that the 3D LEV contribution might be significant at those angles.

At very low values of �α, the values of �CL/CL,tr and �CD/CD,tr are less than 1. This implies
that, during very-low amplitude pitch perturbations, the peak oscillations �CL and �CD caused by
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FIG. 9. The variations in (a) CL during a perturbation scaled with the quasisteady CL of an unperturbed
wing and (b) CD during a perturbation scaled with the quasisteady CD of an unperturbed wing are shown
as functios of �α for three initial angles, α0 = 15◦, 45◦, and 75◦. The normalized vorticity contours on the
midplane passing through the midspan of the wing at five time steps during a pitch-up perturbation are shown
in panel (c) for α0 = 15◦ and panel (d) for α0 = 45◦. The dashed lines represent the contours of the constant Q
criterion. �α = 8.1◦ and τ = 0.2 were maintained to be constant in both panels (c) and (d).

the rotational effects are less than the stable-LEV-generated values CL,tr and CD,tr, respectively. For
α0 = 15◦, this is observed at �α < 4◦, whereas for α0 = 45◦, this is observed at �α < 10◦. One
explanation for this could be that, at lower initial angles, the LEV is relatively weak and can be easily
disturbed by small perturbations as compared to higher initial angles where the LEV is stronger. To
investigate those effects on the LEV, flow structures on a cross-sectional plane through the midspan
of the wing with α0 = 15◦ and α0 = 45◦ were compared, as shown in Figs. 9(c) and 9(d). The
pitch-rotation rate was chosen to be the same by maintaining �α = 8.1◦ and τ = 0.2 constant.
Five different time steps during a perturbation are shown here. Indeed, it can be seen that the LEV
formed with α0 = 15◦ is much smaller and weaker than that with α0 = 45◦. As a result, for the
same pitch-rotation rate, the weaker LEV with α0 = 15◦ is observed to be disturbed at t/T = 0.52
and t/T = 0.65. The stronger LEV with α0 = 45◦ is only minimally affected, without experiencing
any split. These observations indicate that the rotational effects dominate the aerodynamics of the
perturbed wing at higher pitch rates. At lower pitch rates, strong 3D effects that stabilize the LEV
over a revolving wing are more dominant. The values of those rotation rates at which the transition
from the LEV-dominant to the rotation-dominant flow occurs depend on the initial angle of the
revolving wing.

D. Effect of the duration of perturbation

The pitch-rotation effects can also be changed by varying the duration of perturbation Tp. To
investigate those effects, the instantaneous values of CL and CD for two values of the normalized
duration of perturbation (i.e., τ = 0.2 and 0.4) are compared in Fig. 10. For a chosen amplitude of
perturbation �α, the hysteresis loop obtained for τ = 0.4 is observed to be narrower than that for
τ = 0.2. This is because, for the same amplitude, the longer duration would require a lower α̇. This
would result in lower rotational effects in terms of the values of Fn,rot, as discussed earlier. In this
figure, for a similar target �α, the actual �α achieved is slightly different for τ = 0.2 and 0.4 due
to the difference in the servo motor’s acceleration in the two cases. With a lower pitch acceleration
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FIG. 10. Instantaneous values of (a) CL and (b) CD are plotted against the instantaneous α for various �α.
Here, solid lines represent τ = 0.2 and dashed lines represent τ = 0.4. In all cases, α0 = 15◦.

with τ = 0.4, the wing was able to reach �α closer to the target value. Nevertheless, the lower
values of α̇ resulted in lower hysteresis effects, as is evident from the figure.

In conclusion, hysteresis does appear in the pitch-perturbed revolving wing, similar to that
observed in the pitch-perturbed linearly translating wings. In the case of revolving wings at a
constant Reynolds number, the hysteresis is due to the effects of the pitch-rotation velocity when the
other parameters affecting Fn,rot, such as the Rossby number and pitch-axis location, are maintained
to be constant. Thus, a smaller amplitude of perturbation during the same duration or a larger
duration for the same amplitude would both reduce the hysteresis effects. Hysteresis was observed
in all perturbation rates examined in this study, i.e., �α̇/φ̇ � 1.

E. Effect of pitch-axis location

The above results indicate that large variations in the instantaneous CL and CD can be controlled
by controlling the rotational effects. The force Fn,rot due to the rotational effects has two parts,
namely, Frot,1 and Frot,2, defined as

Frot,1 = fα fr (0.927 − 0.558Re−0.1577)φ̇α̇

∫ R

0
c(r)2rdr and Frot,2 = 2.67ρα̇|α̇|

∫ TE

LE
rx|x|dx,

(5)
where fα is the factor dependent on the instantaneous α, fr is the factor due to the pitch-axis location,
and x is the chordwise distance measured from the pitch axis and is positive in the direction towards
the trailing edge (TE). Various terms in these equations are described in Eqs. (A7)–(A10). The
factor fr in Frot,1 changes with the pitch axis location. The part Frot,2 changes with x, which is
directly dependent on the distribution of the wing area with respect to the pitch axis. The value of
Frot,2 will be 0 if the pitch axis is located at the center of the wing chord. Hence, both Frot,1 and Frot,2

change with a change in the pitch-axis location. Consequently, the pitch axis location might affect
the overall wing performance.

Computational simulations were used to study two cases, one with the pitch axis located at the
normalized location of x̂pa = xpa/c = 0.2 and the other with the pitch axis located at x̂pa = 0.5.
Here, xpa is the chordwise distance of the pitch axis measured from the leading edge. Note that
the CFD predictions for both CL and CD showed a better match with the QS model predictions
than the experimental data did (see Fig. 3). Hence, the CFD simulations for studying the pitch-axis
location effects provided a better decomposition of forces for further analysis. The values α0 = 15◦,
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FIG. 11. Panels (a) and (c) show the time traces of CL and CD, respectively, with the normalized chordwise
location of the pitch axis x̂pa = 0.2, whereas panels (b) and (d) show the same time traces with x̂pa = 0.5. In
both cases, α0 = 15◦, �α = 52◦, and τ = 0.2. The dashed lines represent the CFD results while the solid lines
represent the QS model estimations. Here, the force coefficients (CL and CD) have been decomposed into the
translational effects due to Ftr (red) and the rotational effects due to Frot,1 (green) and Frot,2 (blue). The red and
black solid lines overlap each other before and after the perturbation.

�α = 52◦, and τ = 0.2 were maintained to be the same in both simulated cases. The time traces of
CL and CD for the two cases are shown in Fig. 11.

In this figure, the predictions of CFD match reasonably well with the QS model estimates.
The net CL and CD are decomposed into the contributions from the translational effects (Ftr) from
Eq. (A5), rotational effects estimated from the Kutta-Joukowski theory (Frot,1) from Eq. (A7), and
rotational effects due to the local drag force normal to the wing surface (Frot,2) from Eq. (A10).
Since the translation effects are independent of the pitch axis location, the resulting time traces
of the translational force coefficients are the same in both cases. However, the component Frot,2

is 0 in the case with x̂pa = 0.5, as predicted. Therefore, the variations in the net values of CL and
CD are reduced. Note that both rotational components Frot,1 and Frot,2 depend on α̇. Hence, their
mean value is 0. As a result, the average values of CL and CD only depend on the average of the
translational components. Thus, the change in the pitch-axis location does not affect the average
wing performance; however, it does affect the instantaneous variations in CL and CD.

IV. DISCUSSION

The results discussed above showed that both CL and CD vary during the pitch perturbation and
returned to their stable values after the perturbation. In the case of rotating and flapping wings, the
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FIG. 12. For the wing during its pitch perturbation with α0 = 15◦, �α = 52◦, τ = 0.2, and x̂pa = 0.2, the
top row (a)–(e) shows the normalized pressure (p∗) contours on the wing’s suction surface at various time steps.
The vortical structures are shown by the semitransparent isosurfaces of the constant Q criterion. The bottom
row (f–j) shows the normalized spanwise vorticity (ω∗

z ) contours over a cross-sectional plane passing through
the center of the wingspan at the same time steps as in the top row. Here, the dashed lines represent the constant
Q criterion. Refer to Figs. 11(a) and 11(c) for time traces of CL and CD, respectively.

vortical structures are commonly observed to have a large influence on CL and CD variations. Hence,
to analyze the effects of the flow structures around the wing on the wing performance during the
pitch perturbation, the normalized wing-surface pressure [p∗ = p/(0.5ρU 2

ref )] contours were plotted
at various time steps along with the flow structures identified by the constant Q criterion [46], as
shown in Fig. 12.

Before the start of the pitch-perturbation, the wing had revolved around the sweep axis with
a constant angular velocity φ̇ = 20◦/s and angle α0 = 15◦. A conical LEV was formed, which
remained attached to the wing surface. As can be seen in Fig. 12(a), high magnitudes of suction
pressure (i.e., negative p∗) are found to be beneath the LEV. Since the pitching axis in this
case is closer to the leading edge, when the wing starts pitching up, a major part of the wing
below the pitching axis starts moving downward. Due to the net downward resultant velocity, the
magnitudes of suction on the wing surface increase significantly, for example in Fig. 12(b). This
rise in the suction magnitude is responsible for the higher CL observed during the pitch-up motion
[see Fig. 11(a)]. When the pitch motion decelerates and the wing starts pitching down, the net
relative velocity of the lower region of the wing is upwards, which results in the positive p∗ in this
region [see Figs. 12(c) and 12(d)]. Hence, the net normal force on the wing acts downwards, due
to which a negative CL is observed [see Fig. 11(a)]. When the perturbation ends [in Fig. 12(e)], the
suction pressure on the wing surface is recovered.

The flow structures on the wing undergo significant changes due to pitch perturbation. For better
clarity, the normalized spanwise vorticity [ω∗

z = ωz(0.75R)/Uref] contours are plotted on a cross-
sectional plane passing through the wing’s midspan, as shown in Figs. 12(f)–12(j). During the pitch-
up motion, a strong trailing-edge vortex starts to develop, which is separated from the wing at the
end of the pitch-up motion at t/T = 0.52. Simultaneously, during the pitch-up motion, the LEV is
disturbed and is spread over most of the wing suction surface, remaining close to the surface. During
the pitch-up motion, the relative velocity of the fluid separating at the leading edge is lower than that
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at the end of the pitch-up motion at t/T = 0.52. Hence, the shear layer on the leading edge forms
a stronger LEV at t/T = 0.52 than that during the pitch-up motion. The relative velocity of the
separating fluid further increases during the wing’s pitch-down motion and feeding of vorticity in the
LEV increases. Consequently, the LEV grows in size and is also lifted away from the wing surface,
as can be seen in Figs. 12(i) and 12(j). Moreover, an upward motion of the trailing edge also creates
a shear, thereby forming a trailing-edge vortex (TEV) of the same-sign vorticity as that of the LEV,
but on the pressure side of the wing. At the end of the pitch perturbation [in Fig. 12(j)], both LEV
and TEV move away from the respective wing surfaces. At this time step, the flow structures around
the wing are very different from those before the start of the perturbation. However, the values of
CL and CD are observed to be similar before and immediately after the perturbation. Hence, the
observed changes in the flow structures only minimally affect the forces on the wing in the explored
range of pitch-rotation rates (the normalized maximum pitch rate range: α̇max/φ̇ < 4) in this study.
Chen et al. [26] attributed the changes in CL to the vortex stretching and tilting that occurred during
the perturbation. However, the vortex stretching and tilting may not completely explain the changes
in CL since the effects of the local drag affecting the wing-surface pressures were not considered.

The wing-surface pressures are more related to the wing motion, which can be explained by the
rotational effects in the QS model. As per the QS model, the translational effects are proportional
to the instantaneous angle α and the rotational effects are proportional to the instantaneous pitch-
angular velocity α̇. Since the pitch perturbation follows a symmetric profile in α, the mean value
of α̇ is expected to be 0. Hence, the mean value of CL (i.e., CL) will be independent of α̇ and will
depend only on the mean α during the perturbation (i.e., αp). The peak-to-peak variations in CL

(i.e., �CL) will depend on the peak-to-peak variations in α̇ (i.e., �α̇). This is shown by plotting CL

against αp and �CL against �α̇/φ̇ for the data obtained from various α0, �α, τ , and both pitch-up
and pitch-down perturbations, as shown in Fig. 13.

The values of CL in all cases fit well along the function sin(2αp) for the translational component
in the QS model, as can be seen in Fig. 13(a). Similarly, all values of �CL for a given α0 show
a monotonous increase with �α̇, as shown in Fig. 13(b). However, for different α0, the curves
shift, indicating that �CL must also depend on the instantaneous angle. Revising the QS model
for rotational effects reveals that �CL ∝ �Frot cos(α). Moreover, Frot must be a quadratic function
of α̇ (see Eqs. (A6)–(A10)). Hence, �CL ∝ (�α̇/φ̇) cos αp. This is verified by plotting �CL as a
function of (�α̇/φ̇) cos αp in Fig. 13(c). Most values collapse along a curve roughly approximated
by a quadratic least-square fit. This clearly shows that the instantaneous variations in CL depend on
both the pitch-rotational velocity and the mean perturbation angle.

Note that, in all perturbed cases, �α̇ > φ̇. Hence, the pitch-rotational effects on CL are signif-
icantly higher than the translational effects. The collapse of data from various cases in Fig. 13(c)
demonstrates that, despite undergoing pitch perturbations with different initial angles, amplitudes,
and duration, the same (�α̇/φ̇) cos αp should result in the same variations in CL. In conclusion, the
instantaneous forces on the wing are highly sensitive to the pitch-rotation velocity and the mean
perturbation angle, whereas the average performance is dependent on the translational effects only.

Finally, the coefficient of power transferred from the fluid to the wing was calculated as

CP = τyφ̇ + τzα̇

0.5ρU 3
refA

, (6)

where τy and τz are the torques around the flapping and pitching axes, respectively. Accordingly,
the flapping and pitching powers can be separated as CP = CP,flap + CP,pitch. For various values of
α0 and �α explored in this work, the mean power transfer coefficients CP,flap and CP,pitch during the
perturbation were computed for all cases with τ = 0.2 and x̂pa = 0.2. The values of those power
coefficients were plotted as contours on the maps of α0 and �α, as shown in Fig. 14. The flapping
power is observed to be dependent on both α0 and �α, whereas the pitching power is primarily a
function of �α, virtually independent of α0. This is because the flapping torque τy depends on the
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FIG. 13. For various α0, �α, and τ , the mean lift coefficient (CL) values are plotted as a function of the
mean perturbation angle αp in panel (a). The peak-to-peak variation (�CL) during the perturbation is plotted as
a function of the normalized peak-to-peak perturbation angular velocity α̇/φ̇ in panel (b) and as a function of
(�α̇/φ̇) cos αp in panel (c). The dashed line in panel (a) shows a least-square fit to the function sin(2αp). The
dashed line in panel (c) shows a least-square fit to a quadratic function of (�α̇/φ̇) cos αp.

drag acting on the wing that changes with both α0 and �α. However, the pitching torque τz depends
mainly on the rotational force Fn.rot, which is a function of α̇ as discussed above.

The region bounded by 10◦ � α0 � 30◦ and −20◦ � �α � −50◦ in Fig. 14(a) might be of
interest since it shows positive power transfer from the fluid to the wing. This indicates the
possibility of the wing being self-propelled about the flapping axis. It should be noted that these
values are within the uncertainty of the experiments and the QS model does not predict the positive

FIG. 14. The contours of the time-averaged coefficients of (a) flapping power (CP,flap) and (b) pitching
power (CP,pitch) are shown on the maps of α0 and �α for the cases with τ = 0.2 and x̂pa = 0.2.
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power transfer in this region. Nevertheless, the possibility of reduced drag or improved flapping
efficiency around this region may be explored in future.

V. CONCLUSIONS

The effects of pitch perturbations on a revolving wing were studied, both experimentally and
numerically, by providing a single pitch perturbation during its rotation about the span-normal axis
with a constant angular velocity. The initial angle, amplitude and duration of perturbation were
systematically varied. In the absence of any pitch perturbation, wings rotating at a constant Reynolds
number and set at a constant angle are known to experience constant lift and drag due to the stable
attachment of the leading-edge vortex. However, in this work, the stability of the lift and drag forces
was observed to be severely affected during pitch perturbation. The magnitudes of changes in the
lift and drag coefficients were found to be sensitive to the initial angle.

The applicability of the quasisteady (QS) model developed for flapping wings by Ref. [27]
was examined to predict forces on the pitch-perturbed revolving wings. Irrespective of the highly
unsteady nature of the flow around the pitch-perturbed wing, its lift and drag coefficients could be
predicted remarkably well using the QS model. Accordingly, the effects of pitch perturbations were
decomposed into translational and rotational effects. The large-amplitude variations in the lift and
drag during perturbations on a revolving wing were shown to be associated predominantly with the
rotational effects explained by the QS model. These rotational effects were dependent on a combined
function of the mean pitch angle and the pitch-rotational velocity, which was modified by changing
the amplitude and duration of perturbations in different sets of experiments. An increase in the
pitch-rotational velocity was found to result in an increase in the hysteresis in the variation in the lift
as a function of the wing angle. The hysteresis was found to be due to the changes in the circulation
around the wing and the local drag force, both being related to the pitch-rotational velocity.
Moreover, the rotational effects were found to be highly sensitive to the pitch-axis location. Thus, the
oscillations in the lift and drag coefficients during the perturbations could be decreased by moving
the pitch axis closer to the wing’s center of mass. However, the mean lift and drag would remain
unaffected, since they were dependent only on the translational effects. The mean lift coefficient
was only a function of the mean perturbation angle, whereas the peak-to-peak variations in the lift
coefficient depended on both the pitch-perturbation velocity and the mean perturbation angle.

Furthermore, the lift and drag were observed to return to their stable values at t/T ∼ 0.75,
irrespective of the significant changes in the flow structure around the wing. Thus, the quasisteady
effects due to pitch rotation dominated the instantaneous forces in most cases. With sufficiently low
pitch rates, the stability of the LEV over a wing was minimally disturbed and the LEV-generated
forces dominated over the rotational effects. The values of such pitch rates were found to be highly
dependent on the initial wing angle. Finally, the analysis of the power transfer between the fluid
and the wing showed that the pitching power relied only on the perturbation velocity, whereas
the flapping power relied on both the initial angle and the perturbation velocity. Interestingly, some
pitch-down perturbations showed a possibility of improved power economy, which may be explored
in detail in future.
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APPENDIX: QUASISTEADY MODEL OF LEE ET AL. [27]

According to this model, the lift (L) and drag (D) forces on a wing can be decomposed as

L = Ltr + (Fn,rot + Fa) cos α and D = Dtr + (Fn,rot + Fa) sin α, (A1)
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respectively. Here, Ltr and Dtr are the lift and drag components due to the wing’s rotational
translation, i.e., the sweep motion, Fn,rot is the force due to the wing’s rotation about the pitch
axis, Fa is the force due to the added mass and α is the wing’s angle of attack. Since the added-mass
forces were subtracted from the total forces in experiments and CFD, the same were neglected in
the calculations using the QS model. The translational components are given by

Ltr = fAR,tr fRo,trCL,tr

(
0.5ρφ̇2

∫ R

0
c(r)r2dr

)
and

Dtr = fAR,tr fRo,trCD,tr

(
0.5ρφ̇2

∫ R

0
c(r)r2dr

)
, (A2)

where fAR,tr is the aspect ratio correction factor:

fAR,tr = 32.9 − 32AR−0.00361, (A3)

and fRo,tr is the Rossby number correction factor:

fRo,tr = −0.205 tan−1[0.587(Ro − 3.105)] + 0.87. (A4)

Note that these and other following values in this model are tuned by Lee et al. [27] based on a
number of CFD results obtained by varying AR, Re, Ro, and xrot. Here, the Rossby number has
been defined as Ro = Rg/c, where Rg is the wing’s radius of gyration. Similarly, Re in this model
has also been defined based on the velocity at Rg. The translational lift and drag coefficients are
dependent on the Reynolds number (Re) and α and are given by

CL,tr = (1.966 − 3.94Re−0.429) sin(2α) and

CD,tr = (0.031 + 10.48Re−0.764) + (1.873 − 3.14Re−0.369)[1 − cos(2α)], (A5)

respectively. The normal force due to rotational effects, Fn,rot, can be considered as the sum of two
components,

Fn,rot = Frot,1 + Frot,2, (A6)

where Frot,1 is due to the circulation around the wing as a result of pitch rotation, as per the
conventional Kutta-Joukowski theory, and Frot,2 is due to the local drag force acting on the wing
as a result of the wing’s instantaneous pitch rotation. The force Frot,1 can be predicted by

Frot,1 = fα fr (0.927 − 0.558Re−0.1577)φ̇α̇

∫ R

0
c(r)2rdr. (A7)

Here, fα is the factor dependent on the instantaneous α as

fα =
⎧⎨
⎩

1 −45◦ < α < 45◦,
−1 135◦ < α < 225◦,√

2 cos α otherwise.
(A8)

Moreover, fr is the factor due to the location of the wing’s pitching axis with respect to the leading
edge (xrot) as

fr = 1.57 − 1.239

(
1

Rc

∫ R

0
xrotdr

)
. (A9)

Similarly, the force Frot,2 can be predicted by

Frot,2 = 2.67ρα̇|α̇|
∫ TE

LE
rx|x|dx, (A10)

where x is the chordwise distance measured from the pitch axis and is positive in the direction
towards the trailing edge (TE).
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