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The prediction of the drop size distribution (DSD) resulting from liquid atomization is
key to the optimization of multiphase flows from gas-turbine propulsion through agricul-
ture to healthcare. Obtaining high-fidelity data of liquid atomization, either experimentally
or numerically, is expensive, which makes the exploration of the design space difficult.
First, to tackle these challenges, we propose a framework to predict the DSD of a liquid
spray based on data as a function of the spray angle, the Reynolds number, and the Weber
number. Second, to guide the design of liquid atomizers, the model accurately predicts the
volume of fluid contained in drops of specific sizes while providing uncertainty estimation.
To do so, we propose a Gaussian process regression (GPR) model, which infers the DSD
and its uncertainty form the knowledge of its integrals and of its first moment, i.e., the
mean drop diameter. Third, we deploy multiple GPR models to estimate these quantities at
arbitrary points of the design space from data obtained from a large number of numerical
simulations of a flat fan spray. The kernel used for reconstructing the DSD incorporates
prior physical knowledge, which enables the prediction of sharply peaked and heavy-tailed
distributions. Fourth, we compare our method with a benchmark approach, which estimates
the DSD by interpolating the frequency polygon of the binned drops with a GPR. We
show that our integral approach is significantly more accurate, especially in the tail of the
distribution (i.e., large, rare drops), and it reduces the bias of the density estimator by up
to 10 times. Finally, we discuss physical aspects of the model’s predictions and interpret
them against experimental results from the literature. This work opens opportunities for
modeling drop size distribution in multiphase flows from data.

DOI: 10.1103/PhysRevFluids.8.104302

I. INTRODUCTION

Liquid atomization is a phenomenon that appears in a large number of applications from
agriculture [1] through drug delivery to fuel injection and cosmetics [2,3]. In most applications,
it is desirable to have an a priori knowledge of the liquid dispersion structure, in particular, the
distribution of droplet sizes as a function of the main control parameters and working conditions
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of the atomizer. In agriculture, the droplet size and velocity distributions are important to ensure
accurate delivery and retention of pesticide on the target [4] as the distribution of smaller drops
determines the sensitivity of the coverage to environmental effects, such as wind [5]. A similar
problem occurs in automotive paint sprays [6]. In respirable sprays for medicinal applications,
the width of the drop size distribution (DSD) is of vital importance because drops smaller than
a critical size are ejected from the body during exhalation, whereas droplets that are too large
remain trapped in the respiratory system far upstream of their intended target [6]. In chemically
reacting flows, before ignition, the DSD of atomized liquid fuels plays a central role in deter-
mining the thermal efficiency and the emissions of pollutants because it influences, e.g., the local
evaporation rate of the fuel, the tendency of drops to be transported by the flow, and the spray
penetration [7,8].

The dispersion structure of the atomized fluid is determined by a large number of factors, such
as the presence of boundaries [9,10], the pressure drop across the nozzle or its shape [10], as well as
the physical properties of the fluid itself, to name a few. For this reason, although the mathematical
analysis of the governing equations describing sprays and jets can help understand the fundamental
mechanisms leading to drop formation, it can provide only qualitative prediction regarding the
DSD [11,12]. Thus, experimental investigation is often necessary to obtain quantitatively accurate
information. Experiments provide high-fidelity data about the detailed shape of the DSD resulting
from atomization; however, this is a low-throughput and expensive approach [13]. An alternative
approach is to perform high-fidelity numerical simulations, which are a reliable tool to observe the
details of the physical mechanisms at play in multiphase systems, e.g., Refs. [14–16]. However,
high-fidelity simulations also have limitations because they are typically computationally expensive
simulations, which make the systematic exploration of large design spaces difficult.

To mitigate the aforementioned challenges, Sacks et al. [17] modelled the deterministic output of
numerical simulations as a stochastic process, providing the statistical basis for the optimal design
of experiments (DOE), or active learning problem. In this framework, the goal is to choose the
input sample carefully so that the information for the output quantity of interest (QoI) is maximized
[18]. Recently, a similar framework was developed to design experiments using an output-weighted
metric, with the objective of achieving the fastest possible convergence for the output statistics rather
than reducing the accuracy in regions of the design space of little interest, with applications to rare
events (e.g., waves) [19].

By modeling the output QoI of numerical simulations as a stochastic process it is possible to
build a surrogate model (SM) of such QoI. In essence, a data-driven SM is a supervised learning
algorithm that uses data to learn the mapping between points in the design (or input) space and
the QoI. These SMs are sometimes referred to as statistical emulators as they emulate the solution
of a physics-based model. The latter, which is numerically solved to obtain data, is thus called the
simulator [20].

In the simplest case, the QoI is a scalar function of the input, e.g., the power output of a wind farm
as a function of its layout and wind conditions [21]. However, if the QoI is the probability p(d ) of
finding a drop with diameter d , then it becomes a function of the internal coordinate d . This intricate
QoI cannot be easily modelled as a scalar stochastic process. To address this, a possible solution is to
use multiple SMs, with each SM learning the function at a specific point of the internal coordinates.
An illustrative example is provided in Ref. [20], where the QoI is represented by the time series
of a scalar quantity of interest, specifically the carbon concentration within forests. Their approach
involves training a vector-valued Gaussian process regressions (GPR) model, in which each element
of the output vector represents the carbon concentration at a given time. Alternatively, the output
vector could represent the coefficients of a set of basis functions, e.g., spectral decomposition
[22,23], instead of the point evaluation of the QoI at different locations. Nonetheless, in all these
cases the QoI is reconstructed from the knowledge of some features, such as its value at a set of
points in time, or its spectral representation.

In this work we propose a SM to learn the mapping from the working conditions of a flat-fan
liquid spray to the resulting DSD p(d ), which is the QoI. The working conditions are parametrized
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by (i) the spray angle, (ii) the Reynolds, and (iii) the Weber numbers of the jet. To do so, we
exploit the ability of GPR models to reconstruct the unknown function by using observations of
any linear functional of it and not only of the point-evaluation functional. Other works exploited
this idea in different contexts. For example, Longi et al. [24] used integral observations to optimize
sensor placement, and Law et al. [25] to model the spatial distribution of malaria incidence from
aggregate data, while Solak et al. [26] used derivative observations to model dynamical systems.
In this work, we propose an algorithm that reconstructs the DSD by combining observations of
integrals as well as of its first moment. These types of observations are relevant to multiphase
systems, and especially to atomization problems, because the integrals of the DSD between two
points d1 and d2 is directly related to the volume of atomized fluid contained in droplets with size
d1 < d < d2. At the same time, by imposing the first moment of the DSD, we significantly reduce
the bias of the estimator. The performance of such density estimators are compared to the case where
pointwise evaluation of the DSD are used for its reconstruction, showing significant improvement.
Finally, we remark how the proposed approach does not rely on a priori parametrization of the
DSD in terms of known distributions (e.g., Gamma or log-normal), as done in the literature
when reconstructing DSD from data, e.g., Refs. [12,27–29]. The prior knowledge on the typical
shape of DSD is embedded in the choice of the kernel, which is a key aspect of the model
selection.

The present work is centered on two main goals. First, we propose a methodology for con-
structing a data-driven SM for the prediction of DSDs in multiphase flows. Second, we produce
high-fidelity data from numerical simulations of a flat-fan liquid spray to test the proposed method-
ology. This is performed by validating the SM’s predictions against the physical properties of the
system. The paper is thus structured as follows. In Sec. II, we introduce the formalism of GPR
adapted to include any observation that can be expressed as a linear functional of p(d ). Specifically,
the functionals will be integrals of p, and their first moments. For the purpose of training and
testing the SM, a data set of numerical simulations of the spray is produced at different working
conditions. In Sec. III, we introduce the computational fluid dynamics framework used to perform
these simulations and how the continuous DSD and its uncertainty are reconstructed from the
populations of drops. In Sec. IV, the SM mapping the design parameters to the associated DSD
is described, the performance is tested, and the outputs are interpreted from a physical perspective.
Finally, concluding remarks are provided in Sec. V.

II. GAUSSIAN PROCESS REGRESSION WITH FUNCTIONAL OBSERVATIONS

Gaussian process models are a class of probabilistic statistical models, which can be used for
supervised learning tasks, such as regression or classification, depending on the continuous or
discrete nature of the output, respectively. Gaussian processes are principled alternatives to other
machine learning models, e.g., artificial neural networks, Bayesian linear models, or support vector
machines. A systematic and unified treatment of the topic of GPR models for supervised machine
learning can be found in Williams and Rasmussen [30]. Numerous libraries to perform GPR are
available in a number of open source and proprietary software, e.g., Python (such as GPy [31] and
GPyTorch [32]) and Matlab (fitgpr function).

The goal of this section is to introduce the formalism of GPR to reconstruct an unknown function
f form data. In doing so, we consider the general case in which data consists of observations
of linear functionals L[ f ] of the unknown function estimated by the Gaussian process, f . This
extends the common case where L is the point-evaluation functional Lx[ f ] = f (x), that is, when
information about f consist of the knowledge of its value at discrete points. For example, in Sec. III,
the unknown function f = p(d ) represents the DSD of a liquid spray, and the functionals used to
reconstruct it are cumulative probabilities (i.e., integrals) and the first moment of f . This paper
exploits both observations of the integrals and moments of a function for its reconstruction by
means of GPR. The learning algorithm was implemented in an in-house code and is described in
Sec. III B.
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A. Functions as Gaussian processes

A Gaussian process (GP) is a collection of random variables that follow a joint Gaussian
distribution. In the context of GPR, the random value represents the value of a function f (x) :
X ∈ Rn �→ R at point x [30]. If we let X = {xi}N

i=1 be any finite set of points in X , then the vector
f (X) = [ f (x1), . . . , f (xN )]T is modelled as a GP and it is denoted by

f (X) ∼ GP (m(X), k(X, X)), (1)

where m(X) is the N-dimensional vector with elements m(xi ) = E[ f (xi)], i.e., the mean of f at xi,
and k(X, X) is the N-by-N covariance matrix defined as

ki j = k(xi, x j ) = E[( f (xi ) − m(xi ))( f (x j ) − m(x j ))], (2)

where E[y] is the expected value of the random variable y. The GP is defined by the knowledge of
its mean and covariance functions.

Before the actual regression is performed (i.e., before data are considered), we chose the
functions m and k based on prior knowledge about the unknown function f . In this work, such
prior knowledge is embedded in the form of the kernel, k(x, x′|θ) (reported in Eqs. (24) and (27)
below), which is chosen a priori and tuned by adjusting the hyperparameters θ. As more rigorously
discussed in Secs. III B and IV A, these hyperparameters quantify how fast the function f changes
as we move in the input space. This training is known as type II maximum likelihood approximation
or ML-II [30]. The prior mean function is assumed to be zero, that is, m(x) = 0 for all x. This
assumption preserves the generality of the method as it can always be enforced by shifting the data
set by its mean.

Let us now consider a family of linear functionals of f , each denoted by Li[ f ] : F �→ R and
such that Li[a f + g] = aLi[ f ] + Li[g] for f , g ∈ F , where F is a reproducing kernel Hilbert space
[33]. We consider that we have a noisy measurement of each Li, denoted by yi = Li[ f ] + εi, where
εi is the zero-mean, additive, independent, and identically distributed Gaussian noise corrupting the
observed value of Li, and whose variance is denoted by V [εi]. As discussed in Sec. III B, these
functional observations of f are definite integrals and the first moment of f . Here the unknown
function is the DSD of a liquid spray, f = p(d ), and its observed values, yi, will thus represent, e.g.,
the probability to find a droplet whose size is within a certain range (i.e., the extremes of integration
defining Li).

Considering the assumptions on εi, and that linear transformations of GPs are also GPs [34], the
prior distribution for the ith observation yi is also Gaussian:

yi = N
(
Li[m], L2

i [k] + V [εi]
)
, (3)

where L2
i [k] is expressed by

L2
i [k] = Li[Li[k(·, x′)]] = Li[Li[k(x, ·)]], (4)

where y = N (μ, σ 2) indicates that the random variable y is normally distributed with mean μ and
variance σ 2. If the commonly used point-evaluation functional Li = Lxi [ f ] = f (xi ) is employed,
then Eq. (3) becomes yi = N (m(xi ), k(xi, xi ) + V [εi]) [30]. As Eq. (3) shows, a GP distribution on
f gives a Gaussian distribution on any linear functional of f . This fact, together with the framework
introduced in Secs. II B and II C, can be used to infer the integral of f from the knowledge of
its value at a limited number of locations. This procedure, known as Bayesian quadrature, treats
the problem of numerical integration as one of statistical inference [34] where the main source of
uncertainty arises because it is not affordable to compute the function f at every location [35,36],
e.g., when integrating functions over high-dimensional domain. In this work, we exploit this idea to
perform the inverse task, that is, to infer f from the partial knowledge of some linear functionals of
it (e.g., integrals).
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B. Selecting a Gaussian process model: Training the hyperparameters

Let us consider the regression problem of estimating the value of f∗ = f (X∗) at some test
locations X∗ = {xi}N∗

i=1 from the knowledge of Nf features (i.e., linear functionals) of f . The

definition of these functionals along with their observed values forms the data set D = {(Li, yi )}Nf

i=1.

For brevity, we define the collection of all the functionals by L = {Li}Nf

i=1. Each Li is associated
with its observed value, collected in the vector y = [y1, . . . , yNf ]

T . This vector of observations is,
in turn, associated with the noise vector, ε = [ε1, . . . , εNf ]

T , and with the Nf -by-Nf diagonal matrix
containing the variance of such noise along the main diagonal (i.e., uncorrelated noise), V [ε].

The GPR comprises two main steps in which the data set D is used to (i) select a model, and (ii)
condition the model on the observations, respectively. The model selection consists of optimizing
the hyperparameters θ defining the covariance function k = k(x, x′|θ) based on the observed data,
which is the training. This is achieved by maximizing the marginal likelihood L(θ) = p(y|L, θ)
given by [30]

log p(y|L, θ) = −1

2
yT k−1

y y − 1

2
log |ky| − Nf

2
log 2π, (5)

where ky = kL(L, L) + V [ε] is the covariance between the noisy observations of L, and where
the Nf -by-Nf covariance matrix of the noise-free observations, kL(L, L) = kL,i j , is obtained by
exploiting the bilinearity of covariance [37], yielding

kL,i j = Li[Lj[k(·, ·)]] = Lj[Li[k(·, ·)]]. (6)

On the right-hand side of Eq. (5), the first term, − 1
2 yT k−1

y y, involves the value of the observations
y and is proportional to the data fit; the second term, 1

2 log |ky|, can be interpreted as a penalty
parameter that promotes smoother, slowly varying, thus, simpler functions; and the last term is
a normalization constant. The definition of the functionals used in this work and the associated
covariance terms in Eqs. (6) are explicitly reported in Sec. III B. Once the model is trained, we
denote the optimized covariance function by k̂ = k(x, x′|θ̂), where θ̂ corresponds to

θ̂ ≡ arg max
θ

p(y|L, θ), (7)

and similarly for the covariance matrix between observations of different functionals, k̂L,i j =
Li[Lj[k̂(·, ·)]].

C. Posterior distribution

Once the model is trained, the next step is to condition the prior, see Eq. (1), on the data, D.
In practice, that is to find the posterior distribution for (i.e., prediction of) the value of f at the
test locations, f∗. These predictive equations for f∗ [30] are here generalized to observations of
functionals other than the point-evaluation functional. They read

f∗|D, X∗ ∼ N (E[f∗], cov(f∗)), where (8)

E[f∗] = k̂L(L∗, L)k̂−1
y y, (9)

cov(f∗) = k̂L(L∗, L∗) − k̂L(L∗, L)k̂−1
y k̂L(L, L∗), (10)

where k̂y = k̂L(L, L) + V [ε] and where L∗ = {Lx[ f ]|x ∈ X∗} denotes the set of point-evaluation
functionals at the test locations X∗. In other words, in Eq. (9) we now use the optimized covariance
(k̂y) and the data (y) to predict the most likely value of the unknown function f at a set of test
locations (X∗) in which we have no data, i.e., we compute E[f∗] = E[ f (X∗)]. Equation (10) is
employed to compute the covariance between these predictions, cov(f∗). Its diagonal represents the
variance of the prediction at each test point, X∗, thus quantifying its accuracy, and it is independent
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of the value of the observations, y. As discussed in Sec. IV, this fact is exploited to optimally design
part of the numerical experiments because it is possible to know how a new experiment affects the
uncertainty of the prediction before it is run.

In Secs. III B and III C we use the predictive Eqs. (8)–(10) to predict the DSD of a liquid spray,
f = p(d ), that is, the probability of finding a spherical drop with diameter d . We do so by using a
specific form of the covariance function that well encodes our prior knowledge about the general
characteristics of DSD (e.g., heavy tail distributions). Finally, in Sec. IV, we model each of these
features of p using as many GPR models, effectively treating them as unknown functions of the
working conditions of the spray, which is the input space of the SM. By doing so, we obtain a SM
that maps points in the space of the working conditions of the sprays to the associated DSD and its
uncertainty.

III. GPR FOR PROBABILITY DENSITY ESTIMATION FOR SPRAYS

In this section, we propose a novel application of the framework explained in Sec. II in which
observations include (i) definite integrals and (ii) the first moments of the unknown function. The
unknown function represents the unobservable underlying probability density (PDF) that generates
a finite data sample, that is, the data. Each element of the sample, or population, corresponds to
the diameter of a drop within a liquid spray. To obtain the population of drops, a flat-fan liquid
spray is modelled by means of numerical simulations, as described in Sec. III A. In Sec. III B, we
then discuss how the GPR framework is used to estimate the underlying PDF generating the DSD.
Finally, the results are discussed in Sec. III C.

A. Numerical simulations of a liquid jet

1. Governing equations and dimensionless parameters

Atomization is the physical process by which an initial liquid, here a liquid sheet, is fragmented
into smaller droplets due to a cascade of events. In the initial phase, the sheet’s free surface is
linearly unstable, which means that perturbations grow exponentially until nonlinear effects cause
the formation of ligaments. In a second phase, ligaments breakup into a number of smaller drops,
which are responsible for the shape of the DSD of the spray [12]. These phases are referred to as
primary and secondary atomization, respectively. The dynamics of an incompressible, Newtonian
liquid jet are described by the one-fluid formulation of the incompressible Navier-Stokes equations,
which under the assumptions of isothermal flow, and in the absence of interfacial mass transfer, are
expressed by

∇ · u = 0, (11)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [η(∇u + ∇uT )] + Fσ + g, (12)

where ρ, η, and u are the local density, dynamic viscosity, and velocity, respectively; g is the
acceleration due to gravity, and the Fσ is the capillary force, which can be written as Fσ = σκnδs,
with σ , n, κ , and δs denoting the surface tension (considered constant), the unit normal to the
interface, the local curvature of the interface, and the Dirac delta distribution associated with the
interface, respectively. We consider an ellipsoidal nozzle with minor and major semiaxis ra and rb,
respectively. Using twice the nozzle minor semiaxes R0, the jet maximum velocity U0, tc = R0/U0,
and ρlU 2

0 as the characteristic length, time, velocity, and pressure, respectively, and the liquid density
ρl and viscosity ηl to scale the density and viscosity, respectively, the equations above can be written
as [38,39]

∇̃ · ũ = 0, (13)

ρ̃(∂ũ∂ t̃ + ũ · ∇̃ũ) = −∇̃ p̃ + 1Re∇̃ · [η̃(∇̃ũ + ∇̃ũT )] + 1Weκ̃ δ̃sn + 1Bog̃, (14)

104302-6



DATA-DRIVEN MODELING FOR DROP SIZE …

where the tilde denotes dimensionless quantities. Considering flows where the capillary forces
dominate the acceleration due to gravity (Bo = ρl gR2

0/σ 	 1), the two dimensionless parameters
that influence the spray dynamics, thus the resulting droplet size distributions, are the Reynolds
number Re = ρlU0R0/ηl and the Weber number We = ρlU 2

0 R0/σ .

2. Numerical methods

We perform numerical simulations of a liquid jet using the Basilisk GPL-licensed computational
code [40]. The Navier-Stokes equations are solved using the projection method [41], while the
volume-of-fluid method is used to capture and reconstruct the interface [42,43]. Within this frame-
work, the volume fraction C, which equals unity in the liquid phase and zero in the ambient phase,
is passively advected with the flow:

∂C

∂ t̃
+ ũ · ∇C = 0. (15)

The local fluid viscosity η and density ρ are obtained by linearly averaging the liquid and gas
properties with C,

η̃ = ηlC + (1 − C)ηg

ηl
, ρ̃ = ρlC + (1 − C)ρg

ρl
, (16)

where ρg and ηg represent the gas density and viscosity, respectively, and ρl/ρg = ηl/ηg = 10
throughout. Surface tension forces are computed from the local normal and curvature of the
interface, which are estimated from C using the height-functions method [41,44].

The simulations are performed on a cube with nondimensional linear size L̃ = 88. On each side,
we impose reflective boundary conditions (i.e., zero normal derivative) for all the state variables
exceptions made for the pressure on the opposite side of the nozzle, which is set to zero. The inflow
velocity, ũin = [ũx,in(z), 0, ũz,in(z)], is imposed on an ellipsoidal region on the plane x = 0 with
major axes rb along direction z and minor axes ra along direction y (aspect ratio rb/ra = 6), see
Fig. 1(a). The components of ũin are plotted in Fig. 1(b); they are defined such that at each point
inside the ellipse

√
ũ2

x,in + ũ2
z,in = U0erf

[
2(rb − |z|)

δ

]

ũz,in/ũx,in = z tan α/rb, (17)

which ensures that the desired spray angle α is obtained, and δ = rb/4.
The solver employs local adaptive mesh refinement [45] using the octree mesh type. Basilisk’s

procedure for local mesh adaptation employs the wavelet transform to assess the discretization error
of a given scalar field. In our simulations, we adapt the mesh according to the error on the local
nondimensional fluid velocity u, and the gradient of the volume fraction of the fluid in the jet ∇C,
which indicates the vicinity of an interface. Throughout this study, the threshold error value is set
to 0.1, and the maximum level of refinement is set equal to 11. Figures 1(c) to 1(f) show four jets
discretized by O(107) grid points corresponding with different working conditions of the jet, i.e.,
different values of α, Re and We (see caption). The simulations are concluded when a sufficient
number of droplets has formed, typically O(103), and can take up to 72 hours on 24 cores Intel
i7-12700.

When the simulation is concluded only droplets with an equivalent diameter di such that
dmin < di < dmax with [dmin, dmax] = [0.08, 0.8] are considered (minimal cell size is lmin ≈ 0.04).
Then nonspherical drops are excluded from the sample by applying a high-pass filter based on their
sphericity φi = π1/3(6Vi )2/3/Ai. To estimate the surface area of the ith drop, Ai, we first note that
the vector field ∇C approximates a Dirac delta function on the interface between the drop and the
ambient fluid. Within a computational cell on such an interface, we define the vector dA whose
modulus is equal to the surface area and its orientation is perpendicular to it. The area of such an
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FIG. 1. (a) Qualitative representation of the spray angle and the ellipsoidal region (through orthographic
projection) letting the inflow into the domain. (b) Axial (ũx,in), lateral (ũz,in), and total inflow velocity, ũin =
(ũx,in (z), 0, ũz,in (z)), evaluated along the main diagonal of the ellipse, i.e., x = 0, y = 0, and z ∈ [−rb/2, rb/2]
with rb = 6. Values relative to a spray angle of 60◦, which corresponds to tan−1(ũz,in/ũx,in ) as z → 0. Fluid
interface and velocity magnitude (color) of four sprays with (c) Re = 20, We = 18, α = 10◦; (d) Re = 20,
We = 18, α = 65◦; (e) Re = 59, We = 90, α = 10◦; and (f) Re = 59, We = 90, α = 65◦.

interface is then given by |dA| = (dA2
1 + dA2

2 + dA2
3)1/2, where dAj ( j = 1, 2, 3) are expressed by

dAj =
∫

Vcell

∇CjdV. (18)

Finally, Ai is computed by summing all the infinitesimal contributions dAj relative to the ith drop.
Drops with φi < 0.9 are thus excluded as they are likely to be ligaments that would eventually break
up into smaller drops, thus corrupting the statistics of the DSD. We observe that, on average, around
3% of the total number of drops are filtered out based on sphericity, corresponding to 11% of the
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total atomized volume. If the filter based on the size is also considered, then the drops included in
the final count are on average 74% of the total, making up for 46% of the total volume. Analogous
size-based band-pass and sphericity-based filters are applied also when using optical techniques to
study atomization due to the intrinsic limits of the image acquisition system [46–48]. In the range
of parameters explored in this paper, and discussed in Sec. IV, we observe that the results remain
qualitatively unchanged when we remove the sphericity filter and the values of dmin and dmax are
varied. Specifically, when the filter on the sphericity is not applied, the tails of the DSDs are slightly
heavier for all the spray conditions tested (result not shown). This follows from the fact that larger
drops are more likely to be nonspherical due to the reduced importance of surface tension compared
to small drops.

B. Features of the drop size distribution and their covariance

1. Observations of the mean and cumulative probabilities

The drop population obtained from the numerical simulation of the spray is treated as an
independent and identically distributed sample of Nd events, S ≡ {di}Nd

i=1. The unknown distribution
from which the sample is drawn is denoted by p(d ) defined on the interval between the smallest
and the largest measurable diameters, [dmin, dmax]. Our goal is to use GPR to infer p(d ) and its
uncertainty from S . The first step is to produce a frequency plot of the data with a suitable binning
scheme, B, defined by the bins’ edges bi such that B = {bi|b1 = dmin, bNb+1 = dmax, bi+1 > bi}Nb+1

i=1 .
Let Nb be the number of bins, hi the width of the ith bin, and ni the number of drops within the ith
bin. The cumulative probability of a drop being in the first i bins is approximated as

Pi ≡ P(bi+1) =
∫ bi+1

dmin

p(x)dx ≈
∑i

j=1 n j

Nd (bi+1 − dmin)
for i = 1, . . . , Nb. (19)

Hence, we compute the mean of the population, d̄ , which is an unbiased estimator of the first
moment of the distribution μ1, yielding

μ1 ≡
∫ dmax

dmin

p(x)xdx ≈ d̄ =
∑Nd

i=1 di

Nd
. (20)

The quantities Pi and μ1 are linear functionals of f (x), which we denote Li[p] ≡ Pi, and LNf [p] ≡
μ1. The data set D is thus represented by (i) the definitions of these functionals, (ii) their observed
values y = [P1, . . . , PNb, μ1], and (iii) the variance of the noise corrupting these observations, V [ε].

This data set is used to estimate the density p at the test locations X∗ = [d1, . . . , dN∗ ] with the
predictive Eqs. (8) to (10), where f∗ = p(X∗). To do so, the covariance between different measured
features of p is computed with Eq. (6). Specifically, the covariance between the observation of the
ith cumulative probability, Pi, and that of the first moment, μ1, is

kL(Pi, μ1) ≡ Li[LNf [k(·, ·)]] = LNf [Li[k(·, ·)]] =
∫ dmax

dmin

∫ bi+1

dmin

k(z, z′)zdzdz′. (21)

Likewise, the covariance between the observations of Pi and Pj is

kL(Pi, Pj ) ≡ Li[Lj[k(·, ·)]] = Lj[Li[k(·, ·)]] =
∫ b j+1

dmin

∫ bi+1

dmin

k(z, z′)dzdz′. (22)

Finally, the covariance between the observations of Pi and the function value at the jth test point,
p(d j ) = Ldj , is

kL(Pi, Ldj ) ≡ Li
[
Ldj [k(·, ·)]] = Ldj [Li[k(·, ·)]] =

∫ bi+1

dmin

k(z, d j )dz =
∫ bi+1

dmin

k(d j, z)dz. (23)
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2. Nonstationary covariance function

We choose the specific form of the kernel k = k(d, d ′) to compute the covariance in Eqs. (21),
(22), and (23) guided by the prior knowledge about the function we are learning. A number of
studies have shown that the DSDs emerging from the breakup of ligaments and drop impacts can be
approximated by Gamma [49,50] as well as log-normal [51] distributions. If the function p(d ) has
similar shape to these distributions, then we expect rapid variation of the density p with the input d
around the peak, followed by a progressive transition to slower variation of the density towards the
tail of the distribution (i.e., at large diameters). Consequently, the typical distance �d = |d − d ′|
over which the correlation between p(d ) and p(d + �d ) decays increases with the input, i.e., �d
increases towards the tail of the distribution. A covariance function k = k(d, d ′) with this property
is said to be nonstationary, as opposed to stationary covariances, for which the correlation decays
everywhere with the same law, k(d, d ′) = k(�d ). We allow the GPR model to capture this property
of DSDs by employing the nonstationary version of the squared exponential covariance function
proposed by [52]

k(d, d ′) = σ 2
f

[
2ld (d )ld (d ′)

l2
d (d ) + l2

d (d ′)

]1/2

exp

[
− (d − d ′)2

l2
d (d ) + l2

d (d ′)

]
. (24)

The covariance in Eq. (24) is constructed so that the positive function ld (d ) can be interpreted as
the local correlation length, which is a function of the input d . Alternatively, for a given value of
the parameter σ f , the value of ld can be interpreted as the inverse of the characteristic gradient of
p.1 Small values of ld imply that, locally, the modelled function varies significantly due to small
variation of the input. This happens near the peak, where the model has high capacity, that is, high
ability to fit irregular data. Similarly, large values of ld imply that significant variations of the output
require large variation of the input, i.e., in the tail the model has low capacity. Finally, we note that
the covariance function in Eq. (24) simplifies to the stationary squared exponential kernel if we let
ld be constant, corresponding to a model that has uniform capacity with the input. Given the sharply
peaked shape of DSD emerging from liquid atomization, a model with a stationary kernel (such as
the squared exponential kernel) would either underfit the peak or overfit the tail of the distribution
(results not shown).

In the following, we consider two possible forms for ld : A linear form, as it is the simpler form
of nonuniformity, and the logarithmic form, to reproduce the nonlinear behavior of log-normal and
Gamma distributions, respectively

llin(d ) = a0 + a1d, and lln(d ) = b0 + b1 ln(b2d ). (25)

Consequently, the hyperparameters characterizing the kernel are either θ ≡ θlin = {σ f , a0, a1} or
θ ≡ θln = {σ f , b0, b1, b2}, depending on whether we use llin(d ) or lln(d ), respectively.

The noise that affects each measurement is assumed to be known and, in general, V [εi] �= V [ε j]
for i �= j. This scenario is relevant to real-world engineering and industrial applications, in which
the accuracy of the experimental apparatus is a known function of the measured value, estimated
during their calibration. In other words, we assume that the data points are obtained in a controlled
environment with reliable estimates of their uncertainties. As a result, it is not necessary to either
(i) treat the noise variance of each observation as an additional hyperparameter to be optimized
during training (heteroscedasticity), which would significantly increase the number of trained
parameters, and (ii) introduce the assumption that the variance is the same for all observations
(homoscedasticity). The latter assumption would be unrealistic in the present context due to the

1As pointed out by Gibbs [52] (chapter 3.10.2), who proposed the correlation function, this interpretation
is not applicable for any arbitrary form of ld (d ) due to the effect of the prefactor to the exponential on the
right-hand side of Eq. (24). However, for the form of lc(d ) used in this work, i.e., monotonic functions, see
Eq. (25), this interpretation is accurate.
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FIG. 2. Data from the numerical simulation with α = 65◦, Re = 20, and We = 18, see also Fig. 1(d).
(a) Histogram of the drops count in the simulated spray using six bins and associated probability (red circles).
(b) DSD predicted by the GPR using observations of the mean and cumulative probabilities pint (solid black
lines) and pointlike observations ppt (dashed gray lines). The dashed lines represent the 95% confidence
intervals. The linear length scale llin (d ) is employed to perform both regressions.

difficulties of measuring drops of very different sizes with the same accuracy, whether employing
numerical or experimental techniques.

The optimization problem in Eq. (7) for the training of the GPR is solved with a genetic algorithm
[53]. Even though a gradient-based approach would be computationally more efficient, our choice
is justified by its simplicity of implementation and by the small computational load of the present
problem, in which the number of data points used to perform the regression (i.e., the number of
bins) is O(10) for each DSD. The integrals in Eqs. (21), (22), and (23) are computed with a second-
order finite-difference scheme by discretizing k into O(102) points. Each regression, such as those
reported in the following, takes between O(101) and O(102) seconds to complete on an eight-core
Intel i9 12900 processor.

C. Estimation of drop size distribution

The GPR framework discussed in Sec. III B is employed to estimate the DSD of a liquid spray.
To evaluate the performance of the method, we refer to data relative to a spray characterized by
α = 65◦, Re = 20, and We = 18 (see Fig. 1). On filtering based on sphericity and size, the drops
are sorted into bins [Fig. 2(a)]. The corresponding probability density (red circles) is computed as
πi ≡ ni/(Nd hi ). The area under this line, up to each bin’s edge, is equal to the cumulative probability
Pi, defined in Eq. (19). The thick golden line in Fig. 2(b) shows the posterior mean of pint (d ) inferred
by the GPR by imposing the integrals Pi and the value of the mean, μ1, computed according to
Eq. (20) (dashed lines are 95% confidence intervals). Typically, the measurement accuracy is a
function of the magnitude of the signal [54]. To mimic this behavior, in this example the variance
of the additive Gaussian noise is set equal to 5% of the measured value of each observation, that
is, V [εi] = yi × 0.05, except for the first two bins (P1 and P2), for which the error is assumed to be
double. This reflects the fact that smaller drops are modelled less accurately, as their size approaches
the spatial resolution of the solver.

1. Comparison between integral and pointlike observations

An alternative method for inferring the DSD using GPR is to use traditional point-evaluation
functionals as observations. These are the red circles corresponding to the probability density in
Fig. 2(a), which are treated as observations of the DSD at the center of each bin (i.e., the equivalent
of interpolating the edges of a frequency polygon [55] with a GP model). By doing so, and by using
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TABLE I. Data from the numerical simulation with α = 65◦, Re = 20, and We = 18; drops sorted in six
bins, and llin (d ); see also Fig. 2. Relative percentage error in the probability associated with each bin using
integral observations, ei,int , and using point-evaluation observations, ei,pt. The last line reports the relative
percentage error of the mean of the estimator.

Bin ei,int (%) ei,pt (%)

1 3.23 6.84
2 7.66 28.53
3 2.63 2.15
4 5.39 2.41
5 0.08 1.31
6 0.63 3.25
eμ 0.27 3.0

the same covariance function and observations’ noise variance, one obtains ppt (d ) [thin black curve
in Fig. 2(b)].

The two methods give qualitatively similar results; however, some important quantitative differ-
ences need be pointed out. First, we define the relative error between the population mean and the
first moment of the reconstructed DSD, eμ = 100|d̄ − μ1|/d̄ . As reported in Table I, the expected
value of pint deviates by the mean diameter d̄ by 0.27%, while that of ppt by 3.0%, corresponding to
a 10-fold reduction in the bias of the estimator pint . Second, the probability that a drop with diameter
bi < d < bi+1 forms, i.e., the integrals

pi ≡
∫ bi+1

bi

p(x)dx, (26)

are compared with the associated quantity computed from the population of drops, that is, πi. The
error in the prediction is quantified by ei,int and ei,pt computed as ei = 100|pi − πi|/πi, where p =
pint and p = ppt in Eq. (26) are used, respectively. The values of ei,int and ei,pt are listed in Table I.
We observe that the predictions provided by pint are more accurate for all the bins except 3 and 4
and that the error is reduced by up to two orders of magnitude in the tail of the distribution. The
value of pi plays an important role as it is a direct indication of the volume (thus mass) of atomized
fluid contained in drops with diameter bi < d < bi+1. As further discussed in Sec. V, this property
of the DSD is key to practical applications.

2. Effect of the kernel and binning scheme

The choice of the kernel and the binning scheme are key steps in model selection as they affect
the prediction. In this section, we discuss how the proposed approach allows us to mitigate the effect
of these choices on the predicted DSD. The kernel defines the GPR model structure and encodes
our assumptions about the functions that we are learning, which makes it a crucial ingredient in
a GPR model [30]. Although it is clear from the context that our covariance function should be
nonstationary, as discussed in Sec. III B 2, it is not obvious which specific form the kernel should
have. We compare the predicted DSD obtained using the linear (pint,lin) and the logarithmic (pint,ln)
length scale in Fig. 3(b). The two curves are obtained from the same observations as in Fig. 2. The
optimized lengths scales relative to pint and pint,ln are also plotted in Fig. 3(a). By comparing the two
curves in Fig. 3(b), the choice of a linear form of the length scale removes the presence of the peak
at small d , typical of log-normal and Gamma distributions, which are characterized by nonlinear
decaying first derivatives. By design, the proposed method ensures that the bias of the estimator of
the DSD (quantified by eμ) and the cumulative probabilities have similar accuracy in both cases,
as shown by the comparison of the values of ei,int in Table I and Table II. The fact that cumulative
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FIG. 3. Data from the numerical simulation with α = 65◦, Re = 20, and We = 18; drops sorted in six bins
as shown in Fig. 2(a). (a) Optimized characteristic length scales llin and lln, corresponding to the GPR models
in Figs. 2(b) and 3(b), respectively. (b) DSD predicted by the GPR model using observations of the mean and
cumulative probabilities pint (d ) employing the logarithmic length scale lln (d ).

probabilities and bias of the DSD are robustly predicted against the choice of the kernel is a key
feature of the proposed model.

When performing high-fidelity numerical simulations of atomization processes, e.g., Ref. [15],
small drops require high resolution to be resolved, and large drops are rare events, thus requir-
ing the simulation to run for a long time to obtain a sufficient amount of realizations and for
the statistics to converge. For this reason, obtaining large samples of drops is time consuming,
thus the higher the fidelity of the simulation, the fewer the number of drops observed, and
the coarser the binning scheme. We mimic this scenario in which fewer drops are observed by
sorting the same population of drops in the examples above using a coarse binning scheme with
only three bins. We train two models, one with integral and one with pointwise observations,
using the resulting histogram reported in Fig. 4(a). The resulting DSDs predicted by the models
are shown in Fig. 4(b). By comparing these DSDs with the red curve in Fig. 3(b) (obtained
using the same kernel but more bins), we note that the details of the corresponding DSDs are
different from those obtained using the more refined binning scheme. However, by inspection of
Table II, we observe that the magnitude of all the errors, ei and eμ, remains of the same order
of magnitude (see Table I) when integral observations are used. Finally, Fig. 4(b) shows that,
when point-evaluation observations are used, the density estimator (i) is biased (last column of
Table II), (ii) fails to capture the magnitude of the peak, and (iii) overestimates the probability in the
tail.

TABLE II. Relative percentage error in the probability associated with each bin, ei,int and ei,pt, relative to
the DSDs in Fig. 4(b) with lln (d ). The last line reports the relative percentage error of the mean of the estimator.

Bin ei,int (%) ei,pt (%)

1 0.67 13.20
2 2.68 9.31
3 1.30 9.81
eμ 0.57 6.27
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FIG. 4. Data from the numerical simulation with α = 65◦, Re = 20, and We = 18. (a) Histogram of the
drops count in the simulated spray using three bins and associated probability (red circles). (b) DSD predicted
by the GPR using observations of the mean and cumulative probabilities pint (solid green lines) and pointlike
observations ppt (dashed gray lines). The dashed lines represent the 95% confidence intervals. The logarithmic
length scale llog(d ) is employed in both models.

IV. GPR-BASED SURROGATE MODEL OF A LIQUID SPRAY

In this section, we use the method for the reconstruction of the DSD introduced in Sec. II and
tested in Sec. III to develop a data-driven SM of a flat fan spray. The structure of the SM is introduced
in Sec. IV A, and the predictions are discussed in Sec. IV B.

A. Structure and training of the surrogate model

The SM is designed to predict the DSD of the spray, p(d|x), given the control/design parameters
x = [α, Re, We]. This comprises two main steps, as depicted in Fig. 5. First, in Step 1, the
SM learns how the features of the DSD, y = [y1, . . . , yNf ], change with x. Then, their predicted
value at a test location, y(x∗), and the associated uncertainty, V (ε), are used to reconstruct the
DSD using the method described in Sec. III (i.e., Step 2). Each of the Nf GPR models involved
in Step 1 is trained using data from 38 numerical simulations [56] spanning the input space
X = [10, 65] × [20, 59] × [18, 89], Fig. 6(c). Specifically, we first run a batch of 28 numerical
experiments, of which 20 according to a Latin hypercube sampling and 8 simulations at the edges

FIG. 5. Schematic of the structure of the surrogate model that maps each parameter, x = [x1, x2, x3], to
the predicted DSD p(d|x). The first step predicts how each feature yi of the DSD changes with the input by
training multiple GPR models, one for each feature. In the second step the predicted features are used as data
to reconstruct the DSD with one final GPR model, which uses integral observations.
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FIG. 6. Design of experiments for the training data. (a) First batch of numerical simulations as points in
the input space obtained from a Latin hypercube design and the corners of the cube (red circles). (b) Second
batch of 10 simulations identified by minimizing the posterior signal-to-noise ratio. (c) Entire set of simulations
performed. The colorbar refers to the value of the spray angle α.

of the three-dimensional input space, see Fig. 6(a). At this point, Nf GPR models are trained to
learn each feature yi based on available data. These models are used to design a second batch of 10
additional numerical experiments, Fig. 6(b). The criterion used for the DOE is the minimization of
the signal-to-variance ratio of the predicted yi(x) within the interrogation region X . More details on
this iterative GPR-based method for the optimal design of experiments can be found in the work by
Geng et al. [54].

Within Step 1, the ith GPR model is trained using the squared exponential kernel k̃i for i =
1, . . . , Nf with automatic relevance determination [57]. The kernel is defined as

k̃i(xm, xn) = σ̃ 2
f ,i exp

(
−1

2
(xm − xn)T Mi(xm − xn)

)
(27)

with hyperparameters θi = {Mi, σ̃
2
f ,i}, where Mi = diag(li )−2 and li = [l (α)

i , l (Re)
i , l (We)

i ]. Physically,
each element of li plays the role of a characteristic length scale indicating the degree to which
a change in the associated design parameter (i.e., α, Re, We) is necessary to induce a significant
change in the ith feature. To ease the comparison between length scales, the input space is scaled
before training so that all data points are contained in X ′ = [0, 1] × [0, 1] × [0, 1], also referred to
as min-max normalization [58].

B. Results

1. Step 1: Performance and sensitivity to design parameters

Table III reports the values of the characteristic length scales associated with the ith feature, li for
i = 1, . . . , 9, i.e., for the eight cumulative probabilities (pi for i = 1, . . . , 8) plus the first moment
(μ1). We observe that features are more sensitive to changes in We, which, on average, is associated
with smaller values of l (We)

i , followed by the spray angle α and then Re. In particular, the average
diameter decreases as We increases, as visible by comparing Figs. 1(c) and 1(d) with Figs. 1(e) and
1(f), but it is virtually unaffected by Re, as suggested by the large value of l (Re)

9 . The performance
of each of the Nf GPR models involved in Step 1 is evaluated by performing leave-one-out and
twofold cross-validation and by computing the associated normalized mean-squared error, MSELOO

and MSEtwofold, respectively. Their values, expressed in percentages of the mean predicted value, are
reported in the last two columns of Table III. The average of MSELOO amongst all the Nf features is
1.25%, showing that the models fit the data well. Notably, the models continue to perform well when
tested by twofold cross-validation, i.e., when half of the data points are used for training and half for
testing, which result in an average value of MSEtwofold approximately 1.89%. These observations
demonstrate not only that the Nf GPR models provide accurate predictions using only 19 randomly
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TABLE III. Characteristic length scales, l (α)
i , l (Re)

i , and l (We)
i , associated with each feature, pi (i = 1, . . . , 8)

and μ1, along the dimension of the normalized design space X ′. Extremes of the bin associated with the
probabilities pi, bi, and bi+1. Mean-squared error expressed as percentage of the mean predicted value based
on leave-one-out and twofold cross-validations, MSELOO and MSEtwofold, respectively. Comparing l (α)

i , l (Re)
i ,

and l (We)
i we note that We is the most influential parameter and that Re has a negligible effect on the mean drop

size. The similar values of MSEtwofold to MSELOO shows that performances do not deteriorate substantially
when the training data set is halved.

Feature l (α)
i l (Re)

i l (We)
i bi bi+1 MSELOO (%) MSEtwofold (%)

L1 = p1 2.8 29.7 9.0 0.085 0.146 0.06 0.05
L2 = p2 5.1 14.2 2.0 0.146 0.213 0.43 0.58
L3 = p3 9.1 5.7 1.6 0.213 0.287 0.35 0.41
L4 = p4 4.0 6.1 1.9 0.287 0.368 0.73 0.93
L5 = p5 6.8 23.0 3.2 0.368 0.457 0.91 0.96
L6 = p6 2.1 18.0 2.3 0.457 0.555 1.66 7.18
L7 = p7 1.6 7.9 1.3 0.555 0.663 1.85 2.23
L8 = p8 2.3 14.1 0.9 0.663 0.794 5.20 4.46
L9 = μ1 3.3 71.6 2.6 0.05 0.15

sampled data points but also that they do not suffer overfitting when all the 38 simulations are used
for training.

2. Step 2: Exploring the design space

By combining the two steps in Fig. 5, we explore the design space and produce DSDs at different
values of We, Re, and α, as reported in Figs. 7(a), 8(a), and 9(a), respectively. Each DSD has
its maximum near the minimum diameter resolved in the numerical simulations, followed by a
decrease of the probability with increasing drop diameter. This leads to a plateaulike region of
intermediate-sized drops where the probability tends to decrease less steeply, followed by the tail.
As expected from considerations of the instability of the liquid sheet leading to ligament formation
[11,12], increasing We leads to a faster decay of the DSD tail and a corresponding increase in the
probability at small and intermediate diameters. The reduction in We also shifts the peak of the
DSD towards larger diameters, as shown in the inset of Fig. 7(a), in agreement with experimental
evidence [29]. We remark that the SM can qualitatively capture such a shift in the peak despite the

FIG. 7. (a) Drop size distributions predicted by the SM at different values of the Weber number (inset:
close-up of the peaks). (b) Volume mean diameter D50 as a function of We−1/3 for different spray angles and
Reynolds numbers. Open symbols are in extrapolation region.

104302-16



DATA-DRIVEN MODELING FOR DROP SIZE …

FIG. 8. Drop size distributions predicted by the SM at different values of the Reynolds number.

fact that it is located in a low-confidence region (i.e., small drops) and that the same binning scheme,
reported in Table III, has been used for all the simulations.

The scaling D50 ∼ We−1/3 of the volume mean diameter D50 predicted by Kooij et al. [29] is also
tested for different values of the Reynolds number and the spray angle, see Fig. 7(b). The values
of D50 are computed from synthetic populations of drops generated via a pseudorandom number
generator from the DSDs predicted by the SM. Towards the right side of the plot the trend starts
to be nonlinear which could be signaling a change on the relative importance of different breakup
mechanisms at small values of the Weber numbers, which are several order of magnitude smaller
than those for which the scaling was observed. On the left side of the figure are reported the predicted
D50 in the extrapolation region, i.e., for We > 90 (empty symbols). Our results show that the SM
manages to predict the correct scaling up to We−1/3 ≈ 0.20, thus corresponding to a 40% increase
with respect to the highest We in the training data. Qualitatively, both D50 and the characteristics of
the DSD appear to be affected in a similar way by the Reynolds number, even if it has a quantitative
smaller effect (Fig. 8).

Finally, we observe that the main effect of increasing the spray angle is to increase the probability
of drops of intermediate size up until the tail of the distribution, as shown in Fig. 9(a). To better
interpret this result, we use the DSDs to produce equally sized synthetic populations of Nd = O(104)
drops, S = {di}Nd

i=1, for different values of α, Re, and We. Then each diameter di is converted into
the equivalent volumes vi = πd3

i /6, and the populations of volumes are finally used to compute the

FIG. 9. (a) Drop size distributions predicted by the SM at different values of the spray angle α. (b) Gini
index of the volume distribution as a function of α.
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Gini index,

G =
∑Nd

i=1

∑Nd
j=1 |vi − v j |

2N2
d v̄

, (28)

where v̄ is the arithmetic mean of the population of volumes. The Gini index, originally developed
to measure the income inequality within a given social group [59], is used here to measure, within
a given spray, the inequality in volume (i.e., mass) distribution of drops. A Gini index of one
corresponds to a spray in which all the volume is in one single drop, while a Gini index of zero
corresponds to the case where the volume of the spray is distributed in equally sized drops. Our
results, reported in Fig. 9(b), show that a larger spray angles correspond to smaller G, thus to more
equally distributed populations in terms of the volume in each drop.2 This result can be explained by
noting that the drops formed at the rims of the spray are larger than those generated by the flapping
instability of the liquid sheet [11,29], see Figs. 1(c) and 1(d). The relative importance of these larger
drops increases in narrow sprays, leading to a more unequal distribution of the volume and, thus,
larger G.

V. CONCLUSIONS

We propose a quantitatively accurate data-driven method to predict the DSD of a flat fan spray
as a function of the spray angle and working conditions, which are parameterized by the Reynolds
and Weber numbers of the jet. The method is based on GPR models; therefore, the prediction has
confidence intervals and takes into account the uncertainty of the data. Key to our method is the
observation of integrals (i.e., cumulative probabilities) and the first moment (i.e., expected value) to
reconstruct the unknown probability density function. These features of the DSD determine the per-
centage of atomized fluid contained in droplets of a certain size and the bias of the estimator. First,
we show that integral observations for the inference of the continuous DSD provides physically
consistent and accurate predictions, which overcome the limitations of the commonly used point
estimates of the DSD. Second, we show that the training and predictions of the proposed model are
robust with respect to the selection of the numerical simulations used for training and test and the
model’s hyperparameters. Third, we propose kernels, which are physically motivated. The DSD is
estimated without assuming its shape a priori, such as that of Gamma or log-normal distributions,
as typically performed in the literature. We embed the physical fact that liquid atomization gives
rise to sharply peaked, heavy-tailed distribution into the choice of the covariance function. Our
analysis demonstrates that the SM is versatile for the prediction of more intricate (e.g., bimodal)
distributions, while retaining the sharply peaked, heavy-tailed characteristics.

The proposed SM can be adapted to characterize other complex processes, the outcome of which
is a probability density function that changes with the control parameters. For example, these include
other multiphase problems, such as the modeling of the bubble size distribution in chemical reactors.
The application of this approach to experimental data and larger parameter spaces is the subject of
current and future work. The data from the 38 numerical simulations used in this study for the
training of the SM are available [56].
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