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Inertial settling of an arbitrarily oriented cylinder in a quiescent flow:
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In this article, we investigate the inertial settling of an arbitrarily oriented cylinder set-
tling under gravity. We focus on two regimes: the very short-time and long-time dynamic.
Using the generalized Kirchhoff equations to describe the particle motion, we demonstrate
that during the very short dynamic regime, a cylinder starting from rest behaves with
sedimenting velocities and angular velocity proportional to t and t3, respectively. We then
explore the long-time behavior and evaluate the validity of the quasisteady assumption
under which the fluid unsteady term can be neglected. Using a dimensional analysis, we
establish that the quasisteady assumption only applies to regimes where the Reynolds num-
ber is much smaller than 1. However, by comparing the results of quasisteady models to
recent experiments and direct numerical simulations, we demonstrate that this assumption
is valid for a broader range of Reynolds numbers, particularly for long fibers. We also
analyze the effect of particle inertia, and we show that it plays no significant role in the
magnitude of the sedimenting velocities and angular velocity. However, for sufficiently
large inertia, we reveal that the quasisteady model takes the form of a damped oscillator
when the particle approaches its equilibrium position, which is broadside onto its direction
of motion. We discuss the relevance of this solution in light of direct numerical simulations.

DOI: 10.1103/PhysRevFluids.8.104301

I. INTRODUCTION

The settling of anisotropic particles is a common occurrence in various environmental flows, such
as the fall of microplastics in the ocean [1] or the precipitation of ice crystals in the atmosphere [2,3].
Despite its practical significance, the accurate modeling of anisotropic particle settling in turbulent
or quiescent environments is challenging due to the coupling between the particle motion and the
surrounding fluid flow. Unlike spherical particles, the orientation of the body has a significant impact
on the rate of sedimentation. For example, in Stokes flow and for slender particles, the sedimentation
velocity of a particle with its axis aligned with gravity is twice that of a particle with its axis
perpendicular [4]. Additionally, the body’s orientation is coupled to the translational equation of
motion for inertial flows due to a nonzero hydrodynamic torque [5]. This results in an unsteady
problem, as the body’s orientation can change over time in response to torques. In this article, we
examine the settling of a cylindrical particle in a quiescent flow as a first step in understanding the
effect of an anisotropic shape on particle motion.

The most general equations for studying the gravitational settling of a single body in a quiescent
fluid are the generalized Kirchhoff equations originally derived by Howe [6]. Under this framework,
added mass and vorticity contributions to the hydrodynamic forces and torque are nonambiguously
separated. However, for most configurations of practical interest, the vorticity contributions cannot
be expressed in closed form as they depend on fluid motion history [7]. In the limit of negligible
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inertia and for a spherical particle translating and rotating, the force and torque can be decomposed
into a quasisteady component and a history term that takes the form of integrodifferential equa-
tions [8]. There is no equivalent analytical formula for arbitrary axisymmetric particles, particularly
cylinders. The explanation lies in the complexity of the history term for a nonspherical body, whose
expression in the frequency domain is often too complicated to allow a closed-form expression in
the time domain [9,10]. Moreover, unlike spherical particles, nonspherical particles have distinct
high- and low-frequency expressions for the history term [11].

The situation is even worse for finite Reynolds numbers, for which few results exist for non-
spherical particles for quasisteady and history loads. In Stokes flow, due to the reversibility of the
Stokes equation, an axisymmetric particle with fore-aft symmetry embedded in a uniform flow
of velocity U experiences no torque. In contrast, a torque that scales as U 2 appears in flow with
small but finite inertia [5,12]. This torque naturally induces a coupling between translation and
rotation for a sedimenting cylinder. Hence as a cylinder sediment in a fluid with non-negligible
inertia, it rotates toward its equilibrium orientation, which is broad-side on to its direction of motion
[12]. There is another nonlinear coupling term in the force balance for a rotating and translating
axisymmetric body with fore-aft symmetry which scales as �U , where � is the angular velocity
[5]. This term is at the origin of the lift force on a spinning sphere translating perpendicularly to its
rotation axis [13]. This coupling term has not been studied so far in the context of a rotating cylinder
settling perpendicular to its rotation axis. The history loads for nonspherical particles in the inertial
regime have also received limited attention, with only a few studies providing force expressions for
arbitrarily shaped particles in the long-time limit [14]. These expressions require knowledge of the
steady velocity field created by the particle in Stokes flow, which is unknown for a moderately long
cylinder. Nevertheless, scaling arguments indicate a t−2 long-time decay of the history force in the
finite-inertia regime and a slower t−1/2 decay in the Stokes regime [14].

Based on the previous literature review, making analytical progress without additional assump-
tions is challenging, primarily due to the absence of closed-form expressions for the history
terms and �U load contribution. The quasisteady assumption introduced by Cox [5] assumes
that the unsteady terms related to fluid motion are negligible. Through a scaling analysis, Cox [5]
demonstrated that this assumption is appropriate as long as the Reynolds number based on the body
length is much smaller than unity. This assumption has been used in various practical configurations,
including the settling of fibrous aerosols in quiescent air [15] and fibers in liquids [16], yielding
satisfactory results compared to experiments. Also, in those applications, the Reynolds number was
not necessarily small. Shin et al. [17] have even shown that the quasisteady theory remains accurate
for a Reynolds number based on the body length close to 1. Most prior studies [15,16] have made
use of the quasisteady loads derived by Khayat and Cox [12] for slender fibers and the leading-order
hydrodynamic torque resisting rotation provided by the slender body theory [4]. Recent research has
shown that the lift force and inertial torque provided by Khayat and Cox [12] and the leading-order
expression for the hydrodynamic torque resisting rotation are not accurate for moderately long rods
[18,19], in line with the qualitative but nonquantitative agreement reported by Cabrera et al. [20]
between the Khayat and Cox [12] theory and their experiments for moderately long rods. Hence,
the validity of the quasisteady assumption must be reevaluated with accurate formulas for the loads.
Additionally, the effect of the inertial correction to the loads proportional to �U must be considered.
Scaling analyses by Cox [5] and Pierson et al. [18] have shown that this term may be small compared
to the U 2 contribution when the inertia effects are not significant. However, the magnitude of this
term for moderate inertia remains a topic of debate [18].

There is another limit where analytical progress is possible. In the limit of time shorter than the
viscous timescale, added mass effects dominate over viscous contribution [21]. In this limit, the
equations of motion can be solved, provided that the added mass loads are known. Loewenberg
[9] has established the added mass forces on a cylindrical particle using potential flow solutions.
However, the added mass torque for a rotating cylinder has no known solution.

The primary objective of this article is to address two critical issues in the study of an arbitrarily
oriented cylinder settling under gravity. First, we provide analytical solutions to the problem in
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FIG. 1. Finite-length cylinder submitted to the gravity acceleration g.

the short-time limit where the added mass effects dominate. Secondly, we investigate the validity
range of the quasisteady assumption and the neglect of the �U load contribution as a function
of the relevant dimensionless parameters. These parameters include the cylinder aspect ratio, the
Archimedes number (which is a Reynolds number based on gravitational velocity), and the density
ratio. We perform the analysis using the generalized Kirchhoff equations as proposed by Howe [6]
and Mougin and Magnaudet [21], and the quasisteady load expressions derived by Fintzi et al. [19],
Pierson et al. [18] for moderately long rods, and Khayat and Cox [12] for very elongated fibers. We
validate the proposed model through scaling analysis, experimental measurements from Roy et al.
[16] and Cabrera et al. [20], and direct numerical simulations. The article is structured as follows.
The governing equations are presented in Sec. II. Section III describes the analytical solutions in
the short-time limit. The quasisteady models are derived in Sec. IV. The comparison between the
quasisteady models and experimental measurements from Roy et al. [16] and Cabrera et al. [20] as
well as direct numerical simulations are discussed in Sec. V. Section VI contains a discussion on
the validity of the quasisteady model and our conclusions.

II. GOVERNING EQUATIONS

We consider a finite-length cylinder of length L and diameter D settling under gravity with
velocity U and angular velocity � (Fig. 1). We use the symbol g to represent the acceleration due to
gravity, μ to denote the fluid viscosity, and ρ to represent the fluid density. Three dimensionless pa-
rameters may be defined: the aspect ratio χ = L/D, the density ratio ρ̄ = ρp/ρ, and the Archimedes
number Ar = (ρp − ρ)ρgD3/μ2. Alternatively, to quantify the influence of particle inertia relative
to viscous effects, we define the Stokes number as St = ρ̄Ar2.

The main difficulty in studying this problem is the coupling between the body motion and
the surrounding flow field, which satisfies Navier-Stokes equations [7]. The equations of motion
expressed in a reference frame having their origin fixed with respect to the laboratory, but axes
rotating with the body read [6,21]

(mI + A)
dU
dt

+ � × [(mI + A)U] = Fω + (m − ρV )g, (1)

(J + D)
d�

dt
+ � × [(J + D)�] + U × (A × U) = Tω, (2)

where m and V are, respectively, the cylinder mass and volume, I is the identity matrix, J is
the inertia tensor, and A and D are the second-order added inertia tensors. All those tensors can
be written using indicial notation as Ji j = Jp pi p j + Jq(δi j − pi p j ), Ai j = Ap pi p j + Aq(δi j − pi p j ),
and Di j = Dq(δi j − pi p j ), where p is the unit orientation vector and q is the unit vector perpendic-
ular to p in the plane (y, z) (Fig. 1). If the components of the inertia tensor can be readily obtained
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in a closed form for a finite-length cylinder [Jp = mD2/8, Jq = m(3D2/4 + L2)/12], this is not the
case for the components of the added mass tensors Ap, Aq, and Dq. If Ap and Aq have already
been studied in the literature [9], to the best of the author’s knowledge, no expression for Dq has
been published yet. Based on the direct numerical simulation results of Kharrouba [22] and the
potential flow results of Loewenberg [9], we derive correlations for Ap, Aq, and Dq in Appendix A.
In Eqs. (1) and (2), Fω and Tω are the force and torque due to the vorticity in the flow. Except
in inertia-dominated regimes, the motion of the cylinder is planar in the (p, q) plane [20], and the
equation of motion simplifies to

(m + Ap)
dUp

dt
− (m + Aq)�rUq = Fω

p + (m − ρV )gcos φ, (3)

(m + Aq)
dUq

dt
+ (m + Ap)�rUp = Fω

q − (m − ρV )g sin φ, (4)

(Jq + Dq)
d�r

dt
= −UpUq(Aq − Ap) + T ω

r . (5)

The physical origin of the torque can be exemplified by looking more closely at Eq. (5). In
steady potential flow, a torque manifests on a cylindrical particle as indicated by the first term on
the right-hand side of Eq. (5) [23]. As the aspect ratio, χ , exceeds 1, Aq > Ap (see Appendix A),
and the torque is positive, orienting the body broad-side on. As a result, to leading order the torque
expression provided by Khayat and Cox [12] for small Reynolds number and large aspect ratio
(χ � 1) Tr = −5π/24ρUpUqL3/ ln2(χ ) is the sum of two positive contributions due to potential
flow and vorticity. For χ � 1 the potential contribution −UpUq(Aq − Ap) scales as −ρπD2UpUqL
and is thus negligible to leading order in comparison to the vorticity contribution. The situation is
less obvious for moderately large aspect ratio (χ ≈ 2) for which both contributions may have the
same order of magnitude since the total torque on the body does not scale as ρUpUqL3/ ln2(χ ) [19].

III. SHORT-TIME DYNAMICS

Potential flow effects dominate over viscous effects in the high-frequency limit or equivalently
for timescales shorter than the diffusive scale. This assertion may be proved by deriving the unsteady
loads in the Stokes regime [10], but also by performing a short time analysis of the Navier-Stokes
equation [21]. The latter is more general as it is not limited to the Stokes flow regime. The proper
lengthscale to be used in the diffusive scale for the problem at hand is unknown a priori. However,
Kabarowski and Khair [10] have shown that for both transverse and longitudinal oscillations, the
added mass contributions dominate over the history load if t � D2/ν. Hence, the proper lengthscale
in the short dynamic is the cylinder diameter, at least in the Stokes flow regime. Assuming t �
D2/ν, Eqs. (3)–(5) simplify to

(m + Ap)
dUp

dt
− (m + Aq)�rUq = (m − ρV )gcos φ, (6)

(m + Aq)
dUq

dt
+ (m + Ap)�rUp = −(m − ρV )g sin φ, (7)

(Jq + Dq)
d�r

dt
= −UpUq(Aq − Ap), (8)

dφ

dt
= �r, (9)

where we made explicit the equation ruling the dependency of φ with time. There is no closed-form
analytical solution to this nonlinearly coupled system of equations, although there is a straightfor-
ward analytical treatment in the case of zero gravity [24]. We must solve this system numerically, but
one may get insightful estimates using asymptotic analysis. By balancing the acceleration of gravity
with the particle acceleration in Eqs. (6) and (7), we obtain U ∼ gT , where U is a characteristic
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velocity scale, and T is a characteristic timescale. Injecting this scaling in Eq. (8), and since
(Aq − Ap)/(Iq + Dq) ∼ 1/L2 for χ � 1, one gets the characteristic angular velocity � ∼ g2T 3/L2.
By using these estimates in Eqs. (6)–(9) and defining the dimensionless (starred) quantities as
Up = UU ∗

p , Uq = UU ∗
q , and �r = �∗�r , we obtain

dU ∗
p

dt∗ − ε
A
B�∗

rU ∗
q = A cos φ, (10)

dU ∗
q

dt∗ + ε
B
A�∗

rU ∗
p = −B sin φ, (11)

d�∗
r

dt∗ = −CU ∗
p U ∗

q , (12)

dφ

dt∗ = ε�∗
r , (13)

where A = (ρ̄ − 1)/(ρ̄ + A∗
p), B = (ρ̄ − 1)/(ρ̄ + A∗

q ), C = (A∗
q − A∗

p)/(ρ̄J∗
q + D∗

q ), A∗
p =

Ap/(ρV ), A∗
q = Aq/(ρV ), J∗

q = Jq/(ρV L2), and D∗
q = Dq/(ρV L2), and ε = g2T 4/L2 can

be understood as the ratio of the characteristic timescale over a gravity timescale. In the
following, we consider the small time limit T � (L/g)1/2 or equivalently ε � 1. We seek
solutions of Eqs. (10)–(13) in the form of asymptotic expansions in powers of the small
parameter U ∗

p = U ∗(0)
p + εU ∗(1)

p + · · · , U ∗
q = U ∗(0)

q + εU ∗(1)
q + · · · , �∗

r = �∗(0)
r + ε�∗(1)

r + · · · ,
and φ = φ(0) + εφ(1) + · · · . The calculations are straightforward and are detailed in Appendix B.
The solutions up to the order 1 with respect to the small parameter ε are

U ∗
p = At∗ cos φ(0) − ε

12
A2BCt∗5 cos φ(0) sin2 φ(0) + O(ε2), (14)

U ∗
q = −Bt∗ sin φ(0) − ε

12
AB2Ct∗5 cos2 φ(0) sin φ(0) + O(ε2), (15)

�∗
r = ABC

3
t∗3 cos φ(0) sin φ(0) + O(ε2), (16)

φ = φ(0) + ε
ABC

12
t∗4 cos φ(0) sin φ(0) + O(ε2). (17)

Figure 2 displays the numerical and analytical solutions for a cylinder of aspect ratio 10 released
with an orientation angle φ = 30◦. We impose ε = 1 such that T = (L/g)1/2. The numerical solution
is obtained by using a Runge-Kutta 4 algorithm. At ρ̄ = 1.5, the zeroth-order velocity component
solutions exhibit good agreement with the numerical solution up to t∗ ≈ 1.5, while the first-order
solutions maintain good agreement up to t∗ ≈ 2.5 [see Figs. 2(a) and 2(b)]. Additionally, the
zeroth-order solution for the angular velocity demonstrates good agreement with the numerical
solution up to t∗ = 3. For moderately large density ratios, the agreement with the numerical solution
is slightly worse [Figs. 2(d)–2(f)]. However, for the largest density ratios, the first-order analytical
solutions remain valid up to t∗ ≈ 5 both for the first-order velocity component solutions and the
angular velocity [Figs. 2(g)–2(i)]. It may appear surprising at first glance that agreement is much
better for the zeroth-order angular velocity than for the zeroth-order velocity components. However,
we recall that �∗(1)

r = 0. Hence the zeroth-order solution for the angular velocity equals the
first-order solution. For all the density ratios, we observe a good agreement between the analytical
and numerical solutions out of the range of applicability of the analytical solution, which is t∗ � 1.
Moreover, this agreement depends on ρ̄. The explanation lies in the magnitude of the coupling
terms between translation and rotation in Eqs. (10) and (11). At first order these coupling terms
are found to be proportional to A2BC and AB2C in Eqs. (14) and (15). Figure 3 illustrates the
variation of A2BC and AB2C as a function of χ and ρ̄. Both coupling terms have the same order of
magnitude and are smaller than approximately 0.8. The behavior of A2BC and AB2C as a function
of χ and ρ̄ deserves also some comments. Since both quantities evolve comparably, we will focus
on A2BC. This quantity increases as a function of χ for moderate χ . Hence one may expect a
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FIG. 2. Dimensionless velocities and angular velocity as function of time for a χ = 10 cylinder starting
from rest with φ = 30◦ and ε = 1. (a)–(c) ρ̄ = 1.5. (d)–(f) ρ̄ = 10. (g)–(i) ρ̄ = 1000. , numerical solution
of Eqs. (10)–(13); , zeroth-order asymptotic expansion; , first-order asymptotic expansion.

better match of the theory for small cylinders. Then A2BC becomes nearly independent of χ for
χ ≈ 20. This weak dependence is in line with the results of Appendix A in which the added mass
coefficients become almost independent of χ for this aspect ratio. A2BC behaves nonmonotonously
with ρ̄. It increases for ρ̄ � 5 and then decreases for larger ρ̄. The value of ρ̄ for which we
observed the maxima weakly depends on χ . All these trends can be easily obtained by looking
more closely at the behavior of A2BC as a function of ρ̄. First one may note that for ρ̄ → 1 we have

FIG. 3. Leading-order terms coupling translation and rotation. , χ = 2; , χ = 8; , χ = 32; ,
χ → ∞.
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A2BC ∼ (ρ̄ − 1)3(A∗
q − A∗

p)/[(1 + A∗
p)2(1 + A∗

q )(J∗
q + D∗

p)], which explains the strong increase of
A2BC for ρ̄ � 5. In the opposite limit ρ̄ � 1 one obtains A2BC ∼ 1/ρ̄ × (A∗

q − A∗
p)/J∗

q , which
explains the decay of A2BC for a large density ratio.

It is also interesting to discuss the range of applicability of the asymptotic results in exper-
iments. Our observations suggest that the asymptotic expansion is valid up to t ∼ (L/g)1/2 and
an even larger value for large density ratios. Thus one may expect this solution to be valid as
long as (L/g)1/2 � D2/ν, which can be written Ar � (ρ̄ − 1)χ . This condition implies that the
proposed analytical solution is expected to be observed in experiments for sufficiently inertial
regimes. We are unaware of any experiments specifically dedicated to testing the validity of the
theory. However, the qualitative observations provided in Toupoint et al. [25] may provide a first
comparison with the present results. Toupoint et al. [25] investigated the settling of cylinder in the
inertia-dominated regime Ar ≈ 40 000. Their density ratio was fixed to ρ̄ = 1.16, and the elongation
ratio of the cylinders ranged between 2 and 20. In particular, the time related to viscous diffusion
in their experiments with a cylinder diameter 2 mm and χ = 5 is tν ≈ 4 s, while T ≈ 0.03 s.
Hence the present theory should apply to their experimental results. They observed that the
distance needed for the cylinders to rotate to their equilibrium position was less than 10d even
when the cylinder was released vertically. From our analytical results, we obtain the time needed
for the cylinder to change its orientation from nearly vertical (φ(0) � 1) to horizontal [φ(t∗) = π/2],
t ∼ (L/g)1/2[6π/(φ(0)ABC)]1/4. With φ(0) = π/10 one obtains t ≈ 0.2 s. Injecting this estimate in
the velocity equation and integrating, one obtains the normalized distance l/D for which the cylinder
changes its orientation: l/D = Agt2/2 ≈ 11.2. This estimate is very close to the experimental
prediction and gives confidence in the nonviscous flow origin on which this model is grounded.

IV. QUASISTEADY MODELS

The particle equations of motion (3)–(5) are coupled to the Navier-Stokes equations via the
boundary conditions and the hydrodynamic loads. This makes the problem very hard to solve, and
simplifying assumptions are required to make analytical progress, as explained in the Introduction.
Since the characteristic time needed for the body to change its orientation scales like �−1, the
unsteady term in the Navier-Stokes equation scales as ρU�, where � and U may be taken as the
nominal scales for the angular and settling velocities. Since the inertial term scales as ρU 2/L, the
unsteady term is negligible compared to the inertial term as long as �L/U � 1. This condition
is satisfied for a Reynolds number of unity when the time needed for the vorticity to diffuse from
the body is much smaller than the rotation timescale [15]. In this limit, one may consider the fluid
unsteady term and, as a consequence, the history loads to be negligible. To be entirely consistent
with the neglect of the unsteady term, we will also neglect the added mass loads. It remains to
consider the inertial correction to the loads proportional to �U . One may expect the �U corrections
to be smaller than the inertial U 2 corrections as long as �L/U � 1. Hence under this assumption,
we postulate that both the history terms and the �U contribution are negligible with respect to the
other load contribution as long as �L/U � 1. The choice of the length of the particles ensures that
the particle length is the relevant scale in the limit of a slender fiber [12,26]. The validity of the
assumption �L/U � 1 will be evaluated through comparisons with experimental results and direct
numerical simulations in Sec. V.

A. Quasisteady models for an arbitrarily oriented cylinder

Under the assumption �L/U � 1, the loads can be approximated as their quasisteady coun-
terparts, disregarding the �U terms: Fω

p ≈ Fp, Fω
q ≈ Fq, and −UpUq(Aq − Ap) + T ω

r ≈ T i
r + T �

r ,
where Fp and Fq are the quasisteady forces in the longitudinal and perpendicular directions to the
cylinder. The inertial torque, T i

r , drives the cylinder towards its equilibrium position, while the
hydrodynamic torque, T �

r , resists rotation. We will distinguish two configurations depending on
the cylinder aspect ratio: moderately long rods 2 � χ � 30 and long fibers χ > 30. For χ � 30,
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expressions derived through slender-body theory and direct numerical simulations by Kharrouba
et al. [27], Pierson et al. [18], and Fintzi et al. [19] will be used, as they provide more accurate
predictions compared to those by Khayat and Cox [12]. Conversely, the expression by Khayat
and Cox [12] will be used for χ > 30. To the author’s knowledge, finite-inertia effects have not
been considered for a slender body rotating in a fluid at rest at infinity. Thus, the most accurate
expression for this case under the Stokes flow assumption by Pierson et al. [18] will be used.
The expressions for Fp, Fq, T i

r , and T �
r are outlined in Appendix C. In both configurations, the

linearized approximation is employed to describe the force as a function of the particle velocity. This
approximation, which is exact in the Stokes flow regime, has been demonstrated to be accurate up to
Re ≈ 1 for 10 � χ � 30 and up to Re ≈ 10 for χ < 10 by Fintzi et al. [19], where Re = ρDU/μ is
the Reynolds number based on the body diameter. The experimental works of Lopez and Guazzelli
[28] with 11.5 � χ � 34.5 and Roy et al. [16] with 20 � χ � 100 have also validated its relevance
for larger aspect ratios.

Equations (3)–(5) are normalized by defining dimensionless (starred) quantities as Up = UU ∗
p ,

Uq = UU ∗
q , �r = ��∗, and t = �−1t∗, where the characteristic angular and velocity scales are a

priori unknown. In the small inertia limit making use of the linearized approximation, the forces can
be expressed as Fp = −μUU ∗

p LF ∗
p (Re∗

L, χ ) and Fq = −μUU ∗
q LF ∗

q (Re∗
L, χ ), where the expressions

for Fp and Fq can be obtained from Appendix C. Re∗
L = ReL(U ∗2

p + U ∗2
q )1/2 is the Reynolds number

based on the instantaneous settling velocity, while ReL = ρUL/(2μ) is the characteristic Reynolds
number based on the body half-length. The inertial torque reads −ρU 2U ∗

p U ∗
q L3T ∗

i (Re∗
L, χ, θ )

while the torque resisting rotation reads −μ��∗
r L3T ∗

� (Re∗
�, χ ), where Re∗

� = Re�|�∗
r | and Re� =

ρ�D2/μ. Injecting all those scalings in Eqs. (3)–(5), one obtains

ρ̄Re�

(
dU ∗

p

dt∗ − �∗
rU ∗

q

)
= − 4

π
F ∗

p (Re∗
L, χ )U ∗

p + (ρp − ρ)gD2

μU
cos φ, (18)

ρ̄Re�

(
dU ∗

q

dt∗ + �∗
rU ∗

p

)
= − 4

π
F ∗

q (Re∗
L, χ )U ∗

q − (ρp − ρ)gD2

μU
sin φ, (19)

ρ̄

(
Re�

Re

)2

J∗
q

d�∗
r

dt∗ = − 4

π

(
T ∗

i (Re∗
L, χ, θ )U ∗

p U ∗
q + μ�

ρU 2
T ∗

� (Re∗
�, χ )�∗

r

)
. (20)

From the above set of equations and for moderate density ratios ρ̄ ∼ 1, it appears that all the
unsteady terms vanish if Re� � 1 and Re� � Re. In contrast, we may consider the particle inertia
[15] for large density ratios. We have to recall that to derive Eqs. (18)–(20), we have to assume
�L/U � 1, which is equivalent to Re� � χRe. This is a somewhat restrictive condition for the
model applicability, but we shall see hereafter that it is valid for a non-negligible range of dimension-
less parameters. Since the last terms in Eqs. (18)–(20) must be of order 1, the velocity and angular
velocity scales can be readily obtained as U ∼ D2(ρp − ρ)g/μ and � = ρD4(ρp − ρ)2g2/μ3.
Inserting these scalings yields

ρ̄Ar2

(
dU ∗

p

dt∗ − �∗
rU ∗

q

)
= − 4

π
F ∗

p (Re∗
L, χ )U ∗

p + cos φ, (21)

ρ̄Ar2

(
dU ∗

q

dt∗ + �∗
rU ∗

p

)
= − 4

π
F ∗

q (Re∗
L, χ )U ∗

q − sin φ, (22)

ρ̄Ar2J∗
q

d�∗
r

dt∗ = − 4

π
(T ∗

i (Re∗
L, χ, θ )U ∗

p U ∗
q + T ∗

� (Re∗
�, χ )�∗

r ). (23)

The dimensionless nonlinear system of coupled differential equations, represented by Eqs. (21)–
(23), describes the velocity and angular velocity of a cylinder under an external force. Analytical
solutions to this system can only be obtained in the limit of low Archimedes number, as reported by
Cox [5]. Otherwise, numerical solutions must be sought. The system exhibits two distinct regimes
depending on St. For moderate particle inertia (St ∼ 1 or equivalently ρ̄ ∼ 1/Ar2), as in the case of
small solid particles settling in air, the left-hand sides (LHSs) of Eqs. (21)–(23) are non-negligible.
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The resulting system consists of three ordinary differential equations, which are solved thanks to a
Runge-Kutta 4 algorithm. Conversely, for small-particle inertia (St � 1), as for small particles with
densities close to that of the fluid, the LHS can be neglected. The simplified system is a nonlinear
function composed of three equations, which can be solved using classical root-finding methods. It
reads

0 = − 4

π
F ∗

p (Re∗
L, χ )U ∗

p + cos φ, (24)

0 = − 4

π
F ∗

q (Re∗
L, χ )U ∗

q − sin φ, (25)

0 = T ∗
i (Re∗

L, χ, θ )U ∗
p U ∗

q + T ∗
� (Re∗

�, χ )�∗
r . (26)

The validity of the two sets of equations is restricted to the condition �L/U � 1. Since �L/U ∼
Arχ , we obtain the very restrictive condition Ar � 1/χ . The following section aims to demonstrate
that the present set of equations remains valid up to moderate Archimedes numbers, despite its
seemingly limited range of validity. It is also important to note that these scalings are a priori
limited to small fluid inertial effects as the forces and resistive torque are viscous. However, Fintzi
et al. [19] and Pierson et al. [18] have demonstrated that these viscous-based laws remain valid
for moderate inertial effects (ReL � 1). The behavior for larger inertial effects is complex and
nonlinearly dependent on the Reynolds number, as described in Appendix C.

B. Damped oscillations around φ = π/2

Upon reaching its equilibrium position φ = π/2, perpendicular to its direction of motion, an
additional regime of interest can be expected for the particle. We linearize the equation of motion
around this position. By writing φ(t ) = π/2 + εφ∗(t ), where ε � 1, the leading-order expressions
for cos φ and sin φ are found to be −εφ∗ and 1, respectively. For the velocity terms in the momentum
equation to be nontrivial, they must scale as εU and U for the parallel and perpendicular velocity,
respectively, such that Up = εUU ∗

p and Uq = UU ∗
q . By balancing the viscous torque with the inertial

torque, we get �r = ε��∗
r with �∗

r = dφ∗/dt∗, resulting in the following system of equations:

St

(
dU ∗

p

dt∗ − dφ∗

dt∗ U ∗
q

)
= − 4

π
F ∗

p (Re∗
L, χ )U ∗

p − φ∗, (27)

St

(
dU ∗

q

dt∗ + ε2�∗
rU ∗

p

)
= − 4

π
F ∗

q (Re∗
L, χ )U ∗

q − 1, (28)

StJ∗
q

d2φ∗

dt∗2
= − 4

π

(
T ∗

i (Re∗
L, χ, θ )U ∗

p U ∗
q + T ∗

� (Re∗
�, χ )

dφ∗

dt∗

)
. (29)

Despite assuming a small angle around the equilibrium position, the resulting system comprises
three coupled nonlinear equations, rendering analytical solutions for arbitrary Reynolds numbers
impractical. However, various simplifications can be made. First, the second term on the left-hand
side of Eq. (28) becomes negligible in the ε � 1 limit. Second, using the velocity estimate
mentioned above, Re∗

L ∼ ReL|U ∗
q | at leading order, resulting in Eq. (28) being decoupled from the

other two equations. Third, in the long-time limit t∗ � St, the left-hand side of Eq. (28) becomes
negligible, leading to U ∗

q ∼ −π/4/F ∗
q (Re∗

L, χ ). Fourth, we consider the small inertia limit Ar � 1.
Under this limit, the system reads

St

(
dU ∗

p

dt∗ + π

4

1

F ∗
q

dφ∗

dt∗

)
= − 4

π
F ∗

p U ∗
p − φ∗, (30)

StJ∗
q

d2φ∗

dt∗2
= T ∗

i

F ∗
q

U ∗
p − 4

π
T ∗

�

dφ∗

dt∗ . (31)
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FIG. 4. Regime map showing the overdamped vs underdamped configuration in the (St, χ ) plane. ,
analytical criterion (33) for Ar � 1.

The resulting set of equations is made of two coupled linear ordinary differential equa-
tions (ODEs) since, in the limit Ar � 1, T ∗

i , F ∗
q , and T ∗

� are independent of Re∗
L, Re∗

�, and θ .
By substituting the expression for Up from Eq. (31) into Eq. (30), the resulting equation becomes a
third-order linear ODE with constant coefficients. Although an analytical solution may be obtained
by summing three exponential functions, the coefficients inside these functions are complex and
obey a third-order polynomial. Instead, we assume that the left-hand side of Eq. (30) is negligible
compared to the right-hand side. This assumption is not satisfactory from a purely asymptotic
perspective but allows for clearer disentanglement of the physical mechanism underlying the particle
dynamic. In this limit, U ∗

p ≈ −π/4/F ∗
p (Reχ

L )φ∗ and

StJ∗
q

d2φ∗

dt∗2
+ 4

π
T ∗

�

dφ∗

dt∗ + π

4

T ∗
i

F ∗
q F ∗

p

φ∗ = 0. (32)

The above equation is a classical damped harmonic oscillator. This equation shares many
similarities with the one used by Gustavsson et al. [2,3], who investigated the effect of particle inertia
on the orientation of spheroids in turbulent flows. Although the derivation presented in Gustavsson
et al. [3] differs from the present one, they complement each other nicely. Two natural solutions exist
depending on the sign of discriminant related to the second-order polynomial of this linear ODE.
If the discriminant is positive, the solution is overdamped and leads to a motion decay without
oscillation, while for a negative discriminant, the solution is underdamped and oscillatory motion is
observed. Hence to obtain an underdamped solution, the particle must obey the following criteria:

St >
16

π3

T ∗2
� F ∗

q F ∗
p

J∗
q T ∗

i

, (33)

which means that the particle inertia must be sufficiently large to lead to an oscillating regime.
Under the condition Ar � 1, one may expect underdamped oscillation only when the density ratio
is very high. Indeed, since the term on the right-hand side of (33) is of the order of 1, the Stokes
number must be larger than a number of order 1. Considering that St = ρ̄Ar2, the density ratio ρ̄

must be of the order of 1/Ar2 to achieve an underdamped solution. In the case of low Archimedes
numbers (Ar � 1), this implies ρ̄ � 1. Specifically, oscillatory motion can only be expected for
high-density particles, such as steel, settling in the air for very low Archimedes numbers. Figure 4
presents a map of the two regimes. The critical Stokes number separating the two regimes is a
decreasing function of χ . This assertion may be proved using scaling arguments for χ � 1. Indeed
under this assumption, F ∗

p ∼ F ∗
q ∼ 1/ ln(χ ), T ∗

� ∼ 1/ ln(χ ), and T ∗
i ∼ 1/ ln2(χ ). Hence for χ � 1
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(a) (b)

FIG. 5. (a) Evolution of δ [Eq. (34)] as a function of χ . (b) Evolution of ω0 [Eq. (34)] as a function of χ .
, St = 2000; , St = 1000; , St = 500; , Eq. (35) for St = 2000.

the critical Stokes number decreases as 1/ ln2(χ ). Hence, the underdamped regime will be promoted
by using longer particles for a given Stokes number. If the criterion (33) is satisfied, the solution of
Eq. (32) is given by

φ∗(t ) = Ae−δt∗
cos(ζ + ω0t∗), where δ = 2

π

1

St

T ∗
�

J∗
q

and ω0 =
(

π

4

1

St

T ∗
i

F ∗
q F ∗

p J∗
q

− δ2

)1/2

.

(34)
A and ζ are constants given by the initial boundary conditions, while ω0 is the dimensionless natural
frequency of the oscillator and δ is the dimensionless damping coefficient. In the limit St � 1, which
is the relevant limit to expect underdamped oscillations, we obtain

ω0 =
(

π

4

1

St

T ∗
i

F ∗
q F ∗

p J∗
q

)1/2

. (35)

As the value of the Stokes number increases, both ω0 and δ decrease, albeit with a less pronounced
decrease observed for ω0. Figure 5 displays the behavior of both quantities, which approach a near-
constant value for χ � 1. Specifically, as χ increases, δ ∼ 1/(St ln χ ) while ω0 ∼ (1/St)1/2. The
results for χ larger than 30 were not plotted; however, it is expected that the behavior for larger χ

will remain consistent as all expressions for the loads converge to the slender body theory results
for χ � 1.

We may recall the many assumptions required to derive the model. In particular, we have assumed
that the LHS of Eq. (30) is negligible. Upon substitution of our estimate for Up, the LHS of Eq. (30)
simplifies to π/4 Stdφ∗/dt (1/F ∗

q − 1/F ∗
p ). For χ � 10, it has been reported that F ∗

q ≈ F ∗
p [19],

leading to a near-cancellation of the LHS. However, for longer fiber, this assumption is debatable.
Additionally, the model assumes that both the history loads and coupling effects between translation
and rotation can be neglected. The former is questionable as the current model exhibits a constant
period of oscillation while Up is a decreasing function of time. Hence, in the long-time limit, the
unsteady term in the Navier-Stokes equation may be much larger than the advective term. Therefore,
the proposed model is not designed to provide an exact value for the damping coefficient and
natural frequency for arbitrary dimensionless parameters, especially larger fluid inertia, but instead
serves as a helpful framework for qualitatively understanding the origin of the damped oscillations
observed in the subsequent section. Newsom and Bruce [15] investigated the settling of elongated
graphite particles in air (ρ̄ ≈ 1442, Ar ≈ 0.054, χ � 100) and did not observe oscillations around
their stable orientation. However, in their study, the Stokes number (St ≈ 4.2) is probably too low
to expect such a phenomenon (see Fig. 4). The recent study of Bhowmick et al. [29] (not published
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(a) (b)

(c) (d)

FIG. 6. Dimensionless sedimenting velocities. (a),(c) Dimensionless sedimenting velocity as a function of
φ. (b),(d) Dimensionless angular velocity divided by the square of the particle velocity as function of θ (Fig. 1).
, Cabrera et al. [20] experiments for Ar ≈ 0.147, ρ̄ ≈ 12.2. , prediction from the unsteady equations (21)–

(23) for Ar ≈ 0.147; , prediction from the unsteady equations (21)–(23) for Ar ≈ 0.147, ρ̄ = 1000; ,
prediction from the steady equations (24)–(26) for Ar ≈ 0.147. In the unsteady computations, we have not
displayed the transient behavior of the particles starting from rest. The top panel corresponds to χ = 8 and the
bottom panel to χ = 16.

yet), which focuses on the settling of an ellipsoidal particle with larger inertia in air, indicates that
this solution is relevant.

V. COMPARISON OF THE QUASISTEADY MODELS WITH EXPERIMENTS AND DIRECT
NUMERICAL SIMULATIONS

A. Experiments for Re � 1

In this section, we compare the experimental results presented in Refs. [20] and [16] with those
provided by the models presented in the previous section. Despite having previously compared our
quasisteady results to those of Cabrera et al. [20] in Ref. [19], we present the comparison again as
we aim to discuss the effect of the particle inertia further.

The sedimentation velocity and angular velocity measured in the study of Cabrera et al. [20]
for particles with aspect ratios of χ = 8 and 16 are presented in Figs. 6(a) and 6(c). For χ = 8,
the Reynolds number varies in the range 0.026 � Re � 0.035 and is slightly higher for χ = 16
(0.032 � Re � 0.047). The model predictions are consistent with the experimental data, with good
agreement for the angular velocity for χ = 16 but less so for χ = 8 [Figs. 6(b) and 6(d)]. The
experimental data for χ = 8 exhibit considerable scatter, which the authors possibly attribute
to particle defects, particularly mass inhomogeneities. The gravitational torque caused by mass
inhomogeneities along the body axis, Tg, scales as Tg ∼ mgL [16]. The ratio of inertial torque
to gravitational torque scales as Ti/Tg ∼ (ρ̄ − 1)Arχ . Therefore, for low Archimedes number
and moderate aspect ratio, as in the present case, mass inhomogeneities may impact the angular
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(f)

(c)

(d) (e)

(a) (b)

FIG. 7. Dimensionless sedimenting velocities. (a),(d) Vertical sedimenting velocity; (b),(e) drift velocity;
and (c),(f) angular velocity. , Roy et al. [16] experiments for Ar ≈ 0.76 and ρ̄ ≈ 1.16; , prediction from
Eqs. (21)–(23); , prediction from Eqs. (24)–(26); , prediction from the unsteady equations (21)–(23) for
Ar ≈ 0.76, ρ̄ = 1000. The top panel corresponds to χ ≈ 20.5 and the bottom panel to χ ≈ 101.

velocity. Additionally, the results obtained from both sets of equations, (21)–(23) and (24)–(26),
are indistinguishable. Thus particle inertia can be safely neglected in the experiments of Cabrera
et al. [20]. To further examine the impact of particle inertia, we conducted computations of the
same physical configuration reported by Cabrera et al. [20] (with Ar ≈ 0.147 and χ = 8 or 16),
but with a significantly larger density ratio ρ̄ = 1000, which is representative of particles settling in
air (represented by the dashed-dotted line in Fig. 6). Our results indicated that particle inertia has a
minimal effect on the outcome. Indeed, the maximum value of Re∗

� was found to be approximately
max(Re∗

�) ≈ 9 × 10−5, implying that the inertial term in the momentum equations, which scales as
ρ̄ Re�, remains much smaller than unity even with ρ̄ = 1000.

The sedimenting velocities and angular velocities as a function of φ, from the experiments of
Roy et al. [16], are shown in Fig. 7. Although the angular velocity is not directly given in their
work, it can be deduced from their plot of the inertial torque, as they utilize a quasisteady balance
for angular momentum. The results obtained in this study match the experimental data except for
Fig. 7(a). In this case, a non-negligible underestimation of the vertical velocity is observed when
the cylinder is positioned perpendicular to the gravity vector. Furthermore, the difference between
the sets of Eqs. (21)–(23) and (24)–(26) is once again negligible, indicating that particle inertia is
negligible in the experiments of Roy et al. [16]. However, when considering more inertial particles
(ρ̄ = 1000), deviations from the experimental data are observed. Specifically, the dimensionless
velocities remain mostly unchanged in amplitude, but a noticeable shift to larger φ is observed. The
system of ODEs represented by Eqs. (21)–(23) can be visualized as a phase portrait, as shown in
Figs. 7(c) and 7(f). The stable fixed point located at φ = π/2 is identified as a focus or spiral.

The oscillatory behavior of the angle as a function of time is evidenced in Fig. 8 for χ ≈ 20.5.
Exponential decay of φ over time is observable for both the simplified model, expressed in Eq. (34),
and the complete numerical solution. However, we may observe discrepancies between the two
models both for the slope and oscillation period. This is not surprising due to the many assumptions
required to derive the model. The analytical solution only offers a qualitative depiction of the
underdamped behavior in this inertial configuration.
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FIG. 8. Evolution of |φ − π/2| as a function of time with Ar ≈ 0.76, ρ̄ = 1000, and χ ≈ 20.5. ,
prediction from Eqs. (21)–(23); , prediction from Eq. (34) with Re ≈ 0.156 and Re� � 1.

B. Direct numerical simulations for Re ∼ 1

In the preceding subsection, we have demonstrated the unexpected agreement of the quasisteady
equations with various literature findings for Re � 1. However, no experiments of such nature have
been conducted for higher Reynolds numbers, and to the best of our knowledge there are no available
simulations. Therefore, we conducted direct numerical simulations to validate the applicability of
the model at higher Reynolds numbers (Re ∼ 1).

1. Numerical methodology

Computations are carried out with the PELIGRIFF code [30]. This code was used to investigate
the settling of spherical and angular particles [31,32]. In brief, the code solves the three-dimensional
Navier-Stokes equations using a finite-volume discretization on a staggered grid. The time-stepping
strategy for the fluid phase is done thanks to second-order time-accurate Crank-Nicolson and
Adams-Bashforth schemes. To enforce the rigid-body motion inside the solid region, a Lagrange
multiplier/fictitious domain (DLM/FD) is used. We use a uniform distribution of the Lagrangian
points along the surface of the cylindrical body as detailed in [33]. More details on the numerical
methods can be found in Ref. [30]. We explore the effect of χ , Ar, and ρ̄ within the range χ = {2, 4},
Ar = {24, 96}, and ρ̄ = {1.5, 10}. The cylinder is initiated with an angle φ = 5◦, and it is released at
rest. In addition, a case with a larger density ratio was computed with a starting angle of φ = 60◦ to
investigate the damped oscillation regime specifically. The computational domain for this problem
is depicted in Fig. 9. Its characteristic size length depends on the aspect ratio: for χ = 2, L = 12D
while for χ = 4, L = 15D. Note that the value prescribed for χ = 2 is larger than that used in [32].
We have checked that the present domain was sufficiently large by increasing its size of 25% in all
directions finding less than 2% error on �L/U for the more challenging configuration (Ar = 24,
χ = 4). Obviously, larger domains might be used to avoid this small effect of the boundaries at the
expense of a substantially larger numerical cost. However, we have to recall that the present paper
is not aimed to provide domain size perfectly independent simulations of the problem but rather
to provide a bound to the quasisteady assumptions. To this aim, we compare the numerical results
to the model of Sec. IV, which relies heavily on fit and contains some minor errors concerning
the simulation from which they are extracted. Regarding the boundary conditions, the domain is
biperiodic in the lateral directions, while zero velocity and outflow conditions are imposed on the
upstream and downstream boundaries, respectively. A uniform cell distribution is imposed in a
rectangular region depicted in Fig. 9 as an orange volume. This region is located 2D below the
middle of the domain and extends up to 6D in the direction of gravity. In this flow region, 25 cells
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FIG. 9. Scheme of the computational domain (not to scale).

are distributed per body diameter, which is sufficient to accurately compute the particle dynamic
for the range of Reynolds number investigated [33]. The number of cells per mesh is 26 million for
χ = 2 and 46 million for χ = 4. The time step is imposed such that the CFL always fall below 0.25.
To prevent the cylinder from exiting the numerical domain, the computational domain is moved
vertically to keep the particle at least at a distance of 10D of the upstream boundary. More details
on the domain translation technique can be found in Refs. [31,32]. The magnitude of this domain
translation is chosen to be the grid size (D/25). The simulations are run up until the cylindrical
particle reaches its equilibrium position.

2. Numerical results

To investigate the impact of moderate inertia on the rod motion, we first consider the situation
Ar = 24. In this scenario, the Reynolds number will fluctuate between 1.7 and 1.9 when χ equals
2, and between 2 and 2.7 when χ is 4.

For the shortest cylinder with aspect ratio χ = 2, there is a noticeable agreement between the
results obtained from Eqs. (21)–(23) (including particle inertia) and those from direct numerical
simulations, as illustrated in Figs. 10(a)–10(c). However, the agreement is better for U ∗

y than for the
other quantities. In practice, ascertaining the precise origin of the slight discrepancy for the remain-
ing quantities proves to be challenging. The most plausible explanation lies in the semiempirical
nature of the formulas for the quasisteady loads presented in Appendix C. These formulations were
derived through numerical fitting of direct numerical simulation results. Despite rigorous validation
of the direct simulations, minor errors may inadvertently arise during the fitting process, depending
on the specific load considered, potentially influencing the results. Varying the density ratio from
1.5 to 10 has a negligible effect on the sedimentation velocities in this case. In Figs. 10(d)–10(f),
we present the results for χ = 4. Although there is a qualitative agreement between the model and
the numerical results, the model overestimates the drift and angular velocities. Moreover, for χ = 4,
the effect of particle inertia on the sedimentation velocities is more pronounced. In particular, this
case exhibits underdamped motion. To investigate this oscillating behavior further, we have carried
out one simulation of the settling of a rod with the same dimensionless parameters (Ar = 24, χ = 4)
but with a much larger density ratio (ρ̄ = 50). To maintain reasonable computational time, the
simulation is initiated with φ = 60◦. There is a good agreement between the simulation and the
model, even if the model overpredicts the angular velocity (Fig. 11). We recall that we neglect the
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(f)

(c)

(d) (e)

(a) (b)

FIG. 10. Dimensionless sedimenting velocities for Ar = 24. (a),(d) vertical sedimenting velocity; (b),(e)
drift velocity; and (c),(f) angular velocity. , direct numerical simulation results with ρ̄ = 1.5; , direct
numerical simulation results with ρ̄ = 10; , prediction from Eqs. (21)–(23) with ρ̄ = 1.5; , prediction
from Eqs. (21)–(23) with ρ̄ = 10. The top panel corresponds to χ = 2 and the bottom panel to χ = 4.

history loads in Eqs. (21)–(23), which may affect the initial transient since the rod starts from rest.
One may also observe a good agreement between the oscillating period, the decrease in amplitude
given by the numerical results, and the model made of Eqs. (21)–(23) [Fig. 11(b)]. This is somehow
surprising since there is a priori no reason for neglecting the history loads in the underdamped
regime. They appear to have a negligible effect on this regime.

We now consider much more significant inertia effects (Ar = 96). Within this regime, the
Reynolds number is found to vary between 5.3 and 6.2 for χ = 2 and between 5.8 and 8.6 for
χ = 4. Surprisingly, the quasisteady model exhibits good agreement with numerical results for
χ = 2 [as depicted in Figs. 12(a)–12(c)], despite the significant role played by inertia effects.
However, for χ = 4, the model overestimates both the drift velocity and angular velocity [as
shown in Figs. 12(d)–12(f)]. We observe that all configurations result in underdamped regimes.

(a) (b)

FIG. 11. Comparison between the simulation results and the quasisteady model with Ar = 24, χ = 4,
and ρ̄ = 50. (a) Phase space diagram of the oscillator. (b) Time evolution of the inclination angle. , direct
numerical simulation results; , prediction from Eqs. (21)–(23).
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(f)

(c)

(d) (e)

(a) (b)

FIG. 12. Dimensionless sedimenting velocities for Ar = 96. (a),(d) Vertical sedimenting velocity; (b),(e)
drift velocity; and (c),(f) angular velocity. , Direct numerical simulation results with ρ̄ = 1.5; , direct
numerical simulation results with ρ̄ = 10; , prediction from Eqs. (21)–(23) with ρ̄ = 1.5, , prediction
from Eqs. (21)–(23) with ρ̄ = 10. The top panel corresponds to χ = 2 and the bottom panel to χ = 4.

This regime is much more pronounced for χ = 4 and ρ̄ = 10 than for χ = 2 and ρ̄ = 1.5, for
which the amplitude of oscillation is small and nearly indistinguishable. Finally, we compare the
numerical and model-based results [derived from Eqs. (21)–(23)] for Ar = 96, χ = 4, and ρ̄ = 10
by examining the oscillation period and the decay of amplitude. The results are displayed in Fig. 13.
The model slightly underpredicts the amplitude decay as well as the oscillation period.

FIG. 13. Time evolution of the inclination angle (Ar = 96, χ = 4, ρ̄ = 10). , Direct numerical simula-
tion results; , prediction from Eqs. (21)–(23).
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TABLE I. Values of max(�rL/|U|) in the experiments of [16,20] and in the simulation results.

Cabrera et al. [20] Roy et al. [16] Direct numerical simulations
Ar ≈ 0.147 Ar ≈ 0.76 Ar = 24 Ar = 96

χ = 8 χ = 16 χ = 20 χ = 100 χ = 2 χ = 4 χ = 2 χ = 4

max(�rL/|U|) 0.024 0.035 0.12 0.11 0.13 0.25 0.2 0.33

VI. DISCUSSION AND CONCLUSION

Based on the results presented above, two main conclusions can be drawn. First, it can be inferred
that the quasisteady assumption holds across a broad range of dimensionless parameters, as it is
supported by both the experiments conducted by Cabrera et al. [20] and Roy et al. [16] and by the
direct numerical simulations. Although these experiments and simulations do not strictly obey the
condition Ar � 1/χ , the quasisteady assumption is still valid for a significantly more extensive
range of values than initially predicted. This can be attributed to the magnitude of the angular
velocity �, which has the correct scaling but is at least three orders of magnitude smaller than the
anticipated value. This feature arises from the specific values of dimensionless steady loads, namely
F ∗

p , F ∗
q T ∗

i , and T ∗
� . Indeed, let us consider the case χ � 1 and Ar � 1. Under these limits, we have

F ∗
p = 2π/ ln χ , F ∗

q = 4π/ ln χ , T ∗
i = 5π/(24 ln2 χ ), and T ∗

� = π/(3 ln χ ) [4,12]. By employing
Eqs. (24) and (25), we can deduce U ∗

p = cos φ ln χ/8 and U ∗
q = − sin φ ln χ/16. Substituting these

estimates into Eq. (26), we finally obtain �∗
r = 5 sin(2φ) ln χ/2048. Consequently, for χ = 10,

the maximum value of �∗
r is max(�∗

r ) ≈ 0.0056, which offers a reasonable explanation for the
observed values of the angular velocity. As a result, �L/U � 1 for all configurations except
the highest inertial simulations (see Table I). Additionally, these findings support the notion that the
quasisteady assumption remains valid as long as �L/U � 1, thereby strengthening our analysis.

Second, it can be concluded, based on the results of the previous section, that particle inertia plays
no significant role in the magnitude of the sedimenting velocities in the system under investigation.
Hence, a correct estimate of �L/U can be obtained by disregarding the particle inertia in the
equations of motion and considering the system made of Eqs. (24)–(26). We have solved this system
for χ ∈ [2; 500] and Ar ∈ [0.001; 150] by using the semiempirical expression for the loads proposed
by Fintzi et al. [19] for χ � 30 and Khayat and Cox [12] theory for χ > 30. In each of the runs, we
have computed the maximum value of �rL/|U| (Fig. 14).

For Arχ � 10 except for the smallest aspect ratio, �L/U scales as Arχ , in agreement with
our scaling analysis. For larger χAr the rate of increase of �L/U decreases strongly, especially

(a) (b)

FIG. 14. Evolution of max(�rL/|U|) with χAr. Equations (24)–(26) are solved using a root-finding
algorithm for 20 values of φ ranging between 0 and π/2.
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for χ � 12. Indeed, qualitatively different behavior may be observed for moderate inertial effects
(ReL ∼ 1) and very large aspect ratios (χ � 1). Fintzi et al. [19] observed that for χ = 30, the
inertial torque scales as Ti/(μUL2) ∼ Re1/3

L , yielding Ti ∼ ρ1/3μ2/3U 4/3L7/3. By balancing this
inertial torque with the resistive torque, we obtain � ∼ ρ1/3μ−1/3U 4/3L−2/3 and �L/U ∼ Re1/3

L .
Using the same scaling as in Sec. IV for the velocity, we obtain �L/U ∼ Ar1/3χ1/3. Therefore,
the rate of increase of �L/U is slower as the Reynolds number increases for elongated particles.
This trend is even more pronounced for very long fibers [Fig. 14(b)]. In this regime, Khayat and
Cox [12] demonstrated that the inertial torque decreases with the Reynolds number for ReL � 4.
However, the validity of their theory for such high Reynolds numbers may be questionable, as
their asymptotic solution requires ReL � ln(χ ). Nonetheless, simulations performed by Khair and
Chisholm [34] and Shin et al. [17] indicate that the solutions proposed by Khayat and Cox [12]
remain valid for ReL ≈ 10 and ReL ≈ 5, respectively, for the longitudinal force on a long spheroid
aligned with the flow direction and the torque on a long fiber, with χ = 100. Moreover, the models
of Khayat and Cox [12] are in very good agreement with the experimental results of Roy et al.
[16] for χ = 100 and ReL ≈ 7.6. Consequently, the solution provided by Khayat and Cox [12] is
considered to provide quantitatively accurate results up to ReL ≈ 10 as long as the fiber is adequately
elongated (χ � 100). If we consider that the quasisteady assumption fails for values of �L/U larger
than 0.2, then we can expect the quasisteady models to be accurate for χAr ≈ 200 if χ = 2, and
for χAr ≈ 40 if 2 < χ � 30. However, the quasisteady assumption should remain valid for more
elongated fibers as long as the underlying assumptions made in the derivation of the models of
Khayat and Cox [12] are fulfilled, particularly if Re � 1.

This paper also focuses on the underdamped regime and its characteristics, such as oscillation
period and amplitude decrease rate. It was found that the most simple model, i.e., the underdamped
oscillator, qualitatively reproduces numerical results but not quantitatively. This may have signifi-
cant implications for atmospheric flows where particle orientation is driven by this solution [2,3].
To improve the model, particle inertia could be included in the parallel velocity equation, resulting
in a third-order linear ordinary differential equation that can be easily solved. A natural perspective
to this model might be to study the oscillatory motion of a rod settling under gravity, such as a
fluttering motion [25]. However, in such high inertial flow, there is no reason for the quasisteady
assumption to remain valid [35]. Moreover, even under the quasisteady limit, the loads on such
bodies at high Reynolds numbers are only known for very few configurations [27,33].
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APPENDIX A: ADDED MASS COEFFICIENTS

In this Appendix, we compute the coefficient Ap, Aq, and Dq by using the JADIM code for
1 � χ � 15. The numerical details concerning the code as well as the mesh properties can be found
elsewhere [18,22,27]. At the time t = 0, we impose a constant linear or angular acceleration to a
cylinder initially at rest. Since in the very short time limit viscous and rotational contributions are
negligible in comparison to potential flow contribution [21], one can easily recover the added mass
coefficients by computing the loads on the body. Figure 15 displays the dimensionless added mass
coefficient A∗

p = Ap/(ρV ), A∗
q = Aq/(ρV ), and D∗

q = Dq/(ρV L2) as a function of the aspect ratio.
A good agreement is observed between the present results and those of Loewenberg [9] obtained
using potential flow calculations. In the limit χ � 1, χA∗

p and A∗
q tend toward a constant value. For
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FIG. 15. Dimensionless added mass coefficients as a function of χ . , Loewenberg [9] results; , present
results based on JADIM code [22]; , fits.

the particular case A∗
q this constant is simply 1, i.e., the added mass coefficient on an infinitely long

cylinder perpendicular to the flow direction. As a result, we propose the following correlation:

A∗
p = 1

χ

(
0.655 − 0.141

1 + χ1.17

)
, (A1)

A∗
q = 1 − 0.828

1 + χ1.12
. (A2)

To the best of our knowledge, the functional dependency of D∗
q with respect to χ has not been

published yet in the literature, at least for χ � 1. Figure 15 shows that in the limit χ � 1, D∗
q tends

toward a constant value which is a priori unknown. However, in the case of a Rankine ovoid, for
χ � 1, D∗

q ≈ 1/12 [23]. Since in the limit of a large aspect ratio one may assume that the rounded
ends of the Rankine ovoid have little effect on the added mass coefficient, we propose the following
empirical correlation:

D∗
q = 1

12
− 0.11

(1 + χ0.8)
, (A3)

which matches closely the numerical results.

APPENDIX B: SHORT-TIME ASYMPTOTIC EXPANSION

We calculate the leading-order terms of the short-time asymptotic expansion. Since cos(φ(0) +
εφ(1) ) ∼ cos φ(0) − εφ(1) sin φ(0) and sin(φ(0) + εφ(1) ) ∼ sin φ(0) + εφ(1) cos φ(0) at zeroth order,
Eqs. (10)–(13) simplify to

dU ∗(0)
p

dt∗ = A cos φ(0), (B1)

dU ∗(0)
q

dt∗ = −B sin φ(0), (B2)

d�∗(0)
r

dt∗ = −CU ∗(0)
p U ∗(0)

q , (B3)

dφ(0)

dt∗ = 0. (B4)

The zeroth-order solution is easily obtained and reads

U ∗(0)
p = At∗ cos φ(0), (B5)

U ∗(0)
q = −Bt∗ sin φ(0), (B6)
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�∗(0)
r = ABC

3
t∗3 cos φ(0) sin φ(0), (B7)

φ(0) = φ(t∗ = 0), (B8)

where we have assumed that the cylinder starts from rest. At first order, Eqs. (10)–(13) give
dU ∗(1)

p

dt∗ = A
B�∗(0)

r U ∗(0)
q − Aφ(1) sin φ(0), (B9)

dU ∗(1)
q

dt∗ = −B
A�∗(0)

r U ∗(0)
p − Bφ(1) cos φ(0), (B10)

d�∗(1)
r

dt∗ = 0, (B11)

dφ(1)

dt∗ = �∗(0)
r , (B12)

which leads to

U ∗(1)
p = − 1

12
A2BCt∗5 cos φ(0) sin2 φ(0), (B13)

U ∗(1)
q = − 1

12
AB2Ct∗5 cos2 φ(0) sin φ(0), (B14)

�∗(1)
r = 0, (B15)

φ(1) = ABC
12

t∗4 cos φ(0) sin φ(0). (B16)

APPENDIX C: QUASISTEADY LOADS

The expression of the quasisteady loads used in this paper can be found below.

1. Moderately long rods: χ � 30

a. Expression of Fp

The expression of Fp reads [19]

Fp(Re∗
L, χ, θ ) = −2πμ|U|L cos θ

(
A(1)

Re=0+A(1)(Re∗
L )

ln(2χ )
+ A(2)

Re=0 + A(2)(Re∗
L )

ln2(2χ )
+ A(3)

Re=0 + A(3)(Re∗
L )

ln3(2χ )

+A(4)
Re=0 + A(4)(Re∗

L )

ln4(2χ )
+ 2.34

χ2/3
(
χ − 1

2

)1.75

)
, (C1)

where A(1)
Re=0 = 1, A(2)

Re=0 ≈ 0.807, A(3)
Re=0 ≈ 0.829, A(4)

Re=0 ≈ 1.45 [27]. The first-order inertial cor-
rection is null, A(1)(Re∗

L ) = 0, while the second-, third-, and fourth-order inertial functions read

A(2)(Re∗
L ) = 1

2

(
E1(2 Re∗

L ) + ln(2 Re∗
L ) − e−2 Re∗

L + γ + 1

2 Re∗
L

+ E1(2 Re∗
L ) + ln(2 Re∗

L ) + γ − 2

)
,

(C2)

A(3)(Re∗
L ) = A(3)

A (Re∗
L ) + A(3)

B (Re∗
L ) + 2A(2)(Re∗

L ) ln (2), (C3)

A(4)(Re∗
L ) = 3 ln (2)

(
A(3)

A (Re∗
L ) + A(3)

B (Re∗
L )

) + 3A(2)(Re∗
L ) ln (2)2 − 0.636 Re∗0.762

L , (C4)

where γ is the Euler constant, E1(x) = ∫ ∞
x

e−t

t dt is the exponential integral function, and here
Re∗

L = ρ|U|L/(2μ). One may observe that |U| cos θ = Up.
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b. Expression of Fq

The expression of Fq can be found in [19] and reads

Fq(Re∗
L, χ, θ ) = 4πμ|U|L sin θ

(
B(1)

Re=0 + B(1)(Re∗
L )

ln(2χ )
+ B(2)

Re=0 + B(2)(Re∗
L )

ln2(2χ )
+ B(3)

Re=0 + B(3)(Re∗
L )

ln3(2χ )

(C5)

+ B(4)
Re=0 + B(4)(Re∗

L )

ln4(2χ )
− 0.568

χ2/3
(
χ − 1

2

)1.75

)
, (C6)

where B(1)
Re=0 = 1, B(2)

Re=0 ≈ −0.193, B(3)
Re=0 ≈ 0.214, B(4)

Re=0 ≈ 0.387 [27], B(1)(Re∗
L ) = 0, and

B(2)(Re∗
L ) = E1(Re∗

L ) + ln (Re∗
L ) − e−Re∗

L − 1

Re∗
L

+ γ − 1, (C7)

B(3)(Re∗
L ) = 2 ln (2)B(2)(Re∗

L ) + B(3)
e (Re∗

L ), (C8)

B(4)(Re∗
L ) = 3 ln (2)2B(2)(Re∗

L ) + 3 ln (2)B(3)
e (Re∗

L ) + B(4)
e (Re∗

L ). (C9)

We have |U| sin θ = −Uq.

c. Expression of T i
r

The expression of T i
r can be found in [19]

T i
r (Re∗

L, χ, θ ) = ρ|U|2L3 sin (2θ )
5π

48
(
1 + Re∗1.991

L

)0.331

(
1

ln2(3χ )
+ 2.244 − 1.813 Re∗0.543

L

ln3(3χ )

−3.603 + 8.854 Re∗0.538
L

ln4(3χ )
− 14.301(Re∗

L/χ )0.448

ln5(3χ )

)
. (C10)

One may note that |U|2 sin (2θ ) = −2UpUq.

d. Expression of T �
r

An expression for the resisting torque due to the particle rotation can be found in Pierson et al.
[18] and may be expressed as

T �
r = − −πμ�rL3

3

[
1

ln(2χ )
+ 1

ln2(2χ )

(
11

6
− ln 2 + f (χ, Re∗

�)

)

+ 1

ln3(2χ )

(
161

36
− π2

12
− 11

3
ln 2 + (ln 2)2

)
+ 1

ln4(2χ )

(
1 − 1

(2χ )1.2

)5[
−5

4
ζ (3) + 1033

72

− ln3(2) + 11

2
ln2(2) − 161

12
ln 2 − π2

(
11

24
− 1

4
ln 2

)]]
, (C11)

with f (χ, Re∗
�) = 0.018χ2.3Re∗0.9

� and Re∗
� = ρ|�|D2/μ.

2. Long rods: χ > 30

For sufficiently long rods [12], expressions for the loads are accurate. In the following, we present
the Khayat and Cox [12] expression, still making use of the linearization proposed by Ref. [28] for
the forces. Also we make use of the 1/ ln χ original expansion proposed by Khayat and Cox [12]
rather than the 1/ ln(2χ ) expansion.
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a. Expression of Fp

Fp(Re∗
L, χ, θ ) = −2πμ|U|L cos θ

ln χ

(
1 − A(2)(Re∗

L ) − 4 ln 2 + 3

ln χ

)−1

. (C12)

b. Expression of Fq

Fq(Re∗
L, χ, θ ) = 4πμ|U|L sin θ

ln χ

(
1 − B(2)(Re∗

L ) + 1/2 − ln 4

ln χ

)−1

. (C13)

c. Expression of T i
r

T i
r (Re∗

L, χ, θ ) = −μUL2 π

2

(
1

ln χ

)2

{cos θ [P(X ) − Q(X ) + P(Y ) − Q(Y )] +P(Y ) − P(X )} sin θ,

(C14)

with Q(x) = E1(x)+ln(x)+γ

x , P(x) = 2
x (1 + e−x−1

x ), X = Re∗
L(1 − cos θ ), and Y = Re∗

L(1 + cos θ ).

d. Expression of T �
r

Since to the best of our knowledge there is no expression for this torque for finite inertia effect
and very long fibers, we make use of expression (C11) neglecting the inertial correction f .
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