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We propose a model to obtain the subgrid-scale velocity in the context of large-eddy sim-
ulation (LES) of particle-laden turbulent flows, to recover accurate particle statistics. In our
wavelet enrichment model, the subgrid-scale velocity is discretized with a divergence-free
wavelet vector basis, and the coefficients of the expansion are obtained by minimizing the
squared error of the linearized subfilter Navier-Stokes equations (SFNSE). The compact
support of the wavelet basis is exploited to achieve continuously varying subgrid-scale
velocity statistics across the domain. The performance of our wavelet enrichment model is
evaluated in single-phase and particle-laden flow simulations, comparing the results with
the results of direct numerical simulations (DNS). The simulations show that the model
can generate inhomogeneous and anisotropic velocity statistics, accurate strain-rotation
relations, and a good approximation of the kinetic energy spectrum of the corresponding
DNS. Furthermore, the model significantly improves the prediction of the particle-pair
dispersion, the clustering of the particles, and the turbulence modulation by particles in
two-way coupled simulations. The proposed model recovers the most important interac-
tions between fluid turbulence and the behavior of the particles, while maintaining the
computational cost on the order of an LES.

DOI: 10.1103/PhysRevFluids.8.104604

I. INTRODUCTION

The understanding of the underlying physics of the interactions between turbulence and particles
has attracted a lot of research interest for many decades, because of its ubiquity in natural and
industrial processes. The only way to capture the most important complex phenomena of these
multiphase flows numerically is to perform direct numerical simulation (DNS), which resolves
the turbulent length- and timescales down to the Kolmogorov scales. In single-phase turbulence,
extensive research and model development have enabled good predictions of turbulence statistics
with computational costs significantly smaller than the costs of a DNS. One of the methods that
achieves this is large-eddy simulation (LES), which resolves the large flow structures with the
numerical grid while modeling the effect of the smaller, unresolved scales. The success of LES
in single-phase turbulence does not apply to particle-laden flows, since various interactions between
the phases are not captured by existing LES models.

The dispersion and preferential concentration of particles in the turbulent flow can be very
different if they are transported with the filtered fluid velocity field instead of the fluid velocity
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field that contains the full turbulent spectrum [1–4]. A solution to this is to model the unresolved
fluid velocity at each particle position.

The reconstruction of the subgrid-scale fluid velocity field, even in the absence of particles, has
been a topic of interest for decades, which explains the large variety of existing models. The majority
of these models, however, suffers from drawbacks that make them unsuitable for the application to
particle-laden turbulent flows.

A well-known method to generate a fictitious subgrid-scale fluid velocity field is the kinematic
simulation that approximates the fluid velocity field as a truncated Fourier series with coefficients
that are chosen from a Gaussian distribution, such that a given kinetic energy spectrum is achieved,
and the resulting velocity field is divergence-free [5–7]. Since real turbulence is typically not
Gaussian and potentially statistically inhomogeneous and anisotropic, the kinematic simulation does
not provide a realistic turbulent field. The subgrid-scale velocity field can also be reconstructed
by fractal interpolation as proposed by Scotti and Meneveau [8]. Even though the model is
computationally cheap, no physical knowledge of turbulence is incorporated. Domaradzki and Loh
[9] proposed a velocity field extrapolation method for the velocity field on a refined grid using
explicit filtering of the nonlinear advective term in the Navier-Stokes equations. Without further
modification, however, the resulting velocity field is not divergence-free. Another family of models
either solves the subfilter Navier-Stokes equations (SFNSE) with a simplifying numerical method
such as, e.g., partially freezing the velocity field [10], or model the SFNSE itself [11–15]. Even
though accurate predictions are reported, the models can be computationally expensive or may
introduce assumptions that cannot be justified in some contexts [16].

Approaches that approximate turbulent velocity fields inspired the development of models
for LES of particle-laden flows. A class of models emerged that solve a stochastic differential
equation for every particle independently (see, e.g., Refs. [17–22]), which turns out to be versatile
and computationally efficient. By construction, however, these models predict poor particle pair
statistics, and their results strongly depend on the choice of model parameters [23]. Improved
particle statistics are observed with models that apply a deconvolution operator on the LES velocity
field [24–26], but these models merely modify the velocity field on the LES grid and do not augment
the range of modeled scales. Bassenne et al. [27] combine the dynamical deconvolution of Park
et al. [26] with the subgrid extrapolation of Domaradzki and Loh [9] and obtain realistic particle
clustering with LES of homogeneous isotropic turbulence (HIT) and for a wide range of Stokes
numbers. The high computational cost, originating from a divergence-free projection on a very fine
grid, make this model unsuitable for LES. Recently, Hausmann et al. [28] proposed a model that
solves the linearized SFNSE with Fourier basis functions in statistically homogeneous subdomains
and apply it to particle-laden turbulent flows. In LES of HIT, the model mainly recovers particle pair
dispersion and clustering of the corresponding DNS for particles of many Stokes numbers. Because
of the statistically homogeneous subdomains, however, the subgrid-scale velocity field is partially
discontinuous and requires interpolation.

In the present work, we derive a model for predicting the subgrid-scale fluid velocity field
that recovers characteristic properties of turbulence, while maintaining computational costs that
are acceptable in the scope of an LES. To obtain the right particle statistics and clustering, the
modeled subgrid-scale velocity field is expected to have realistic spatial and temporal correlations,
strain-rotation relations, and non-Gaussian distributions of, e.g., the fluid velocity gradients. A
model for the subgrid-scale velocity must also be able to generate statistically inhomogeneous and
anisotropic velocity fields.

In our model, the SFNSE are linearized by means of the rapid distortion theory and approx-
imately solved by minimizing their squared error. The discrete solution spaces are spanned by
divergence-free wavelet vector functions. The narrow support of the wavelet basis in physical and
spectral space allows for spatially varying fluid velocity statistics and localization in spectral space,
that is required to control the kinetic energy spectrum. Conceptually, the wavelet enrichment is
superior to Fourier enrichment, which requires special treatment, such as statistically homogeneous
subdomains, to generate an inhomogeneous subgrid-scale velocity field [15]. Divergence-free
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wavelet vector bases are also used by Letournel [29] to generate a turbulent velocity field by
transporting the wavelet coefficients by a stochastic Langevin model. In the proposed model,
however, a transport equation for the wavelet coefficients is derived that minimizes the error in the
momentum balance. Other application of wavelets in reduced order turbulence modeling include the
modeling of the subgrid-scale stress tensor in the scope of LES, by applying a wavelet transform to
the resolved fluid velocity (see, e.g., Denev et al. [30]), which models the effect of the subgrid-scale
velocity on the resolved scales but not the subgrid-scale velocity itself. A different approach involves
performing LES with adaptive mesh refinement based on a wavelet decomposition of the resolved
velocity. This approach employs thresholding to preserve only the most energetic scales, in contrast
to the standard LES, which preserves only the largest scales (see, e.g., De Stefano and Vasilyev [31]).
In contrast to the present work, however, the unresolved scales are not reconstructed. In a related
study, Xiong et al. [32] study the particle statistics of particles transported with the fluid velocity
field of an LES with wavelet-based adaptive mesh refinement (corresponding to the energetically
optimal wavelet filtered DNS) and compare it to the statistics of particles transported with the
fluid velocity field of a standard LES. It is concluded that the right particle statistics can be better
recovered if the most energetic fluid velocity structures are used to transport the particles instead of
the largest structures, which are resolved in a standard LES. In a subsequent study, they apply the
dynamical deconvolution method of Park et al. [26] to the wavelet filtered DNS [33]. However, no
model is proposed that can be applied to a standard LES to account for the unresolved fluid velocity
field on the particle motion.

Even though the literature on LES of particle-turbulence interaction is dominated by studies
and models for the subgrid-scale velocity at the particle positions, to enable one-way coupled
simulations, more modeling is required in the case of two-way coupled simulations (i.e., where
the turbulence modification by the particles is taken into account). Recently, Hausmann et al. [28]
proposed a modeling framework that models the two-way coupling effects in an LES, caused by the
unresolved fluid velocity field.

The paper is outlined as follows. The wavelet enrichment is derived in Sec. II, and the background
of the governing equations and the wavelet basis is provided. In Sec. III, we introduce the simulation
configuration that we use to evaluate the performance of the wavelet enrichment. The results
and validation for single-phase and particle-laden flows are given in Sec. IV before the paper is
concluded in Sec. V.

II. WAVELET MODEL FOR THE SUBGRID-SCALE VELOCITY

In this section, we describe the wavelet enrichment for the subgrid-scale velocity. The subgrid-
scale fluid velocity field is projected onto a wavelet basis, and the coefficients of the expansion are
determined by locally minimizing the mean-squared error of the linearized SFNSE.

A. Scale decomposition

LES is based on separating the flow into large-scale contributions and small-scale contributions.
This is realized mathematically by filtering a quantity ϕ [34]:

ϕ̃(x) =
∫ ∞

−∞
G(x − ξ )ϕ(ξ )dξ, (1)

where .̃ indicates a filtered quantity and G is the filter kernel. Subfilter quantities are given by
ϕ′ = ϕ − ϕ̃, which we also refer to as subgrid-scale quantities in the scope of LES. Filtering the
Navier-Stokes equations (NSE) of an incompressible fluid with constant density ρf and kinematic
viscosity νf yields the filtered Navier-Stokes equations (FNSE):

∂ ũi

∂xi
= 0, (2)
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∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρf

∂ p̃

∂xi
+ νf

∂2ũi

∂x j∂x j
− ∂τi j

∂x j
+ s̃i, (3)

where ui is the velocity and p is the pressure. The source term si represents, for instance, the
momentum coupling of a second phase or a forcing to maintain statistically stationary turbulence.
The subgrid-scale stress tensor accounts for the influence of the subgrid scales on the filtered scales
and is given by

τi j = ũiu j − ũiũ j . (4)

By subtracting the FNSE from the NSE, the governing equations for the subgrid-scale fluid velocity
are obtained. In models for the subgrid-scale velocity, the nonlinear term in the SFNSE is often
omitted, or replaced by, a turbulent viscosity [11,12,14,15,35]. The resulting linearized SFNSE can
be written as

∂u′
i

∂xi
= 0, (5)

∂u′
i

∂t
+ ũ j

∂u′
i

∂x j
+ u′

j

∂ ũi

∂x j
= − 1

ρf

∂ p′

∂xi
+ (νf + ν ′

t )
∂2u′

i

∂x j∂x j
+ ∂τi j

∂x j
+ s′

i. (6)

The turbulent viscosity can be derived from renormalization groups [36]:

ν ′
t (k) =

(
ν2

f + 2

5

∫ ∞

k
q−2E (q)dq

)1/2

− νf , (7)

where E (k) is the kinetic energy spectrum of the wave number k. The replacement of the nonlinear
term with a turbulent viscosity can be justified energetically and by means of their contribution to
intermittency [35]. Similar to subgrid-scale models relying on the Boussinesq hypotheses, however,
the linearization mistakenly assumes an alignment of the eigenvectors of the subgrid-scale stress
tensor with those of the fluid velocity gradient tensor (see, e.g., Horiuti [37]). Therefore, the use
of an eddy viscosity, may it be in the SFNSE or LES subgrid-scale models, are only justified
energetically. Furthermore, the derivation of Eq. (7) relies on the assumption homogeneous isotropic
turbulence [36]. We justify its use in inhomogeneous and anisotropic configurations by the fact that
the small velocity scales, which are reconstructed in the proposed model, are typically much more
homogeneous and isotropic than the large scales. This is a typical assumption for modeling the
subgrid-scale stress tensor [16].

Similar to our recently proposed model, we aim to efficiently solve the linearized SFNSE to
approximate the subgrid-scale fluid velocity field. Instead of expanding the subgrid-scale fluid
velocity field in Fourier space [15], we approximate it as a finite series of wavelet basis functions.
The rapidly decaying support of a wavelet basis in spectral and physical space enables a model that
incorporates spectral space information and spatial inhomogeneities.

B. Multiresolution analysis

A Fourier series consists of basis functions (i.e., sines and cosines) that are perfectly localized
in spectral space (they can be associated to exactly one wave number), but it has no localization
in physical space (it is unknown where a frequency occurs). Convoluting the trigonometric basis
functions of a Fourier series with a Gaussian window function enables localization of the spectral
information in physical space. This is known as the discrete Gabor transform (see, e.g., Ref. [38]).
Because of the constant window size, the low wave numbers tend to be spectrally underresolved
and high wave numbers spatially underresolved. In fact, it is more appropriate to provide a wide
physical support for small wave numbers and a narrow physical support for large wave numbers.
A multiresolution analysis (MRA) applies this idea [38,39]. A MRA uses scaling functions φ and
wavelets ψ as basis functions, that have compact support (or at least decay rapidly) in physical
and spectral space. The scaling functions and the wavelets are elements of function spaces, which
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have specific properties. We consider subspaces of the Lebesgue space (Vj ) j∈Z ⊂ L2(R), where the
index j can be understood as an indicator of the range of wave numbers the functions possess that
are deduced from the respective subspace. Functions that belong to subspaces of a large index j
contain higher wave numbers than functions belonging to subspaces of a smaller index j. In the
context of turbulence, that means that functions deduced from a subspace approximate eddies of
a particular range of size, whereas a larger index corresponds to smaller eddies. The subspaces Vj

have the following properties [39]:
(i) the subspaces are nested Vj ⊂ Vj+1,
(ii) their intersection is zero

⋂
j∈Z Vj = {0},

(iii)
⋃

j∈Z Vj is dense in L2(R),
(iv) they are invariant with respect to scaling f ∈ Vj ⇐⇒ f (2.) ∈ Vj+1, and
(v) they are invariant with respect to translation f ∈ Vj ⇒ f (. − k) ∈ Vj,∀k ∈ Z.
One can imagine the functions of a subspace to represent a prototype eddy that is scaled in size,

shifted in space, and superposed. Complementary spaces to Vj can be defined such that

Vj+1 = Vj ⊕ Wj . (8)

Every function f ∈ Vj+1 is either f ∈ Vj or f ∈ Wj , but not both. Consequently, we can decompose
the L2(R) as

L2(R) = V0

∞⊕
j=0

Wj . (9)

From the so-called scaling function, or father wavelet, φ ∈ V0 and mother wavelet ψ ∈ W0 functions
are deduced such that Vj is spanned by {φ jk; j, k ∈ Z} and Wj is spanned by {ψ jk; j, k ∈ Z}:

φ j,k (ξ ) = φ(2 jξ − k), (10)

ψ j,k (ξ ) = ψ (2 jξ − k). (11)

Thus, a function f ∈ L2(R) may be expressed with a basis of scaling functions and wavelet
functions

f (ξ ) =
∑
k∈Z

c0,kφ0,k (ξ ) +
∑
j�0

∑
k∈Z

d j,kψ j,k (ξ ). (12)

Note that it is common to scale φ j,k and ψ j,k with a factor of 2 j/2. For simplicity, we absorb this
factor in the coefficients c0,k and d j,k .

The mother scaling function is defined by the low pass filter

φ

(
ξ

2

)
=

∑
k∈Z

hkφ(ξ − k), (13)

and the mother wavelet function is defined by the high pass filter

ψ

(
ξ

2

)
=

∑
k∈Z

gkφ(ξ − k). (14)

The coefficients hk, gk characterize the different scaling functions and wavelets with different
properties. We express the subgrid-scale velocity as a finite sum of divergence-free wavelet vector
basis function as derived by Lemarié-Rieusset [40]

u′(x) =
jmax∑

j= jmin

∑
k

∑
ε

dε
div, j,kΨ

ε
div, j,k[ξ(x)], (15)
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(a) (b)

FIG. 1. Plot of the piecewise linear (a) and piecewise quadratic (b) spline scaling and wavelet functions.

where dε
div, j,k are the wavelet coefficients, Ψ ε

div, j,k are divergence-free wavelet vector basis functions,
jmin and jmax the limits of the considered levels, and ξ(x) is a mapping from physical space
coordinates x to the reference coordinates ξ. The index ε specifies one of the 14 basis vector
functions such that Ψ ε

div, j,k form a Riesz basis of the space of divergence-free vector functions in R3

[41]. Note that 21 basis vector functions are required to span the whole R3, and the projection onto
the divergence free subspace reduces the number of basis vector functions to 14. The derivation of
the basis functions and their exact expressions is relatively lengthy and can be found in Deriaz and
Perrier [41]. Therefore, we do not repeat the derivation in the present work. The divergence-free
vector functions are composed of four one-dimensional compactly supported spline functions that
are depicted in Fig. 1 and defined by the coefficients hk, gk (in the proposed model similar to
coefficients given by Deriaz and Perrier [41] but multiplied with a factor

√
2).

The mapping from physical coordinates to reference coordinates is given as

ξi(xi ) = (xi − xi,min)/(xi,max − xi,min), (16)

where xi,min and xi,max are the limits of the cuboid domain. With the given mapping a periodic basis
can be realized for j � 3, which is the first level with a support smaller than one.

C. Local least-squares approximation of the model equations

The subgrid-scale fluid velocity field lies within the space of divergence free vector functions
in R3. Hence, it can be expressed as an infinite series of wavelet vector functions Ψ ε

div, j,k and
coefficients dε

div, j,k. We are searching coefficients of the finite series expansion Eq. (15), such that
the subgrid-scale fluid velocity field is approximated well, which is divergence-free and conserves
momentum at least by fulfilling the linearized momentum equation (6). With the expansion of the
subgrid-scale velocity with the divergence-free vector functions, the former is satisfied immediately.
The latter is achieved by a least-squares approximation, which is explained in the following.

The advective term in the linearized SFNSE can be Helmholtz decomposed in a divergence-free
and a curl-free contribution. Since we seek a solution in the divergence-free wavelet vector space,
the curl-free contribution can be dropped together with the pressure term, which gives

∂u′
i

∂t
+ A⊥

i = Di + F⊥
i , (17)

where A⊥
i = (ũ j

∂u′
i

∂x j
+ u′

j
∂ ũi
∂x j

)⊥ is an abbreviation for the projected advective term, Di = (νf +
ν ′

t )
∂2u′

i
∂x j∂x j

for the diffusive term, and F⊥
i = ( ∂τi j

∂x j
)⊥ for the projected forcing term, which originates
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from the subgrid-scale stress tensor and mainly supplies the subgrid-scale velocity field with kinetic
energy (further details in Appendix B).

Minimizing the squared error of Eq. (17) over the whole domain results in the well known
Galerkin method, which we refer to as globally optimal solution.

If the vector valued error of a differential equation at time t and point x is given as Ei(t, x), the
optimal solution is achieved if ∫

Ei(t, x)Ei(t, x)dVx

is minimal. This can be achieved by adjusting the coefficients dε
div, j,k of the discretized solution such

that a stationary point is found, which corresponds to a minimum.
To make the solution for the coefficients affordable in the scope of an LES, we seek locally

optimal solutions for every j and k independently:

∂

∂dζ ,n+1
div, j,k

∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]2

dVx = 0, (18)

which yields the condition∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]
· Ψ

ζ

div, j,k[ξ(x)]dVx = 0. (19)

The fluid velocity field local in j and k, which we also refer to as local wave packets, is given as

u′
j,k(x) =

∑
ε

dε
div, j,kΨ

ε
div, j,k[ξ(x)], (20)

and A⊥
j,k, D j,k, and F⊥

j,k are the projected advective, diffusive, and projected forcing term, as a
function of the local velocity wave packets, respectively. The time derivative is discretized with an
explicit Euler-scheme, where n indicates the time level.

Relaxing the global optimality condition to local j, k avoids the solution of a large equation sys-
tem of size 14Nk × 14Nk. Instead, we invert Nk systems of size 14 × 14. Note that the matrix is
always identical, and in practice only one inversion of the 14 × 14 matrix is required. The linear
nature of the projected linearized SFNSE (17) allows for superposition of solutions, such as the
approximated solutions for the local wave packets u′

j,k(x). If the local wave packets would perfectly
satisfy Eq. (17), then their superposition would also satisfy Eq. (17). Since u′

j,k(x) is a numerical
approximation, the discretization errors add up by superposing the solutions and, in total, lead to
an error that is larger than the solutions of the global optimization using the Galerkin method.
However, only with the localization of the optimization, and the associated increase of the numerical
error compared to the Galerkin method, the solution for the subgrid-scale velocity field becomes
computational feasible in the scope of LES. Together with the linearization of the SFNSE, the
localization of the optimization constitutes the main assumption of our wavelet model.

Since the wavelet basis possesses no degrees of freedom in the space that is orthogonal to
the divergence-free [L2(R3)]3, no explicit projection of the advective term is required to obtain
a divergence-free subgrid-scale velocity. The projected advective term is obtained by expanding it
in a series of wavelet basis functions (similar to the subgrid-scale velocity field) and solving the
following problem: 〈

A⊥
j,k

∣∣Ψ ε
div, j,k

〉 = 〈
A j,k

∣∣Ψ ε
div, j,k

〉
, (21)

where 〈.|.〉 indicates the inner product. Equation (19) is solved with the resulting coefficients, which
leads to the same discrete equations as using A j,k without prior projection in Eq. (19).
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Note the solution of Eq. (19) is guaranteed to produce the energetically optimal coefficients,
because the Hessian

H j,k = Hε,ζ

j,k = ∂2

∂dε,n+1
div, j,k∂dζ ,n+1

div, j,k

∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]2

dVx

= 2

�t2

∫
Ψ ε

div, j,k[ξ(x)] · Ψ
ζ

div, j,k[ξ(x)]dVx, (22)

is positive-definite, i.e., vTH j,kv > 0,∀v ∈ R14 \ {0}. It follows that Eq. (18) constitutes a convex
optimization problem and the solution has always a minimal error.

For a solution of Eq. (19) to exist, all terms of Eq. (19) must be integratable and finite, which
means that the following expression have to be satisfied:

(i)
∫

Ψ ε
div, j,k(x) · Ψ

ζ

div, j,k(x)dVx < ∞,

(ii)
∫ ∂ (Ψ ε

div, j,k (x)·Ψ ζ

div, j,k (x))

∂x j
dVx < ∞,

(iii)
∫

Ψ ε
div, j,k(x) · ∇2Ψ

ζ

div, j,k(x)dVx < ∞,

where Ψ ε
div, j,k must possess second-order weak derivatives. The divergence-free basis introduced in

Sec. II B satisfies these requirements.

D. Realization of the model in practice

The forcing term Fi represents the energy transfer from the resolved scales to the subgrid scales
and is modeled in the proposed framework. A direct evaluation of Fi = ∂τi j

∂x j
requires explicit filtering

with an a priori unknown filter. Kinetic energy can be added to the subgrid-scale velocity by the
advective terms and the subgrid-scale stress tensor, that both underlie modeling assumptions (e.g.,
the linearization and the explicit filtering) and discretization errors. Consequently, undesired high
or low kinetic energies can occur and even destabilize the numerical solution.

Since it is essential for the subgrid-scale velocity to have a realistic kinetic energy, we seek a
model forcing term that can easily adjust the kinetic energy in both directions. The advective term
Ai can add and remove kinetic energy across the scales. The diffusive term Di, however, always
removes kinetic energy if the viscosity is positive. The advective term and the diffusive term are
scaled to remove kinetic energy from or add kinetic energy to the subgrid-scale velocity field. The
total viscosity is replaced by an effective viscosity:

νeff (k) =
√

Kj,k

Kj,desired
[νf + ν ′

t (k)]. (23)

The kinetic energy of each wavelet is obtained with

Kj,k = Cd→K

Nε

∑
ε

(
dε

div, j,k

)2
, (24)

where Cd→K is a constant that depends on the distribution of dε
div, j,k and is frequently adjusted by

rearranging Eq. (24) and sampling Kj,k = (u′
j,k · u′

j,k )/2 at random positions. The desired kinetic
energy follows the scaling of the spectrum of the inertial range

Kj,desired = Kdesired

N k−5/3
j �k j, (25)

with the norm

N =
∑

j

k−5/3
j �k j, (26)
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and the wave number k j = 2 j2π/L. The wave number step is given by

�k j = k j+1 − k j−1

2
, (27)

and L indicates the size of the domain. Since the basis functions are associated with a range of wave
numbers, k j must be interpreted as a characteristic wave number of the respective level j.

The advective term is also scaled with a factor of
√

Kj,desired/Kj,k, which accelerates the adaption
to the desired kinetic energy. This procedure for maintaining the kinetic energy is stable and
insensitive to external disturbances, such as momentum sources originating from two-way coupled
particles. Note that no forcing is introduced that prescribes a specific (typically Gaussian) probabil-
ity distribution function (PDF).

As described in Sec. II B, the wavelet basis functions are shifted by discrete integer values in
space. This leads to points in space that coincide with peaks of the basis functions and, consequently,
to statistically higher kinetic energy at these points. To avoid such a spatial bias, the basis functions
are not fixed in space but move with a velocity much smaller than the eddy-turnover time of the
respective level and within a small region near their original position. There are many ways of
realizing a random movement of the wavelets. The method we applied is described in Appendix A.
Note that the movement of the wavelets solely requires modification of the sampling of the subgrid-
scale velocity because the coefficients dε

div, j,k are determined independently for every j and k.
In practice, the solution for the wavelet coefficients requires the evaluation of integrals, such as∫

Ψ ε
div, j,k[ξ(x)] · Ψ

ζ

div, j,k[ξ(x)]dVx.

Other integrals also contain spatial derivatives of the wavelet basis functions. Since the basis
functions do not change, the integrals can be computed only once and can be reused. The advective
term requires the filtered fluid velocity and the filtered fluid velocity gradient. The interpolation of
the filtered quantities to the position of the respective wavelet is the only interaction of the wavelet
enrichment with the LES flow solver. This simple interpolation step can be realized across different
types of flow solvers. Solving for the wavelet coefficients results in the solution of the following
linear equation system for every j and k:∑

ζ

Aε,ζ

j,k dζ

div, j,k = bε
j,k, (28)

where the coefficient matrix Aε,ζ

j,k is of size 14 × 14 and identical for all j and k. The right-hand
side vector bε

j,k contains the wavelet coefficients of the previous time step and interpolated LES
quantities. Therefore, its values change every time step.

III. SIMULATION SETUPS

The predictions of the proposed wavelet enrichment model are evaluated by means of different
single-phase and particle-laden flow configurations. In this section the numerical solution of the flow
and the particle transport is briefly introduced, and the parameters of the simulations are provided.

A. Numerical solution

The NSE and FNSE are solved numerically for different configurations in cubic domains of size
L and periodic boundary conditions in every direction. The subgrid-scale stress tensor in the LES
is modeled with the localized dynamic kinetic energy model (LDKM) as proposed by Menon and
coworkers [42,43] and extended to two-way coupled particle-laden flows by Hausmann et al. [28]
(referred to as mLDKM). Note that the mLDKM requires a model for the subgrid-scale velocity at
the positions of the particles to be closed. Besides the subgrid-scale stress tensor, the mLDKM also
provides an estimation of the subgrid-scale kinetic energy considering the turbulence modulation

104604-9



M. HAUSMANN, F. EVRARD, AND B. VAN WACHEM

FIG. 2. Sketch of the turbulent shear flow configuration. A source term in x direction is added that varies
with one period of a sin-profile across the y direction and drives a turbulent shear flow. The black arrows
indicate the profile of the momentum source and the color represents a slice of the velocity in x direction.

by the particles. This subgrid-scale kinetic energy serves as Kdesired for the wavelet enrichment
in Eq. (25). Therefore, the generated subgrid-scale velocity considers, at least energetically, the
turbulence modulation by the particles. Note that the effect of a changing slope of the kinetic
energy spectrum is not accounted for. Altogether, the two-way coupling framework accounts for
the influence of the subgrid-scale velocity on the particle transport, the influence of the particles on
the resolved flow scales, and the effect of the particles on the subgrid scales. Details on how the
two-way coupling interactions are modeled, can be found in Hausmann et al. [28]. A second-order
finite volume solver is used to numerically solve the flow equations. More details on the flow solver
may be found in Denner et al. [44] and Bartholomew et al. [45].

The investigated configurations differ in the source terms that appear in the momentum equations.
We consider simulations of HIT, where a statistically steady state is obtained by continuously sup-
plying kinetic energy through turbulence forcing. The forcing procedure is described in Mallouppas
et al. [46].

A second type of flow investigated in this paper is a turbulent shear flow. This flow is simulated
by a constant momentum source that varies as a sin-function across the domain:

s = smax sin(2πy/L)e1, (29)

where smax is the amplitude of the momentum source, and e1 is the basis vector in the x direction. For
this turbulent shear flow configuration a shear Reynolds number is defined Reshear = L

√
smaxL/νf .

A sketch of this configuration is provided in Fig. 2.
We also assess the wavelet enrichment model using a simulation configuration with two-way

coupled point-particles, where the particle-induced momentum source is taken into account with
the particle-source-in-cell (PSIC) method [47]

s = − 1

ρfVcell

∑
p∈�cell

F p, (30)

where �cell represents a computational grid cell used in the finite volume solver that has a volume
of Vcell. The particles are treated in a Lagrangian framework, and their motion is governed by the
fluid-particle interface force, F p. We consider small, heavy, and spherical particles that we assumed
to be only influenced by the drag force F p = FD,p, which we compute using Stokes’ law augmented
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TABLE I. Summary of the parameters that define the four simulations configurations.

Name HIT-f-s TS-s HIT-f-1wc HIT-d-2wc

Flow type Forced HIT turb. shear flow Forced HIT Decaying HIT
Energy supply Turb. forcing Sinusoidal force Turb. forcing –
Particles – – One-way coupled Two-way coupled
Taylor Reynolds number Reλ 75 – 75 75
Turbulent Reynolds number Rel 205 – 205 205
Shear Reynolds number Reshear – 3115 – –
Reference time Tref L/

√
2/3〈K〉 √

L/smax L/
√

2/3〈K〉 L/
√

2/3〈K〉
Kolmogorov length scale η/L 0.0017 0.0029 0.0017 0.0017
Kolmogorov timescale τη/Tref 0.0075 0.026 0.0075 0.0075
Computational cells DNS N3

DNS 2563 1283 2563 2563

Computational cells LES N3
LES 323 163 323 323

Number of particles Np – – 5 × 480 115 12 057 066
Stokes number St – – 0.5, 1, 2, 4, 8 8

with the Schiller-Naumann correlation [48]

FD,p = CD
ρf

8
πd2

p|urel|urel, (31)

with the drag coefficient

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, (32)

where dp is the diameter of the particle with the index p and Rep = ureldp/νf is its Reynolds number.
The relative velocity is the difference between the velocity of the particle vp and the fluid velocity
u(xp) at the position of the particle xp:

urel = u(xp) − vp. (33)

The particle position changes according to

dxp

dt
= vp, (34)

and the particle velocity according to Newton’s second law

dvp

dt
= 1

ρpVp
F p, (35)

where ρp is the density of the particle. The motion of the particles is obtained using the
Verlet-scheme [49]. The fluid velocity is interpolated to the particle position by divergence-free
interpolation [50].

B. Parameters of the simulations

We consider four different simulation configurations to assess the predictions of the proposed
model: forced HIT of a single-phase flow (HIT-f-s), a single-phase turbulent shear flow (TS-s),
forced HIT with one-way coupled particles of five different Stokes numbers (HIT-f-1wc), and
decaying HIT with two-way coupled particles of Stokes number St = 8 and a particle mass fraction
of φm = 1 (HIT-d-2wc). In Table I, important parameters of the four simulations are summarized.
The flow quantities of the simulation HIT-d-2wc are given for the corresponding single-phase flow
and before the onset of the decay of the turbulence.
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(a) (b)

(c) (d)

FIG. 3. Slice of the velocity magnitude for the simulation configuration HIT-f-s. The results are shown for
the LES (a), the subgrid-scale velocity obtained from the wavelet enrichment (b), the superposition of the LES
velocity and the the modeled subgrid-scale velocity (c), and the DNS (d). The color scaling of all subfigures is
the same even though the maximum velocities are different.

The forcing is only applied in the wave number range kL/2π ∈ [3, 6] for the forced HIT
simulations. For the HIT simulations, the resolution is kmaxη = 1.37, and for the turbulent shear
flow it is kmaxη = 1.16. The maximum resolved wave number is defined as kmax = πNDNS/L.

In the LES of the HIT with the wavelet enrichment the range of considered levels is j ∈ [4, 6]
and in the LES of the turbulent shear flow j ∈ [3, 5]. The lowest levels are chosen such that their
characteristic wave numbers correspond to the respective cutoff wave numbers of the LES. The
upper level limits are chosen such that the significant amount of kinetic energy is captured with the
modeled wave numbers.

IV. RESULTS AND DISCUSSIONS

In the present section we evaluate the predictions of the wavelet-enriched LES (LES-WL) and
compare it to an LES without enrichment and the corresponding DNS. We separately discuss the
single-phase flow statistics and the statistics of particle-laden flows.

A. Single-phase flow statistics

We first consider the flow statistics of the forced HIT configuration (HIT-f-s). Figure 3 compares
the normalized fluid velocity magnitudes of the LES, the modeled subgrid-scale velocity obtained
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(a) (b)

FIG. 4. Kinetic energy spectrum (a) and PDF of the second invariant of the velocity gradient tensor (b) for
the simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the wavelet-enriched
LES (LES-WL). The inertial range slope is plotted for comparison.

from the wavelet enrichment, and their sum with the DNS. The small flow structures, which
are absent in the LES and provided by the wavelet enrichment, possess regions with different
kinetic energies. This is possible because the compact support of the wavelet basis enables varying
statistics across the domain. Some small regions with very high kinetic energy are observed. Such
rare high intensity events are characteristic for turbulence and an indicator for intermittency. The
superposition of the LES velocity and the modeled subgrid-scale velocity approximates the DNS
velocity, which is widely similar in magnitude and range of length scales, but shows differences
in the shape of the flow structures. The wavelet enrichment minimizes the local errors and, hence,
prevents the systematical formation of flow structures with the neighbor wave packets.

The similarities of the velocity fields of the DNS and the wavelet-enriched LES can be quantified
by comparing the kinetic energy spectra E normalized by the Kolmogorov length scale η and
velocity uη as shown in Fig. 4. The kinetic energy of the small wave numbers is recovered well by
the LES. For the unresolved fluid velocity field the LES, the kinetic energy spectrum of the modeled
subgrid-scale fluid velocity field approximates the kinetic energy spectrum of the DNS. Except for
an overprediction of the spectrum of relatively small energy at high wave numbers, the general trend
is captured. The observed deviation originates from the inertial range power law scaling prescribed
by the forcing and may be improved if knowledge of the dissipation range is incorporated in the
model.

As shown analytically by Maxey [51], the clustering of inertial particles of very small Stokes
number is proportional to the second invariant of the fluid velocity gradient tensor

Q = 1
2 (�i j�i j − Si jSi j ), (36)

with the rotation-rate tensor �i j and the strain-rate tensor Si j . Therefore, to be able to correctly
predict clustering, an accurate prediction of this tensor is crucial. Figure 4 shows the PDF of the
second invariant of the velocity gradient tensor for the LES, the wavelet-enriched LES and the
DNS. It can be observed that the LES by itself does not predict very high strain and low vorticity,
or high vorticity and low strain events as is predicted by the DNS. With the wavelet-enriched LES,
such events occur, even with a very similar probability as in the DNS; only the degree of asymmetry
of the PDF (i.e., the higher probability of high rotation low strain events) is slightly underestimated
as compared to the DNS. With the linearization of the SFNSE, the nonlinear term, as a contribution
to the second invariant of the velocity gradient tensor, is modeled by a turbulent viscosity, that does
not affect the second invariant of the velocity gradient tensor the same way as the nonlinear term.
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(a) (b)

FIG. 5. Longitudinal (a) and transverse (b) fluid velocity autocorrelations over the distance r for the
simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the wavelet-enriched LES
(LES-WL).

This linearization can be an explanation for the observed deviation between the wavelet-enriched
LES and the DNS.

Figure 5 shows the longitudinal and transverse fluid velocity autocorrelation functions, B‖
and B⊥, for the DNS, the LES without wavelet enrichment and the wavelet-enriched LES. For
homogeneous isotropic flows, they are defined as [52]

B‖(r) = 〈uα (x, t )uα (x + re‖, t )〉
〈uα (x, t )uα (x, t )〉 , (37)

B⊥(r) = 〈uα (x, t )uα (x + re⊥, t )〉
〈uα (x, t )uα (x, t )〉 , (38)

where r denotes the distance between the evaluated fluid velocities and e‖ and e⊥ the unit vector in
the longitudinal and transverse direction, respectively. Note that no summation is carried out over
the index α.

It can be seen in Fig. 5, that the fluid velocity decorrelates faster in the transverse direction than
in the longitudinal direction, which is qualitatively also captured by the two LES. The LES without
wavelet enrichment, however, predicts too slow decorrelation of the velocity in the longitudinal
and transverse direction. The decorrelation can be accelerated by the wavelet-enriched LES, as
it provides the unresolved subgrid-scale velocity field. As a results, the autocorrelations of the
wavelet-enriched LES are in very good agreement with the autocorrelations of the DNS for small
distances r. As the distance increases, the energetic resolved eddies dominate the autocorrelation
and the autocorrelations of the wavelet-enriched LES converge toward the autocorrelations of the
LES without wavelet enrichment.

Figure 6 shows the PDF of the longitudinal and transverse velocity gradients, A11 = ∂u1/∂x1

and A12 = ∂u1/∂x2, normalized by their respective standard deviations, σ11 and σ12. Similar to
the DNS, the wavelet-enriched LES increases the probability of events of high magnitude of the
gradients compared to the LES. The tails of the PDFs of the wavelet-enriched LES are wider than
in a Gaussian distribution, which is also observed in the DNS. In the PDF of the transverse velocity
gradients, the wavelet-enriched LES shows a good agreement with the shape of the DNS. For
the longitudinal gradients, the PDF of the wavelet-enriched LES lacks asymmetry, but the overall
agreement with the PDF of the DNS is significantly improved compared to the LES without wavelet
enrichment.
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(a) (b)

FIG. 6. PDF of longitudinal (a) and transverse (b) velocity gradients normalized by their standard de-
viations for the simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the
wavelet-enriched LES (LES-WL). The dashed lines represent a Gaussian.

The analysis of the forced HIT proves that characteristic properties of turbulence can be repro-
duced by the wavelet enrichment, which cannot be achieved by, for instance, sampling random
coefficient of Fourier-modes as done by a kinematic simulation (see, e.g., Zhou et al. [53]).

The computational cost of the wavelet-enriched LES for the simulation configuration HIT-f-
s are approximately a factor 3–4 of the computational cost of the LES without enrichment. The
computational cost of the corresponding DNS is four orders of magnitude higher.

Even though the wavelet enrichment proves to be capable of predicting realistic single-phase
flow statistics in HIT, the vast majority of relevant flows in industry and nature is inhomogeneous
and anisotropic. A simple inhomogeneous and anisotropic flow configuration is the turbulent shear
flow (TS-s) introduced in Sec. III. In Fig. 7, we compare the spatial correlations of the subgrid-scale
velocity, which are defined as

Ci j = 〈(u′
i − 〈u′

i〉)(u′
j − 〈u′

j〉)〉, (39)

where 〈.〉 indicates temporal averaging and averaging along the spatially homogeneous directions
(i.e., x and z directions). The reference subgrid-scale fluid velocity field is obtained by subtracting

(a) (b)

FIG. 7. Normalized spatial correlations in the y direction for the simulation configuration TS-s. (a) The
correlations of the DNS explicitly filtered with a spectrally sharp filter and (b) the correlations of the subgrid-
scale velocity that is modeled with the wavelet enrichment.
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the explicitly filtered fluid velocity field of the DNS from the unfiltered fluid velocity field of the
DNS, where a spectrally sharp filter is used. Because of the arbitrary choice of the filter, we compare
the results only qualitatively.

It can be seen from Fig. 7 that the correlations of the wavelet enrichment are not as smooth as the
correlations of the DNS. Because of the shape of the wavelet basis functions, regions occur that have
statistically higher kinetic energy than other regions. Owing to the temporarily changing positions
of the wavelet basis functions, which is explained in Sec. II D, the fluctuations are significantly
reduced, but fluctuations remain in the ensemble averaged correlations that, however, are much
smaller than the instantaneous velocity fluctuations.

The velocity correlations C11, C22, and C33 vary with two periods of a sine-shape across the
y direction. With the wavelet enrichment this shape can be reproduced, albeit with different
magnitudes, which can be traced back to the filter choice of the DNS and the estimation of the
subgrid-scale kinetic energy. The cross-correlation C12 varies with one period of a sine-shape. At
the domain center the velocities in the x and y directions are positively correlated and at the domain
boundary negatively correlated. The wavelet enrichment reproduces this trend, which proves that the
right anisotropic behavior can be generated from information that the wavelet enrichment receives
from the LES.

B. Particle-laden flow statistics

We evaluate the particle statistics by comparing the results of forced HIT laden with one-way
coupled particles (HIT-f-1wc). Figure 8 shows the particle pair dispersion, which is defined as the
ensemble averaged temporal evolution of the distance between particle pairs with the position xp0(t )
and xp1(t ):

〈δ〉(t ) = 〈|xp0(t ) − xp1(t )|〉. (40)

A particle pair is defined as two particles that have an initial separation of approximately the
Kolmogorov length scale.

For all the considered Stokes numbers, three phases of the dispersion are observed in Fig. 8:
(i) Particle pairs are located in the same eddy and stay close together, before (ii) they rapidly disperse
by experiencing widely uncorrelated fluid velocities, and (iii) their maximum separation is reached,
which is determined by the domain size. Since the LES only contains the largest eddies, that even the
particles with the largest considered Stokes number can follow well, the dispersion is much slower
than for the particles transported with the DNS velocity field. The wavelet-enriched LES leads to a
particle pair dispersion that almost coincides with the DNS, for all considered Stokes numbers.

Most important for many applications is a correct prediction of particle clustering, i.e., that the
particles preferentially concentrate in specific regions. A quantitative measure of particle clustering
is provided by the radial distribution function, defined as

g(r) =
〈

Np,i(r)/�Vi(r)

Np/V

〉
, (41)

where �Vi(r) is the volume of spherical shells in a distance r, and Np,i(r) is the number of particle
in the respective spherical shell. The radial distribution function is normalized with the total number
of particles Np,i(r) and the total volume of the simulation domain V .

The radial distribution function in Fig. 9 predicted by the LES without wavelet enrichment
significantly deviates from the radial distribution function predicted by the DNS, whereas the
LES predicts too little clustering for St ∈ {0.5, 1} and too strong clustering for St ∈ {2, 4, 8}.
For the small Stokes numbers, the small eddies, that are absent in the LES without wavelet
enrichment, move the particles toward regions of small vorticity and large strain. The particles
with the larger Stokes numbers cannot follow the small eddies well. Consequently, the small fluid
velocity structures increase the dispersion of the particles with large Stokes numbers. The correct
prediction of clustering of the particles with small Stokes numbers is far more challenging, because
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FIG. 8. Particle pair dispersion of particles with Stokes numbers in the range St ∈ {0.5, 1, 2, 4, 8} for the
simulation configuration HIT-f-1wc. The considered particles pairs have an initial separation of the size of
the Kolmogorov length scale η. The results are shown for the DNS, the LES, and the wavelet-enriched LES
(LES-WL).
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FIG. 9. Radial distribution function of particles with Stokes numbers in the range St ∈ {0.5, 1, 2, 4, 8} for
the simulation configuration HIT-f-1wc. The results are shown for the DNS, the LES, and the wavelet-enriched
LES (LES-WL).
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(a) (b)

FIG. 10. Subgrid-scale kinetic energy over time (a) and kinetic energy spectrum before the onset of the
decay (b) in decaying HIT laden with particles of Stokes number St = 8 for the simulation configuration
HIT-d-2wc. The results are shown for the DNS, the LES, and the wavelet-enriched LES (LES-WL). The inertial
range slope is plotted for comparison.

the strain-rotation relations of the small fluid velocity structures have a larger impact. It is observed
in Fig. 9 that the wavelet-enriched LES significantly improves the radial distribution function for
the Stokes numbers St � 2. The increased dispersion by the modeled subgrid-scale fluid velocity
field yields an excellent agreement of the radial distribution function of the wavelet-enriched LES
with the radial distribution function of the DNS. For the intricate case of Stokes numbers St = 0.5
and St = 1, only a relatively minor increase in particle clustering is observed.

The computational costs of the wavelet-enriched LES mainly depend on the levels, i.e., functions
of the subspaces Vj that are considered and the number of particles that require sampling of the
subgrid-scale velocity. The sampling of the subgrid-scale velocity at the positions of the particles
is much more computationally expensive than computing the wavelet coefficients. The wavelet-
enriched LES requires approximately twice the CPU-time for the HIT-f-1wc configuration than
the Fourier enrichment [28]. This corresponds to approximately 10–15 times the CPU-time of the
corresponding LES, which is significant, but still orders of magnitudes cheaper than a DNS.

The final test case considered in this paper considers two-way coupling. The abilities of the
wavelet enrichment to predict the unresolved effects of two-way coupled particle-laden flows is
assessed with the simulation configuration HIT-d-2wc, representing decaying HIT with two-way
coupled particles with Stokes number St = 8. Figure 10(a) shows the temporal evolution of the
subgrid-scale kinetic energy predicted by the LES without the wavelet enrichment and the LDKM,
the wavelet-enriched LES with the mLDKM including the effect of the particles, and the DNS.

The reference subgrid-scale kinetic energy is obtained by explicit filtering the DNS. In an
LES, the spatially varying turbulent viscosity imposes the filtering. This unknown filter leads to
an uncertainty of the actual subgrid-scale kinetic energy. Therefore, the DNS is explicitly filtered
with two different filters, a spectrally sharp filter and by volume averaging. During the whole decay
the LES without wavelet enrichment and with the single-phase flow subgrid-scale model predicts
a much too large subgrid-scale kinetic energy. The subgrid-scale model, i.e., the LDKM, assumes
single-phase turbulence for the unresolved velocity scales, which contains more kinetic energy than
the same flow laden with particles of Stokes number St = 8. Since the wavelet-enriched LES enables
the use of the mLDKM that takes the turbulence modification by the particles into account, the
predicted subgrid-scale kinetic energy is much smaller and lies between the subgrid-scale kinetic
energy obtained from the DNS using the two different explicit filters. Note that the subgrid-scale
kinetic energy obtained from the DNS is sensitive to the specific filter that is used.
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The kinetic energy spectra before the onset of the decay are shown in Fig. 10(b). The turbulence
modulation by the particles leads to a clear deviation of the DNS spectrum from the well known
power-law of the inertial range that is observed in single-phase turbulence. Close to the cutoff wave
number, the spectrum of the LES without wavelet enrichment using the LDKM deviates from the
DNS spectrum because of the overestimated subgrid-scale kinetic energy and, thus, the too large
turbulent viscosity. This is improved by the wavelet-enriched LES using the mLDKM that predicts
a smaller turbulent viscosity and a better agreement with the kinetic energy spectrum of the DNS.
The kinetic energy of the subgrid-scale velocity generated by the wavelet enrichment is slightly
larger than the kinetic energy of the DNS. The shape of the kinetic energy spectrum, however, is
very similar to the kinetic energy spectrum of the DNS.

V. CONCLUSIONS

We propose a model to predict the unresolved subgrid-scale fluid velocity field in the scope of an
LES. In LES of particle-laden turbulent flows, the subgrid-scale velocity at the particle positions is
required to predict correct particle behavior, such as their dispersion and clustering. Our wavelet
enrichment model discretizes the subgrid-scale velocity by means of a divergence-free wavelet
vector basis. The coefficients of this basis are obtained by minimizing the squared error of the
linearized SFNSE. In contrast to structural models using a Fourier basis, the wavelet enrichment
enables a continuous change of velocity statistics across the domain and, hence, the generation
of an inhomogeneous subgrid-scale velocity field. Furthermore, the wavelet enrichment does not
require to specify parameters that critically affect the results.

The model is validated with four distinct test cases that separately assesses the predictions of the
wavelet enrichment in single-phase and particle-laden flows. Simulations of forced HIT show that
the wavelet enrichment produces strain-rotation relations that are similar to the DNS. The PDFs of
the longitudinal and transverse velocity gradients possess the expected non-Gaussian behavior. The
wavelet enrichment is shown to be capable of predicting inhomogeneous and anisotropic velocity
fields in a turbulent shear flow, where the spatial velocity correlations match those of DNS.

One-way coupled simulations of forced HIT of particles with different Stokes numbers revealed
excellent agreement with the particle pair dispersion of the DNS. The predictions of particle
clustering are improved, whereas the wavelet-enriched LES recovers the radial distribution function
of the DNS very well for Stokes numbers St � 2. By combining the wavelet enrichment with the
recently proposed modification of the LDKM [28] to particle-laden flows, we report improved
predictions of the subgrid-scale kinetic energy and the kinetic energy spectrum in two-way coupled
decaying HIT.

The proposed wavelet enrichment is able to recover the most important interactions between
turbulence and particles while maintaining computational costs of the order of the costs of an LES.
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APPENDIX A: MOVEMENT OF THE WAVELETS

Let x j,k,c(t ) be the coordinates of the center positions of the wavelets with the indices j and k
that are initially given as

xi, j,k,c(t = 0) = xi,max − xi,min

2 j
(ki + 1/2) + xi,min. (A1)

A wavelet center is allowed to move within a region

x j,k,c(t = 0) − δ j � x j,k,c(t ) � x j,k,c(t = 0) + δ j, (A2)
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where

δi, j = xi,max − xi,min

2 j+1
. (A3)

Within this region target coordinates x j,k,t are generated from a uniform distribution. The wavelet
center moves toward the target coordinates with a constant velocity that is equal to 10% of the
local eddy turnover time. As soon as the center coordinates are close to the target coordinates, new
random target coordinates are generated

APPENDIX B: PROJECTION OF THE LINEARIZED SFNSE

This Appendix describes how the pressure term in the linearized SFNSE can be dropped if we
solve it in the divergence-free subspace. We start from the linearized SFNSE

∂u′
i

∂t
+ Ai = −Pi + Di + Fi, (B1)

with the abbreviations

Ai = ũ j
∂u′

i

∂x j
+ u′

j

∂ ũi

∂x j
,

Pi = 1

ρf

∂ p′

∂xi
,

Di = (νf + ν ′
t )

∂2u′
i

∂x j∂x j
, and Fi = ∂τi j

∂x j
.

Taking the divergence gives

∂

∂xi
Pi = − ∂

∂xi
Ai + ∂

∂xi
Fi, (B2)

because the divergence of the time derivative of the velocity and the diffusive term are zero, as it
can be easily verified. Similarly, by taking the curl of Eq. (B1), we get

Curl

(
∂u′

i

∂t

)
+ Curl(Ai ) = Curl(Di ) + Curl(Fi ). (B3)

Because the curl of a gradient is zero, the curl of the pressure term vanishes. According to the
Helmholtz decomposition, the advective term and the forcing term can be decomposed into a
divergence-free contribution, indicated with a ⊥, and a curl-free contribution, indicated with the
superscript curl, as follows:

Ai = A⊥
i + Acurl

i , (B4)

Fi = F⊥
i + F curl

i . (B5)

Equation (B2) is satisfied if

Pi = −Acurl
i + F curl

i , (B6)

and Eq. (B3) is satisfied if

∂u′
i

∂t
+ A⊥

i = Di + F⊥
i . (B7)

Adding Eq. (B6) and Eq. (B7), gives the linearized SFNSE (B1). Equations (B6) and (B7) can be
solved instead of solving the continuity equation together with Eq. (B1).
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