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Analysis of anisotropic subgrid-scale stress for coarse large-eddy simulation
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This study discusses the necessity of anisotropic subgrid-scale (SGS) stress in large-
eddy simulations (LESs) of turbulent shear flows using a coarse grid resolution. We
decompose the SGS stress into two parts to observe the role of SGS stress in turbulent shear
flows in addition to the energy transfer between grid-scale (GS or resolved scale) and SGS.
One is the isotropic eddy-viscosity term, which contributes to energy transfer, and the other
is the residual anisotropic term, which is separated from the energy transfer. We investigate
the budget equation for GS Reynolds stress in turbulent channel flows accompanied by the
SGS stress decomposition. In addition, we examine the medium and coarse filter length
cases; the conventional eddy-viscosity models can fairly predict the mean velocity profile
for the medium filter case and fails for the coarse filter case. The budget for GS turbulent
kinetic energy shows that the anisotropic SGS stress has a negligible contribution to energy
transfer. In contrast, the anisotropic stress has a large and nondissipative contribution to the
streamwise and spanwise components of GS Reynolds stress when the filter size is large.
Even for the medium-size filter case, the anisotropic stress contributes positively to the
budget for the spanwise GS Reynolds stress. Spectral analysis of the budget reveals that
the positive contribution is prominent at a scale consistent with the spacing of streaks in the
near-wall region. Therefore, we infer that anisotropic stress contributes to the generation
mechanism of coherent structures. Predicting the positive contribution of the anisotropic
stress to the budget is key to further improving SGS models.
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I. INTRODUCTION

Subgrid-scale (SGS, or subfilter-scale) models play a significant role in accurately predicting the
statistics of turbulent flows in large-eddy simulations (LESs). For instance, eddy-viscosity models
provide a statistically accurate energy transfer rate from grid scale (GS or resolved scale) to SGS.
However, an accurate energy transfer rate is only one of the required conditions for predicting the
statistics of turbulent flows. In general, characteristic quantities other than the energy transfer rate
are important in predicting turbulent flows; for example, the mean SGS shear stress in turbulent
shear flows. Several studies pointed out that the eddy-viscosity models are not necessarily sufficient
for predicting both the energy transfer rate and mean SGS stress in turbulent shear flows [1–3].
Therefore, it is important to understand the role of SGS stress in addition to energy transfer for the
further development of LES.
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Several studies addressed the development of non-eddy-viscosity or anisotropic SGS models
and showed that these models improve the prediction of the statistics of turbulent flows [4–11].
Specifically, these anisotropic models provide a better prediction even in grid resolution cases that
are coarser than in conventional eddy-viscosity models. Therefore, we infer that the difference
between eddy-viscosity-based and anisotropic models becomes prominent in coarse grid cases.
Analysis using a coarse grid or large filter scale will shed light on the role of anisotropic SGS
stress in LES. Furthermore, the necessity of improving the SGS model in a coarse grid resolution
has recently been discussed for atmospheric turbulence as the grey zone or terra incognita problem
[12].

It is worth noting that some anisotropic models prohibit backward scatter, which is the local
energy transfer from SGS to GS [4–9]. This indicates that additional stress, apart from energy
transfer, can improve the performance of LES. Actually, Abe [13] demonstrated that the additional
stress apart from the energy transfer essentially contributes to the generation of GS or resolved scale
Reynolds shear stress in turbulent channel flows. Based on a similar analysis, Inagaki and Kobayashi
[8] suggested that the amplification of small-scale velocity fluctuations close to the cutoff scale due
to the anisotropic stress contributes to the improvement of the prediction of statistics in LES. As
suggested by these studies, an analysis of the budget for the Reynolds stress will shed light on the
physical role of anisotropic SGS stress in a statistical sense.

In this study, we investigate the budget for GS Reynolds stress in turbulent channel flows. To
clarify the physical role of the anisotropy of SGS stress, we decompose the SGS stress according
to the description by Abe [13]. The eddy-viscosity coefficient is determined by assuming that all
energy transfers between GS and SGS are governed by the eddy-viscosity term. Residual stress is
obtained by subtracting the eddy-viscosity term from the exact SGS stress. Therefore, the residual
stress is apart from the energy transfer. Because the eddy-viscosity approximation is often referred
to as the isotropic model owing to the scalar coefficient, the residual stress represents the anisotropy
of the turbulent velocity fluctuation in SGS. Such anisotropic stress is essential for predicting the
anisotropy of the SGS dissipation tensor (hereafter often referred to as SGS dissipation, simply),
which is the key ingredient in this study.

The anisotropy of SGS dissipation is rarely considered in the context of SGS modeling [14].
Haering et al. [15] demonstrated that a simple tensor-coefficient eddy-viscosity model can im-
prove the prediction of SGS dissipation anisotropy induced by anisotropic grids. Marstorp et al.
[4] reported that LES employing anisotropic SGS stress improves the prediction of the ratio of
wall-normal to streamwise components of SGS dissipation when compared with the eddy-viscosity
model in rotating channel flows. In conventional nonrotating channel flow, Domaradzki et al. [16]
and Härtel and Kleiser [17] showed that in the energy transfer between GS and SGS, the streamwise
component is dominant and others are negligible in the near-wall region. As shown later, the
anisotropic property of SGS dissipation cannot be reproduced solely by the eddy-viscosity term
even though the total SGS dissipation, which is the trace part of SGS dissipation tensor, is described
adequately by the isotropic eddy viscosity. Therefore, this study quantifies the importance of the
anisotropic SGS stress in predicting the statistics of turbulent flows in LES.

The rest of this paper is organized as follows. First, we summarize the decomposition of SGS
stress according to the description by Abe [13] and budget equation for GS Reynolds stress in Sec. II.
We also provide a physical interpretation of SGS stress-related terms in the budget. The numerical
results for the budgets in turbulent channel flows are presented in Sec. III. In Sec. IV, further
analysis of the budgets in Fourier space is presented to discuss the physical role of anisotropic
SGS stress in the near-wall region. In addition, we provide an a priori test of the SGS dissipation
based on anisotropic SGS stress using a few existing model expressions. Conclusions are presented
in Sec V.
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II. BUDGET EQUATION FOR GS REYNOLDS STRESS

A. Decomposition of SGS stress

In LES of incompressible flows, the governing equations are filtered continuity and Navier-
Stokes equations:

∂ui

∂xi
= 0, (1)

∂ui

∂t
= − ∂

∂x j

(
uiu j + τ

sgs
i j

) − ∂ p

∂xi
+ ∂

∂x j
(2νsi j ), (2)

where · represents the spatial filtering operation. Here, we assume that the filter and partial
differential operations are always commutative. If the filter and partial differential operations are
not commutative, then several additional terms appear in the filtered continuity and Navier-Stokes
equations (see, e.g., Ref. [14]), which makes the investigation of the effects of SGS on GS much
more complex. To focus on the role of SGS stress in the governing equations, we assume the
commutativity of filter operation. ui, p, and si j[= (∂ui/∂x j + ∂u j/∂xi )/2] are the GS velocity,
pressure divided by the density, and strain-rate tensor, respectively. ν is the kinematic viscosity.
The sole unknown variable in LES is the SGS stress defined by τ

sgs
i j = uiu j − uiu j .

To numerically solve Eqs. (1) and (2), we must employ a closed model expression for τ
sgs
i j .

In contrast, in the analysis based on direct numerical simulation (DNS) data, which is referred to
as the a priori test, we can directly calculate τ

sgs
i j by explicit filtering. However, in the case of

an a priori test, we cannot assess the amount of SGS stress that can be modeled in terms of the
eddy-viscosity approximation. The inconsistency between the a priori and a posteriori tests of the
SGS model increases the complexity of this issue. The correlation between SGS stress and strain
rate in the a priori test is low [18–20]. Furthermore, abundant backward scatter events [21,22] reject
the validity of an eddy-viscosity model with a positive coefficient. Nevertheless, the purely dissipa-
tive eddy-viscosity models perform well in several turbulent flows in the a posteriori test of LES
(see Ref. [14]).

The eddy-viscosity term is ideal to achieve numerical stability, although its justification is still
under discussion. In particular, when we employ the scale-similarity model, the eddy-viscosity term
is often employed to compensate for insufficient dissipation [23,24]. Furthermore, recent studies on
anisotropic SGS modeling demonstrated that the employment of the additional stress that has no
contribution to the energy transfer improves the prediction of the statistics in LES [4–9]. Therefore,
we adopt the following decomposition of SGS stress by assuming that the eddy-viscosity term
governs the energy transfer between GS and SGS [8,13]:

τ
sgs
i j − 1

3τ
sgs
�� δi j = −2νsgssi j + τ ani

i j , (3)

where

νsgs = −τ
sgs
i j si j

2s2 , (4)

τ ani
i j = τ

sgs
i j − 1

3
τ

sgs
�� δi j + 2νsgssi j, (5)

and s2 = si jsi j . According to Abe [13], we refer to τ ani
i j as the extra anisotropic or simply the

anisotropic term. Based on the definition of eddy viscosity given by Eq. (4), the anisotropic term
does not contribute to the energy transfer between GS and SGS, that is, τ ani

i j si j = 0. Although this
decomposition is arbitrary, this analysis allows us to verify the physical properties of the anisotropic
part of SGS stress, in addition to the energy transfer. The eddy-viscosity defined by Eq. (4) can be
negative, which indicates the local backward scatter of kinetic energy. However, the average energy
transfer rate is almost positive because of the predominance of forward scatter in turbulent flows.
It is worth noting that this eddy-viscosity does not necessarily predict the mean SGS shear stress
in turbulent shear flows even though it accounts for an accurate energy transfer rate [1–3]. Hence,
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the present analysis also provides the difference between the exact mean SGS shear stress and that
predicted only by the eddy-viscosity term based on energy transfer.

B. Budget equation for GS Reynolds stress

Under Reynolds decomposition, 〈q〉 = Q and q′ = q − 〈q〉 = q − Q for q = (ui, p, si j ) with the
ensemble average 〈·〉, the budget equation for GS Reynolds stress RGS

i j (= 〈u′
iu

′
j〉) in the LES reads

∂RGS
i j

∂t
+ ∂

∂x�

(
U�RGS

i j

) = PGS
i j − εGS

i j + �GS
i j + Dp,GS

i j + Dt,GS
i j + Dv,GS

i j − εSGS
i j + DSGS

i j , (6)

where

PGS
i j = −RGS

i�

∂Uj

∂x�

− RGS
j�

∂Ui

∂x�

, (7a)

εGS
i j = 2ν

〈
s′

i�

∂u′
j

∂x�

+ s′
j�

∂u′
i

∂x�

〉
, (7b)

�GS
i j = 2

〈
ptotals′

i j

〉
, (7c)

Dp,GS
i j = − ∂

∂x�

〈
ptotalu′

jδi� + ptotalu′
iδ j�

〉
, (7d)

Dt,GS
i j = − ∂

∂x�

〈u′
�u′

iu
′
j〉, (7e)

Dv,GS
i j = 2ν

∂

∂x�

〈s′
i�u′

j + s′
j�u′

i〉, (7f)

εSGS
i j = −〈

τ
sgs
i�

∣∣
tl

∂u′
j

∂x�

+ τ
sgs
j�

∣∣∣∣
tl

∂u′
i

∂x�

〉
, (7g)

DSGS
i j = − ∂

∂x�

〈
τ

sgs
i�

∣∣
tlu

′
j + τ

sgs
j� |tlu′

i〉, (7h)

ptotal = p + τ
sgs
mm/3, and τ

sgs
i j |tl = τ

sgs
i j − τ

sgs
mmδi j/3. The terms expressed in Eqs. (7a)–(7h) are referred

to as production, dissipation, pressure redistribution, pressure diffusion, turbulent diffusion, viscous
diffusion, SGS dissipation, and SGS diffusion, respectively. Contributions from SGS stress appear in
the SGS dissipation εSGS

i j and diffusion DSGS
i j . Note that SGS dissipation is not necessarily positive,

even for the trace part εSGS(= εSGS
ii /2), in contrast to the molecular dissipation ε(= εii/2). Negative

SGS dissipation is observed near the wall in turbulent channel flows [16,17,25,26]. In this study, we
do not focus on modeling the eddy viscosity, which predicts the spatial profile of SGS dissipation.
Instead, we extract the physical properties required for anisotropic SGS stress by the decomposition
(3) with (4). This analysis demonstrates the general property of anisotropic SGS stress; that is, it
does not rely on a specific model expression.

C. Decomposition of SGS dissipation

Using Eq. (3), we decompose the SGS dissipation εSGS
i j into the following forms:

εSGS
i j = εEV

i j − ξAR
i j , (8)

where

εEV
i j = 2

〈
νsgs

(
si�

∂u′
j

∂x�

+ s j�
∂u′

i

∂x�

)〉
, (9a)

ξAR
i j =

〈
τ ani

i�

∂u′
j

∂x�

+ τ ani
j�

∂u′
i

∂x�

〉
. (9b)
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We refer to the terms defined in Eqs. (9a) and (9b) as eddy-viscosity dissipation and anisotropic
redistribution, respectively. The eddy-viscosity dissipation εEV

i j (9a) has a form similar to that of the
conventional molecular dissipation εi j (7b). Hence, we expect that the eddy-viscosity dissipation
plays a dissipative role similar to the molecular one. In contrast, the anisotropic redistribution ξAR

i j
(9b) plays a different role in contrast to the eddy-viscosity dissipation (9a) owing to the anisotropy
of SGS stress. Therefore, the anisotropy of SGS stress plays a significant role in predicting turbulent
flows when the anisotropic redistribution contributes significantly to the GS Reynolds stress budget.
Similarly, we can decompose the SGS diffusion DSGS

i j (7h) into eddy-viscosity and anisotropic parts.
For simplicity, we discuss the result of the decomposition of SGS dissipation. The decomposition
of SGS diffusion is briefly discussed in Appendix A.

The naming of anisotropic redistribution is based on the property that τ ani
i j has no contribution to

the energy transfer between GS and SGS. In addition, we do not refer to this term as anisotropic
dissipation because we expect it to be more prominently nondissipative than SGS dissipation εSGS

i j .
Exactly speaking, however, the anisotropic redistribution does not redistribute the energy among
the normal stress components, in contrast to the pressure redistribution �GS

i j (7c). In other words,
the trace of pressure redistribution is exactly zero �GS

ii = 2〈ptotals′
ii〉 = 0, whereas the anisotropic

redistribution is not necessarily traceless; that is, ξAR
ii = 2〈τ ani

i j s′
i j〉 �= 0 [8]. This nonzero trace

emanates from the Reynolds decomposition; that is,〈
τ ani

i j si j
〉 = 〈

τ ani
i j

〉
Si j + ξAR

ii /2 = 0, (10)

and hence ξAR
ii = −2〈τ ani

i j 〉Si j �= 0. Here, we used the property τ ani
i j si j = 0, which is provided in

Sec. II A. 〈τ ani
i j 〉Si j represents the energy transfer rate between the mean and SGS fields due to the

anisotropic stress. For unidirectional turbulent shear flows as channel flows, it reads 〈τ ani
xy 〉∂Ux/∂y/2.

When ∂Ux/∂y > 0 and 〈τ ani
xy 〉 < 0 as the conventional turbulent shear stress in shear flows, ξAR

ii > 0,
thus implying that the trace of anisotropic redistribution is productive. Conversely, when ∂Ux/∂y >

0 and 〈τ ani
xy 〉 > 0, ξAR

ii < 0, thus implying that the trace of anisotropic redistribution is dissipative.

D. Budget equation for GS Reynolds stress spectrum

For a further understanding of SGS modeling, an analysis of the energy budget in scale space
is useful. Domaradzki et al. [16] showed that in turbulent channel flows, the local energy transfer
in scale space through the nonlocal wave-number triad interaction is the majority in the interscale
energy transfer process. This result suggests that the interscale interaction across the cutoff scale
plays a significant role in energy transfer, which should be implemented in SGS stress. As an-
other approach to investigating interscale interaction, Cimarelli and De Angelis [26] analyzed the
Kolmogorov equation, which is the budget equation for the second-order velocity structure function,
for both unfiltered and filtered velocity fields. They concluded that to resolve the interscale inter-
action including the inverse cascade observed in the spanwise scale, the appropriate filter length
scale for eddy-viscosity models yields 


+
x < 100 and 


+
z < 20 where 
i denotes the filter length

scale for the ith direction, x and z are the streamwise and spanwise directions, and the values with
a superscript + denote those normalized by the wall friction velocity and kinematic viscosity. In
other words, we have to employ additional stress to the eddy-viscosity term when using a larger
filter length in LES. This limitation of the filter length scale is consistent with the typical grid
resolution for conventional LES employing eddy-viscosity models, 


+
x < 130 and 


+
z < 30 (see

Refs. [27–29]).
To investigate the physical role of anisotropic stress and the limitations of eddy-viscosity models,

we also analyze the budget equation for GS Reynolds stress spectrum. We consider the case in which
the x and z directions are periodic and the y direction is bounded by solid walls as turbulent channel
flows. We adopt the Fourier transformation in the x and z directions for the scale decomposition
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of the flow fields; the discrete Fourier transformation of a quantity q and its inverse transformation
read

q̃(nx, y, nz ) = 1

NxNz

(Nx,Nz )∑
(I,K )=(1,1)

q(xI , y, zK ) exp[−2π i(nxxI/Lx + nzzK/Lz )], (11a)

q(xI , y, zK ) =
(Nx/2−1,Nz/2−1)∑

(nx,nz )=(−Nx/2,−Nz/2)

q̃(nx, y, nz ) exp[2π i(nxxI/Lx + nzzK/Lz )], (11b)

where i = √−1, xI = LxI/Nx, and zK = LzK/Nz. Li and Ni are the length of the flow domain and
grid number in the ith direction, respectively. When the turbulence field is statistically homogeneous
in the x and z directions, the second-order correlation yields 〈 f (xI , y, zK )g(xI , y, zK )〉 = 〈 f g〉(y) =∑

nx,nz
�〈 f̃ (nx, y, nz )g̃∗(nx, y, nz )〉 where the superscript ∗ represents the complex conjugate. Hence,

the GS Reynolds stress spectrum EGS
i j (kx, y, kz ) reads

EGS
i j (kx, y, kz ) = �〈ũ′

iũ
′
j
∗〉, (12)

which satisfies RGS
i j (y) = ∑

nx,nz
EGS

i j (kx, y, kz ) where kx = 2πnx/Lx and kz = 2πnz/Lz.
The extension of the spectral budget for Reynolds stress [30,31] to the filtered Navier-Stokes

equations yields [8]

∂EGS
i j

∂t
= P̌GS

i j − ε̌GS
i j + �̌GS

i j + Ďp,GS
i j + Ďt,GS

i j + Ďv,GS
i j − ε̌SGS

i j + ĎSGS
i j + Ť GS

i j , (13)

where

P̌GS
i j = −EGS

iy

∂Uj

∂y
− EGS

jy

∂Ui

∂y
, (14a)

ε̌GS
i j = 2ν�〈s̃′

i�(∂̃�ũ
′
j )

∗ + s̃
′
j�(∂̃�ũ

′
i )

∗〉, (14b)

�̌GS
i j = 2�〈

p̃
total

s̃
′
i j

∗〉, (14c)

Ďp,GS
i j = − ∂

∂y
�〈

p̃
total

ũ
′
j
∗δiy + p̃

total
ũ

′
i
∗δ jy

〉
, (14d)

Ďt,GS
i j = −1

2

∂

∂y
�〈ũ′

yu′
iũ

′
j
∗ + ũ′

yu′
j ũ

′
i
∗〉, (14e)

Ďv,GS
i j = 2ν

∂

∂xy
�〈s̃′

iyũ
′
j
∗ + s̃

′
jyũ

′
i
∗〉, (14f)

ε̌SGS
i j = −�〈

τ̃
sgs
i�

∣∣
tl (∂̃�ũ

′
j )

∗ + τ̃
sgs
j� |tl (∂̃�ũ

′
i )

∗〉, (14g)

ĎSGS
i j = − ∂

∂y
�〈

τ̃
sgs
iy

∣∣
tlũ

′
j
∗ + τ̃

sgs
jy |tlũ′

i
∗〉, (14h)

Ť GS
i j = �〈Ñiũ

′
j
∗ + Ñ j ũ

′
i
∗〉 − P̌GS

i j − Ďt,GS
i j , (14i)

(∂̃x, ∂̃y, ∂̃z ) = (ikx, ∂/∂y, ikz ), and Ni = −∂uiu�/∂x�. Here, we assumed homogeneity of the turbu-
lence field in the x and z directions. All terms on the right-hand side of Eq (13) except for Ť GS

i j lead
to the right-hand side of Eq. (6) when summed over the wave number; that is,

Ai j (y) =
(Nx/2−1,Nz/2−1)∑

(nx,nz )=(−Nx/2,−Nz/2)

Ǎi j (kx, y, kz ), (15)
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for Ai j = (PGS
i j , εGS

i j ,�GS
i j , Dp,GS

i j , Dt,GS
i j , Dv,GS

i j , εSGS
i j , DSGS

i j ). We refer to these terms with the same

names as those given in Eqs. (7a)–(7h). However, the sum of Ť GS
i j over the wave number yields zero;

that is,

(Nx/2−1,Nz/2−1)∑
(nx,nz )=(−Nx/2,−Nz/2)

Ťi j (kx, y, kz ) = 0. (16)

Therefore, Ť GS
i j represents the transfer of EGS

i j among the wave-number modes. We refer to Ť GS
i j as

the interscale transfer term.
For the spectral expressions of SGS dissipation, we also employ the decomposition provided in

Sec. II C. Namely,

ε̌SGS
i j = ε̌EV

i j − ξ̌AR
i j , (17)

where

ε̌EV
i j = 2〈˜νsgssi�(∂̃�ũ

′
j )

∗ + ˜νsgss j�(∂̃�ũ
′
i )

∗〉, (18a)

ξ̌AR
i j = 〈

τ̃ ani
i� (∂̃�ũ

′
j )

∗ + τ̃ ani
j� (∂̃�ũ

′
i )

∗〉. (18b)

Both terms on the right-hand side of Eqs. (17) obey Eq. (15) and are referred to as eddy-viscosity
dissipation and anisotropic redistribution, respectively.

III. RESULTS IN TURBULENT CHANNEL FLOWS

A. Numerical setup

We investigate the budget equation for GS Reynolds stress provided in Sec. II B using the DNS
data of the turbulent channel flows. The x, y, and z coordinates represent the streamwise, wall-
normal, and spanwise directions, respectively. We employed a staggered grid system and adopted a
fourth-order conservative central finite difference scheme for the x and z directions and a second-
order conservative finite difference scheme on the nonuniform grid for the y direction [32]. Periodic
boundary conditions were employed in the x and z directions and no-slip condition was employed in
the y direction. The second-order Adams-Bashforth scheme was employed, for time marching. The
Poisson equation for pressure was solved using a fast Fourier transformation. The Reynolds number
is set to be Reτ = 400, where Reτ = uτ h/ν, uτ (= √

ν|∂Ux/∂y|wall|) is the friction velocity, and h is
the channel half width. The computational domain size is Lx × Ly × Lz = 2πh × 2h × πh and the
number of grid is Nx × Ny × Nz = 256 × 192 × 256. The numerical resolutions in each direction
are 
x+ = 9.8, 
y+ = 0.34–10, and 
z+ = 4.9, respectively. Here and hereafter, the values with
a superscript + denote those normalized by uτ and ν. The statistical average is obtained over the x-z
plane and time. The validation of our simulation is discussed in Appendix B.

To calculate the filtered quantities, we adopted a Fourier sharp-cut filter, which is commutative
with a differential operation. Note that in the calculus of GS and SGS dissipation spectra, Eqs. (14b)
and (14g), we have to use the modified wave number for ∂̃i owing to employing a finite differ-
ence scheme [32]; namely, for the fourth-order central finite difference, kmod

x = [27 sin(πnx/Nx ) −
sin(3πnx/Nx )]/(12
x). For simplicity, the filter operation is applied only in the x and z directions. In
the actual LES or a posteriori tests, the filter in the wall-normal direction is often applied because
the grid size along the wall-normal direction is coarser than that of DNS. Furthermore, the scale
of eddies in the wall-normal direction is also important to discuss the dynamics of wall-bounded
turbulent flows [33]. Thus, the filter in the wall-normal direction can provide physical insight into
wall-bounded turbulent flows. However, if we realize the filter that coincides with the actual LES,
then we have to apply the inhomogeneous filter where the filter length changes against the distance
from the wall. This inhomogeneous filter is not commutative with a differential operation and
induces several additional terms which are different from the stress term in the filtered continuity
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and Navier-Stokes equations [14]. In the conventional LES, we often ignore such terms arising
from the commutation error and model only the SGS stress or related numerical viscosity. In this
study, we focus on the role of SGS stress in the budget for GS Reynolds stress and its spectrum,
which should be reproduced in the actual LES. For this reason, we apply the filter only in the x and
z directions. When the filter is applied only in homogeneous directions, the statistical average of
the filtered variable yields the same as that of the unfiltered variable, namely, 〈q〉 = 〈q〉. Owing
to this property, the second moment can be straightforwardly decomposed into three of mean,
GS turbulence, and SGS parts. For example, the statistical average of kinetic energy 〈uiui〉/2 is
decomposed into mean UiUi/2, GS turbulence KGS(= 〈u′

iu
′
i〉/2), and SGS 〈uiui − uiui〉/2. If we

also apply the filtering in the wall-normal direction, then we have 〈q〉 �= 〈q〉, and thus the mean
of filtered velocity 〈ux〉 is somewhat smoothed compared with the mean velocity of DNS 〈ux〉.
However, in the near-wall to buffer region, LES often predicts the mean velocity profile well.
Therefore, we infer that the interaction between the mean flow and GS turbulent field through the
mean velocity gradient can be reasonably discussed to some extent even if we apply the filter only
in the x and z directions. To observe the filter-size dependence, we employed two filter sets, namely,
medium-size filter where the set of cutoff wavelength scales is (λc+

x , λc+
z ) = (105, 52.4) and coarse-

or large-size filter where (λc+
x , λc+

z ) = (209, 105). Here λα = 2π/kα for α = x, z that correspond to
LES resolutions of (
x+,
z+) = (52.4, 26.2) and (105, 52.4), respectively. Strictly speaking, an
exact cutoff wavelength is often slightly shorter than the length of grid size because of dealiasing
in a spectral scheme or the accuracy of the discretization scheme. For example for a fourth-order
central finite difference scheme, spatial differentiation yields the modified wave number mentioned
above whose modulus is smaller than the exact wave number. In this study, we do not consider such
an effective maximum wave number to simplify the interpretation of the analysis. According to the
typical resolutions referred to in Sec. II D, the eddy-viscosity models can predict the basic statistics
for the medium filter case, whereas the large filter case is outside their range (see also Appendix C).
Hence, by comparing the results of these two filter sizes, we can determine the physical role of the
anisotropic SGS stress.

B. Filter wavelength and GS Reynolds stresses

Figure 1 shows the profiles of each nonzero component of GS Reynolds stress. The profiles for
DNS without filter operation are also plotted. Most of the turbulent velocity fluctuations are resolved
in the GS for the medium filter case. The ratio of KGS(= 〈u′

iu
′
i〉/2 = RGS

ii /2) to the total turbulent
kinetic energy K (= 〈u′

iu
′
i〉/2 = KGS + 〈τ sgs

ii 〉/2)) yields approximately greater than 90% over the
entire region KGS/K � 0.9, which is within the tolerance of the conventional LES [34]. However,
for the coarse filter case, the ratio KGS/K is less than 80% in y+ < 100. Hence, the conventional
eddy-viscosity-based LES with a coarse grid fails to predict the statistics of channel flows.

To understand the physical meaning of the filter length, two-dimensional premultiplied spectra
of the Reynolds stress are shown in Fig. 2. Here and hereafter, kx and kz denote their moduli when
considering the statistical values. We chose two heights: the near-wall region y+ ≈ 15 and slightly
away from the wall y+ ≈ 100(y/h ≈ 0.25). For the medium filter, almost all the components are
well-resolved. The wall-normal component is partially filtered out in the near-wall region even for
the medium filter. The ratio of wall-normal GS velocity fluctuation to the unfiltered one is less than
80% in y+ < 50 for the medium filter case. This may be one of the reasons why the wall-normal
velocity fluctuation is often underestimated in LESs (see Appendix C). To predict the anisotropy in
the near-wall region of shear flows more accurately, a finer grid may be required in the spanwise
direction, for example, 
z+ < 20. The length scale 
z+ = 20 is comparable to that specified by
the inverse energy transfer in the spanwise scale proposed by Cimarelli and De Angelis [26].

For the coarse filter, half of the peak of the streamwise spectrum is filtered out in the near-wall
region y+ ≈ 15. This indicates that the filter length scale lies within the energy-containing scale.
In addition, most of the wall-normal and shear stress spectra are contained in the SGS. Therefore,
conventional isotropic eddy-viscosity models are not valid for coarse filters. Furthermore, in the
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FIG. 1. Profiles of GS Reynolds stress for (a) streamwise, (b) wall-normal, (c) spanwise, and (d) shear
components. The black line with crosses depicts the result of the DNS without filter operation.

region slightly away from the wall y+ ≈ 100, the wall-normal and spanwise spectra are partially
filtered out, whereas the streamwise and shear stress spectra are well-resolved. Hence, the SGS
anisotropy is significant even in the region slightly away from the wall in the coarse filter case.

C. Mean SGS shear stress

It is important to verify the mean SGS shear stress profile. In general, it is difficult to reproduce
both the energy transfer rate and mean SGS shear stress using only the eddy-viscosity term [1–3].
Because the eddy viscosity in this study is determined to reproduce the energy transfer rate, it
does not necessarily predict the accurate mean SGS shear stress. Figure 3 shows the profiles
of mean SGS shear stress in terms of the SGS stress decomposition. For the medium filter, the
contribution of anisotropic stress is negligible. Therefore, the eddy-viscosity models can predict
both the energy transfer rate and mean SGS shear stress for the medium filter case. This result
provides an interpretation of why LES with an eddy-viscosity model works well for the medium grid
resolution. In contrast, for the coarse filter, anisotropic stress is comparable to the eddy-viscosity
term. Hence, the anisotropic stress is necessary for the coarse filter case to predict both the energy
transfer rate and mean SGS shear stress.

D. Budget for GS turbulent kinetic energy

Figure 4 shows the budget for GS turbulent kinetic energy KGS. Each term corresponds to half
of the trace of Eqs. (7a)–(7f), (9a), (9b), and (7h). Here and hereafter, we only show y+ � 200
for the budgets to highlight the near-wall features. The trend of each term of the budget is almost
monotonic in y+ > 200. The pressure redistribution (7c) is not plotted because it is traceless. For
the conventional unfiltered turbulent kinetic energy budget, the production almost balances the
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FIG. 2. Premultiplied Reynolds stress spectrum kxkzEi j (λx, λz ) where Ei j = �〈ũ′
i ũ

′
j
∗〉, which is defined

by the unfiltered velocity field. (a), (b) Streamwise, (c), (d) wall-normal, (e), (f) spanwise, and (g), (h)
shear components. Wall-normal heights for (a), (c), (e), (g) and (b), (d), (f), (h) are y+ ≈ 15 and y+ ≈ 100,
respectively. The solid and dashed lines depict the medium and coarse filter length scales, respectively.
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FIG. 3. Profiles of SGS shear stresses. The solid and dashed lines represent the medium and coarse filter
cases, respectively. For both filter sizes, the black, red, and blue lines depict the total SGS stress −〈τ sgs

xy 〉,
eddy-viscosity term 2〈νsgssxy〉, and anisotropic term −〈τ ani

xy 〉 given by Eq. (5), respectively. Here and hereafter,
the light-gray dotted line is the zero line.

dissipation in the region away from the wall y+ > 30 (see, e.g., Ref. [35]). The eddy-viscosity
dissipation term also contributes to the budget as an energy sink for the GS turbulent kinetic energy
budget. As expected, the contribution of eddy-viscosity dissipation becomes dominant for the coarse
filter. The anisotropic redistribution term is negligible for the medium filter. In contrast, this term
has a positive value in the near-wall region for the coarse filter. These results are consistent with
the profiles of 〈τ ani

xy 〉 shown in Fig. 3. Because the trace of the anisotropic redistribution is given
by Eq. (10), it becomes prominent when the mean anisotropic stress 〈τ ani

xy 〉 increases. Note that
the SGS dissipation, which is the sum of eddy-viscosity dissipation and anisotropic redistribution,
is positive at y+ ≈ 12 for the coarse filter. Furthermore, the eddy-viscosity dissipation is also
positive at y+ ≈ 10, although its value is much smaller than that of SGS dissipation. The productive
contribution or averaged backward energy transfer of SGS dissipation in the near-wall region has
already been discussed [16,17,25,26,36]. Several studies suggested a relationship between backward
energy transfer and coherent structures observed in the near-wall region of turbulent shear flows
[25,26,37,38]. We discuss this in Sec. IV A.

FIG. 4. Budget for the GS turbulent kinetic energy KGS for (a) medium and (b) coarse filter cases. Here
and hereafter, the black dashed line depicts the residual or sum of all terms for the budgets.
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FIG. 5. Profiles of the normal components of anisotropic redistribution ξGS
αα where summation is not taken

for α(= x, y, z) for (a) medium and (b) coarse filter cases. The black line depicts the trace part ξAR
ii .

The anisotropic stress is not necessarily negligible even when the trace of the anisotropic
redistribution term is small when compared with other terms. Figure 5 shows the profiles of
the normal components of anisotropic redistribution. For the medium filter, the wall-normal and
spanwise components are almost canceled out. For the coarse filter, the positive contributions of
the streamwise and spanwise components increase at y+ ≈ 20. These two components contribute
positively to the GS turbulent kinetic energy budget in the near-wall region as shown in Fig. 4(b).
In addition, the spanwise component is dominant in 50 < y+ < 100 for the coarse filter. Notably,
the spanwise component of the anisotropic redistribution is always positive for both filter sizes. In
turbulent channel flows, the production term is zero in the budget for the spanwise component of GS
Reynolds stress RGS

zz ; that is, PGS
zz = 0. The productive term, which is the pressure redistribution in

the conventional unfiltered budget, plays a significant role in the budget for spanwise GS Reynolds
stress. In the next subsection, we examine the budget for the normal components of GS Reynolds
stress.

E. Budget for GS Reynolds stress

In this study, we focus on the budget only for the normal components of GS Reynolds stress. A
detailed analysis of the contributions of anisotropic SGS stress to the shear stress budget was already
demonstrated by Abe [13], which concluded that anisotropic SGS stress is essential to reproduce
the productive contribution to the shear stress budget.

1. Streamwise component

Figure 6 shows the budget for the streamwise component of GS Reynolds stress. The basic
profiles of each term are almost the same as those of the GS turbulent kinetic energy budget shown in
Fig. 4. The pressure redistribution term, which transfers the energy from the streamwise component
to the other two components, is an exception. The intensity of the pressure redistribution is small
when compared to the eddy-viscosity dissipation for the coarse filter. However, this does not imply
that the redistribution among the normal components is negligible because pressure redistribution is
an essential source term in the wall-normal and spanwise components.

2. Wall-normal component

Figure 7 shows the budget for the wall-normal component of GS Reynolds stress. The pressure
redistribution has a large productive contribution except for the close vicinity of the wall y+ < 10.
The viscous and eddy-viscosity dissipations are the leading terms of the negative contribution for
both filter sizes. For the coarse filter, the eddy-viscosity dissipation is dominant, as seen in the budget
for the streamwise component. In the near-wall to buffer region y+ < 100, the SGS diffusion term
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FIG. 6. Budget for the streamwise component of GS Reynolds stress RGS
xx for (a) medium and (b) coarse

filter cases.

also contributes significantly to the budget and plays a key role in counterbalancing the sum of
the pressure and turbulent diffusions. The details of SGS diffusion are provided in Appendix A.
The anisotropic redistribution has a large negative contribution compared to the viscous and eddy-
viscosity dissipations in the near-wall region y+ < 50. Conventional eddy-viscosity models may
account for this negative contribution in the a posteriori tests, although the intensity could be small.
Thus, the leading productive and dissipative contributions to the wall-normal GS Reynolds stress
can be reproduced by the pressure redistribution, viscous dissipation, and eddy-viscosity dissipation
terms.

3. Spanwise component

Figure 8 shows the budget for the spanwise component of GS Reynolds stress. The pressure
redistribution has a leading productive contribution similar to the wall-normal component shown
in Fig. 7. In addition, the viscous and eddy-viscosity dissipations are also the leading terms of the
negative contribution. An important finding is that the anisotropic redistribution is always positive in
the spanwise GS Reynolds stress budget as shown in Fig. 5. Furthermore, the sum of eddy-viscosity
dissipation and anisotropic redistribution is positive near the wall y+ ≈ 20 for both filter sizes.
The intensity of the anisotropic redistribution is relatively small compared to that of the pressure
redistribution for the medium filter. In contrast, the anisotropic redistribution is comparable to the
pressure redistribution in the near-wall to buffer region y+ < 100 for the coarse filter. Therefore, this
positive contribution of anisotropic redistribution is indispensable to the generation mechanism of

FIG. 7. Budget for the wall-normal component of GS Reynolds stress RGS
yy for (a) medium and (b) coarse

filter cases.
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FIG. 8. Budget for the spanwise component of GS Reynolds stress RGS
zz for (a) medium and (b) coarse filter

cases. We also plot the sum of eddy-viscosity dissipation and anisotropic redistribution, which is depicted as
SGS dissipation in the purple dashed line with inverted triangles.

the spanwise velocity fluctuation in the GS or the resolved scale for the coarse filter case. Even for
the medium filter, we infer that the lack of anisotropic redistribution will lead to an underestimation
of the GS spanwise velocity fluctuation (see also Appendix C). The underestimation of GS spanwise
velocity fluctuation may alter the structure of the wall-bounded turbulent shear flows, for example,
coherent structures in the near-wall region. Hamba [38] demonstrated that the conditional averaged
velocity field regarding the inverse cascade of the spanwise velocity fluctuation represents the
streamwise elongated vorticity structure, which represents the coherent structure in wall-bounded
turbulent shear flows. A relationship between backward scatter in terms of kinetic energy and
coherent structures has also been suggested [25,26,37]. The present analysis suggests that the
anisotropic SGS stress reproducing the productive contribution to the spanwise GS Reynolds stress
budget is key to improving SGS models.

IV. DISCUSSION

In Sec. III E, we demonstrated that the anisotropic redistribution term contributes positively
to the streamwise and spanwise components of GS Reynolds stress. Conventional eddy-viscosity
models cannot represent the productive contribution. In this section, first, we discuss the physical
interpretation of the productive contribution in terms of the budget equation for GS Reynolds stress
spectrum. Second, we perform an a priori test of the anisotropic redistribution term based on several
existing model expressions.

A. Budget for GS Reynolds stress spectrum

Several studies have discussed the relationship between inverse cascade and coherent structures
in wall-bounded turbulent shear flows [25,26,37,38]. Spectral analysis is a fundamental tool used to
study the effect of each term in the budget on structures represented by specific scales [30,31]. A
representative of the near-wall structure is streaky structures whose spanwise spacing or wavelength
is λ+

z ∼ 100 [39,40]. According to the self-sustaining process of wall-bounded turbulent shear
flows, streaky structures are generated by streamwise vortices, and the breakdown of the streaks
generates the source modes of the nonlinear interaction that generates the streamwise vortices
[41,42]. In particular, the generation of streamwise vortices does not agree with the dissipative
property of eddy viscosity [38]. To determine the relationship between these processes and the
productive contribution of anisotropic redistribution in the streamwise and spanwise components of
GS Reynolds stress, we examine the budget for EGS

xx (kx ) and EGS
zz (kz ). Here and hereafter, we simply

denote EGS
i j (kx ) = ∑

nz
EGS

i j (kx, kz ) or EGS
i j (kz ) = ∑

nx
EGS

i j (kx, kz ). Although EGS
zz (kz ) itself does not

directly represent the vorticity, the spanwise velocity fluctuation accompanied by the nonzero
spanwise wave number is related to the streamwise vortices as ω̃x(kz ) = ∂ ũz(kz )/∂y − ikzũy(kz ).
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FIG. 9. Budget for the streamwise component of GS Reynolds stress spectrum in the streamwise wave-
number space EGS

xx (kx ) for (a) medium and (b) coarse filter cases at y+ ≈ 15. The insets show the small vertical
axis range to focus on the small-scale or high-wave-number region.

1. Streamwise component

Figure 9 shows the budget for the streamwise component of GS Reynolds stress spectrum in
the streamwise wave-number space EGS

xx (kx ) at y+ ≈ 15. We plot the budget with a linear scale in kx

instead of a log scale or wavelength scale to depict the kx = 0 mode. For both filter sizes, the produc-
tion term contributes significantly in the low-wave-number region. For the medium filter, the gain by
the interscale interaction is balanced with the loss by viscous dissipation and pressure redistribution
in the high-wave-number region. In contrast, for the coarse filter, the anisotropic redistribution has
a positive contribution in the high-wave-number region k+

x > 0.01 (λ+
x � 600). The contribution of

anisotropic redistribution to the high-wave-number mode was already highlighted by Inagaki and
Kobayashi [8] in the low-Reynolds number case. They suggested that in coarse LES using only
the eddy-viscosity term, the absence of enhancement of small scales causes a longer streamwise
velocity correlation in the x direction than that of filtered DNS. In other words, the anisotropic term
other than eddy viscosity is needed in coarse LES to predict the streamwise velocity correlation in
the x direction comparable to that of filtered DNS.

To see the details of the gain in the small scales, we examine the two-dimensional spectra of
the interscale transfer and anisotropic redistribution in the kx-kz plane for the coarse filter case.
Figure 10 shows the contributions of interscale transfer and anisotropic redistribution at y+ ≈ 15.
The interscale transfer term transports EGS

xx (kx, kz ) from the region k+
x < 0.01 and 0.02 < k+

z < 0.06
(λ+

x � 600 and 100 � λ+
z � 300) to the modes with a relatively large spanwise length scale

FIG. 10. Two-dimensional spectra of (a) the interscale transfer Ť GS
xx (kx, kz ) and (b) anisotropic redistribu-

tion ξ̌AR
xx (kx, kz ) for the coarse filter case at y+ ≈ 15.
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FIG. 11. Budget for the spanwise component of GS Reynolds stress spectrum in the spanwise wave-number
space EGS

zz (kz ) for (a) medium and (b) coarse filter cases at y+ ≈ 15.

where k+
z < 0.03 (λ+

z � 200). In contrast, the anisotropic redistribution term contributes to the
high-wave-number region k+

x > 0.015 (λ+
x � 400). Therefore, we can interpret that the anisotropic

redistribution plays a key role in the amplification of small-scale mode in the streamwise scale. The
typical spanwise length scale of streaky structures lies on a scale close to the cutoff λ+

z ∼ 100 ∼ λc+
z

for the coarse filter. Focusing on k+
x > 0.015 and k+

z > 0.04 (λ+
x � 400 and λ+

z � 160), the
anisotropic redistribution has a slightly larger contribution to the budget than interscale transfer.
This generation of a small streamwise length scale mode with λ+

z ∼ 100 is consistent with the
streak breakdown. We infer that this positive contribution of anisotropic redistribution can improve
the performance of LES in the way that it reproduces the streak breakdown-like contribution.

2. Spanwise component

Figure 11 shows the budget for the spanwise component of GS Reynolds stress spectrum in the
spanwise wave-number space EGS

zz (kz ) at y+ ≈ 15. The interscale transfer is negative at k+
z = 0.04

and positive in k+
z < 0.02 for both filter sizes, which represents the inverse transfer of EGS

zz (kz )
in the spanwise scale. The inverse transfer of the spanwise velocity fluctuation has already been
identified by Hamba [38], although it has been demonstrated in the streamwise scale space. In
addition, the inverse transfer of kinetic energy in the spanwise scale has already been discussed
[26,43]. For the medium filter, the interscale transfer changes the sign at k+

z ≈ 0.08 (λ+
z ≈ 80) in

the high-wave-number region. This critical length scale is larger than that observed in the analysis
based on the Kolmogorov equation [26] or the scale energy density in terms of a filter function
[43]. They suggested that the critical length is r+

z ≈ 20 where rz denotes the distance between the
two velocity fields composing the scale. Note that the wavelength should be twice the distance
between the two velocity fields; that is λz = 2rz. The shift in the critical length of interscale transfer
is caused by the absence of small scales, owing to the filtering operation. Nevertheless, we can
infer that a large amount of the interscale interaction in the budget of EGS

zz (kz ) including inverse
transfer is resolved in the medium filter case. In contrast, for the coarse filter, the forward cascade
of EGS

zz (kz ) is completely unresolved. The unresolved interscale interaction should be converted
to the τ

sgs
�� -related part of the pressure redistribution, eddy-viscosity dissipation, and anisotropic

redistribution. Part of the forward cascade may convert to eddy-viscosity dissipation. However, for
both filter sizes, the positive contribution of anisotropic redistribution is larger than the loss via
eddy-viscosity dissipation in the entire wave number. In addition, the anisotropic redistribution is
comparable to the pressure redistribution for the coarse filter.

To observe the relationship between the coherent structures and positive contributions to the
budget, we examine the two-dimensional spectra of the pressure and anisotropic redistributions
in the kx-kz plane. Figure 12 shows the two-dimensional spectra of the pressure and anisotropic
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FIG. 12. Two-dimensional spectra of (a), (b) the pressure redistribution �̌GS
zz (kx, kz ) and (c), (d) anisotropic

redistribution ξ̌AR
zz (kx, kz ) for (a), (c) medium and (b), (d) coarse filter cases at y+ ≈ 15.

redistributions at y+ ≈ 15. The pressure redistribution is negative in the region k+
x < 0.005 and

k+
z > 0.04 (λ+

x � 1200 and λ+
z � 160) for both filter sizes. This region is consistent with the scale

of streamwise vortices in the self-sustaining process [41,42]. Because EGS
zz (kz ) can be related to

the streamwise vortices, we infer that the pressure redistribution attenuates the streamwise vortices.
The anisotropic redistribution is positive in this region and peaks at k+

z ≈ 0.05 (λ+
z ≈ 130), which

is consistent with the typical spanwise spacing of streaks λ+
z ∼ 100. Therefore, we infer that the

positive contribution of anisotropic redistribution to the spanwise GS Reynolds stress spectrum
is related to the generation of streamwise vortices in the self-sustaining process [41,42]. In other
words, the generation mechanism of streamwise vortices through the SGS stress vanishes if we
employ only the eddy-viscosity model in the LES. As we can see from Fig. 12(c), the anisotropic
redistribution has a large value at a low-kx region, whereas it is large even at a relatively high-kz

region. Therefore, we can infer that the filter in the z direction is more critical than that in the
x direction for the anisotropic redistribution. The anisotropic redistribution is a significant source
term at this scale even in the medium filter case. Hence, by employing a proper anisotropic SGS
stress reproducing the productive contribution to the spanwise GS Reynolds stress, the prediction of
the statistics in LES for the coarse-to-medium filter cases can be improved.

B. A priori test of anisotropic redistribution term

A classical idea for implementing backward scatter in LES is stochastic modeling [44]. Langford
and Moser [45] demonstrated that the force from SGS stress is mostly stochastic in their analysis
of homogeneous isotropic turbulence. They suggested that the SGS model may only be able to
estimate the average energy transfer rate from GS to SGS because of its stochastic nature. However,
the stochastic approach cannot predict the productive contribution to the GS Reynolds stress budget;
that is, even if we add the stochastic forcing term ai to the filtered Navier-Stokes equations (2), its
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contribution to the budget is always zero 〈u′
ia j〉 = 0 because of its stochastic nature. Therefore, a

deterministic model must be employed to reproduce the positive contribution to the GS Reynolds
stress budget.

We examine the performance of several model expressions for the anisotropic SGS stress in terms
of an a priori test of the anisotropic redistribution. In this study, the anisotropic stress is assumed to
have no contribution to the energy transfer between GS and SGS, according to Abe [6,13]. Similarly,
we examine fundamental models based on the strategy proposed by Abe [6]. Namely, we adopt the
following two models for anisotropic stress:

τ ani
i j = τ

sgs
��

τ a
i j

∣∣
tl + 2νasi j

τ a
mm

, τ a
i j = (ui − ûi )(u j − û j ), (19)

τ ani
i j = τ

sgs
��

τ a
i j

∣∣
tl + 2νasi j

τ a
mm

, τ a
i j =

∑
α=1,2,3



2
α

∂ui

∂xα

∂u j

∂xα

, (20)

where νa = −τ a
i j si j/(2s2) for both models, which is introduced to remove energy transfer

through τ a
i j . The first model (19) is the scale-similarity model for the SGS Reynolds term

(ui − ui )(u j − u j ) � (ui − ui )(u j − u j ) [23], although the repeated filter is replaced with the test
filter denoted by ·̂. The filter length for the test filter is set to twice that of the filter ·; namely,


̂/
 = 2. The model (19) is employed in the stabilized mixed model [6,7] with the modeled
transport equation of the SGS kinetic energy τ

sgs
�� /2. The second model (20) is the Clark term,

which is the leading term in the Taylor expansion of the sum of Leonard and cross terms [46]; that

is uiu j − uiu j + ui(u j − u j ) + (ui − ui )u j � ∑
α 


2
α (∂ui/∂xα )(∂u j/∂xα )/12 + O(


4
). Inagaki and

Kobayashi [8] examined these two models in an a posteriori test of turbulent channel flows. They
found that the first model provides a better result than the second because small-scale velocity
fluctuation is significantly enhanced in the first one.

In addition to these two models, we also examine the following quadratic nonlinear model based
on the velocity gradient according to the explicit algebraic SGS stress model [4,5]:

τ ani
i j = −τ

sgs
��

simwm j + s jmwmi

s2 , wi j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
. (21)

This model does not contribute to the energy transfer without any artificial treatments because
(simwm j + s jmwmi )si j = 0. We set the arbitrary numerical coefficient to unity.

We can examine other models, including other normalizations, such as the linear Clark model
where the coefficient τ

sgs
�� /τ a

mm is replaced with a constant or some other nondimensional function.
In addition, to remove the energy transfer by the anisotropic term, we may be able to construct
treatments other than νasi j . In this study, we restrict ourselves our examination to the existing model
expressions.

It is worth examining the profiles of the anisotropic redistribution term when employing the
commonly used eddy viscosities in LES because the definition of eddy viscosity given by Eq. (4) is
an ideal one. Then, we also examine the anisotropic redistribution term by using the eddy viscosity
based on the dynamic Smagorinsky model (DSM) approach [47,48]; namely, we calculate the
anisotropic stress (5) by using the following eddy viscosity

νsgs = C

2
√

2s2, C = max

( 〈Li jMi j〉S

2〈M�mM�m〉S
, 0

)
, (22)

instead of using Eq. (4). Here, Li j = ûiu j − ûîu j , Mi j = 
̂
2√

2̂s
2

ŝi j − 

2√̂

2s2 si j , and 〈·〉S rep-
resents the averaging over the x-z plane. We clip the negative eddy viscosity similarly to that in
a posteriori tests of DSM. In contrast to the anisotropic stress based on Eq. (4), that based on
Eq. (22) allows the energy transfer between GS and SGS. When the anisotropic redistribution based
on Eq. (22) (hereafter referred to as AR-DSM) becomes negligibly small, we can infer that the DSM
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FIG. 13. A priori test of the anisotropic redistribution term for (a) streamwise, (b) wall-normal, and
(c) spanwise components for the coarse filter case. We also plot the models without the νa-related term of
Eqs. (19) and (20) in dashed lines.

predicts well the interaction between the GS velocity fluctuation and SGS even in the a posteriori
test. In other words, when the AR-DSM significantly contributes to the budgets, we can infer that
the anisotropic stress is necessary even when we employ a conventional eddy-viscosity model in
a posteriori tests. Furthermore, when the contribution of AR-DSM is positive in the budgets, it
cannot be modeled in terms of the eddy-viscosity assumption.

Figure 13 shows the a priori prediction of the normal components of the anisotropic redistri-
bution. We refer to the models provided in Eqs. (19), (20), and (21) as SGS-Reynolds, Clark, and
SW, respectively. For reference, we also plot models (19) and (20) without the νa-related term
(namely, τ ani

i j = τ
sgs
�� τ a

i j |tl/τ a
mm) where they are allowed to contribute to the energy transfer including

backward scatter. For the streamwise component, all three models predict a positive contribution,
although they fail to predict a negative contribution observed in fDNS in the vicinity of the wall. The
SGS-Reynolds model provides a profile most similar to the fDNS, whereas the Clark model shows a
different profile. The models without the νa term provide a strongly negative profile that is far from
that of the fDNS. The profile of AR-DSM is rather similar to that of EV dissipation in Fig. 6(b).
Namely, it is almost negative except near a positive peak at y+ ≈ 10. The value of AR-DSM at
y+ ≈ 40 is about −0.02, which is the half of EV dissipation of fDNS there [see Fig. 6(b)]. Note that
the anisotropic redistribution of fDNS is negligibly small at the point, and thus the total dissipation
rate of RGS

xx due to the SGS stress is twice that estimated by DSM in the a priori test. In other words,
the eddy viscosity based on the DSM is less dissipative than the ideal one given by Eq. (4).

The wall-normal component shown in Fig. 13(b) is well predicted by all models including those
without the νa term. The profile of AR-DSM also agrees with that of fDNS based on Eq. (4)
qualitatively. For the spanwise component shown in Fig. 13(c), the SW model provides a different
sign than the fDNS does, which indicates that it attenuates the spanwise GS velocity fluctuation.
The SGS-Reynolds and Clark models succeed in predicting a positive profile observed in the fDNS,
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although their intensity is small. In contrast to the Clark model, the SGS-Reynolds model can
provide a positive contribution without the νa term. The positive value of AR-DSM is smaller than
that of fDNS based on Eq. (4) because the eddy viscosity based on the DSM is less dissipative than
that given by Eq. (4) as mentioned above. If we employ a sufficiently dissipative eddy-viscosity
model, then the positive contribution of anisotropic redistribution becomes large because the sum
of EV dissipation and anisotropic redistribution terms is positive at y+ ≈ 20 for the fDNS as shown
in Fig. 8. Therefore, we can infer that regardless of the choice of the eddy-viscosity model, the
anisotropic stress has a significant contribution to the budgets even when we employ a conventional
eddy-viscosity model in a posteriori tests of coarse grid LES.

In general, the models with the νa term provide better results than those without it. Although the
νa term is an artificial term introduced to remove energy transfer, it can improve the prediction of
the statistics. However, we do not consider that the models with νa term are always superior to other
models in predicting the budget. Furthermore, in the a posteriori test, we must determine the closed
expression of νsgs without using DNS data. The a posteriori performance of the model depends
on the combination of the models of νsgs and τ ani

i j . The main conclusion of this study is that the
anisotropic stress that predicts a positive contribution to the spanwise GS velocity fluctuation is key
to improving SGS models.

V. CONCLUSIONS

We have investigated the budget equation for grid-scale (GS or resolved scale) Reynolds stress
in turbulent channel flows. In the analysis, we have decomposed the subgrid-scale (SGS) stress
into two parts: the isotropic eddy-viscosity term, which governs energy transfer between GS and
SGS, and the anisotropic term, which is separated from the energy transfer. According to this
decomposition, the SGS dissipation is decomposed into eddy-viscosity dissipation and anisotropic
redistribution terms. To clearly observe the role of the anisotropy of SGS stress, we have employed
a coarse-size filter in addition to a medium-size filter. The filter length is chosen such that the
conventional eddy-viscosity models can fairly predict the mean velocity profile for the medium
filter case, whereas it fails for the coarse filter case (see Appendix C).

The contribution of anisotropic redistribution to the budget of GS turbulent kinetic energy for
the medium filter is negligible, whereas in the coarse filter, it has a small but positive contribution.
A similar effect has been observed for the streamwise component of GS Reynolds stress. For the
wall-normal component of GS Reynolds stress budget, the anisotropic redistribution is negative
in the entire region for both filter sizes. In contrast, for the spanwise component of GS Reynolds
stress budget, the anisotropic redistribution is always positive for both filter sizes. Furthermore,
the SGS dissipation, which is the sum of eddy-viscosity dissipation and anisotropic redistribution,
is also positive in the near-wall region. For the coarse filter case, the contribution of anisotropic
redistribution is comparable to that of pressure redistribution. Therefore, anisotropic SGS stress is
indispensable for reproducing the generation of GS spanwise velocity fluctuation for LES using a
coarse grid resolution.

It has been suggested that the positive contribution of SGS dissipation to the budget is related to
the coherent structures in the near-wall region of turbulent shear flows [25,26,37,38]. To determine
the relationship between coherent structures and positive contribution of anisotropic redistribution
to the budget, we have performed a spectral analysis of the GS Reynolds stress budget. For the
coarse filter case, the anisotropic redistribution is positive in a relatively small-scale region in the
near-wall region of the budget for the streamwise component of GS Reynolds stress spectrum. This
trend is consistent with the streak breakdown process in the self-sustaining process of wall-bounded
turbulent shear flows [41,42]. In the budget for spanwise GS Reynolds stress spectrum in the near-
wall region, the anisotropic redistribution has a positive contribution where the streamwise length
scale is large and the spanwise length scale is close to the typical spacing of streaks. The spanwise
velocity fluctuation accompanied by a nonzero spanwise wave number is related to streamwise
vortices. Therefore, we can infer that the positive contribution of anisotropic redistribution to the
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spanwise GS Reynolds stress is related to the generation of streamwise vortices in the self-sustaining
process [41,42]. Thus, this study suggests that the anisotropic part of SGS stress is responsible for
the generation of coherent structures in wall-bounded turbulent shear flows.

We have performed an a priori test of several existing models of anisotropic stress in terms of
anisotropic redistribution. Among them, the model expression employed in the stabilized mixed
model [6] seems to be the best. However, the intensity of the spanwise component is small. In
addition, the artificially introduced part that removes the energy transfer due to the scale-similarity
model contributes to the improvement of the profile of anisotropic redistribution. A quadratic
nonlinear model based on the velocity gradient [4,5] cannot reproduce the positive contribution
to spanwise GS Reynolds stress. In the future, we intend to develop a model that predicts all the
components of anisotropic redistribution. In conclusion, this study has suggested that anisotropic
SGS stress reproducing a positive contribution to the GS Reynolds stress budget is key to improving
SGS models. This viewpoint can be a novel guiding principle in SGS modeling, particularly for
coarse grid cases.

In this study, we have not considered the filter in the wall-normal direction. When we apply
the filter in the wall-normal direction, the velocity gradient in the vicinity of the wall is smoothed.
Therefore, the interaction between the mean and turbulent fields should be changed. To discuss the
physics of coarse LES based on the DNS in more detail, we have to consider wall-normal filtering.
However, to realize the filter that coincides with the actual LES, we have to apply the inhomoge-
neous filter where the filter length changes against the distance from the wall. This inhomogeneous
filter is not commutative with a differential operation and induces several additional terms which are
different from the stress term in the filtered continuity and Navier-Stokes equations [14]. We have
to assess the effect of such terms arising from the commutation error. Furthermore, in wall-bounded
turbulent flows, the interaction between near-wall small eddies and the bulk flow is also important
[33]. The physics of wall-normal filtered velocity fields and its subgrid-scale modeling should be
discussed in a future study.
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APPENDIX A: DECOMPOSITION OF SGS DIFFUSION TERM

Similar to the SGS dissipation term, we can decompose the SGS diffusion term (7h) as follows:

DSGS
i j = DEV

i j + DAS
i j , (A1)

where

DEV
i j = 2

∂

∂x�

〈νsgs(si�u′
j + s j�u′

i )〉, (A2a)

DAS
i j = − ∂

∂x�

〈
τ ani

i� u′
j + τ ani

j� u′
i

〉
. (A2b)

These two terms are referred to as eddy-viscosity and anisotropic stress diffusions, respectively.
Figure 14 shows the profiles of decomposed SGS diffusion terms. For the streamwise component,

the eddy-viscosity diffusion (EV) provides a profile similar to SGS diffusion itself. However, the
anisotropic stress diffusion (AS) also has a value comparable to that of the eddy-viscosity term
and slightly alters the profile of SGS diffusion. The wall-normal component of SGS diffusion is
determined by anisotropic stress diffusion, whereas the eddy-viscosity diffusion is negligible. For
the spanwise component, the anisotropic stress diffusion provides a profile similar to that of SGS
diffusion. The eddy-viscosity diffusion has the opposite sign to that of SGS and anisotropic stress
diffusions. However, for the spanwise component, the contribution of SGS diffusion to the budget
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FIG. 14. Decomposition of SGS diffusion term for (a) streamwise, (b) wall-normal, and (c) spanwise
components for the coarse filter case.

is negligible when compared with the other terms as shown in Fig. 8. In contrast, the SGS diffusion
contributes significantly to the budget in the near-wall region for the wall-normal component as
shown in Fig. 7. Therefore, anisotropic SGS stress is also important to predict SGS diffusion,
particularly for the wall-normal component.

APPENDIX B: VALIDATION OF DNS

Figure 15 shows the comparison between the present DNS and existing ones performed by Moser
et al. [49] and Abe et al. [50]. The database of the nearest Reynolds number is chosen. Note that

FIG. 15. Comparison between the present DNS and exiting database: profiles of (a) mean velocity and
(b) Reynolds stress.
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TABLE I. Numerical parameters for LES of DSM.

Case Nx × Ny × Nz 
x+ 
y+ 
z+

Fine 96 × 96 × 96 26.2 0.7–20 13.1
Medium 48 × 96 × 48 52.4 0.7–20 26.2
Coarse 24 × 96 × 24 105 0.7–20 52.4

Abe et al. [50] used the fourth-order finite difference in the x and z directions and the second-
order finite difference in the y direction, which are the same condition as our code, whereas Moser
et al. [49] used the spectral discretization. The mean velocity profiles are almost consistent for all
codes. For the Reynolds stress, the present DNS slightly overestimates the streamwise component
in 50 < y+ < 250. However, the near-wall region seems to be well resolved. Therefore, we infer
that we can analyze the physics of this flow by our present simulation, although the resolution is
slightly coarser than that of references.

APPENDIX C: LES RESULTS OF REFERENCE FILTER SIZES

To observe the resolution dependence of eddy-viscosity models in the a posteriori test, we
performed LES using the dynamic Smagorinsky model (DSM) [47,48]. The numerical method and
Reynolds number are the same as the DNS provided in Sec. III A. We chose a grid resolution
corresponding to the selected filter lengths. Namely, we performed the medium (
x+,
z+) =
(52.4, 26.2) and coarse (
x+,
z+) = (105, 52.4) cases. We additionally performed a fine case
with (
x+,
z+) = (26.2, 13.1) to observe the detailed dependence on resolution. The grid number
in the y direction is fixed at Ny = 96 for all the cases. The near-wall region is well resolved as

y+ < 1 for the first grid from the wall, although the resolution is slightly coarser than that of
DNS. Details for the numerical parameters are shown in Table I. The test filter operation used to
evaluate the eddy viscosity in the dynamic model is calculated by retaining the first-order in the
Taylor expansion (see Ref. [8]) and is applied in all three directions. The filter length for the test
filter is set to twice the grid width in each direction.

Figure 16 shows the mean velocity profile for the LES of DSM in comparison with that for DNS.
Both the fine and medium grid cases predict the mean velocity of the DNS efficiently, whereas the

FIG. 16. Mean velocity profile for the LES of DSM with various grid resolutions in comparison with that
for DNS.
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FIG. 17. Profiles of GS Reynolds stress for the LES of DSM in comparison with those for DNS and filtered
DNS (fDNS) for (a) streamwise, (b) wall-normal, (c) spanwise, and (d) shear components.

coarse grid case overestimates it. Thus, we can conclude that the medium grid resolution is sufficient
for predicting the mean velocity profile in turbulent channel flows.

Figure 17 shows the profiles of GS Reynolds stress for the LES of DSM in comparison with
those for DNS and filtered DNS (fDNS). The fine grid case predicts all the nonzero components
of GS Reynolds stress efficiently, although the wall-normal and spanwise components are slightly
underestimated. In contrast, the medium grid case overestimates the streamwise component and
underestimates the wall-normal and spanwise components. These trends are often observed in the
LES of turbulent channel flows and are emphasized in the coarse grid case. The analysis described
in Secs. III and IV suggests that this issue can be resolved by employing an appropriate anisotropic
SGS stress. The medium grid case also overestimates the shear component. However, the mean
velocity is comparable to that of the DNS owing to the relatively small SGS stress (the figure is not
shown).

[1] C. Meneveau, Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests,
Phys. Fluids 6, 815 (1994).

[2] J. Jiménez and R. D. Moser, Large-eddy simulation: Where are we and what can we expect? AIAA J. 38,
605 (2000).

[3] Y. Li and C. Meneveau, Analysis of mean momentum flux in subgrid models of turbulence, Phys. Fluids
16, 3483 (2004).

[4] L. Marstorp, G. Brethouwer, O. Grundestam, and A. V. Johansson, Explicit algebraic subgrid stress
models with application to rotating channel flow, J. Fluid Mech. 639, 403 (2009).

104603-24

https://doi.org/10.1063/1.868320
https://doi.org/10.2514/2.1031
https://doi.org/10.1063/1.1773846
https://doi.org/10.1017/S0022112009991054


ANALYSIS OF ANISOTROPIC SUBGRID-SCALE STRESS …

[5] M. Montecchia, G. Brethouwer, A. V. Johansson, and S. Wallin, Taking large-eddy simulation of wall-
bounded flows to higher Reynolds numbers by use of anisotropy-resolving subgrid models, Phys. Rev.
Fluids 2, 034601 (2017).

[6] K. Abe, An improved anisotropy-resolving subgrid-scale model with the aid of a scale-similarity modeling
concept, Int. J. Heat Fluid Flow 39, 42 (2013).

[7] M. Inagaki and K. Abe, An improved anisotropy-resolving subgrid-scale model for flows in Laminar–
turbulent transition region, Int. J. Heat Fluid Flow 64, 137 (2017).

[8] K. Inagaki and H. Kobayashi, Role of various scale-similarity models in stabilized mixed subgrid-scale
model, Phys. Fluids 32, 075108 (2020).

[9] R. Agrawal, M. P. Whitmore, K. P. Griffin, S. T. Bose, and P. Moin, Non-Boussinesq subgrid-scale model
with dynamic tensorial coefficients, Phys. Rev. Fluids 7, 074602 (2022).

[10] A. Cimarelli and E. De Angelis, The physics of energy transfer toward improved subgrid-scale models,
Phys. Fluids 26, 055103 (2014).

[11] A. Cimarelli, A. Abbà, and M. Germano, General formalism for a reduced description and modelling of
momentum and energy transfer in turbulence, J. Fluid Mech. 866, 865 (2019).

[12] R. Honnert, G. A. Efstathiou, R. J. Beare, J. Ito, A. Lock, R. Neggers, R. S. Plant, H. H. Shin, L. Tomassini,
and B. Zhou, The atmospheric boundary layer and the “gray zone” of turbulence: A critical review,
J. Geophys. Res. 125, e2019JD030317 (2020).

[13] K. Abe, Notable effect of the subgrid-scale stress anisotropy on mean-velocity prediction through budget
of the grid-scale Reynolds-shear stress, Phys. Fluids 31, 105103 (2019).

[14] R. D. Moser, S. W. Haering, and G. R. Yalla, Statistical properties of subgrid-scale turbulence models,
Annu. Rev. Fluid Mech. 53, 255 (2021).

[15] S. W. Haering, M. Lee, and R. D. Moser, Resolution-induced anisotropy in large-eddy simulations,
Phys. Rev. Fluids 4, 114605 (2019).

[16] J. A. Domaradzki, W. Liu, C. Härtel, and L. Kleiser, Energy transfer in numerically simulated wall-
bounded turbulent flows, Phys. Fluids 6, 1583 (1994).

[17] C. Härtel and L. Kleiser, Analysis and modelling of subgrid-scale motions in near-wall turbulence,
J. Fluid Mech. 356, 327 (1998).

[18] S. Liu, C. Meneveau, and J. Katz, On the properties of similarity subgrid-scale models as deduced from
measurements in a turbulent jet, J. Fluid Mech. 275, 83 (1994).

[19] B. Tao, J. Katz, and C. Meneveau, Statistical geometry of subgrid-scale stresses determined from
holographic particle image velocimetry measurements, J. Fluid Mech. 457, 35 (2002).

[20] K. Horiuti, Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence
generation, J. Fluid Mech. 491, 65 (2003).

[21] U. Piomelli, W. H. Cabot, P. Moin, and S. Lee, Subgrid-scale backscatter in turbulent and transitional
flows, Phys. Fluids A 3, 1766 (1991).

[22] T. Aoyama, T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, Statistics of energy transfer in
high-resolution direct numerical simulation of turbulence in a periodic box, J. Phys. Soc. Jpn. 74, 3202
(2005).

[23] J. Bardina, J. H. Ferziger, and W. C. Reynolds, Improved turbulence models based on large-eddy
simulation of homogenous, incompressible, turbulent flows, Report No. TF-19, Thermosciences Division,
Dep. of Mech. Eng., Stanford University, Stanford, California (1983).

[24] C. Meneveau and J. Katz, Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev.
Fluid Mech. 32, 1 (2000).

[25] C. Härtel, L. Kleiser, F. Unger, and R. Friedrich, Subgrid-scale energy transfer in the near-wall region of
turbulent flows, Phys. Fluids 6, 3130 (1994).

[26] A. Cimarelli and E. De Angelis, Anisotropic dynamics and sub-grid energy transfer in wall-turbulence,
Phys. Fluids 24, 015102 (2012).

[27] A. G. Kravchenko, P. Moin, and R. Moser, Zonal embedded grids for numerical simulations of wall-
bounded turbulent flows, J. Comput. Phys. 127, 412 (1996).

104603-25

https://doi.org/10.1103/PhysRevFluids.2.034601
https://doi.org/10.1016/j.ijheatfluidflow.2012.12.001
https://doi.org/10.1016/j.ijheatfluidflow.2017.02.006
https://doi.org/10.1063/5.0012559
https://doi.org/10.1103/PhysRevFluids.7.074602
https://doi.org/10.1063/1.4871902
https://doi.org/10.1017/jfm.2019.124
https://doi.org/10.1029/2019JD030317
https://doi.org/10.1063/1.5121528
https://doi.org/10.1146/annurev-fluid-060420-023735
https://doi.org/10.1103/PhysRevFluids.4.114605
https://doi.org/10.1063/1.868272
https://doi.org/10.1017/S0022112097007994
https://doi.org/10.1017/S0022112094002296
https://doi.org/10.1017/S0022112001007443
https://doi.org/10.1017/S0022112003005299
https://doi.org/10.1063/1.857956
https://doi.org/10.1143/JPSJ.74.3202
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1063/1.868137
https://doi.org/10.1063/1.3675626
https://doi.org/10.1006/jcph.1996.0184


KAZUHIRO INAGAKI AND HIROMICHI KOBAYASHI

[28] Y. Morinishi and O. V. Vasilyev, A recommended modification to the dynamic two-parameter mixed
subgrid-scale model for large-eddy simulation of wall bounded turbulent flow, Phys. Fluids 13, 3400
(2001).

[29] H. Choi and P. Moin, Grid-point requirements for large-eddy simulation: Chapman’s estimates revisited,
Phys. Fluids 24, 011702 (2012).

[30] T. Kawata and P. H. Alfredsson, Inverse interscale transport of the Reynolds shear stress in plane Couette
turbulence, Phys. Rev. Lett. 120, 244501 (2018).

[31] M. Lee and R. D. Moser, Spectral analysis of the budget equation in turbulent channel flows at high
Reynolds number, J. Fluid Mech. 860, 886 (2019).

[32] T. Kajishima and K. Taira, Computational Fluid Dynamics (Springer, Cham, Switzerland, 2017).
[33] A. Cimarelli, E. De Angelis, J. Jiménez, and C. M. Casciola, Cascades and wall-normal fluxes in turbulent

channel flows, J. Fluid Mech. 796, 417 (2016).
[34] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2000).
[35] M. Lee and R. D. Moser, Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200,

J. Fluid Mech. 774, 395 (2015).
[36] A. Cimarelli and E. De Angelis, Analysis of the Kolmogorov equation for filtered wall-turbulent flows,

J. Fluid Mech. 676, 376 (2011).
[37] U. Piomelli, Y. Yu, and R. J. Adrian, Subgrid-scale energy transfer and near-wall turbulence structure,

Phys. Fluids 8, 215 (1996).
[38] F. Hamba, Inverse energy cascade and vortical structure in the near-wall region of turbulent channel flow,

Phys. Rev. Fluids 4, 114609 (2019).
[39] S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, The structure of turbulent boundary

layers, J. Fluid Mech. 30, 741 (1967).
[40] J. Jiménez and P. Moin, The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225, 213 (1991).
[41] J. M. Hamilton, J. Kim, and F. Waleffe, Regeneration mechanisms of near-wall turbulence structures,

J. Fluid Mech. 287, 317 (1995).
[42] F. Waleffe, On a self-sustaining process in shear flows, Phys. Fluids 9, 883 (1997).
[43] F. Hamba, Turbulent energy density in scale space for inhomogeneous turbulence, J. Fluid Mech. 842,

532 (2018).
[44] C. E. Leith, Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer, Phys. Fluids A 2,

297 (1990).
[45] J. A. Langford and R. D. Moser, Optimal LES formulations for isotropic turbulence, J. Fluid Mech. 398,

321 (1999).
[46] R. A. Clark, J. H. Ferziger, and W. C. Reynolds, Evaluation of subgrid-scale models using an accurately

simulated turbulent flow, J. Fluid Mech. 91, 1 (1979).
[47] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model,

Phys. Fluids A 3, 1760 (1991).
[48] D. K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4,

633 (1992).
[49] R. D. Moser, J. Kim, and N. N. Mansour, Direct numerical simulation of turbulent channel up to Reτ =

590, Phys. Fluids 11, 943 (1999).
[50] H. Abe, R. A. Antonia, and H. Kawamura, Correlation between small-scale velocity and scalar fluctua-

tions in a turbulent channel flow, J. Fluid Mech. 627, 1 (2009).

104603-26

https://doi.org/10.1063/1.1404396
https://doi.org/10.1063/1.3676783
https://doi.org/10.1103/PhysRevLett.120.244501
https://doi.org/10.1017/jfm.2018.903
https://link.springer.com/book/10.1007/978-3-319-45304-0
https://doi.org/10.1017/jfm.2016.275
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/S0022112011000565
https://doi.org/10.1063/1.868829
https://doi.org/10.1103/PhysRevFluids.4.114609
https://doi.org/10.1017/S0022112067001740
https://doi.org/10.1017/S0022112091002033
https://doi.org/10.1017/S0022112095000978
https://doi.org/10.1063/1.869185
https://doi.org/10.1017/jfm.2018.155
https://doi.org/10.1063/1.857779
https://doi.org/10.1017/S0022112099006369
https://doi.org/10.1017/S002211207900001X
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.869966
https://doi.org/10.1017/S0022112008005569

