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Statistical properties of shear and nonshear velocity components
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The triple decomposition of a velocity gradient tensor, which extracts local fluid motions
of shear, rigid-body rotation, and irrotational strain, is extended to the decomposition of
velocity vectors into shear and nonshear components. The present approach adapts the
Biot-Savart law to reconstruct shear and nonshear velocities from the vorticity vectors of
shear and rigid-body rotation, respectively. These velocities are related to the flows induced
by small-scale shear layers or vortex tubes. The decomposed velocities are investigated
with direct numerical simulations of isotropic turbulence and temporally evolving planar
jets. The r.m.s. values of shear and nonshear velocities are about 70% and 30% of the
r.m.s. value of total velocity fluctuations, and shear layers have a greater contribution to
velocity fluctuations than vortex tubes. The shear and nonshear velocities are positively
correlated at large scales, and the momentum transfer due to their interaction actively
occurs at scales greater than 20 times the Kolmogorov scale. The contributions of shear and
nonshear velocities to the Reynolds stress hardly depend on flows. The energy spectra of
these velocities collapse well at small scales under Kolmogorov normalization. The present
analysis of the turbulent jet confirms that shearing motion has dominant contributions to
the production and diffusion of turbulent kinetic energy and the turbulent transport of a
passive scalar. In addition, the energy transfer across scales is shown to be dominated by
the large-scale velocity gradients arising from shearing motion and the small-scale stresses
due to the shear velocity and its interaction with the nonshear component.
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I. INTRODUCTION

Turbulence is an important phenomenon in various scientific problems and engineering appli-
cations. It is characterized by fluid motions with a wide range of scales. Velocity fluctuations
associated with large-scale motions efficiently transport momentum, heat, and chemical substances
[1]. Small-scale motions are strongly influenced by viscous effects, by which kinetic energy is
dissipated. In addition, the rates of heat conduction and molecular diffusion are also enhanced
by small-scale turbulent motions. The small-scale properties of turbulence are studied with a
velocity gradient tensor ∇u [2]. Hereafter, components of tensors and vectors are denoted with
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subscripts, e.g., (∇u)i j = ∂ui/∂x j . The analyses of ∇u often adapt the decomposition into symmet-
ric and antisymmetric components as (∇u)i j = Si j + �i j , where Si j = [(∇u)i j + (∇u) ji]/2 and
�i j = [(∇u)i j − (∇u) ji]/2 are the rate-of-strain tensor and rate-of-rotation tensor, respectively
[3]. The kinetic energy dissipation rate is defined as 2νSi jSi j with kinematic viscosity ν, while
vortical structures are often identified with enstrophy ω2/2 = �i j�i j . This decomposition has been
extensively utilized in the investigation of turbulence [3].

Recent studies have indicated the importance of a shear contribution to the velocity gradient
tensor. Vortex identification schemes based on enstrophy cannot distinguish tubular and sheetlike
structures with large enstrophy [4]. The former structures are known as vortex tubes, where rotation
described by �i j is more significant than deformation Si j . The latter structures are called vortex
sheets, where both rotation and deformation are significant. The vortex sheets are characterized by
shearing motion, which contributes to both �i j and Si j [5], and they are also called shear layers in
recent studies [6]. Therefore, recent vortex identification schemes consider the extraction of shearing
motion from the velocity gradient tensor. This approach is adapted by the triple decomposition and
the Rortex-based decomposition [7,8], which have proved useful in analyzing local flow topology
and related flow structures. The triple decomposition considers three local fluid motions of shear (S),
rigid-body rotation (R), and elongation (E) (irrotational strain), as ∇u = ∇uS + ∇uR + ∇uE . The
components of shear and rigid-body rotation are useful to investigate shear layers and vortex tubes,
respectively, as proved in early studies of the triple decomposition [9,10]. The advantage of the
triple decomposition is in the extraction of the shear component of the velocity gradient tensor. In
the classical double decomposition, ∇u is split into Si j and �i j . Because shearing motion contributes
to both Si j and �i j , these tensors of the double decomposition cannot directly distinguish shearing
motion from other motions. Due to the capability of the triple decomposition in distinguishing shear
and rigid-body rotation, it has been used in detecting turbulent structures associated with them. As
reviewed below, this feature of the triple decomposition has helped us understand the important
properties of local shearing motion.

The triple decomposition has proved its effectiveness in studying local turbulent motions in
previous studies. Eisma et al. [10] adapted the triple decomposition in a two-dimensional form
to experimental datasets of a turbulent boundary layer obtained with two-dimensional and two-
component particle image velocimetry. They successfully identified thin shear layers with the
vorticity defined for the shear component ∇uS . They observed a large velocity jump across the
shear layers. The triple decomposition for a three-dimensional velocity gradient tensor in turbulence
was also reported for isotropic turbulence, where the computational cost of the decomposition
algorithm was shown to be reasonable enough for a direct numerical simulation (DNS) database
of three-dimensional turbulent flows [11]. Later, the triple decomposition has been applied to
three-dimensional velocity profiles of various turbulent flows. Small-scale shear layers detected with
the norm of ∇uS were investigated in isotropic turbulence [12]. A conditional sampling technique
for the shear layers calculates the statistics in a three-dimensional local coordinate system, called
a shear coordinate, with the origin located at the center of the shear layers. The orientation of
the shear coordinate was determined with the components of ∇uS . The shear layers were shown
to form in a biaxial strain field with an extensive strain in the shear vorticity direction and a
compressive strain in the layer-normal direction, where the interaction between the shear and biaxial
strain causes enstrophy production and strain self-amplification. The components of mean velocity
vectors associated with the shear and biaxial strain exhibit a distinct jump within the shear layers.
Fiscaletti et al. [13] investigated the shear layers with experiments of turbulent jets [14] and DNS
of a turbulent mixing layer [15]. They also observed a mean velocity jump near the shear layers.
These studies have shown that the length and velocity scales of shear layers are characterized by
Kolmogorov scales. The mean velocity profile around the shear layers is related to the mean flow
pattern observed in the reference frame defined with the eigenvectors of the rate-of-strain tensor
[16–18], which successfully explains various statistical properties of turbulence [19,20]. The shear
layer characteristics evaluated with the triple decomposition were also used in the stability analysis
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of small-scale shear layers [21], which confirmed that the perturbation response of shear layers can
be important for controlling small-scale turbulence with external disturbance.

The application of the triple decomposition to turbulence is restricted to the studies of small-scale
properties, most of which concern small-scale shear layers discussed above. This is because the
velocity gradient describes local flow topology around one point in a flow, which is useful to define
small-scale turbulent structures. However, their relevance to large-scale phenomena is not clear so
far. Large-scale properties are important because large-scale turbulent motions possess a large part
of kinetic energy. Therefore, flow evolutions are often governed by large-scale properties of the flow.
For example, the order of the kinetic energy dissipation rate is imposed by the length and velocity
scales of large-scale motions [22]. In addition, turbulent transports are also dominated by large-scale
velocity fluctuations, as confirmed by Fourier analyses of turbulent fluxes of momentum and scalars
such as mass fractions and temperature [23–25]. Because the triple decomposition considers only
three types of local fluid motion described by the velocity gradient tensor, the role of these motions
in the phenomena dominated by large scales is difficult to assess with the triple decomposition.

In incompressible flows, a velocity field u is related to a velocity gradient tensor by the
Biot-Savart law, which is written with a vorticity vector ω = ∇ × u as u = −∇ × (∇−2ω). For
a given vorticity field, this relation can be used to reconstruct the velocity field under appropriate
boundary conditions. This procedure is often used in decompositions of flows based on the vorticity
vector. One of the examples is the extraction of coherent structures with an orthogonal wavelet
transform [26]. The vorticity vector is decomposed into coherent and incoherent components with
the wavelet transform, while the corresponding components of the velocity vector are obtained
with the Biot-Savart law [27,28]. This reconstruction of the velocity vectors from the decomposed
vorticity vectors has been adapted for the analyses of turbulent transport phenomena, such as
turbulent mixing [29] and entrainment in turbulent free shear flows [30].

The present study proposes the reconstruction of the velocity fields from the vorticity vectors
decomposed by the triple decomposition. The previous studies of the triple decomposition have
considered only local fluid motion described by the velocity gradient tensor. Even though the
velocity gradient tensor is defined locally at one point, its influence on the flow is not local as also
observed for the relation between the vorticity and velocity fields. The present approach enables
us to study the influence of the local fluid motions described by the triple decomposition on an
entire flow field. The vorticity vector can be uniquely decomposed into two components of shear
and rigid-body rotation with the triple decomposition. The Biot-Savart law is applied to these
decomposed vorticity vectors. This approach is motivated by two types of small-scale turbulent
structures, namely, vortex tubes characterized by rigid-body rotation and small-scale shear layers
characterized by shearing motion. Both structures play important roles in various phenomena related
to turbulence, such as particle transport [31], entrainment in intermittent turbulent flows [32,33],
and enstrophy production and strain self-amplification [12]. Although a flow field around a single
isolated structure can be studied with idealized models [3], the interaction of many vortex tubes
and shear layers result in a complicated velocity profile in turbulent flows. The velocity vectors
reconstructed by the decomposed vorticity vectors of the triple decomposition are related to the
flow fields arising from the superposition of the flows induced by many shear layers or vortex tubes.
Therefore, the present velocity decomposition is expected to provide additional insights into these
small-scale turbulent structures, especially their roles in large-scale phenomena.

The triple decomposition extended to velocity as the velocity decomposition into shear and
nonshear components is tested with direct numerical simulations (DNS) of homogeneous isotropic
turbulence and planar jets. The present study confirms that these velocity components have universal
statistical properties that hardly differ for isotropic turbulence and planar jets with a wide range of
Reynolds numbers. We also present the application of the proposed decomposition to the analyses of
a kinetic energy budget and scalar mixing in turbulent flows, which will be useful in understanding
the role of the three local fluid motions of the triple decomposition in various turbulent transport
phenomena. The present results provide evidence that shearing motion, related to small-scale shear
layers investigated in early studies of the triple decomposition, is essential in the turbulent transport.
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The paper is organized as follows. Section II presents the decomposition of a velocity vector
with the triple decomposition. DNS databases of homogeneous isotropic turbulence and planar jets
are described in Sec. III. Section IV discusses the properties of the decomposed velocity vectors in
these turbulent flows. Finally, the paper is summarized in Sec. V.

II. DECOMPOSITION OF A VELOCITY FIELD BASED ON THE TRIPLE DECOMPOSITION

A. The triple decomposition of a velocity gradient tensor

The triple decomposition considers three local fluid motions: shear, rigid-body rotation, and
irrotational strain called elongation [7]. An incompressible fluid is considered throughout the paper.
The velocity gradient tensor is decomposed as ∇u = ∇uS + ∇uR + ∇uE , which is locally defined
at a given position x. The decomposition has to be applied in a so-called basic reference frame
(BRF), where the decomposition formula fully extracts the shear component from ∇u. Several
implementations of the triple decomposition of three-dimensional flows have been proposed in
previous studies [11,34]. The present study follows the original algorithm, which was also used
for three-dimensional turbulent flows [7,11]. A coordinate transformation matrix Q(θ1, θ2, θ3) for
three successive rotations about different axes is introduced to identify the BRF:

Q=
⎛
⎝ cos θ1 cos θ2 cos θ3 − sin θ1 sin θ3 sin θ1 cos θ2 cos θ3 + cos θ1 sin θ3 − sin θ2 cos θ3

− cos θ1 cos θ2 sin θ3 − sin θ1 cos θ3 − sin θ1 cos θ2 sin θ3 + cos θ1 cos θ3 sin θ2 sin θ3

cos θ1 sin θ2 sin θ1 sin θ2 cos θ2

⎞
⎠

(1)

with angles (θ1, θ2, θ3) in the ranges of 0◦ � θ1 � 180◦, 0◦ � θ2 � 180◦, and 0◦ � θ3 � 90◦.
The rotated reference frame x∗ is obtained by applying Q to an original reference frame x of
numerical simulations or laboratory experiments. Hereafter, the asterisk superscript represents a
variable evaluated in the rotated reference frame. The velocity gradient tensor in x∗ is calcu-
lated as (∇u)∗ = Q(∇u)QT . The BRF assumes that a variable called an interaction scalar, I∗ =
|�∗

12S∗
12| + |�∗

23S∗
23| + |�∗

31S∗
31|, becomes the largest among all the possible reference frames. The

BRF can be determined by examining I∗ in rotated reference frames with many sets of (θ1, θ2, θ3).
Specifically, (θ1, θ2, θ3) are discretely changed with an increment of 5◦, and I∗ is calculated for
each reference frame. The increment of 5◦ was shown to be small enough to accurately determine
the BRF [11,13]. Then (θ1, θ2, θ3) which yields the largest I∗ can be used to define the BRF. Once
the BRF is identified, the following decomposition is applied to ∇u∗ in the BRF:

(∇uRES )∗i j = sgn[(∇u)∗i j]min[|(∇u)∗i j |, |(∇u)∗ji|], (2)

(∇uS )∗i j = (∇u)∗i j − (∇uRES )∗i j, (3)

with i, j = 1, 2, and 3. Here ∇uRES is called a residual tensor and does not contain shearing motion,
while the shear is represented by ∇uS . In addition, the conventional decomposition into symmetric
and antisymmetric parts applied to ∇uRES yields the components of elongation and rigid-body
rotation as

(∇uE )∗i j = 1
2 (∇uRES )∗i j + 1

2 (∇uRES )∗ji, (4)

(∇uR)∗i j = 1
2 (∇uRES )∗i j − 1

2 (∇uRES )∗ji. (5)

Finally, these tensors in the original reference frame, ∇uS , ∇uR, and ∇uE , are obtained by applying
the inverse transformation of Q to (∇uS )∗, (∇uR)∗, and (∇uE )∗, respectively.

B. Reconstruction of shear and nonshear velocity fields

The original triple decomposition is applied to the velocity gradient tensor, which expresses local
fluid motion at one point in a flow. The present study further extends the triple decomposition to the
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decomposition of a velocity field. In the triple decomposition, a vorticity vector ω is decomposed
into the shear (S) and nonshear (NS) components as ω = ωS + ωNS with ωSi = εi jk (∇uS ) jk and
ωNSi = εi jk (∇uRES ) jk , where εi jk is the Levi-Civita symbol. The nonshear vorticity is associated
with rigid-body rotation ∇uR because elongation ∇uE does not contribute to the vorticity. The trace
of ∇uS and ∇uRES is zero because of incompressibility, and therefore, the present study considers
the reconstruction of the velocity fields corresponding to these vorticity vectors with the Biot-Savart
law u = −∇ × (∇−2ω). With vector potentials ϕ = (ϕ1, ϕ2, ϕ3) defined as ∇2ϕ = ω, the velocity
vector is expressed as u = −∇ × ϕ, which can also be written as ui = −∇ × ϕi with ∇2ϕi = ωi

for i = 1, 2, and 3. Similarly, the vector potentials defined with ∇2ϕS = ωS and ∇2ϕNS = ωNS

are related to the shear and nonshear components of the velocity vector, uS and uNS , respectively.
Although the Biot-Savart law for the original solenoidal velocity vector, u = −∇ × (∇−2ω), relates
u to the rate-of-rotation tensor �i j , it does not provide an explicit relation between u and the rate-
of-strain tensor Si j . However, the symmetric part of ∇u still provides Si j even if u is calculated from
the vorticity vector with the Biot-Savart law. For the same reason, ∇uE and ∇uR are the symmetric
and antisymmetric parts of the gradient tensor of uNS , respectively, although uNS is calculated from
ωNS , which is written with the components of ∇uR. Because of this relation between uNS and ∇uE ,
uNS is called nonshear velocity instead of the velocity of rigid-body rotation.

The detailed numerical procedure to reconstruct the shear and nonshear velocity components
is provided here. The present study solves the Poisson equations to obtain the vector potentials
for the shear component, ϕS , which yield uS , while the nonshear component uNS is calculated by
subtracting uS from the total velocity vector. Generally, the velocity vector u can be decomposed as

u = 〈u〉 + uS + uNS, (6)

where 〈u〉 is the mean velocity vector. First, the triple decomposition is applied to an instantaneous
three-dimensional profile of ∇u to obtain ∇uS , from which ωS = (ωS1 , ωS2 , ωS3 ) is calculated as
ωSi = εi jk (∇uS ) jk . Then the vector potentials ϕS = (ϕS1 , ϕS2 , ϕS3 ) are calculated by solving the
Poisson equations, ∇2ϕSi = ωSi for i = 1, 2, and 3. Although a velocity vector can be obtained
from ϕS as ũS = −∇ × ϕS , ũS often partially contains the contribution of a mean flow while
Eq. (6) assumes that the mean flow is separated by 〈u〉 and the averages of uS and uNS are zero.
Therefore, the average of ũS is subtracted to obtain uS as uS = ũS − 〈ũS〉. Finally, the nonshear
component is calculated as uNS = u − 〈u〉 − uS . The present decomposition does not assume the
orthogonality of uS and uNS , whose correlation is not generally zero. The correlation between uS

and uNS represents the momentum transport due to the interaction of shearing and other motions of
the triple decomposition.

An early study of shear layers and vortex tubes also adapted the Biot-Savart law to obtain the
velocity related to these structures [35]. The Biot-Savart law was applied to a truncated vorticity
field, for which the vorticity vector is set to zero in regions where the structures of interest do not
appear. This approach does not decompose the vorticity vector itself, unlike the triple decompo-
sition. The analysis of shear layers has confirmed that because vortex tubes often appear within
shear layers, they can share the same region in a flow [36]. Therefore, the velocity profile obtained
from the truncated vorticity for shear layers or vortex tubes is contaminated by the other structures.
This problem does not exist for the triple decomposition because the vorticity vector is decomposed
into the components of shear layers and vortex tubes before the velocity field is reconstructed. This
feature enables us to define the interaction between shear and nonshear velocities, as explained
below.

III. DNS DATABASES OF HOMOGENEOUS ISOTROPIC TURBULENCE
AND TEMPORALLY EVOLVING PLANAR JETS

The triple decomposition extended to a velocity field is tested with DNS databases of homoge-
neous isotropic turbulence and temporally evolving planar jets. The same databases were used in
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TABLE I. DNS databases of homogeneous isotropic turbulence (HIT) and temporally evolving planar jets
(JET).

Case HIT1 HIT2 HIT3 HIT4 JET1 JET2

Nx 256 512 1024 2048 432 864
Ny 256 512 1024 2048 600 1200
Nz 256 512 1024 2048 288 576
ReJ – – – – 4000 10 000
Reλ 43 72 128 202 59 97

our previous studies [6,12,36]. Both flows are simulated with an in-house DNS code based on the
fractional step method, which solves incompressible Navier-Stokes equations written as

∂u j

∂x j
= 0, (7)

∂ui

∂t
+ ∂uiu j

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
, (8)

Here xi is the position in the i direction, t is time, p is the pressure, ρ is the constant density of
the fluid, and ν is the kinematic viscosity. The velocity components in the x, y, and z directions are
respectively denoted by u, v, and w. For temporally evolving planar jets, the transport equation for
passive scalar ϕ is also solved along with the Navier-Stokes equations:

∂φ

∂t
+ ∂φu j

∂x j
= D

∂2φ

∂x j∂x j
, (9)

where D is the diffusivity coefficient. Fully conservative central difference schemes with fourth-
order and second-order accuracies are applied to homogeneous and inhomogeneous directions,
respectively [37]. A three-stage and third-order low-storage Runge-Kutta scheme is adapted for
time integration. The biconjugate gradient stabilized method is employed to solve the Poisson
equation for pressure. The DNS code has been validated by comparing the results with other
experiments and numerical simulations [6,38–40]. The DNS databases are briefly described below.

The shear and nonshear components of velocity vectors are statistically analyzed for isotropic
turbulence and temporally evolving planar jets. An average of a flow variable f is denoted by 〈 f 〉
while the fluctuations are defined as f ′ = f − 〈 f 〉. The averages are taken as volume averages in a
domain and ensemble averages of different snapshots for the isotropic turbulence. For the temporally
evolving planar jets, spatial averages in statistically homogeneous directions are used together with
ensemble averages of different simulations.

A. Homogeneous isotropic turbulence

Statistically steady homogeneous isotropic turbulence is investigated with the DNS databases
[12,36]. Periodic boundary conditions are applied in three directions. The flow is sustained at a
statistically steady state with a linear forcing scheme [41]. The cubic computational domain has
a size of L3 = (5.3LI )3, where LI is the length scale of large-scale turbulent motions determined
by the forcing scheme. Four cases with different Reynolds numbers are considered in this study as
summarized in Table I, where (Nx, Ny, Nz ) are the numbers of grid points in the three directions
and Reλ = urmsλ/ν is the turbulent Reynolds number. Here the r.m.s. value of velocity fluctuations
is urms =

√
(〈u2〉 + 〈v2〉 + 〈w2〉)/3, the averaged kinetic energy dissipation rate is ε = 〈2νSi jSi j〉,

and the Taylor microscale is λ = (15u2
rmsν/ε)1/2. The spatial resolution  is the same in the three

directions, and  divided by the Kolmogorov scale η = (ν3/ε)1/4 is about 0.8 for all simulations.
The numbers of snapshots used for ensemble averages are 8, 8, 6, and 2 for HIT1, HIT2, HIT3,
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and HIT4, respectively. The Poisson equations for the vector potentials of shear velocity are solved
in wave number space with a fast Fourier transform, and the shear and nonshear velocities are
calculated as explained in Sec. II.

B. Temporally evolving turbulent planar jets

The DNS databases of temporally evolving turbulent planar jets in our previous papers [6,42]
are used in this study. The simulations of temporally evolving shear flows use periodic boundary
conditions in the streamwise direction, in which the flows are statistically homogeneous. Then the
turbulent flow develops with time rather than with a streamwise position. This methodology of
temporal simulations has been adapted for various canonical turbulent shear flows, such as jets
[43–46], wakes [47], mixing layers [48], boundary layers [49,50], and grid turbulence [38,51]. These
studies have confirmed that the transverse profiles of various statistics of velocity fluctuations hardly
differ between temporally and spatially evolving turbulent flows.

The temporally evolving planar jet is statistically homogeneous in the streamwise (x) and
spanwise (z) directions and develops in the transverse (y) direction with time. The statistics can
be evaluated with averages 〈 f 〉 taken on x-z planes as functions of y and t . The initial profile of
the mean streamwise velocity is given by 〈u〉 = UJ/2 + (UJ/2)tanh[(H − 2|y|)/4θJ ], where UJ

and H are the initial velocity and width of the jet, respectively. The jet center is at y = 0. In
addition, the scalar transport equation, Eq. (9), is solved with the initial profile of φ given by
φ = φJ/2 + (φJ/2)tanh[(H − 2|y|)/4θJ ], for which φ/φJ is 1 and 0 inside and outside the jet,
respectively. In addition, spatially correlated random noise is superimposed onto the mean velocity
[52]. Periodic boundary conditions are applied in the x and z directions while free-slip boundary
conditions are applied in the y direction. The size of the computational domain is (Lx, Ly, Lz ) =
(6H, 10H, 4H ). It was confirmed that a velocity autocorrelation function in the present DNS agrees
well with other DNS and experiments of spatially evolving jets [53,54], suggesting that the domain
size is large enough to reproduce the large-scale characteristics of the planar jet [39]. The jet
Reynolds number is defined as ReJ = UJH/ν. Table I also presents the parameters of the DNS
databases of the planar jets. Two cases are simulated with ReJ = 4000 and 100 000. The thickness of
the initial shear layers at the edges of the jet is θJ = 0.01H . The Schmidt number is Sc = ν/D = 1.
The computational grid is uniformly spaced in the x and z directions while nonuniform grid spacing
is employed in the y direction, for which the grid spacing becomes smaller toward the jet center.
From the initial laminar state at t = 0, the turbulent jet develops with time. The fully developed
turbulent regime at t = 20(H/UJ ) is analyzed in this study. The velocity statistics at this time
have been presented in our previous papers [6,42], where the DNS results are compared with other
experimental and numerical data. The grid sizes are 1.5η in the x and z directions and about 1.1η

in the y direction inside the jet. The values of the turbulent Reynolds number Reλ at y = 0 are 59
for ReJ = 4000 and 97 for ReJ = 10 000. For the planar jets, the biconjugate gradient stabilized
method is used to solve the Poisson equations to calculate the vector potentials of shear velocity.

IV. RESULTS AND DISCUSSION

A. Visualization of shear and nonshear velocity components

Figure 1 visualizes the y-directional components of shear and nonshear velocity vectors, vS and
vNS , on a y-z plane in HIT4. Both velocity components contain fluctuations with a wide range
of scales. The ranges of the color contours suggest that shearing motion has a larger contribution
to velocity fluctuations than other motions because |vS| tends to be larger than |vNS|. Large-scale
distributions of vS and vNS are positively correlated: regions with vS > 0 tend to have vNS > 0,
while the opposite trend is found for vS < 0 and vNS < 0. Therefore, momentum in one motion of
the triple decomposition is transferred by other motions at large scales. This is further discussed
with the normal component of the Reynolds stress below. However, small-scale distributions are
different for shear and nonshear velocity components. As shown in a box in Fig. 1(b), small circular
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FIG. 1. Two-dimensional profiles of (a) shear and (b) nonshear components of y-directional velocity on a
y-z plane in HIT4.

spots with large positive and negative values appear next to each other in the profile of vNS . These
patterns are related to small-scale vortex tubes with the axis perpendicular to the visualized plane,
as also shown below. On the other hand, the shear component does not have similar patterns at small
scales.

The correlation between the shear and nonshear velocities at large scales is possibly related to the
spatial distribution of small-scale turbulent structures explained here. The shear layers and vortex
tubes are known to form their clusters. The shear layers often cause intense kinetic energy dissipa-
tion due to the large velocity gradient of shearing motion. The clusters of flow regions with intense
dissipation mostly overlap those of large enstrophy, which are partially related to vortex tubes [55].
Consistently, visualization of shear layers and vortex tubes identified with the triple decomposition
has shown that their clusters occupy the same flow regions [36]. The correspondence of the cluster
locations of shear layers and vortex tubes is explained with their local spatial organization because
the shear layers often appear in the vicinity of vortex tubes [17,36]. These studies have also shown
that the orientation of the shear layers and nearby vortex tubes are strongly correlated.

Figure 2 shows the vectors of shear and nonshear velocities with color contours of the intensities
of shear and rigid-body rotation in HIT4. The intensities of shear and rigid-body rotation are defined
as IS = √

2(∇uS )i j (∇uS )i j and IR = √
2(∇uR)i j (∇uR)i j , respectively [42]. A small part of the

computational domain is shown for visualizing small-scale turbulent structures. Previous studies
of the triple decomposition have shown that small-scale shear layers (vortex sheets) and vortex
tubes have large values of IS and IR, respectively [11]. In Fig. 2(a) a shear layer is visualized as
a thin layer with large IS , and the vectors of uS successfully detect flows toward the bottom left
and top right on the left and right of the shear layer, respectively. These parallel flows in opposite
directions contribute to shearing motion in the layer. In Fig. 2(b) circular regions with large IR

visualize slices of vortex tubes. Around the vortex tubes, rotating motion is identified in the velocity
vectors of uNS . Therefore, the velocity components associated with shear layers and vortex tubes
are well extracted by the present method. These clear relations of shear and nonshear velocities to
the shear layer and vortex tube are easily observed when these structures are isolated, as shown
in Fig. 2. The original triple decomposition is useful to study local fluid motion of each turbulent
structure. For the present DNS of isotropic turbulence, the numbers of vortex tubes and shear layers
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0                                            4

(b)

0                                            4

(a)

FIG. 2. Two-dimensional profiles of (a) shear and (b) nonshear components of velocity vectors on a y-z
plane in HIT4. The color contours visualize the intensities of shear IS and rigid-body rotation IR in panels
(a) and (b), respectively. The Kolmogorov timescale τη = (ν/ε)1/2 is used to normalize IS and IR. The length
of the arrows indicates the vector magnitude. Only a small part of the domain is shown.

were evaluated by detecting them by applying thresholds to IS and IR [21]. The numbers exceed 104

depending on the Reynolds numbers. The threshold-dependence test has shown that although the
number of the detected structures is sensitive to the thresholds, the order estimate is not influenced
by a particular threshold choice. The superposition of the flows induced by many structures results
in a complicated velocity distribution in Fig. 1. A flow induced by each of the structures has been
studied extensively [42,56]. However, the velocity distribution arising from many shear layers or
vortex tubes is less understood because of the difficulty in reconstructing the flow induced by many
shear layers or vortex tubes. The kinetic energy of velocity fluctuations is possessed mainly by
large-scale turbulent motion. Although uS and uNS locally exhibit patterns related to shear layers and
vortex tubes at small scales, respectively, many of these structures also cause large-scale velocity
fluctuations, as described by the Biot-Savart law that relates a velocity field to the spatial integral of
the vorticity vector.

Figure 3 visualizes three components of uS and uNS in JET2. The jet is visualized on an x-y plane
at t = 20(H/UJ ), which is in a fully developed state. The turbulent jet is located for |y/H | � 1.0–
1.5. The velocity profiles are different between the turbulent jet and the ambient (laminar) fluid. As
also found for isotropic turbulence, velocity fluctuations with a wide range of scales are observed
in the jet for all the velocity components. Pairs of small circular regions with positive and negative
values of uNS are also found in the jet, as shown in the boxes in Fig. 3(d). As also found for isotropic
turbulence, the positive correlation in the large-scale distribution is found for each component of uS

and uNS in the turbulent jet. Therefore, the momentum transfer by the interaction of shear and other
motions occurs even in inhomogeneous turbulence.

B. Statistical properties of shear and nonshear velocity components

The statistical properties of shear and nonshear velocity components are examined for the
isotropic turbulence and planar jets with different Reynolds numbers. The Reynolds stress is defined
as 〈u′

iu
′
j〉, which can be decomposed with Eq. (6) as

〈u′
iu

′
j〉 = 〈uSi uSj 〉 + 〈uNSi uNSj 〉 + 〈uSi uNSj 〉 + 〈uNSi uSj 〉, (10)
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FIG. 3. Two-dimensional profiles of (a)–(c) shear and (d)–(f) nonshear components of velocity vectors on a
y-z plane in the planar jet (JET2): (a), (d) streamwise velocity, (b), (e) transverse velocity, and (c), (f) spanwise
velocity.

where the last two terms represent the transfer of shear and nonshear components of momentum
by nonshear and shear velocities, respectively. For the normal component, the last two terms are
identical. Therefore, for i = j = x, the decomposition is expressed as 〈u′2〉 = 〈u2

S〉 + 〈u2
NS〉 +

2〈uSuNS〉. The relative contributions to the Reynolds stress from the three terms can be evaluated
by normalizing 〈u2

S〉, 〈u2
NS〉, and 2〈uSuNS〉 by 〈u′2〉. Figure 4(a) plots the normalized values of these

terms as functions of the turbulent Reynolds number Reλ for the isotropic turbulence and planar jets.
The results for the jets are taken from the center (y = 0). Although the turbulent jet is not isotropic,
the results for 〈v′2〉 and 〈w′2〉 are similar to those of 〈u′2〉. Therefore, the decomposition is discussed
only for 〈u′2〉 in Fig. 4(a). The results suggest that the relative contributions of each term to 〈u′2〉
hardly depend on the Reynolds number and the flows. The momentum transfer due to shear, 〈u2

S〉, has
the largest contribution to 〈u′2〉, and accounts for about 50% of 〈u′2〉. The nonshear velocity accounts
only for about 10% of 〈u′2〉. However, the interaction of shear and nonshear velocities accounts for
about 40%. Therefore, shearing motions are essential in producing the Reynolds stress in turbulence.
The discussion for the off-diagonal components of 〈u′

iu
′
j〉 with i �= j is given below in the context of

the turbulent kinetic energy budget in the planar jet because isotropic turbulence has 〈u′
iu

′
j〉 = 0 with

i �= j. These results are also related to r.m.s. values of velocity fluctuations urms =
√

〈u′2〉 although
urms cannot be decomposed into three terms, unlike the normal Reynolds stress. The r.m.s. values

of shear and nonshear velocities,
√

〈u2
S〉 and

√
〈u2

NS〉, are about 70% and 30% of urms, respectively.
Thus, shear layers have a greater contribution to velocity fluctuations than vortex tubes.

The lateral distribution of the decomposed terms of 〈u′2〉 is examined for the planar jet in
Fig. 4(b). The three terms of 〈u′2〉 are normalized by the mean velocity at the jet center, 〈u〉C ,
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FIG. 4. (a) Reλ dependence of a normal component of the Reynolds stress tensor decomposed by the triple
decomposition as 〈u′2〉 = 〈u2

S〉 + 〈u2
NS〉 + 〈2uSuNS〉. The decomposed terms normalized by 〈u′2〉 are plotted as

functions of Reλ for HIT and JET. Results for JET are obtained at the center of the planar jet (y = 0). (b) Lateral
distributions of 〈u2

S〉, 〈u2
NS〉, and 〈2uSuNS〉 across the planar jet with ReJ = 4000. Decomposed components are

normalized by the mean velocity at the center of the jet, 〈uC〉, or the local velocity variance, 〈u′2〉.

or the local velocity variance 〈u′2〉 at each y location. The lateral position y is normalized by
the jet half-width bu defined with the mean velocity profile and is shown for y � 0 because the
flow is statistically symmetric with respect to y = 0. The turbulent planar jet has a large mean
velocity gradient off the centerline and the production of turbulent kinetic energy actively occurs at
y/bu ≈ 0.7 [57]. Consistently, the velocity fluctuations are large at this location, where 〈u2

S〉/〈u〉2
C ,

〈u2
NS〉/〈u〉2

C , and 〈2uSuNS〉/〈u〉2
C attain their maxima. The turbulent jet is intermittent in the sense that

both turbulent and nonturbulent (ambient) fluids are observed at a fixed position. Experiments and
numerical simulations have confirmed that y/bu � 1.0 and y/bu � 2.5 are always in the turbulent
and nonturbulent regions, respectively, while both fluids intermittently appear for 1.0 � y/bu � 2.5
[58,59]. Therefore, 〈u2

S〉, 〈u2
NS〉, and 〈2uSuNS〉 decrease from y/bu ≈ 1.0 as y/bu increases. However,

these decomposed terms normalized by 〈u′2〉 are nearly constant up to y/bu ≈ 1.8. Thus, the relative
contributions of shear and nonshear velocities to the Reynolds stress hardly differ in the turbulent
and intermittent regions. However, 〈u2

S〉/〈u′2〉 and 〈u2
NS〉/〈u′2〉 increase with y outside the jet with

y/bu � 2 while 〈2uSuNS〉 decreases to negative values. The correlation of shear and nonshear
velocities is different between the turbulent and nonturbulent regions.

Large-scale intermittency of turbulent flows is often evaluated with skewness and flatness of ve-
locity, which are defined as S(u′) = 〈u′3〉/〈u′2〉3/2 and F (u′) = 〈u′4〉/〈u′2〉2, respectively. Figure 5(a)
shows the Reλ dependence of the skewness and flatness of u, uS , and uNS , in the isotropic turbulence
and the center of the planar jet. When a variable has a probability density function described by a
Gaussian function, S and F take values of 0 and 3, respectively. When large-scale motions are highly
intermittent, the flatness becomes larger than 3 and the skewness often deviates from 0 [60,61]. The
deviations from the Gaussian values are not large for both skewness and flatness regardless of the
flows and Reλ. Figure 5(b) shows the lateral profiles of S(uS ), S(uNS ), F (uS ), and F (uNS ) in the
planar jet with ReJ = 4000. The jet core region of y/bu � 1 has S ≈ 0 and F ≈ 3 while S and F
increase in the intermittent region. The increase of S and F is explained by the intermittency of the
turbulent jet because turbulent fluid with large velocity fluctuations and nonturbulent fluid with small
velocity fluctuations are observed for 1.0 � y/bu � 2.5 [62]. Thus, the large-scale intermittency of
shear and nonshear velocities is negligible for the isotropic turbulence and planar jets except for the
intermittent region of the jets.

Universal relations have been observed for the Reλ dependence of the skewness and flatness of a
longitudinal velocity derivative, S(∂u′/∂x) and F (∂u′/∂x), in turbulent flows [2]. These relations are
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FIG. 5. (a) Reλ dependence of the skewness S and flatness F of shear (uS ) and nonshear (uNS ) velocity
components. Results for the planar jets are obtained at the jet center (y = 0). (b) Lateral distributions of the
skewness and flatness across the planar jet with ReJ = 4000.

examined for the shear and nonshear velocity components. Figure 6 compares the skewness of the
derivative of shear and nonshear velocities, S(∂uS/∂x) and S(∂uNS/∂x), with S(∂u′/∂x) in various
incompressible turbulent flows. For the range of Reλ shown in the figure, S(∂u′/∂x) hardly depends
on Reλ, and the present results for S(∂u′/∂x) agree well with previous studies. For the decomposed
velocity components, S(∂uS/∂x) is close to S(∂u′/∂x) while S(∂uNS/∂x) is smaller in magnitude
than S(∂u′/∂x). Therefore, the universal relation between S(∂u′/∂x) and Reλ is attributed to the
statistical properties of shearing motion. In addition, −S(∂u′/∂x) is proportional to the production
rate of enstrophy due to vortex stretching [3]. The smaller absolute values of S(∂uNS/∂x) than
S(∂u′/∂x) and S(∂uS/∂x) also imply that the enstrophy production in turbulence is dominated by
shearing motion. This is consistent with previous studies of small-scale shear layers [12,35,67].
Figure 7 shows the Reλ dependence of the flatness factors, F (∂uS/∂x) and F (∂uNS/∂x), which are
compared with F (∂u′/∂x) in various turbulent flows. An increase of F (∂u′/∂x) with Reλ has been
reported in previous studies. Similarly, F (∂uS/∂x) and F (∂uNS/∂x) also increase with Reλ. The
flatness of the velocity derivative is a measure of small-scale intermittency. The flatness is similar
for ∂uS/∂x and ∂uNS/∂x, suggesting that both shear and nonshear velocities exhibit a similar degree
of small-scale intermittency.
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FIG. 6. Reλ dependence of the skewness of velocity derivatives, ∂u′/∂x, ∂uS/∂x, and ∂uNS/∂x. The results
for the planar jets are obtained at the jet center (y = 0). The present DNS results for HIT and JET are compared
with the skewness of ∂u′/∂x in other incompressible turbulent flows [39,63–66].
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FIG. 7. Reλ dependence of the flatness F of velocity derivatives, ∂u′/∂x, ∂uS/∂x, and ∂uNS/∂x. The results
for the planar jets are obtained at the jet center (y = 0). The present DNS results for HIT and JET are compared
with the flatness of ∂u′/∂x in other incompressible turbulent flows [38,40,63–65,68–70].

The scale dependence of uS and uNS is examined with spectra and cospectra defined with the
Fourier transform, which is applied in the x direction. The longitudinal energy spectra of u, uS ,
and uNS are denoted by Eu, EuS , and EuNS , respectively. Figure 8 shows Eu, EuS , and EuNS calculated
in the isotropic turbulence and at the center of the planar jets. The spectra are normalized with
ε and ν while the wave number in the x direction, kx, is normalized with the Kolmogorov scale
η. For this normalization, Eu for large kx is known to collapse onto a single curve as long as the
Reynolds number is not too small [1,70]. In addition, the inertial subrange at large Reλ satisfies
Eu ≈ Cε2/3k−5/3

x , which is also shown with a thin solid line. These features are well reproduced for
Eu in Fig. 8(a). Similarly, EuS and EuNS collapse well for this normalization for kxη � 0.1, which is
in the dissipation range dominated by viscous effects. In addition, EuS ∼ k−5/3

x becomes noticeable
as the Reynolds number increases, while EuNS tends to have a shallower slope than k−5/3

x . This
is clearly observed in the compensated spectra shown in the insets, where the power laws with
k−5/3

x appear as horizontal lines. As the Reynolds number increases, EuS and EuNS also tend to
collapse even at a smaller wave number than the dissipation range. Therefore, the fluctuations of
both shear and nonshear velocities may have universal statistical properties in the inertial subrange
at a high Reynolds number. Figure 9 shows the cospectrum of uS and uNS , CuSuNS , normalized by
the spectra, EuS and EuNS , as CuSuNS /(EuS EuNS )1/2. The cospectrum is plotted against kxη. Large
positive values are observed for large scales. This result agrees with the visualization in Figs. 1
and 3, where the large-scale distribution is correlated for shear and nonshear velocities. For small
scales, the normalized cospectrum rapidly decreases for kxη � 0.3 and becomes negative. The scale
dependence of the cospectrum is similar for both flows and different Reynolds numbers when
kx is normalized by the Kolmogorov scale. Therefore, the relation between uS and uNS strongly
depends on kxη although the kxη dependence is universal in these flows. Figure 9 also indicates the
normalized wavelength λx/η = (2π/kx )/η. The decrease of the normalized cospectrum occurs for
λx/η � 20. This length is close to the size of small-scale turbulent structures, such as vortex tubes
and shear layers, whose diameter and thickness are about 8η and 4η, respectively [12,13,71,72].
Therefore, this λx dependence implies that the profiles of shear and nonshear velocities around
these small-scale structures are not correlated with each other. The integral of the cospectrum yields
〈uSuNS〉, which represents the momentum transfer due to the interaction between shear and nonshear
velocities. Thus, this momentum transfer actively occurs for scales greater than 20η.

C. Analyses of turbulent kinetic energy budget and scalar mixing

The decomposition of the velocity vector with the triple decomposition is useful in understanding
turbulent transport phenomena, some of which are more relevant to the velocity than the velocity
gradient tensor. Here we show some examples of the applications of the triple decomposition
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FIG. 8. One-dimensional longitudinal energy spectra in HIT and JET calculated for (a) total velocity u,
Eu, (b) shear velocity uS , EuS , and (c) nonshear velocity uNS , EuNS . Results for the planar jets are obtained
at the jet center (y = 0). The spectra and wave number kx are nondimensionalized with the turbulent kinetic
energy dissipation rate ε, kinematic viscosity ν, and Kolmogorov scale η. The spectra are also compared
with Eu = Cε2/3k−5/3

x with C = 0.49. Insets show the compensated spectra, Euk5/3
x , EuS k5/3

x , and EuNS k5/3
x ,

normalized by ε.

extended to the velocity field by applying the decomposition to the turbulent kinetic energy budget
and turbulent mixing of a passive scalar.

The turbulent kinetic energy kT = 〈u′
iu

′
i〉/2 is governed by the following equation [73]:

∂kT

∂t
+ 〈u j〉∂kT

∂x j
= DT + DP + Dν + P + εk (11)

with

DT = −1

2

∂〈u′
ju

′
ju

′
i〉

∂xi
, DP = −∂〈u′

j p〉
∂x j

, Dν = ν
∂2kT

∂x j∂x j
, (12)

P = −〈u′
iu

′
j〉

∂〈ui〉
∂x j

, εk = −ν

〈
∂u′

i

∂x j

∂u′
i

∂x j

〉
. (13)
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The cospectrum is plotted against the wave number kx normalized by the Kolmogorov scale η, while the
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Here DT is the turbulent diffusion term, DP is the pressure diffusion term, Dν is the viscous diffusion
term, P is the production term, and εk is the dissipation term. In the turbulent planar jet, Dν is
negligible except for very small ReJ . Therefore, the other terms are evaluated with the present DNS
database. The triple decomposition can decompose these terms as

DT = −1

2

∂〈u′
ju

′
juSi〉

∂xi
− 1

2

∂〈u′
ju

′
juNSi〉

∂xi
, (14)

DP = −∂〈uSj p〉
∂x j

− ∂〈uNSj p〉
∂x j

, (15)

P = −〈uSi uSj 〉
∂〈ui〉
∂x j

− 〈uNSi uNSj 〉
∂〈ui〉
∂x j

− [〈uSi uNSj 〉 + 〈uNSi uSj 〉]
∂〈ui〉
∂x j

, (16)

εk = −ν

〈
∂uSi

∂x j

∂uSi

∂x j

〉
− ν

〈
∂uNSi

∂x j

∂uNSi

∂x j

〉
− FuSuNS . (17)

The decomposition of DT considers the turbulent transport of turbulent kinetic energy, uiui/2, by
the shear and nonshear velocities. Therefore, the decomposition is not applied to uiui. For the
dissipation rate, FuSuNS can be expressed with the correlation between ∂uSi/∂x j and ∂uNSi/∂x j . This
term is evaluated by subtracting the first and second terms from εk . The first and second terms
of Eqs. (14)–(17) arise solely from shear and nonshear velocity components, respectively, while
the third terms in Eqs. (16) and (17) are defined with their correlations. Therefore, these terms
are respectively denoted by “shear,” “nonshear,” and “correlation.” Figure 10 shows the lateral
distributions of these terms in the planar jet at ReJ = 4000. The distributions of P, εk , DT , and
DP are consistent with experimental and numerical simulations of planar jets [57,74,75]. For all
terms, the shear components have dominant contributions. For the production and dissipation in
Figs. 10(a) and 10(b), the shear components account for about 50% of the total values. In addition,
the correlation term also has a large contribution to the production term. Therefore, the nonshear
velocity can produce turbulent kinetic energy mostly by the interaction with shearing motion. This
is explained by the dominant contribution of 〈uSvS〉 and 〈uSvNS〉 + 〈uNSvS〉 to the Reynolds stress
〈u′v′〉, and the momentum transport by shearing motions and the interactions of shear and nonshear
velocities is important in the turbulent jet. The importance of shearing motion (vortex sheet) in the
energy production was also pointed out in Pirozzoli et al. [35] although the interaction between shear
and other motions was not discussed. The nonshear component has the second largest contribution
to the dissipation term. The gradient of the nonshear component uNS is related to both rigid-body
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FIG. 10. Turbulent kinetic energy budget in the planar jet with ReJ = 4000: (a) production term P,
(b) dissipation term εk , (c) turbulent diffusion term DT , and (d) pressure diffusion term DP.

rotation ∇uR and irrotational strain ∇uE , and the large dissipation due to the nonshear component
is attributed to ∇uE . This influence of the irrotational strain in the kinetic energy dissipation was
also reported for isotropic turbulence [11]. The role of the three motions of the triple decomposition
becomes clear when the viscous terms are rewritten in a different form as

Dν + εk =
〈
ν

2

∂2u′
iu

′
i

∂x j∂x j

〉
− ν

〈
∂u′

i

∂x j

∂u′
i

∂x j

〉
= ∂〈2νuis′

i j〉
∂x j︸ ︷︷ ︸
D′

ν

−〈2νs′
i j s

′
i j〉︸ ︷︷ ︸

ε′
ν

, (18)

which is derived with the following relation for the fluctuating strain-rate tensor s′
i j = (∂u′

i/∂x j +
∂u′

j/∂xi )/2:

2s′
i j s

′
i j = 1

2

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)2

= ∂u′
i

∂x j

∂u′
i

∂x j
+ ∂u′

i

∂x j

∂u′
j

∂xi
= ∂u′

i

∂x j

∂u′
i

∂x j
+ ∂

∂x j

(
u′

i

∂u′
j

∂xi

)
. (19)

These expressions for the diffusion and dissipation terms (D′
ν and ε′

ν) are widely used in the existing
literature [1,3]. The triple decomposition splits s′

i j into the shear and nonshear components as s′
i j =

(s′
S )i j + (s′

NS )i j with

(s′
S )i j = 1

2

(
∂uSi

∂x j
+ ∂uSj

∂xi

)
, (s′

NS )i j = 1

2

(
∂uNSi

∂x j
+ ∂uNSj

∂xi

)
. (20)

Here ∂uNSi/∂x j corresponds to the residual tensor (∇uRES )i j in Eq. (2), and the symmetric part
of ∂uNSi/∂x j , (s′

NS )i j , corresponds to elongation (∇uEL )i j . Therefore, an instantaneous dissipation
rate of turbulent kinetic energy, 2νs′

i j s
′
i j , can be expressed with the velocity gradient tensors of
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FIG. 11. Lateral distributions of the transverse turbulent flux of passive scalar, 〈v′φ′〉, in the planar jet
with ReJ = 4000. The flux is decomposed by the triple decomposition into the contributions from shear and
nonshear velocities.

shear and elongation. For the diffusion terms in Figs. 10(c) and 10(d), the distribution is similar
for both shear and nonshear components. The turbulent diffusion DT transfers the energy from
the regions with a large production rate toward the center and outside of the jet, while the pressure
diffusion transfers the energy toward the center. These energy transfers are caused by both shear and
nonshear velocity components although the shear component is dominant in the spatial transport of
the turbulent kinetic energy.

Turbulent mixing of a passive scalar is often studied with a turbulent scalar flux 〈u′
iφ

′〉, which
appears in the transport equation for the mean scalar 〈φ〉. The triple decomposition for the velocity
vector can be applied to the scalar flux as 〈u′

iφ
′〉 = 〈uSiφ

′〉 + 〈uNSiφ
′〉. The mean scalar transfer in the

planar jet is dominated by the transverse component, 〈v′φ′〉 = 〈vSφ
′〉 + 〈vNSφ

′〉. Figure 11 shows
〈v′φ′〉, 〈vSφ

′〉, and 〈vNSφ
′〉 in the planar jet with ReJ = 4000. Positive values of the flux indicate the

outward transfer of φ. Although both 〈vSφ
′〉 and 〈vNSφ

′〉 have peaks at y/bu ≈ 1, the peak values of
〈vSφ

′〉 and 〈vNSφ
′〉 are about 73% and 27% of the peak of 〈vφ′〉, respectively. Therefore, the shear

component has a dominant contribution to the turbulent scalar transfer.
The decomposition can also be applied to the analysis of the scale-by-scale energy budget. One of

the important applications for this analysis is the interscale energy flux, which is useful to investigate
the energy cascade in turbulence. In physical space, the scale dependence of turbulence is often
studied with a low-pass filter [76]. The present study adapts the filter defined with a spherical
average [77]:

f (x, t, r) = 1

V

∫∫∫
G(x, x′, r) f (x′, t ) dx′, (21)

with a filter function G, which is equal to 1 for |x − x′| � r and 0 for |x − x′| > r. Equation (21)
represents a volume average in a sphere with radius r centered at a point x, which has a volume
of V (r) = 4πr3/3. The spherical volume average works as an isotropic top-hat filter with a cutoff
length of � = 2r. Therefore, f contains a large-scale component of f with scales greater than �

while a small-scale component is given by f − f . The kinetic energy of fluid motion with scales
smaller than � is represented as kr (x, t, r) = uiui/2 − ui ui/2, which is also called a subgrid scale
kinetic energy in the context of large eddy simulation. The governing equation of kr , which is
derived for the subgrid-scale kinetic energy in LES [78,79], contains the interscale energy flux �

written as

� = −(uiu j − ui u j )
∂ui

∂x j
, (22)

which represents the transfer rate of kinetic energy from fluid motion with scales greater than � to
that with smaller scales. This term consists of the large-scale velocity gradient tensor ∂ui/∂x j and
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FIG. 12. Averages of the interscale kinetic energy flux � = −(uiu j − ui u j )∂ui/∂x j , which is decomposed
into the contributions of different motions by the triple decomposition in HIT4. Decomposition is applied to
(a) the large-scale velocity gradient tensor ∂ui/∂x j and (b) the small-scale stress tensor uiu j − ui u j .

small-scale stress tensor τi j = (uiu j − ui u j ). For the triple decomposition of the velocity gradient
tensor, the energy flux can be rewritten as

� = −τi j (∇uS )i j − τi j (∇uR)i j − τi j (∇uE )i j = �∇uS + �∇uR + �∇uE . (23)

The triple decomposition extended for the velocity vector can also be applied for τi j to examine the
role of shear and nonshear velocity components at small scales as

� = −τSi j (∇u)i j − τNSi j (∇u)i j − τS/NSi j (∇u)i j = �uS + �uNS + �uS/NS . (24)

with τSi j = (uSi uSj − uSi uSj ), τNSi j = (uNSi uNSj − uNSi uNSj ), and τS/NSi j = τi j − τSi j − τNSi j , which,
respectively, represent the small-scale stresses due to the shear velocity, the nonshear velocity, and
their interaction.

The averages of � and its decomposed terms are calculated with a wide range of the cutoff length
�. Figure 12 shows the scale dependence of 〈�〉, 〈�∇uS 〉, 〈�∇uR〉, and 〈�∇uE 〉 in HIT4. Positive 〈�〉
indicates that the kinetic energy is transferred from large to small scales. The present results with
〈�〉 ≈ 〈�∇uS 〉, 〈�∇uR〉 ≈ 0, and 〈�∇uE 〉 ≈ 0 indicate that this interscale energy transfer is mainly
caused by the interaction between the small-scale stress and large-scale velocity gradient arising
from shearing motion while the large-scale velocity gradients for motions of rigid-body rotation
and elongation have negligible contributions.

Figure 12(b) presents 〈�〉, 〈�uS 〉, 〈�uNS 〉, and 〈�uS/NS 〉 in HIT4. The small-scale stress due to the
nonshear velocity component only weakly contributes to 〈�〉, as attested by the smallest 〈�uNS 〉
among the three decomposed terms. Both shear and correlation terms, 〈�uS 〉 and 〈�uS/NS 〉, are
equally important in the interscale energy transfer.

The decomposition of both τi j and ∂ui/∂x j leads to the following decomposition of �:

� = −τSi j (∇uS )i j︸ ︷︷ ︸
�S

uS

−τNSi j (∇uS )i j︸ ︷︷ ︸
�S

uNS

−τS/NSi j (∇uS )i j︸ ︷︷ ︸
�S

uS/NS

−τSi j (∇uR)i j︸ ︷︷ ︸
�R

uS

−τNSi j (∇uR)i j︸ ︷︷ ︸
�R

uNS

−τS/NSi j (∇uR)i j︸ ︷︷ ︸
�R

uS/NS

−τSi j (∇uE )i j︸ ︷︷ ︸
�E

uS

−τNSi j (∇uE )i j︸ ︷︷ ︸
�E

uNS

−τS/NSi j (∇uE )i j︸ ︷︷ ︸
�E

uS/NS

. (25)
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FIG. 13. Probability density functions (PDFs) of the interscale kinetic energy flux � = −(uiu j −
ui u j )(∂ui/∂x j ) at �/η = 18 in HIT4. The PDF is shown for the terms decomposed by the triple decomposition
in Eq. (25).

Here the subscript and superscript of �β
uα

represent the decompositions of τi j and ∂ui/∂x j , respec-
tively. Figure 13 shows the PDF of � and �β

uα
at �/η = 18. For the terms related to the velocity

gradients of rigid-body rotation and elongation, �R
uα

and �E
uα

with α = S, NS, or S/NS, the PDF
has a large peak at �R

uα
= 0 and �E

uα
= 0. The PDF of � and �S

uα
is positively skewed for all terms.

These results indicate that the forward energy transfer from large to small scales is dominant for the
large-scale velocity gradient of shearing motion. In contrast, the large-scale velocity gradients of
rigid-body rotation and elongation hardly contribute to the interscale energy transfer. Here �S

uS
and

�S
uS/NS

tend to be larger than the other terms. The interscale energy transfer is caused by the interplay
of the large-scale velocity gradient of shearing motion with the small-scale stresses arising from the
shear velocity or the interaction between shear and nonshear velocities. The inverse transfer from
small to large scales with negative values of the fluxes occurs less frequently for �S

uS/NS
than for �S

uS
.

Therefore, the mean flux at �/η = 18 in Fig. 12(b) is the largest for the small-scale stress arising
from the interaction between the shear and nonshear velocity components. These statistics for the
decomposed energy flux show that shearing motion plays an important role in the energy cascade
process in turbulence.

V. CONCLUSION

The triple decomposition of a velocity gradient tensor has been extended for the decomposition of
a velocity field. The present approach adapts the Biot-Savart law to reconstruct shear and nonshear
velocities from the vorticity vectors of shear and rigid-body rotation, respectively. The characteris-
tics of shear and nonshear velocities have been investigated with DNS databases of homogeneous
isotropic turbulence and temporally evolving planar jets. These decomposed velocities are related to
the flow arising from the superposition of many shear layers or vortex tubes. Therefore, the present
decomposition provides an interesting framework to study the flows induced by these small-scale
structures in turbulence, which will be useful in understanding their roles in turbulent transport
phenomena, as discussed in this study.

Statistical properties of shear and nonshear velocities have been compared for isotropic turbu-
lence and planar jets to examine their dependence on the flows and Reynolds numbers. Both shear
and nonshear velocities are contributed to by fluid motion with a wide range of length scales.
The r.m.s. values of shear and nonshear velocities are about 70% and 30% of the r.m.s. value of
total velocity fluctuations, respectively, and shear layers have a greater contribution to velocity
fluctuations than vortex tubes. The decomposition applied to the Reynolds stress suggests that
the momentum transport is dominated by the self-transfer of shear velocity and the interaction
between the shear and nonshear velocity components. The relative contributions of decomposed
components of the Reynolds stress tensor hardly differ for both isotropic turbulence and planar jets
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with different Reynolds numbers. In addition, the large-scale intermittency for shear and nonshear
velocities is not significant in both turbulent flows. These universal natures concern the turbulent
core region of the jet while different tendencies are observed for the intermittent region and ambient
flow, where the flow is partially or fully nonturbulent (laminar). The Reynolds number dependence
of the skewness of the longitudinal velocity derivative implies that the shear velocity is essential
in enstrophy production. The flatness factors of the velocity derivative suggest that the small-scale
intermittency is at a similar degree for shear and nonshear velocities. The energy spectra of shear
and nonshear velocities in different flows and Reynolds numbers collapse well in the dissipation
range (kxη � 0.1) when they are normalized by the Kolmogorov scales, and small-scale fluctuations
tend to be statistically universal for both shear and nonshear velocities. In addition, as the Reynolds
number increases, the spectra for larger scales of kxη � 0.1 also tend to follow a single line for
the isotropic turbulence and planar jets. The spectra of shear velocity also tend to obey a power
law with an exponent of −5/3 at a high Reynolds number. The shear and nonshear velocities
are positively correlated at large scales while this correlation rapidly decreases for wave numbers
smaller than kxη ≈ 0.3. Thus, the momentum transfer due to the interaction between shear and
nonshear velocities is the feature of large-scale turbulent motions. The present results infer that
some of the statistical properties of shear and nonshear velocities are universal in the inertial range
when the Reynolds number is sufficiently large. However, further investigations are also required
for this issue because only two types of turbulent flows with a limited range of Reλ are considered
in the present study.

Important applications of the triple decomposition extended to velocity vectors are the analyses
of turbulent transport phenomena. The present study has also presented such examples for the
turbulent kinetic energy budget and passive scalar mixing. The shear velocity and its interaction with
the nonshear velocity are shown to be dominant in the inviscid terms, such as energy production
and turbulent and pressure diffusion. The decomposition applied to the turbulent scalar flux also
confirms that the shear velocity has a larger contribution to the turbulent transport of a passive scalar
in the jet than the nonshear velocity. The present study has also adapted the triple decomposition to
the analysis of the energy cascade, which is quantified as the interscale energy flux defined with
a low pass filter. The flux is expressed as the product of the small-scale stress and large-scale
velocity gradient tensor, for which the triple decomposition is applied. The interscale energy flux is
dominated by the large-scale velocity gradient due to shearing motion while those due to rigid-body
rotation and elongation have negligible influences on the energy flux. The small-scale stress arising
solely from the nonshear velocity also does not cause a large energy flux. The interscale energy flux
is shown to be dominated by the small-scale stresses due to the shear velocity or the interaction
between shear and nonshear velocities. These results suggest the importance of shearing motion in
the dynamical properties of turbulent flows.

ACKNOWLEDGMENTS

Numerical simulations were performed using the high-performance computing systems of
the Japan Agency for Marine-Earth Science and Technology and Nagoya University. This
work was supported by the Collaborative Research Project on Computer Science with High-
Performance Computing in Nagoya University and JSPS KAKENHI Grants No. JP22K03903 and
No. JP22H01398.

[1] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2000).
[2] K. R. Sreenivasan and R. A. Antonia, The phenomenology of small-scale turbulence, Annu. Rev. Fluid

Mech. 29, 435 (1997).
[3] P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, New

York, 2004).

104602-20

https://doi.org/10.1146/annurev.fluid.29.1.435


STATISTICAL PROPERTIES OF SHEAR AND NONSHEAR …

[4] J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, The structure of intense vorticity in isotropic
turbulence, J. Fluid Mech. 255, 65 (1993).

[5] A. Vincent and M. Meneguzzi, The dynamics of vorticity tubes in homogeneous turbulence, J. Fluid
Mech. 258, 245 (1994).

[6] M. Hayashi, T. Watanabe, and K. Nagata, The relation between shearing motions and the turbulent/non-
turbulent interface in a turbulent planar jet, Phys. Fluids 33, 055126 (2021).
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