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Transition to turbulence behind a traveling plate
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In our experiment a vortical flow behind a traveling plate turns into turbulence. By
exactly repeating this experiment 42 times with a robot, we study the statistics of this
transition. In each realization the fate of the flow is followed over 1.7 s when the plate
travels with a constant velocity. It suddenly turns turbulent at a scaled traveled distance of
x∗ ≈ 5.5. We register the vorticity in a plane that divides the plate perpendicularly. We in-
troduce an original Lagrangian measure of variability between the experiment realizations.
The finite-time Lyapunov exponent field of a single experiment predicts this variability;
thus we confirm ergodicity. Apart from pointwise measures, yielding a distribution over
the field of view, we study the statistics of the circulation computed over the upper and
lower half of the domain. The almost perfect symmetry both of the mean and of the
fluctuations points to their origin as the fluctuating vortex ring trailing behind the plate.
During the initial phase long-time correlations exist in the flow, but they cease once the flow
turns turbulent. By ordering our repeated experiments we find that extreme circulations are
preceded by circulations that are larger than the median.

DOI: 10.1103/PhysRevFluids.8.104601

I. INTRODUCTION

How vortices form behind a traveling plate was analyzed by Prandtl [1], and an excellent
historical account can be found in Koumoutsakos and Shiels [2]. The present paper is about
experiments on the flow behind a plate submerged in water that in a short time is accelerated from
rest to a velocity of U = 0.4 m s−1. Our measurement plane cuts the plate halfway perpendicularly.
Initially, a vortex loop is formed that is intersected twice by this plane and shows as a pair of
trailing vortices. These vortices merge and become turbulent. By repeating this experiment multiple
times using a robot that accurately replicates the plate motion, we focus on the fluctuations in this
ensemble.

The course of events in the evolving wake has been documented by Koumoutsakos and Shiels [2]
and Fernando and Rival [3], with stages in the vortex formation named by Luchini and Tognaccini
[4]. It is illustrated by the result of our experiment in Fig. 1, where we show the vorticity,
ensemble averaged over the 42 repetitions of the experiment, at dimensionless plate displacements
x∗ = 1, 3, 5, 7, and x∗ = 8.14, where the plate leaves the field of view. As nondimensional plate
traveling time or plate distance, we use

t∗ = l−1
b

∫ t

0
U (t ′) dt ′, (1)

which equals the traveled distance x∗ in units of the plate width lb. This time is called the “formation
time” by Gharib et al. [5] as it is the timescale for the formation of a vortex ring behind a piston. In
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FIG. 1. Ensemble-averaged vorticity at scaled plate distances x∗ = 1, 3, 5, 7, 8.2. The plate (indicated by
the vertical line) leaves the PIV field of view at x∗ = 8.14. The plate height lb = 0.1 m so that the scaled
distance is 10 times the physical traveled distance x in m. The creation of secondary vortices in the shear layers
that engulf the separation bubble can be clearly seen. The focus in this paper is on the variations between
repeated experiments, which here have been averaged to a small value.

the sequel we interchangeably use the dimensionless t∗ and x∗. At around x∗ � 3, the vortices start
lagging behind the plate—the vortex expulsion phase [4]. This article deals with the events long
after this phase.

Several acceleration scenarios have been studied. Ours, in which the plate is accelerated in
the interval x∗ ∈ [0, 1] to a final velocity U = 0.4 m s−1 (see Fig. 2), can be compared to the
impulsive start-up case in numerical analyses. As expected, details such as the time dependence
of the circulation and the path of the detached vortices depend on the manner in which the plate
is accelerated [4,6]. Due to the plate edge singularity, the numerical analysis of the flow is chal-
lenging [2,4,7], but simulations agree on the emergence of secondary vortices in the unstable shear
layer.

The phenomenology of the evolving flow, briefly summarized above, is not the main point of
this paper, but rather the way in which small differences between repeated experiments grow. The
origin of this divergence is the sensitive dependence on initial conditions: the butterfly effect. Even
though the experiments are repeated with robotic precision, differences between initial conditions
are inevitable.

Movies of the evolving velocity field for two arbitrarily selected experiments are provided in the
Supplemental Material [8]. Striking to the eye is the initial similarity between experiments, which
is gradually eroded as time progresses. This is most noticeable so in the late stage when the starting
vortices have detached and secondary vortices have formed in the shear layer that envelops the
vortex bubble [2] with the eventually merged vortices evolving into a turbulent wake.

First, we will quantify the divergence of two repeated experiments by measuring the average
difference dT (x, t ) between Lagrangian trajectories of fluid parcels that originated at the same
location x and the same time t since the start of the plate in different experiments. Initially, the
trajectories in different experiments stay close, but their distance grows as time progresses. By
construction dT =0(x, t ) = 0, but dT (x, t ) will grow with increasing delay T because the experiment
realizations are slightly different, and the initial position x of a virtual tracer in a 2D slice of the
velocity field is an incomplete characterization of the experiment.
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The quantity dT (x, t ) is an average over all distinct pairs of experiment realizations. The growth
of an infinitesimal distance in a single experiment i is gauged by the finite-time Lyapunov exponent
(FTLE) field, �T,i(x, t ) which is a property of the velocity field ui(x, t ) [9,10]. The on average
exponential growth of small differences is expressed by a positive Lyapunov exponent, whose
existence is the essence of chaos. Also turbulence is a chaotic state, characterized by a continual
sensitivity to variation of initial conditions, that is, by a positive Lyapunov exponent [11,12]. Even
when it would have been possible to initiate repeated experiments with almost molecular precision,
chaos will drive them apart, and do that with an exponential rate that is independent of the initial
separation.

The FTLE field �T (x, t ) has become a popular way to visualize flow. Ridges of the FTLE field
have been used by Xiang et al. [13] to delineate vortex boundaries; they were observed to “faintly”
organize the transport of tracers. The FTLE field has also been linked to the way passive tracers are
dispersed in an experiment [14–16].

The scalar fields dT (x, t ) and �T,i(x, t ) are both Lagrangian quantities. However, while the FTLE
field �T,i(x, t ) gauges the exponential growth of a perturbation in a single experiment realization
i, the field dT (x, t ) quantifies the variation over a time T in the entire ensemble, with the initial
perturbation set only by the reproducibility of initial conditions. After a while, dT will be determined
by the direction of strongest growth. By measuring dT after different integration times T , and
taking logarithms, a field can be made that can be compared directly to �T . The question then
is whether the variability in an entire ensemble can be predicted by computing the FTLE from a
single experiment.

The dissimilarity between experiments will be quantified by the error energy �u2(t ) =
〈|ui(x, t ) − u j (x, t )|2〉x,i �= j , with averages done over the domain x and experiment realizations i �=
j = 1, . . . , 42. It is a simple instantaneous measure of the correlation between different experiment
realizations. As expected, the correlation is large in the stage where the vortices are formed and
decreases rapidly in the turbulent stage. In a single realization, but for different locations, the average
�u2(δ, t ) = 〈|ui(x + δ, t ) − ui(x, t )|2〉x,i is the second-order structure function that quantifies the
correlation of the velocity field across a separation δ. Analogous quantities can be defined for the
vorticity field.

As vorticity plays a central role in this experiment, we will also measure the statistics of
circulations �1 and �2 taken over the upper (y > 0) and lower (y < 0) half of the field of view,
respectively. Naturally, the mean values of �1 and �2 have opposite sign. Showing the evolution of
�1,2 is one way to characterize vortex formation behind the plate [2]. Through segmentation of the
vorticity field, the vortex circulation can be distinguished from the vorticity that remains attached
to the plate. Another way to quantify vortex dynamics then is to trace the trajectory of the detached
vortices [4,6,7].

The relatively large number of repeats allows an estimate of the average separation dT (x, t ),
the mean finite-time Lyapunov field �T (x, t ), and the correlation between experiments. Previously,
experiments, and numerical simulations of the wake shed off a traveling plate have concentrated on
phenomenology and vortical phenomena. To the best of our knowledge, this is the first time that
ensemble statistics of the transition to turbulence has been studied.

After a description of the experiment in Sec. II, we will discuss the two fields that quantify
the divergence of repeated experiments: first, the FTLE field �T in Sec. III A 1, followed by the
difference field dT in Sec. III A 2. The global correlation between experiments can be found in
Sec. III B. Finally, results on the fluctuating circulation are presented in Sec. III C.

II. EXPERIMENT

Figure 2 shows the experimental setup. It consists of open-top glass tank with a horizontal cross
section of 2 m2 and a height of 0.6 m, filled with water to a depth of 0.5 m. The flat plate has a width
la = 0.2 m, a height lb = 0.1 m, and a thickness lc = 4 mm. At x∗ = 1 it reaches its final velocity
U = 0.4 ms−1. Based on lb, the Reynolds number is Re = 4 × 104. The plate is attached to an

104601-3



REIJTENBAGH, WESTERWEEL, AND VAN DE WATER

(a)

(b)

FIG. 2. (a) Schematic view of the plate, coordinate system, and light sheet. The view of the vorticity field is
in the positive z direction. The plate is submerged in a tank with dimensions 2 × 2 m2 and height of 0.6 m. The
trailing vortex loop is indicated schematically; it is intersected by the laser sheet. (b) Black line: measured trace
of the velocity of the plate; gray line: as programmed in the robot. The r.m.s. size of the velocity differences is
1%. The plate is accelerated to U = 0.4 ms−1, which is reached at dimensionless distance x∗ = 1.

industrial robot arm (Reis Robotics RL50) with a streamlined strut piercing the air-water interface.
The actual velocity of the plate was measured using PIV and a random dot pattern attached to it.
After the acceleration phase that ends at x∗ = 1, the velocity is U = 0.4 ms−1 with r.m.s. variation
Urms = 0.004 m s−1. The position of the robot arm reproduces the plate trajectory to within 0.1 mm,
during both the acceleration and constant velocity phases. The acquisition of the PIV images was
synchronized with the robot motion.

To quantify the flow field we used planar particle image velocimetry (PIV). The field of view is in
the horizontal x, y plane through the center of the tranparent plate. A 4 megapixel high-speed camera
(Phantom VEO 640 L) was used to capture the flow through the glass bottom upwards in the positive
z direction at a frame rate of 1000 f.p.s. Neutrally buoyant fluorescent spherical tracer particles
(Cospheric UVPMS-BR-0.995, 53–63 μm diameter) were added to the fluid and were illuminated
using a 516 nm Nd-YLF 150 W laser (Litron LDY304-PIV). The acquired images were analyzed
using commercial software (LaVision DaVis 10). To create image pairs from the sequential images
acquired at 1000 frames per second every nth frame was paired with the (n + 2)th frame resulting
in a 2 ms exposure time delay. This was chosen to ensure sufficient displacement of the particle
images in the region of interest, i.e., the wake behind the plate. A multipass sum-of-correlation
PIV algorithm was used to obtain the flow velocity field from the image pairs. The interrogation
windows of the three subsequent passes were 48 × 48 pixels for the first pass, and 24 × 24 pixels
for the second and third passes. A 50% overlap between adjacent interrogation positions was used.
This resulted in velocity vector fields with a vector spacing of 4.2 mm. Between two subsequent
exposures, the plate moved over 0.8 × 10−3 m. More details of the experimental setup can be found
in Grift et al. [17].

III. RESULTS

The differences between experimental realizations depend on space and time. Some regions of
the flow are less susceptible to small variations in the initial conditions than others. We first discuss
pointwise difference fields in Sec. III A. Then, in Sec. III B, we introduce the spatially averaged
error field, which reflects the global loss of correlation. Finally the fluctuations of �1,2 between
experiment realizations will be discussed in Sec. III C.
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A. Pointwise variability

1. Finite-time Lyapunov exponents

Finite-time Lyapunov exponents gauge the exponentially fast spreading of nearby fluid parcels,
for either positive or negative times [9,10]. They are computed from the measured velocity field
ui(x, t ) of a single experiment realization i. In our case the quality of the PIV data warrants the
computation of the strain field A(x, t ) = ∇u(x, t ), so that an infinitesimal separation vector δ(t )
can be integrated along a Lagrangian trajectory,

dδ

dt
= A(x(t ), t ) · δ(t ), with

dx(t )

dt
= u(x, t ) (2)

The time integration of Eq. (2) over an interval t0, t0 + T , with x(t0) = x0, defines the evolution
matrix Mt0+T

t0 as δ(t0 + T ) = Mt0+T
t0 · δ(t0). The largest eigenvalue λ2 of the positive Cauchy-Green

tensor,

Ct0+T
t0 = Mt0+T

t0

(
Mt0+T

t0

)†
, (3)

with † the adjoint, then defines the finite-time Lyapunov exponent �T,i(x0, t ) of experiment i as

�T,i(x0, t0) = 1

2T
ln(λ2). (4)

For the time interval T we chose T = 0.128 s, which can be compared to a large eddy turnover
time (la/U = 0.125 s), and which corresponds to a plate displacement of 5.1 × 10−2 m. The FTLE
field �T,i(x0, t0) was computed for each grid point x0 = x and each plate distance x∗, with x∗ and t0
related as in Eq. (1) (interchangeably we use t∗ and x∗ to indicate the traveled plate distance).

The FTLE field �T,i(x, x∗) for a single experiment at plate displacements x∗ = 1, 3, 5, 7 is shown
in Fig. 3. It is characterized by ridges, some of which occur at random positions in different experi-
ments, and some of which remain in the ensemble average where they delineate the wake structure.
At a particular plate displacement x∗ = 5, the ensemble mean and fluctuations of �T (x, x∗) are
shown in Fig. 3(d) and Fig. 3(c), respectively.

If the growth of perturbations were perfectly exponential, �T (x, x∗) = �T/2(x, x∗). The ratio
�̃T (x, x∗) = �T (x, x∗)/�T/2(x, x∗) is <1 when the growth is slower than exponential and >1 when
it is faster than exponential. For the realization at x∗ = 5 in Fig. 1, �̃T (x, t∗) is shown in Fig. 3(b).
It demonstrates that the growth of perturbations is indeed mostly exponential.

2. Difference field

The difference field follows from starting a fluid parcel at the same location xi,t and the same
time t in all experiment realizations i, tracking all fluid parcels over a time interval T when they
have reached xi,t+T in experiment i and x j,t+T in experiment j, and computing the difference

dT (x, t ) = 〈|x j,t+T − xi,t+T |〉i �= j

T
, (5)

averaged over all unlike pairs i �= j of experiment realizations. The difference field dT (x, x∗) at
x∗ = 1, 3, 5, 7 is shown in Fig. 4. It is compared to the FTLE field computed over the same time
interval T = 0.128 s. Notice that the magnitude of the fields cannot be compared: �T (x, t ) is the
log of a ratio, while dT (x, t ) is a length (both per unit of time).

There is a striking similarity between these fields, as expressed by the normalized correlation
C(x∗) between them:

C(x∗) = 〈[�T (x, t ) − 〈�T (x, t )〉x][dT (x, t ) − 〈dT (x, t )〉x]〉x[〈
�2

T (x, t )
〉
x − 〈�T (x, t )〉2

x

]1/2[〈
d2

T (x, t )
〉
x − 〈dT (x, t )〉2

x

]1/2 , (6)
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(a)

(b) (c) (d)

FIG. 3. (a) FTLE field of a single experiment realization at scaled plate distances x∗ = 1, 3, 5, 7 (x∗ =
10 x). The frames at the bottom row all correspond to plate separation x∗ = 5. (b) Consistency with exponential
growth of a single realization [x∗ = 5 in (a)]. It is quantified by �̃T (x, x∗) = �T (x, x∗)/�T/2(x, x∗), with
T = 0.128 s. It is 1 when fluid parcels separate exponentially in time. The inset shows the PDF of �̃T . (c) Root
mean square fluctuations σ�T of FTLE field at x∗ = 5; the scale is logarithmic. Shown is log10 σ�T (x, x∗),
with σ�T in s−1. (d) Ensemble mean of FTLE field at x∗ = 5; the scale is the same as that of the top row (a).

where �T (x, t ) is now the ensemble average 〈�T,i(x, t )〉i, and with x∗ and t related as in Eq. (1). This
result should be very close to the ensemble-averaged correlation between the individual �T,i(x, t )
and dT (x, t ).

Since dT (x, x∗) grows from (nominally) dT = 0 at T = 0, it cannot be compared directly to the
FTLE field, which involves logarithms. As a further refinement we therefore take dT1 at T1 = 32 ms
as initial separation and quantify its exponential growth as

dT2,T1 (x, x∗) = 1

T2 − T1
ln

dT2 (x, x∗)

dT1 (x, x∗)
, (7)

with T2 = 128 ms. The resemblance of dT2,T1 in Fig. 4(c) with the field �T2 (x, x∗) is even stronger,
but dT2,T1 is noisy as it involves the velocity fields of different experiments. The equivalence between
�T2 and dT2,T1 owes itself to the selection of the direction of strongest growth for an arbitrary
perturbation.

3. Ergodicity

The strong correlation between the FTLE field �T (x, x∗) and the difference fields dT (x, x∗)
and dT2,T1 (x, x∗), which express the ensemble difference between realizations, is reminiscent of
ergodicity. It is believed that turbulent flow is ergodic: the statistical properties of an ensemble are
the same as those obtained from a time average of a single ensemble member [18,19]. In our case,
the temporal dynamics of a single ensemble member predicts the variability in the entire ensemble.

B. Error energy

Both the FTLE field �T (x, x∗) and the difference field dT (x, x∗) are Lagrangian and involve the
evolution over a time interval T . The instantaneous difference between the velocity fields of our
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(a)

(b) (c)

FIG. 4. (a) Difference field dT (x, x∗) at scaled plate distances x∗ = 1, 3, 5, 7 (x∗ = 10 x). An average
was done over all 861 distinct pairs of the ensemble. Notice the change of scale at x∗ = 7. (b) Normalized
correlation with the (ensemble-averaged) FTLE field λT (x, x∗). At x∗ = 5, dT (x, x∗) can be compared to
λT (x, x∗) in Fig. 3(d). (c) Logarithmic difference field, dT2,T1 , [Eq. (5)] with T1 = 32 ms and T2 = 128 ms.
It should be compared to the ensemble mean FTLE field in Fig. 3(d).

ensemble can be expressed using the normalized error energy:

�ũ2(x∗) = 〈|̃ui(x, x∗) − ũ j (x, x∗)|2〉x,i �= j

2〈|̃ui(x, x∗)|2〉x,i
, (8)

where ũ is the fluctuation velocity field, ũ = u − 〈u〉i and averages are done over all distinct
pairs i �= j in the ensemble and over the entire domain x. For completely uncorrelated velocity
fields �ũ2(x∗) = 1 [20]. The normalized correlation is C = 1 − �ũ2(x∗); it is zero for uncorrelated
velocity fields. A similar error can be defined for the enstrophy. Notice that the domain average
〈· · · 〉x in Eq. (8) must be done over the numerator and denominator separately. Without it, the
resulting random field (with mean 1) signifies the independence of the experiment realizations.

The error energy and enstrophy are analogous to a structure function between different experi-
ments. In addition, we define a structure function that quantifies the correlation of the vorticity fields
within a single experimental field:

S(δ, x∗) = 〈[ω̃i(x + δ, x∗) − ω̃i(x, x∗)]2〉x,i〈
ω̃2

i (x + δ, x∗)
〉
x,i + 〈

ω̃2
i (x, x∗)

〉
x,i

, (9)

and similarly for the velocity field. In Eq. (9) we take the separation δ = δ ex, and we realize that
the field ω(x, x∗) is inhomogeneous; its statistical properties depend on x. For a spatially incoherent
field (such that 〈ω̃(x + δ, x∗) ω̃(x, x∗)〉 = 0), S = 1, while for a homogeneous field ω̃(x, x∗) S is
the (normalized) second order vorticity structure function. Similarly, the correlation function is
C = 1 − S. Summarizing, we have the error enstrophy (and energy) to quantify the coherence
between experiments, and the equivalent structure function S to express the coherence within a
single realization.
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(a)

(c)

(b)

FIG. 5. Global characterization of the coherence between experiment realizations and the coherence inside
experiments. (a) Ensemble- and space-averaged normalized error energy �ũ2(x∗) and enstrophy �ω̃2(x∗). In
the case of uncorrelated fields, �ũ2(x∗) = �ω̃2(x∗) = 1. Full lines are for the entire field of view, dashed
lines are for the wake, as defined in (b). (b) Delineating the turbulent wake. Shown is ω(x, x∗) at x∗ = 5 (x =
0.5). The wake region 	w is a box with sides lx = 0.3 m and ly = 0.32 m, with its right boundary separated
from the plate by lbl = 5 × 10−3 m. (c) Second-order structure function S(δ, x∗) [Eq. (9)] for separations δ =
0.01, . . . , 0.1. Inset: correlation function C = 1 − S(δ, x∗) at x∗ = 5.

The dependence of the error energy and enstrophy on traveled plate distance x∗ is shown
in Fig. 5(a). As time progresses, velocity and vorticity fields of different experiments become
increasingly decorrelated. The error energy demonstrates that the velocity field remains correlated
the longest, whereas the vorticity field becomes almost completely decorrelated at the end of a run,
x∗ = 8. Clearly, the small scales are much less correlated between experiments than the large-scale
motion.

The error energy and enstrophy [Eq. (8)] in Fig. 5 are for the entire domain that contains the
boundary layers on the plate, the (detached) vortices, the wake envelope, and its inside turbulence.
We have singled out the wake region 	w as illustrated in Fig. 5(b). It excludes the boundary layer
on the plate, whose width is approximately Re−1/2 lb ≈ 4 × 10−4 m, which is (much) smaller than
the vector spacing (4.2 × 10−3 m). As Fig. 5(a) illustrates, the correlation between experiment
realizations remains if we exclude the vorticity (velocity) field attached to the plate.

Inside the wake, the vorticity field becomes increasingly decorrelated between experiments.
Within an experiment realization, the turbulent wake is characterized by a finite correlation length, as
plots of S(δ, x∗) and C(δ, x∗) = 1 − S(δ, x∗) in Fig. 5(c) show. With correlation length l ≈ 0.025 m,
u = 0.14 m s−1, and Cε = 0.47 [21], we estimate a turbulent dissipation rate ε = Cεu3/l ≈ 6 ×
10−5 m2 s−3, and a Taylor scale Reynolds number Reλ ≈ 102, which should be compared to Re1/2,
with Re = 4 × 104. However, this comparison may have been stretched too far, as the turbulence
inside the wake is far from homogeneous.
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FIG. 6. (a) Instantaneous vorticity field for plate position x∗ = 5. The circulations (per unit area) �1 and �2

are computed by averaging ω(x, t ) over the gray boxes 	1 and 	2, respectively. (b) Full line indicates ensemble
mean 〈�1〉, gray line −〈�2〉. The two mean circulations are almost perfectly symmetric. (c) R.m.s. circulation
fluctuations; gray line: σ �1, black line: σ �2.

C. Circulation

While the pointwise fields �T (x, x∗) and dT (x, x∗) still display the vortical wake structure, we
will now focus on the statistical properties of the circulation. Figure 6(a) illustrates the definition
of the domains 	1,2 used to compute the circulations �1,2(x∗). Throughout, the circulations are the
domain-integrated vorticities,

�i
1,2(x∗) =

∫
	1,2

ωi(x, x∗) d2x.

Naturally, the ensemble averages are such that 〈�1〉 > 0 and 〈�2〉 < 0. The ensemble-mean circula-
tions and their r.m.s. fluctuations,

σ�1,2 =
〈(

�i
1,2 − 〈� j

1,2〉 j
)2

〉1/2

i
,

are shown in in Figs. 6(b) and 6(c). Remarkably, not only is the y ↔ −y symmetry of the setup
preserved in the mean, but also in the r.m.s. fluctuations. The symmetry is increasingly lost in higher
order moments of the fluctuating circulation (such as the flatness), which is already evident from
the vorticity fields in the domains 	1 and 	2 in Fig. 6(a).

The y ↔ −y symmetry of the projections of the flow on the cross-sectional plane points to their
common cause: the circulation of the entire large-scale trailing vortex loop [see Fig. 2(a)]. The two
vortices are the intersections of this vortex loop with the measurement plane. A further analysis
is provided in Fig. 7, where we plot �i

2 as a function of �i
1 for plate separations x∗ = 5 and x∗ =

7, and i = 1, . . . , 42. The two circulations are almost perfectly anticorrelated. Incidentally, their
fluctuations are approximately Gaussian. The flatness, 〈(�i

1 − 〈� j
1〉 j )4〉i/〈(�i

1 − 〈� j
1〉 j )2〉i, which is

3 for a perfect Gaussian distribution, is 3 on average with r.m.s. variation 0.9.
The correlation between �1 and �2 as a function of the plate displacement x∗ is shown in

Fig. 7(c); it is approximately −1, which agrees with the y ↔ −y symmetry of the circulation
fluctuations. This (anti)symmetry is increasingly broken when the circulations are restricted to the
wakes, 	w 1,2 [indicated in Fig. 5(b)] with increasing distance lbl. It is clearly related to the vorticity
layers that are attached to the plate. The correlation between the corresponding circulations �w 1

and −�w 2 revives at x∗ = 4, when the vortex loop detaches from the plate, and again at x∗ > 6,
when the wake becomes fully turbulent.

At a traveled distance x∗ ≈ 6, as the wake becomes turbulent and the sign of the local vorticity
starts to alternate, the measured flow also becomes three-dimensional. The two-dimensionality of
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(a) (b) (c)

FIG. 7. (a, b) �2 vs �1 for all 42 experiment realizations at plate displacements x∗ = 3 and x∗ = 7,
respectively. Black dots are circulations over the domains 	1,2. The gray dots correspond to the circulation in
the wake regions 	w 1 and 	w 2 [see Fig. 5(b)]. (c) Black line: correlation between �1 and �2, with circulations
computed over the full domains 	1, 	2; gray line: with circulations in the wake regions 	w 1 and 	w 2.

the flow is quantified by the normalized divergence, ζ = 〈∇ · u/(∇u : ∇u)1/2〉. A perfectly planar
flow has ζ = 0. We find that |ζ | � 0.02 for x∗ � 6, and rises to ζ ≈ 0.06 at x∗ = 8 as the flow starts
to explore the z dimension.

D. Extreme values

In Fig. 7(b) we have indicated the experiment realizations imin (A) and imax (B) where the
circulations �1 (and thus �2) take on extreme values at x∗ = 7. The question is whether these
extreme events can be predicted from extreme events in the past (x∗ < 7) of the circulation.

To this aim we replace the value of the 42 circulations �1,2 at each plate displacement x∗ with
their rank �′

1,2: it is 1 for the largest circulation, 0 for the median, and −1 for the smallest one. When
computing the correlation between circulations [including that of Fig. 7(c)], the transformation to
ranks removes bias due to the magnitude of the circulation. Also, the correlation value is insensitive
to a (nonlinear) transformation of the circulation. Incidentally, the difference with correlations
using the physical values was negligible. Extreme events are now easy to trace: they are �′ = ±1,
irrespective of the physical value of �.

The first question is whether the circulation in an experiment, say i0, that displays an extreme
circulation at, say, x∗

0 , remains extreme at other plate distances x∗. The answer to this question
is provided by a plot of �

′ i0
1,2 (x∗). In Fig. 8(a) we show the trace of the circulations �′

1,2 of the
experiment indicated by “A” in Fig. 7(b). At x∗

0 = 7 the circulations take on extreme values:
�′

2 = −1, �′
1 = 1 (indicated by the blue dots). Notice that the traces of �′

1 and �′
2 are almost

symmetrical, in agreement with Fig. 7(b). In a small range around x∗
0 the circulations remain

extreme, but otherwise �′
2 stays smaller than the median, and �′

1 remains larger than the median.
The experiment marked by “B” in Fig. 7(b) displays similar behavior. We conclude that an extreme
circulation �′

1 is preceded by circulations larger than the median and vice versa for �′
2.

In case of completely random circulation fluctuations, �′ would have equal probabilities to be 1
and −1. This is clearly not the case and suggests the presence of long-ranged correlations in a single
experiment realization.

The normalized correlation Cx∗
0
(x∗) between �′

1(x∗) and �′
1(x∗

0 ) for x∗
0 = 5 and x∗

0 = 7 is shown
in Fig. 8(c). It is defined similarly to Eq. (6) and is trivially 1 at x∗ = x∗

0 . At x∗
0 = 7, inside the

turbulent domain, it is sharply peaked, but drops to Cx∗
0
(x∗) ≈ 0.5 for earlier plate positions. The

correlation of �′
2 is similar. The width (full width half maximum) of the peak is ≈0.1, which can be

compared to the plate height lb.
Since the time- (x∗-) dependent flow is nonstationary, it is not possible to define a correlation

time (length), and correlations such as in Fig. 8(c) are the best we can do. From these correlation
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FIG. 8. (a, b) Traces of �′
1,2(x∗) of selected experiments. Shown are the circulations after the rank

transformation; the largest circulation in the ensemble takes on the value 1, the smallest is −1. (a) Black
line: �′

1(x∗) of the experiment indicated by “A” in Fig. 7(b), where �1 and |�2| are minimal. Gray line: same
but for �′

2(x∗). The two traces are approximately each other’s mirror. (b) Same as (a), but for point “B” in
Fig. 7(b), where �1 and |�2| are maximal. (c) Black curve: correlation between �′

1(x∗
0 )) with �′

1(x∗) for x∗
0 = 7.

Gray line: the same but for x∗
0 = 3. The correlations are trivially 1 for x∗ = x∗

0 (indicated by the red dots).

functions it can be concluded that vorticity fields at x∗
0 � 6 are correlated with those at x∗ � x∗

0 , but
once the flow enters the turbulent state (x∗

0 > 6) correlations are restricted to a narrow interval in x∗.

IV. CONCLUSION

In the plane of observation, the wake behind a traveling plate evolves from ordered vortex pairs
to turbulence. We study the statistics of this transition by repeating the experiment many times.
The variability of the ensemble of experiments can be predicted from observation of the finite-time
Lyapunov exponents of a single experiment. More specifically, the ensemble-averaged FTLE field
can be reconstructed from observing the variation between experiments and vice versa.

As time progresses, the correlation between the vorticity fields of different experiments
decreases, both for the entire field and for the turbulent wake. The mean and fluctuating circu-
lations computed over the upper and lower halves of the observed domain are almost perfectly
(anti)symmetric. It reflects the (anti)correlation of the instantaneous values of �1 and �2. However,
this no longer holds for the circulations restricted to the turbulent wake.

There has been beautiful numerical work on the first stages of the wake vortex formation [2,4,7].
We hope that this work inspires the numerical exploration of the turbulent regime.
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