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A direct-adjoint mean flow global stability investigation of self-excited instabilities in
an idealized, two-dimensional compressor blade row at off-design conditions is carried
out. In this second part of the paper, the single-passage analysis is extended to multi-
blade passages by exploiting the properties of block-circulant matrices and Bloch-wave
theory. By using this method, analyses for a large number of blade passages become
computationally tangible, and the modal and nonmodal single-passage analysis from
the first part of the paper can be augmented by considering multiblade effects arising in
larger systems. This work shows that multiblade passages introduce additional unstable
10- and five-periodic synchronization structures arising from a tuned optimal phase re-
lationship that is supported by the larger system. Self-excited low-frequency structures,
which cannot be represented within a single-passage computation, are also uncovered and
analyzed.
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I. INTRODUCTION

With turbomachinery blade rows consisting of multiple periodic structural elements interacting
with the flow, it is natural to consider extensions of the global stability problem, as presented in part
I of this paper [1], to N passages. In this way, the large-scale behavior throughout the full blade
row, that previously could not be modeled with the restriction to a single-passage periodic domains,
is captured. Unfortunately, global stability analysis becomes intractable, even in situations when N
is relatively small (e.g., N < 5), and so the problem must be simplified in some way to account
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for this periodicity without increasing the instantaneous demand for computer resources. This
difficulty has been addressed previously using the harmonic balance method [2–5], phase-lagged
[6–8], and chorochronic approaches [9] to account for the periodicity in blade-row simulations,
although note that none of these can account for self-excited instabilities as the formulations of these
approaches are subject to prescribed phase-shift periodicities of known frequencies. More recently,
in [10] a fully algebraic linear approach was proposed, where the direct system matrix is rearranged
into block-circulant form by reconfiguration of the state vector. Assumptions made regarding the
numerical nearest-neighbor coupling1 of the blade passages can be exploited to increase the sparsity
of the linear operator without compromising any physical dynamics. This approach is reminiscent
of Bloch-wave theory [11], and similar methods have been used in the past, for example, in the
field of structural mechanics to study vibrations in bladed disks [12]. The diversity of potential
applications was demonstrated in [10], treating the dynamics in periodic viscous wakes, annular
combustors, burners and blade rows as examples. In the latter instance, a 54-blade linear cascade was
studied in the context of incompressible flow, with a continuously parameterized spectrum obtained
alongside optimal forcing and response structures. In this paper we seek to extend this approach
to a fully compressible flow problem with the aim of identifying the macrodynamics originating
from the feedback mechanisms linking the microscale self-excited hydrodynamics processes and
the propagating acoustics field. Perhaps the closest analog of this in turbomachinery applications are
compressor nonengine order vibration phenomena [13] and acoustic resonance structures [14–17],
which have been suggested to occur as a consequence of vortex shedding from separation bubbles
forming on the suction surfaces of the compressor blades when operating at off-design conditions.

The geometry and flow conditions are identical to those presented in part I, so that a comparison
between the single and multiple passage cases can be made.

This paper builds upon the work of part I, by extending the earlier global stability analysis to
a 10-periodic blade row using the algebraic method introduced in [10] in Sec. II. Details of the
geometry and implementation are provided in Secs. II A and II B, respectively. This is followed
once again by an impulse response analysis in Sec. II C, and global stability analysis in Sec. II D,
where we observe structures that arise in the larger domain. To complete the discussion, Sec. III
summarizes the findings and provides possible extensions and future perspectives of this work.

II. MULTIPLE PASSAGES

So far in this work we have focused on the single-passage dynamics, which has provided us
valuable insight into the local stability characteristics of the flow over a single blade. Realistic
annular blade rows, however, typically contain on the order of 10 to 50 blade passages and are
capable of supporting large-wavelength disturbances, synchronization and standing waves that are
impossible to resolve in a simulation of a single periodic passage. In this section, we consider a
10-passage configuration and extend the global stability analysis above to this case. We achieve
this by using a N-periodic matrix decomposition method that allows large system matrices to be
decomposed into smaller independent problems that are simpler to solve.

A. N-periodic geometry

For the purpose of this study, we will restrict ourselves to a 10-passage linear cascade, and make
use of the model controlled-diffusion compressor passage geometry from part I that is tessellated in
the vertical direction as shown in Fig. 1. Periodic boundary conditions are applied in the upstream
and downstream regions of the mesh corresponding to passages P0 and P9.

1In other words, the code enforces the coupling, but, by construction, communications in the code occur only
between neighboring passages.
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FIG. 1. The physical 10-passage geometry considered in this section. The axial lengths of the upstream and
downstream sections of this geometry have been chosen so that wavelengths of up to 5hp could be represented
within the simulation.

B. N-periodic modeling

While in theory it is possible to model entire N-periodic configurations directly simply by
modeling N blade passages in a single mesh, this approach becomes impractical as the number
of passages is increased. This limitation arises independently of the parallel scaling performance
of the code, since the main constraints come from having to store large snapshots of data for the
Krylov-Schur algorithm in random-access memory (RAM), and finding computational resources
on which instantaneous access to N× (number of processors per passage) processors is available
for extended periods of time. More pertinent to the analysis itself, however, is that larger time
intervals between the snapshots may be required to converge the low-frequency modes with the ex-
ponential time-stepping method, since with larger blade counts, structures with very low azimuthal
wavenumbers and low temporal frequencies are expected, resulting in convergence issues without
prior adjustment of the time step. Although this may seem like a hopeless endeavour, by making a
few sufficiently general assumptions these issues are easily mitigated.

Linearizing the N-periodic system we arrive at the initial-value problem (IVP)

dv
dt

= Av, v(0) = v0, (1)

where A and v represent the nN × nN and nN size matrix and vector, respectively, with n being the
total degrees of freedom in each passage and N the number of passages.

We make two assumptions about this system:
(1) That the blade surface geometries, and by extension the meshes, for each passage are

identical and
(2) That the mean flow within each passage is the same.
Grouping the entries of A and v by passages, such that v = (v0, v1, . . . , vN−1)ᵀ, with v j denoting

the portion of the state vector in the jth passage, under these assumptions, transforms the state
matrix into block-circulant form

A =

⎛
⎜⎜⎝

A0 A1 · · · AN−1

AN−1 A0 · · · AN−2
...

. . .
. . .

...

A1 · · · AN−1 A0

⎞
⎟⎟⎠. (2)

We can interpret this form of A as the local dynamics of a given passage in v j , governed by A0,
and the influence of all other passages vi �= j effected through the off-diagonal matrices Ai �=0 on the
dynamics of v j , so that

dv j

dt
= A0v j +

∑
i �= j

A(i− j) mod N vi. (3)
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In other words, the number of off-diagonal nonzero blocks is determined by the spatial coupling
between the jth passage and its neighbours. Generally, this is imposed by the spatial differentiation
scheme as in the case of finite-difference and finite-volume schemes, or through the boundary nodes
of neighboring elements in a finite-element formulation, for example.

Many applications, including this present one, exhibit either nearest-neighbor coupling or a weak
global coupling. This means that the only passages that contribute to the solution are the dynamics
in the passage above and below.2 Hence, Eq. (2) becomes a block-tridiagonal system with only
AN−1, A0 and A1 �= 0. Although smaller, the system is not yet decoupled, however, and further
manipulation is required to make progress.

Fortunately, among the many properties of circulant matrices is the diagonalization transfor-
mation that takes a block-circulant matrix into block diagonal form (see, e.g., [10]). Picking the
matrices so that J ∈ CN×N and P ∈ CnN×nN ,

J j+1,k+1 = ρk
j

/√
N, ρ = e2π i j/N (4)

P = J ⊗ In×n, (5)

and for any matrix function, f , of the system matrix, we can diagonalize according to

PH f (A)P = f
(
Â

)
, (6)

where

f (Â) =

⎛
⎜⎜⎜⎝

f (Â0)
f (Â1)

. . .

f (ÂN−1)

⎞
⎟⎟⎟⎠ (7)

and moreover,
Â j = A0 + ρ jA1 + 1/ρ jAN−1. (8)

In a matrix-free setting we are only concerned with matrix-vector products such as Â j v̂ j , and so
from Eq. (8), it is clear that this amounts to taking the three matrix-vector products A0v̂ j , A1v̂ j and
AN−1v̂ j .

While performing each of these calculations individually is possible, to reduce the computational
overhead, we instead linearise around a three-passage geometry with identical mean flows in each
passage, giving a 3n × 3n block-circulant matrix

3A =
⎛
⎝ A0 AN−1 A1

A1 A0 AN−1

AN−1 A1 A0

⎞
⎠. (9)

Multiplying by the augmented vector 3v̂ j = (0, v̂ j, 0) gives

3A
(

3v̂ j
) =

⎛
⎝AN−1v̂ j

A0v̂ j

A1v̂ j

⎞
⎠, (10)

which is now easy to combine into the form of Eq. (8). Assuming that all passages have the same
processor distributions, the local solution of the top and bottom passage is simply transferred to

2In the case of weak global coupling, assuming nearest-neighbor coupling would introduce a small error.
Indeed, in many numerical codes spatial coupling is introduced through the derivative, which is known to be an
essentially local property. Therefore, if the passage height between blades is sufficiently large, this error will
typically be below that of machine precision. Note that this is an assumption about the structure of the code,
not the physical system.

103904-4



GLOBAL STABILITY ANALYSIS OF AN IDEALIZED …

STEP 1 STEP 2 STEP 3

(a) (b)

FIG. 2. Evaluation of the matrix-vector product Â j v̂ j using a three-passage linearization. The three-stage
direct approach making use of sequential matrix-vector evaluation in (a) can be simplified in (b) by combining
the three stages into one matrix-vector evaluation.

the corresponding processor on the middle passage, premultiplied by ρ j or ρ−1
j and added to

the local solution of the corresponding destination processor (i.e., the processor where the final
solution is assembled). This is easily achieved in MPI by using MPI_Cart_create and a sequence
of MPI_SendRecv calls, and has the advantage of using preexisting linear codes with minimal
programming intervention required by the end user. A diagram of this procedure is shown in Fig. 2.
Figure 3 shows how these coupling fields, A1v̂ j and AN−1v̂ j , manifest themselves in the periodic
blade row that is considered here. A linearization of the three-passage system is performed and a
random field for v̂ j is introduced into the middle passage. In the figure, the solution in the middle
passage is removed to visualize coupling fields, and to demonstrate how these are reintroduced into
the central passage. This case also serves as a validation of the adjoint, with a corresponding adjoint
matrix-vector product computed and compared using the familiar duality relation, giving a relative
error of 4.571 × 10−14.

In essence, the large original problem in Eq. (1) is recast as N independent three-passage
simulations, since now we only have to solve problems of the kind

d (3v j )

dt
= 3→1C(3A)(3v j ), (11)

FIG. 3. The coupling fields A1v̂ j and AN−1v̂ j are shown for the computational, three-passage mesh. The
assembly procedure taking these fields into the middle passage is also shown.
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where the matrix 3→1C represents the communications in Fig. 2(b), the assembly of the sum (8)
and zeroing out the top and bottom passages to return the resulting evolution vector to the standard
triplet form, in other words: d (3v j )/dt = (3dv j/dt ).

Without optimization, the computational cost is nominally three times larger for the full peri-
odic system than the full computation, however these N simulations may be run independently,
with lower demands on the computational resources at any given time and with a lower RAM
requirement. Further improvements to the overall cost can also be made by carefully examining
the exact form of the coupling matrices A1 and AN−1, since these are expected to have substantial
sparsity, and also by assessing the code structure that leads to the coupling matrices. As an example
of the latter, where ghost regions are used, the coupling matrices are essentially a proxy for the
communications between the ghost cells and the interior of the neighboring domain in the triplet.
Instead of communicating with the neighboring mesh, however, the procedure can be modified for
a single periodic passage so that the ghost-cell portion of the data is intercepted, multiplied by
the appropriate root of unity ρ j and then applied to the destination processors across the periodic
boundary. Doing this would bring the total cost from 3N to just N as no additional mesh segments
have to be considered. On the other hand, the cost of significant additional development time is a
consideration that must be taken into account, especially since many existing code structures would
have to be rewritten.

In the following we use the same mean flow and passage geometries that have been computed for
the single passage to keep the analysis consistent with the work performed earlier in part I. The only
alteration between our two cases has been the reduction in the size of the sponge layer, in the linear
analysis, from �xsponge = 2.0 to �xsponge = 1.0, so that the larger wavelengths can be represented
with reduced dissipation within the domain.3 We compute all the results in this section using the
N-periodic decomposition method detailed above.

C. Impulse response analysis

Following the methodology set out in part I, we begin with an impulse response analysis. Since
the local dynamics near the blade surface have already been established, we turn our attention in-
stead to the large-scale structures present in this 10-periodic configuration. For ease of comparison,
the initial condition is kept identical to the single-passage case but is applied only between the third
and fourth passages (P2 and P3 in Fig. 1) in the configuration, as shown in the upper left panel
of Fig. 4. Of course there is a greater flexibility in this particular case regarding the choice for
the exact form of the initial perturbation, but it has been kept consistent with our single-passage
response analysis, so that the mechanism by which the instability develops within the perturbed
passage, and how it communicates and interacts with the neighboring passages, is made clearer and
easier to interpret. The other panels in Fig. 4 show the disturbance evolving over the same t = 20
timescale used in the single passage, for an easy comparative analysis.

Initially the perturbation evolves in much the same way as in the single passage, with scattering
from the perturbed blade as the disturbance is advected into the path of the aerofoil leading
edge. This is followed by the now familiar growth of Tollmien-Schlichting wave packets and the
subsequent amplification by the Orr mechanism at the separation bubble. The difference here, at
least for t � 1.0, is that while the convective disturbance is left at the surface of the perturbed
aerofoil, the pressure waves scattered from the leading edges can now propagate and interact with
neighboring blades, at which point secondary reflections and further scattering of the pressure waves

3This has the effect of marginally increasing Re{λ} for M6, making it unstable. We should note too that, in
the context of a mean flow stability analysis, this small change in growth rates is largely unimportant because
the dynamics of the problem are defined predominantly by the frequencies and structures of the global modes
rather than the growth rates. Mode frequencies are unaffected by the changes in the parameters of the sponge
layer.
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FIG. 4. The evolution of the transient response to the divergence-free perturbation. Also see the ani-
mation of the above image sequence in the Supplemental Material [18] (file Part2-Fig4-n-periodic-

impulse-response.mp4).

from the other blades can be observed at t = 0.5. Furthermore, through the acoustic receptivity
mechanisms identified in part I, these secondary scattered waves propagate along the aerofoil
surfaces and introduce additional convective instabilities on the affected aerofoils, which can be
seen at the trailing edges at t = 1.0. These are nevertheless dominated by the blade to which the
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FIG. 5. Evolution of the 10-passage norm, showing the initial transient dynamics for t = 0 → 5 and the
asymptotic regime for t = 10 → ∞.

perturbation is applied, since most of the energy is retained in the convective structures rather than
the scattered acoustic waves of the initial pulse.

When the disturbance reaches the trailing edge, the acoustic source becomes active, which
once again occurs at approximately t = 2, based on the increase in the pressure component of
the norm in Fig. 5 above the level of the entropy component. As before, the acoustic radiation
exhibits a directivity that is focused primarily in the upstream direction, resulting in the interaction
of the acoustic waves with the regions of sensitivity identified in the wavemaker analysis for the
single passage. This time, however, these interactions occur on the perturbed blade as well as on
the pressure surface of the blade above and on the suction surface of the blade below. Indeed,
aside from the small amounts of scattering of the acoustic waves by the leading and trailing
edges of the unperturbed blades, the primary forcing that spreads the initial disturbance to the
neighboring passages occurs through this mechanism. This is confirmed by the localized growth
of the disturbance despite the acoustic waves propagating through the whole domain at timescales
far shorter4 than the observed evolution of the perturbation.

As we noted for the single-passage case, both the pressure and suction surfaces have regions of
high receptivity to acoustic waves with frequencies associated with the Kelvin-Helmholtz instability
(i.e., Im{λ} ≈ 31), with the suction side being the more sensitive of the two regions. Although we
expect modifications to the M0 mode of the single passage, due to the removal of the restrictive
single-passage periodicity, we hypothesize—and will later confirm—that the receptivity mechanism
for this mode will be similar to those identified in the single-passage analysis, since the mean flow
is identical in both cases. This explains why the disturbance propagates downwards through to the
passage below, while the growth in the passages above remains constrained. This can be seen by
drawing a line between comparable features in the downstream wakes, and is illustrated for t = 5.0.

4The acoustic waves propagate at speeds of u ± Ma ∈ [0.7, 1.3], while the convective speed is Mc ≈ 0.3.

103904-8



GLOBAL STABILITY ANALYSIS OF AN IDEALIZED …

At intermediate timescales, between approximately t = 5.0 and t = 10.0, the main receptivity
mechanism begins to operate and propagate the disturbance throughout the domain. This can be
observed in Fig. 4 by the successive growth in the lengths of the wakes from the perturbed blade
and downwards (shown with a line for the t = 5.0 panel), although at this point the asymptotic
(t → ∞) phase relationship in the pressure dynamics between the blades is not yet fully established.
Localized wave packets of intensified acoustic radiation are observed periodically emanating from
the blades, followed by periods of quiescence (see the region x < 0, y ∈ [0, 3] at t = 5.0 and t = 7.0
of Fig. 4), which is consistent once again with the beating mechanism observed previously and
occurring, according to Fig. 5, at similar timescales to those observed in the single-passage impulse
response. It thus suggests that this growth occurs through local feedback mechanisms on the surfaces
of the blades observed in the single-passage setting.

Here we also observe the establishment of large-scale structures. Throughout Fig. 4 a slowly
moving region of approximately five to six passages propagates downwards, characterized by
wavefronts angled at approximately 45◦ from the axis of the blade row. Although a definitive
description awaits further analysis, the fact that it appears above the perturbed blade suggests that
the mechanism at play is related to scattered acoustic waves, as these are the only structures capable
of bypassing the asymptotically dominant receptivity mechanism, which, as we have mentioned
extensively, is mostly a localized interaction.

We can explain the persistence of this structure by noting that it, like the dominant mechanism,
propagates downwards one passage at a time, potentially through similar receptivity mechanisms as
discussed above, given the similarity of the acoustic wavelengths between single-passage M0 and
this structure. As such, the timescales for the feedback are similar, and so the “group velocity” of
both structures through the cascade are comparable.

The dephased wave packet is eventually dominated by the structure with a constant acoustic-
source phase relationship, as is seen developing on the blade surfaces at t = 20.0. This seems
reasonable because each blade has identical receptivity characteristics, by construction. Structures
with constant phase relationships between the passages are therefore expected to dominate, with
frequencies and growth rates dictated by the geometry of the problem. For asymptotically large
times (t → ∞), the most unstable eigenvalue dominates. Based on our earlier investigations we
expect this system to be unstable, with at least the same growth rate as the single passage, following
our observations of the spectral structure of the N-periodic system in Sec. II B. In fact, an expo-
nential fit of the norm growth rate between t = 10 → 20 shows a growth rate of Re{λ} = 0.390,
which is higher than that observed in the single passage. The corresponding snapshot at t = 20, in
Fig. 4, confirms that this is a full 10-periodic structure and that the mode is, at least qualitatively,
similar to that seen in the single passage with a near-constant phase shift between each consecutive
passage. This justifies the analysis of the N-periodic configuration, since it clearly demonstrates
that our system contains dynamics that are substantially different from, and impossible to model
in, the single-passage. Modeling larger sectors of the bladed disk are naturally expected to produce
additional, larger-period modes and behaviors, but this paper concentrates on a 10-periodic sector
in order to reduce the associated (and sizable) computational costs.

D. Global stability

Global spectra are obtained directly from the definition above, using the triplet system in
Eq. (10), by applying the SLEPc methodology introduced in part I. We observe that, for an
eigenvalue-eigenvector pair (λ j, v j ) of the triplet system for a root of unity ρ j , the vector v =
(v j, ρ jv j, . . . ρ

N−1
j v j )ᵀ is an eigenvector of the full N-periodic system matrix A, with similar results

for the adjoint operator following directly.
Note that, since PH AP = Â, taking the Hermitian conjugate of both sides results in PH AH P =

ÂH . This shows that the same process can be used to compute the adjoint modes alongside the
direct eigenvectors, and that, since w = (w j, ρ jw j, . . . , ρ

N−1
j w j )ᵀ, in the inner product 〈w, v〉M the

conjugation of w would result in the multiplication ρ̄ jρ j = 1 in each passage. It hence follows that

103904-9



GLAZKOV, FOSAS DE PANDO, SCHMID, AND HE

FIG. 6. The 10-periodic direct modes for the five nonsymmetric roots of unity. Note the absence of any
new unstable structures for ρ5, which means that the two-periodic system has the same unstable modes as the
single-passage case.

the wavemaker is invariant with respect to the passage, and so the wavemakers in what follows will
be presented within a single-passage domain only.

1. Direct spectra

The direct spectrum is calculated for the roots of unity {ρ j}9
j=1, and focusing primarily on the

modes with frequencies |Im{λ}| < 60, Im{λ} �= 0. This is because we have identified the most
unstable eigenvalue to be in this region in [1], and because we expect large-scale structures (with
wavelengths on the order of 10hp), such as the one observed in the upstream region of the impulse
response, to manifest with low temporal frequencies (e.g. |Im{λ}| � 20.0).

Instead of considering the modes for each ρi sequentially, we are rather interested in how a given
mode in the one-periodic case (i.e., the fields corresponding to modes in ρ0) changes based on the
periodicity of the problem as we move ρ j along the boundary of the unit circle. In other words, we
interpret the N-periodic analysis as a map of the unit circle onto the closed curve eig(Â(eiθ )), onto
which the discrete roots of unity ρ j = e2π iθ j/N are mapped as well.

We can illustrate this mapping on a smaller toy problem by plotting out the symbol curve of
T̂(z) = T0 + zT1 + TN−1/z, for points on the unit circle z = eiθ , representing all the possible roots
of unity, for all possible N ∈ N. With an arbitrary choice of 3 × 3 matrices,5T̂(z) is shown for the
three eigenvalues in each case in Fig. 7. Each of the eigenvalues follows its own path through the
complex λ space. This example clearly shows that while the “single-element” problem is stable,
the addition of other “elements” can lead to the system becoming unstable with the dominant
structure in the dynamics alternating between different mode families (e.g., compare the most
unstable eigenvalue in N = 2 against N = 3 in Fig. 7).

For the aerofoil case, the problem appears to be effectively symmetric about ρ5, which may be
due to the flow being essentially uniform and parallel to the mesh boundaries at which the periodic

5The toy-problem matrices are T0 = −
(

3/2 − 2i 0 0
0 1/2 + 4i 0
0 0 3

)
, T1 = −

(−1 1 −1
0 −1 1

−1 0 1

)
and TN−1 =

−
(

0 −1 −1
1 − i 0 1
−1 1 − i 0

)
.
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FIG. 7. Mapping of the unit circle z = eiθ onto the curve eig(Â(z)). With our choice of T0, T1, TN−1 the
eigenvalues traverse separate curves, shown in blue. Each panel presents the mapping of the roots of unity for
a given N , shown in red.

boundary condition is applied, although the exact cause of this feature warrants future investigation.
As a result, we will look only at modes for ρ0 → ρ5 in the analysis presented here. We observe
that there are no additional unstable two-periodic modes (ρ5) in Fig. 6. Since the spectrum for the
two periodic problem is the union of the ρ0 and ρ5 spectra, it follows that the dominant structures
observed for this case would give the same response as a single passage. This may lead to false
conclusions regarding the dynamics of multibladed systems when simulations that are performed
on a two-passage mesh do not show de-synchronization of the passages.

2. Most unstable modes

Let us first consider the most unstable mode (ρ0, M0). From Fig. 6, this mode becomes more
unstable in the five- (ρ2) and 10-periodic (ρ1) cases compared to the one-periodic passage, with
the growth rate increasing from Re{λ} = 0.347, for (ρ0, M0), to Re{λ} = 0.380, for (ρ2, M0), and
finally to Re{λ} = 0.408, for (ρ1, M0).6 The visualization of these modes in Fig. 8 shows that, as the
periodicity is increased, the wavefronts of the upstream acoustic field deviate away from the vertical
plane waves seen for ρ0, as expected, due to the changing phase relationship defined through the
N-periodic decomposition. We also observe that the form of the most unstable mode, (ρ1, M0) in
Fig. 8, matches the asymptotic behavior of Fig. 4. The only difference is that the asymptotic growth
rate of 0.390, determined in Fig. 5, is lower than the eigenvalue growth rate Re{λ} = 0.408. This is
attributable to the length of the impulse response simulation and the slow decay of the low-frequency
dynamics associated with the dephased wave packet, which even at T = 20 is still not saturated by
the most unstable mode. Based on these growth rates, it is reasonable to assume that the real part of
the mapping of the unit circle onto the symbol curve grows for small arguments θ before gradually

6The modes are (ρ0, M0 ) = 0.409 − 26.143i, (ρ1, M0) = 0.409 − 26.143i and (ρ2, M0) = 0.380 − 25.714i.
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(a) (b) (c)

FIG. 8. The most unstable pressure modes in the (a) single, (b) five-periodic, and (c) 10-periodic cases,
showing an adjustment of the upstream wavefronts to a more oblique configuration alongside dominant suction-
side dynamics on the surface of the aerofoil.

decreasing as the argument increases. However, with only the one-, two-, five-, and 10-periodic
solutions resolved with this analysis, it it not possible to obtain the exact mapping of the unit circle
onto the symbol curve, in a manner similar to that shown in the demonstration example of Fig. 7.
By choosing a highly composite number,7 further resolution can be achieved, thereby allowing for a
more detailed interpretation of the effects of having more blades within the blade row; the downside
of this approach is increased cost, albeit one that increases linearly with N .

Continuing with the analysis, the pressure distributions for the three scaled modes are shown
in Fig. 9. Peak pressure amplitudes are consistently higher for the 10-periodic case when com-
pared to the five-periodic configuration on the suction surface, with higher pressures seen for the
five-periodic case only on the pressure surface for x > 0.9. On the suction side, pressures for
(ρ0, M0) are higher than the high-periodicity modes for x < 0.220, with the latter dominant for
0.220 � x � 0.507. Crucially, (ρ1, M0) attains higher amplitudes (∼5% higher) at the point of
peak sensitivity, at x = 0.273, as evidenced by the adjoint fields. Downstream of x = 0.507, the
peak pressures of (ρ0, M0) increase and are greater than those of (ρ2, M0), and comparable to those
of (ρ1, M0) (|p| ≈ 3.356 × 10−2). Note also that peaks in x > 0.507, corresponding to ρ1 and ρ2,
show small displacements in x due to the changes in the standing wave pattern resulting from the
small variations in frequency between the modes.

Adjoint fields demonstrate reduced sensitivity for the N-periodic modes on both the suction and
pressure surfaces, but the deficit is reduced when the wavemaker is calculated, as shown in Fig. 9(b).
The wavemakers show that the (ρ0, M0) mode has the greatest structural sensitivity, with sensitivity

7A highly composite number is one that has a large number of divisors. This means that many periodic-
ities are captured by a periodic analysis. For example, N = 10 has divisors 1, 2, 5, 10, while N = 12 has
1, 2, 3, 4, 6, 12.
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(a)

(b)

FIG. 9. The surface direct and adjoint pressure distributions for the modes (ρ0, M0), (ρ1, M0), and (ρ2, M0)
in (a), and the corresponding wavemakers in (b).

decreasing while traversing the unit circle (i.e., as arg(ρ) increases). It is important to note, however,
that a lower value of the wavemaker field is not necessarily indicative of a less dominant structure,
only one that is less sensitive. Highly amplified robust structures may therefore result in lower
wavemaker fields, which could be the process that leads to smaller wavemaker peaks for (ρ1, M0)
and (ρ2, M0).

The effect of changing the argument of ρ is to alter the phase relationship between the pressure
and suction surfaces. By changing ρ, the phase relationship may become more optimal between
the features on the suction and pressure surfaces; this possibility requires further study and greater
resolution in θ to verify. Furthermore, we have seen in the impulse response analysis, carried out
above, that the system is defined by convective and acoustic timescales. Hence determining the
dominant modes may involve considering the phase relationships at the point of receptivity and
the form of the resulting waves as they interact at the trailing edge. For this reason, an acoustic
ray-tracing argument should be adopted to further explore the relationship between periodicity and
modal growth rates.
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(a)

(b)

FIG. 10. Pressure fields for (ρ2, M1), (ρ3, M0), and (ρ4, M1) in (a), with the pressure amplitudes within
the passage shown in (b). In (b) note the high-pressure amplitudes within the passage in (ρ3, M0), and the
appearance of pressure structures in the downstream and upstream of (ρ2, M1) and (ρ4, M1), respectively.

3. Unstable structures

The higher periodicity also leads to unstable resonance structures that trap acoustic waves within
the blade passages, reminiscent of Parker modes. This mode family is seen for (ρ2, M1) = 0.154 −
40.402i, (ρ3, M0) = 0.235 − 40.769i and (ρ4, M1) = 0.0493 − 40.838i. While a trapped acoustic
mode is seen within the blade passages for all these modes, note how the change in periodicity in
(ρ3, M0) concentrates the mode within the passage by removing propagating waves in the upstream
and downstream regions, and that this corresponds to the most unstable mode of this group. We
recall from Fig. 6 that there are no unstable modes for ρ0 in this frequency range, and hence this
example demonstrates the appearance of families of modes that are captured in our multipassage
setting. The modes discussed here, and the pressure amplitudes highlighting the trapped acoustic
waves, are shown in Fig. 10.

4. Low-frequency dynamics

Low-frequency dynamics are also captured in our analysis, with a spectrum that is significantly
denser in |Im{λ}| < 20 for all ρi where i �= 0, in comparison to ρ0. Despite the challenges of con-
verging these modes, we have been able to select the sufficiently well converged modes (ρ1, M371),
(ρ2, M220), (ρ3, M81), (ρ4, M59), and (ρ5, M242), so as to visualize the low-frequency dynamics here.
These modes are shown in Fig. 11, and, in all cases shown here, the pressure dynamics of the
modes exhibit large-scale plane-wave structures that span multiple passages, both upstream and
downstream of the blade row. Furthermore, unlike the modes seen previously in this paper, the
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FIG. 11. Selected low-frequency acoustic modes of the 10-periodic linear cascade.

acoustic mode structure within the passages takes the form of plane waves with wavelengths greater
than 1.

To determine the driver of these acoustic dynamics, plots of the speed, |u|, in Fig. 12, show
the hydrodynamics localized at the blade surface. In essence, the unsteady hydrodynamic activity is
confined to the suction-side boundary layer and within the wake downstream of the trailing edge. For
the lowest-frequency mode considered here, (ρ1, M371), these dynamics take the form of acoustic
plane waves occupying the upstream portion of the domain and driven by a low-frequency (Im{λ} =
2.76) “flapping” motion of the suction-side laminar separation bubble. In contrast, the other modes,

FIG. 12. Plots of the speed fields |u| for the low-frequency modes. Arrows indicate high-amplitude
disturbances in the near wake, while for (ρ1, M371), the arrows show low-frequency flapping on the suction
surface.
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with higher frequencies, localize their fluctuations closer to the trailing-edge and the near-wake
regions.

The selected modes in Fig. 6, especially (ρ1, M371), are located in regions of the spectrum that
are surrounded by other modes with poorer convergence characteristics, although ones that are
suggestive of higher growth rates. As such, while we have been able to observe low-frequency
structures in these modes, further analysis, including a careful receptivity study, are required for
a more complete understanding of the hydrodynamic features driving these modes. This can be
achieved by using a combination of shift-invert and harmonic extraction techniques to target the
low-frequency branches of the spectrum.

III. CONCLUSION

This second part of our two-part paper extended the modal and nonmodal aeroacoustic stability
analysis of a representative single-blade passage at Re = 100 000 and M = 0.3 to a 10-periodic
configuration. Using a cyclic decomposition of the system matrix, we demonstrated how a tuned
N-periodic blade row problem may be decomposed into smaller subproblems that enable computa-
tionally tractable stability calculations for cascades of arbitrary sizes by making use of the properties
of block-circulant matrices.

Through the use of this method, the single-passage analysis was replicated for a 10-periodic
linear blade row. The impulse-response analysis showed that disturbances propagate through this
linear cascade by exploiting suction-side sensitivities that are exposed to the dipole source at the
trailing edge of the blade above. Scattering of an initial pressure pulse by the leading edges of
the cascade blades also resulted in the formation of a persistent transient region occupying five
passages. This region is characterized by weak acoustic radiation in the upstream and a perturbed
wave vector. The persistence of this feature was explained by the same suction-side propagation
arguments. These observations are summarized in Fig. 13(c).

This analysis of the N-periodic system represents a first attempt at a detailed global stabil-
ity analysis of a linear cascade configuration with N > 1 with emphasis on acoustically driven
feedback mechanisms. By extending the calculation to 10 passages, it was shown that the local
feedback mechanisms that exist in the single-passage case can result in the formation of large-scale
synchronization structures that span the entire blade row. These structures are shown to arise due
to the interaction of acoustic sources with neighboring blades—a feature that cannot be resolved
by single-passage impulse-response analyses, such as those presented in [19]. Due to the absence
of shocks in this model compressor blade row, blade-to-blade interactions in our study are more
complex than in the high-pressure turbine simulations in [19], as acoustic perturbations can travel
further upstream and hence interact with blades both above and below, as shown in Fig. 13.

The direct and adjoint spectra for the 10-periodic problem were also obtained successfully.
From this, we concluded that the 10-periodic domain accommodates a more unstable dynamics that
supersede the most unstable mode for the single passage. Low-frequency modes were also obtained
and analyzed using adjoint quantities and the wavemaker concept. Of more practical interest,
however, is the observation that the two-periodic system does not admit any additional unstable
modes, which demonstrates that computational solutions seeking to investigate flow instabilities in
one or two passages may fail to capture the dynamics of the full N-periodic system, even if the
one- and two-passage solutions have the same dominant dynamics. Instead, an analysis of the type
presented here is required to represent the full flow behavior including local instabilities, receptivity
points, feedback loops, beating and synchronization effects, and their complex interactions.

In this work we have restricted ourselves to considering multipassage configurations where the
geometry and mean flow field in each passage are identical: a so-called “tuned” state. In reality,
working machinery rarely satisfies this assumption. Instead, these blades may be mistuned in some
way, such as in their mechanical properties, stagger angle, pitch height, surface geometry, or the
effects of other components of the machine altering the mean flow in some portion of the cascade.
This can be by design, as a result of wear and damage to the aerodynamic surfaces, or due to blade
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(a)

(b)

(c)

FIG. 13. The local and global feedback mechanisms identified for N-periodic geometries in this paper.

untwist altering the stagger angles of individual blades under the applied aerodynamic loads. Prior
work on mistuned periodic assemblies has suggested that small amounts of mistuning can result in
mode localization and eigenvalue veering phenomena in systems where the oscillating substructures
are weakly coupled. A brief overview and discussion of this is presented in Appendix C of [20],
although further work is required to adapt the present method to these situations.
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APPENDIX: DETAILS OF COMPUTER WALL TIMES

All numerical calculations within this paper require the use of high-performance computing
(HPC) facilities, and therefore it bears a brief mention of how this is achieved here.

Calculations in part I of our paper use the FinisTerrae II supercomputer provided by CESGA,
using 2.5GHz Intel Xeon E5-2680v3 (Haswell) processors, while the results in this part are obtained
primarily using the Edinburgh Parallel Computing Centre (EPCC) ARCHER system, which used
2.7 GHz Intel Xeon E5-2697 (Ivy Bridge) processors, although some additional results were also
obtained using the implementation phase of the successor system, ARCHER2.

The single-passage mesh described above is the basis for all calculations in this paper. For the
fast nonlinear cases, the simulations are run on 80 processors, with 20 in the horizontal/axial and
four in the vertical/pitchwise directions, and amounts to a load of 22 528 degrees of freedom per
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TABLE I. Computer resource utilization for the different cases shown in both parts of this two-part paper.

Case Grid Size Procs.
Wall Time

(h) CPUh

Nonlinear
80

07:56 635

Single passage
Impulse response

450 560
09:18 744

Direct eigenvalues
164

17:00 2788

Adjoint eigenvalues 48:00 4873

Impulse response ∼08:30
(avg)

∼48 734
(total)

Multiple passages Direct eigenvalues 1 351 680 492 ∼20:48
(avg)

∼102 336
(total)

Adjoint eigenvalues ∼27:40
(avg)

∼136 120
(total)

processor. For the larger eigenvalue calculations, this is increased to 164 processors in a 41 × 4
distribution, which was found to give sufficiently fast turn-around times.

For the multipassage problem in Sec. II, the methodology consists of performing similar calcu-
lations on three identical passages that are stacked pitchwise. Processor loading and distributions
are identical in this case, with 492 (= 3 × 164) processors used. It appears that the single-passage
adjoint eigenvalue calculation was bottle-necked by disk write speeds for the simulation that
returned >2000 eigenvalues, and hence terminated after 48 hours. A later test simulation produced
a nominal runtime of 34:00, where the number of returned vectors was limited to 65. This seems to
have been a problem with the HDF5 library on FinisTerrae II, since a reinstallation of the code on
ARCHER results in “multiple-passage” figures that suggest a scaling between the direct and adjoint
closer to 1.3. This is larger than the maximum direct-adjoint scaling factor of 1.1 observed in [21],
and suggests that there may be additional performance losses incurred in either IO performance
or through the amended N-periodic structuring of the right-hand side function (see Sec. II B for
additional details), the latter of which is more likely here.

A summary of computational times and costs is given in Table I.
At realistic operating conditions, which typically occur with higher Reynolds on the order of of

Re ≈ 106, the associated mesh resolution requirements scale as N ≈ Re37/14 for DNS, and as N ≈
Re13/7 in wall-resolved LES [22], from which it follows that a transition of the present analysis to
three-dimensional calculations would incur significant penalties in terms of the number of floating-
point operations from both the refined grid and the reduced time step.

Nominally the computational cost of the N-periodic methodology depends only on N , but
this somewhat masks the data rearrangement step of the triad, as described in Sec. II B. With
a greater number of degrees of freedom in each passage, the communication step will become
more expensive, and hence the scaling relationships in Table I will degrade; however, this may be
mitigated with better data management techniques that have not been explored in this paper.
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