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Global stability analysis of an idealized compressor blade row.
I. Single-blade passage analysis
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A direct-adjoint mean flow global stability investigation of self-excited instabilities in an
idealized, two-dimensional compressor blade row at off-design conditions is carried out,
with a focus on acoustic feedback mechanisms underlying the observed instabilities. This
paper is the first part of this work, where nonlinear flows, impulse responses and the global
modes are computed for a single-passage system, with good agreement between the linear
and nonlinear structures. Structural sensitivities and feedback loops are identified with the
aid of wavemakers and show that dominant structures arise due to feedback mechanisms
linking the pressure and suction sides of the aerofoil via acoustic waves emanating from
the trailing edge. A separate, second part extends this analysis to multiple-blade passages
per period window by exploiting the theory of block-circulant matrices and Bloch-wave
theory.
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I. INTRODUCTION

Increasingly stringent emissions regulations are presenting novel challenges to the turboma-
chinery community. With the need to produce more efficient, lighter, and quieter aeroengines,
this requires additional understanding of flow instabilities and unsteady flow phenomena present
in the various components of the turbomachine [1]. Despite these prominent goals, early-stage
design in industry still relies mostly on steady-state Reynolds-Averaged Navier Stokes (RANS)
models over a single passage that capture the aerodynamics—but not the instabilities. Access to
computationally efficient models, as well as an in-depth understanding of the instabilities and their
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feedback mechanisms, is mandatory for optimizing these systems and for eventually achieving the
specifications outlined in the regulations.

Modal and nonmodal analyses provide a powerful framework for the analysis of these systems
[2,3] and have been applied to a wide variety of flow problems with some considerable success.
Of these, perhaps the most used in industrial settings are the data-driven modal-decomposition
approaches of the proper orthogonal decomposition (POD) [4], its spectral, frequency-based
counterpart (sPOD), and the dynamic mode decomposition (DMD) [5]. These have been applied
extensively in turbomachinery contexts, with success of these methods largely attributable to the
fact that they may be applied to both numerical and experimental data directly, using snapshots of
the nonlinear flow solution or observations of the flow. Many comprehensive reviews demonstrating
the theory, strengths and weaknesses [3], and the application [6] of these methods exist. Although
these methods offer a convenient, and frequently the only, option for a modal decomposition of
the flow, perhaps their greatest shortcoming is that they fail to provide any direct indication of
the structural sensitivities of the various modal structures that are obtained. For numerical studies,
however, the availability of a linearized component (i.e., the direct linear operator) can be used to
address this issue, which ultimately enables global stability analyses to be carried out [7].

The global modes approach is most familiar in the context of steady base flows undergoing
transition to instability, with early forays into stability theory starting with the study of simple
flows at low Reynolds numbers [7]. By contrast, the vast majority of flows in turbomachinery are
highly unsteady, with conditions taking the flow well beyond criticality. Under these circumstances,
the argument for the application of classical stability theory around steady base flows becomes
increasingly tenuous. Recent developments have instead considered time-averaged mean flows as
the linearization state. Unlike steady base flows, these always exist, but are no longer the equilibrium
states of the Navier-Stokes equations. It has been shown in [8] that this analysis remains valid,
however, since important nonlinearities of the flow field are accounted for in the establishment of the
mean flow. For this reason, many studies that have attempted mean-flow global stability analyses of
fuel injectors [9,10], jets [11], and aerofoils [12,13], have shown very good agreement between both
the spatial structures and their corresponding temporal frequencies when compared to the spectrum
of the nonlinear flow field. Furthermore, the adjoint of the direct operator, which is equivalently
to the Hermitian conjugate of the direct linear system, can provide additional structural sensitivity
information for the given global modes [14–17] and has seen great utility in many turbomachinery
optimization applications [18,19] and sensitivity analyses [13]. Two versions of the adjoint approach
exist: the continuous [20] and the discrete [21], with the latter preferred here for consistency with
the discretized direct operator. Moreover, it is also worth highlighting that for many flow problems
the Navier-Stokes operator in the large Reynolds number regime is highly nonnormal, the result of
which is that it has the potential to support large-scale transient dynamics that differ considerably
from the asymptotic behavior obtained from the global modes [22]. The flow considered in this
study is no exception in this respect. For this reason, performing an impulse response analysis prior
to calculating the spectrum and the corresponding eigenvectors appears to be a prudent step to
evaluate the effects that nonnormality has on the flow.

The demonstration problem selected in our analysis is inspired by previous flow receptivity stud-
ies conducted on isolated aerofoils, which we use here and apply to simplified cascade geometries to
demonstrate this methodology. Briefly, earlier work [23] identified the presence of discrete tones on
isolated aerofoils and suggested empirical laws for the evolution of the main peak for the tonal noise
structure. Theoretical and experimental work by Tam, Fink, Nash, and others [24–27] later proposed
that the presence of these discrete tones can be attributed to localized acoustic feedback mechanisms
linking the acoustic source at the trailing edge to the upstream boundary layers of the aerofoil,
with subsequent numerical work considering this problem on a NACA 0012 profile [28,29] and
controlled-diffusion geometries [30,31]. In his earlier work, Fosas de Pando [12] analyzed this tonal
noise problem with the NACA 0012 aerofoil and performed a global stability analysis that correlated
these tonal noise peaks to global mode structures. Later calculations [13] extended this analysis
using adjoint techniques and wavemaker analysis, and showed that both the pressure and suction
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sides of the aerofoil participate, though to varying degree, in setting the feedback mechanisms. This
latter analysis serves as the inspiration for the work carried out here.

The geometry and flow conditions are chosen so that the flow exhibits many of the qualitative
flow features that are present in more realistic settings. These include oscillating laminar separation
bubbles that form under adverse pressure gradients on the aerofoil suction side, unsteady boundary
layers on the pressure surface, trailing-edge shedding processes, inhomogeneous mean-flow den-
sity gradients, and acoustic scattering from both the leading and trailing edges. Nevertheless, in
this study, we are limited to considering linear cascades consisting of two-dimensional midspan
sections at modest flow regimes. In reality, turbomachinery flows show significantly more com-
plex flow behavior, due to three-dimensional processes and higher Reynolds and Mach numbers.
While this constrains a direct translation between the findings of this paper and the industrial
design process, the goal here is not only to demonstrate the stability analysis framework, but
also to inform the reader of potentially critical phenomena that may soon be within reach of
this methodology in future large-scale LES and DNS simulations that can capture this additional
complexity.

This paper is split into two parts. In the first part of this study, Sec. II introduces the representative
compressor cascade flow case on which the global stability analysis is to be performed, with
further details of the compressible, viscous Navier-Stokes solver, its linear counterpart, and the
methodology for obtaining the global modes concluding this section. The single-passage case is
then considered in Sec. III, so that the local feedback mechanisms over one blade can be identified.
Here the nonlinear flow field is analyzed using a global Fourier transform in Sec. III A, which
identifies the main features of the acoustic spectrum for this problem, and the mean flow is obtained
and described in Sec. III B. A linearization around this state is performed, and an impulse response
analysis carried out in Sec. III C, to identify transient growth effects that occur due to the operator’s
nonnormality. Following this, the global modes are calculated in Sec. III D, the spectrum analyzed
and decomposed into groups of modes that capture distinct families of behavior for the dominant
modes in Sec. III E 1, for the high-frequency separation bubble dynamics in Sec. III E 2 and for
confined mode structures in Sec. III E 3. The consideration of the single passage concludes with a
phase and group velocity analysis in Sec. III F, which seeks to determine relationships between the
different modes within the global spectrum.

In part II of this publication [32], the above analysis is extended to a ten-periodic blade row using
the algebraic method introduced by [33]. Details of the geometry and implementation are provided,
respectively. This is followed once again by an impulse response analysis and a global stability
analysis, where particular emphasis is directed towards synchronization effects across multiple-
blade passages.

II. NUMERICAL METHODOLOGY

A. Geometry

The single-passage geometry consists of an idealized controlled-diffusion compressor blade
developed by [34,35] and later used in a low-speed aero-elasticity experiment [36]. All simulations
presented here are performed at a chord-based Reynolds number of Re = 100 000 and an exit
Mach number of M = 0.3. The inlet flow angle is set to θin = 37.5◦ to match the inlet angle of the
blades, and the nondimensional pitch length for the periodic boundary of the linear cascade is set
to hp = 0.6. These flow conditions are adapted from an experiment and previous numerical studies
[37,38] by decreasing the Reynolds number from Re = 195 000, and increasing from M = 0.05, so
that a coarser mesh, and consequently faster time stepping, could be used to increase calculation
speed. This choice of parameters also enables us to model the larger, more demanding cases in part
II of the paper. Furthermore, as the purpose of this study is to also develop and demonstrate the
numerical framework, the adjustments in the Reynolds and Mach numbers are chosen for numer-
ical convenience to expedite the numerical calculations rather than to make definitive statements
regarding the flow properties of the aerofoil at the experimental conditions. Nonetheless, the new
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TABLE I. Single-passage mesh parameters.

Parameter Grid A Grid B Grid C

nupstream 540 576 1080
ndownstream 540 680 1080
naerofoil 680 840 1360
nvertical 256 256 512
Lupstream 3.075 3.233 3.075
Ldownstream 4.024 4.250 4.024
y+ 1.4 0.8 0.7

conditions are chosen so that the main mean flow features, in particular the laminar separation
bubble on the suction side and its location, match qualitatively the experiment and the exhibited
dynamics are qualitatively similar. This will be discussed further in Sec. II B.

The flow field is discretized on a structured H grid, with the mesh parameters given in Table I, and
the computational domain shown in Fig. 1. Of these, Grid A is used for all numerical calculations,
while Grids B and C were used for the grid independence study, the exhaustive details of which
are presented in [39]. To remain consistent with the analysis performed later in part II, the
axial lengths of the upstream and downstream sections of this grid are fixed at Lupstream = 3.075,
Ldownstream = 4.024. Vertical refinement of the mesh in the downstream section is also gradually
smoothed over Lsmoothing = 1.5 so that unsteady wake structures are represented with sufficient
resolution everywhere in the downstream region. Periodic conditions are applied along the top and
bottom edges of the upstream and downstream meshes, with steady inflow and outflow boundary
conditions specified at the left and right sides of the mesh, respectively, in order to match the
required flow angle and outlet Mach number. The minimum grid spacing is �s0 = 4.78 × 10−4,
�s1 = 1.89 × 10−4 at the aerofoil surface, with the maximum spacing found in the upstream region

FIG. 1. The single-passage structured grid showing every tenth grid line in each dimension so that the grid
metric can be visualized. Boundary conditions are indicated using colored lines.
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with �s0 = 8.30 × 10−3, �s1 = 6.39 × 10−3, where si is the arc-length along direction i ∈ 0, 1.1

The maximum stretching ratio, |�si − �si−1|/|�si−1|, between consecutive nodes is set to 5%.
At these flow conditions the key unsteady feature is a reattaching laminar separation bubble

which forms on the suction side and is centered at 0.55 × Cax, where Cax is the axial chord, before
reattaching.

Numerical and experimental nonlinear unsteady simulations of this blade have also shown strong
vortex shedding from both this detached shear layer and the blunt trailing edge. At higher Reynolds
numbers, both the laminar and turbulent solutions of this cascade [37] also show two-dimensional
structures within the pressure-side boundary layer which is subject to a positive pressure gradient.
These two-dimensional features subsequently turn into Görtler vortices, or streamwise streaks, on
the final quarter of the pressure surface, before finally interacting with the trailing edge. Note that
these features are absent in the laminar solution in [37], although present in the scale-resolving
turbulent flow simulation in [38]. These flow conditions provide rich dynamics under which multiple
complex flow features interact and are coupled by the resulting acoustic field arising from the
unsteadiness.

B. Numerical simulations

A two-dimensional compressible, high-order Navier-Stokes code based on the pseudo-wave
method [40,41] is used for the numerical work in this paper. Advection terms are computed using
fifth-order compact upwinding schemes [42], with the dissipation terms differentiated using a
compact third-order scheme [43]. A low-storage fourth-order Runge-Kutta method [44] is then
used to march the solution forwards in time via the method of lines. Parallelization is achieved
using the message passing interface (MPI) [45], so that these codes may be deployed on modern
high-performance parallel computing hardware with maximum scaling efficiency.

Direct and adjoint dynamics are obtained from an efficient linearization [46] of the nonlinear
code. Matrix-vector multiplications and time-stepping functionalities of this code interface with
high-performance linear algebra libraries and solvers integrated into PETSc [47–49] and SLEPc
[50] through wrappers providing interfaces to the linearized right-hand side functions.

C. Choice of base flow

Integral to any global stability analysis is the choice of base flow taken as the linearization point
around which the linear dynamics are considered. Snapshots of the flow shown in laminar and
scale-resolving simulations in [37,38], respectively, and later in Sec. III A, show that the flow field
is dominated by instabilities, with no natural steady flow around which a linearization may be taken.
Based on the evidence of prior attempts to obtain steady flow states for isolated aerofoil flows (see,
e.g., [41]) by reducing the Reynolds number and using stabilization techniques such as selective
frequency damping [51], such approaches are likely to lead to large separation regions that do not
adequately reflect the realistic flow dynamics in the vicinity of the blade surface. Classical stability
analyses performed on steady base flows, derived through these methods, are similarly incapable of
accurately modeling the unsteady spatial structures and characteristic frequencies due to the removal
of intrinsic nonlinearities that govern the unsteady characteristics of the flow (see the discussion in,
e.g., [29]). For this reason, and following from our discussion in the introduction, we select the
time-averaged mean flow as the flow state about which to linearize our equations.

This mean flow is computed from the nonlinear flow field once it has reached a quasi-periodic
limit cycle on a single periodic passage, for t � 20. This flow is then averaged over an additional
time interval of size tT = 30, so that the flow in the vicinity of the blade surface is converged. Despite
this long averaging time, rare vortex-merging phenomena occurring in the downstream region result

1In other words, i = 0 is the horizontal direction, and i = 1 the vertical, for a rectilinear Cartesian mesh.
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in a far-field mean flow that is not be fully converged until much later. This is not considered to be
a significant problem, however, since we focus our analysis primarily on the hydrodynamics and
acoustics in the vicinity of the aerofoil and in the near wake, with the dominant dynamics expected
to occur in these regions.

In studies with higher Reynolds numbers, where the boundary layers are almost fully turbulent,
it may be possible to avoid this time-averaging procedure by replacing the mean flow with a RANS-
derived base flow, which has been done in many prior studies (see, e.g., [52]). If such an approach
is desired, however, a careful comparison between the linear structures and the nonlinear flow must
be carried out to ensure that the main structures are accurately represented in such a linear model.

D. Linearization process and linear/adjoint dynamics

1. Linear operators and governing equations

The nonlinear Navier-Stokes equations, partially discretized in space, are written as

dq
dt

= F(q, t ), (1)

with F representing the nonlinear Navier-Stokes operator.
In the discretized framework, the derivatives within F introduce spatial coupling between indi-

vidual grid points, which make the naive approach of obtaining the linearization of F, by sequential
perturbations around the mean flow of each degree of freedom, prohibitively expensive. Instead,
by treating the derivatives as inputs [41,46], it is possible to break the linearization down into a
sequence of block operations. This step significantly speeds up the linearization process, and enables
computationally inexpensive access to both the direct, A, and the adjoint, A�, operators. The linear
equations are thus given as

dv
dt

= Av + f, (2)

dw
dt

= A�w, (3)

with a forcing term f , which can be used to model the action of a time-dependent physical source
on the linear system, such as, for example, harmonic acoustic forcing or an entropy wave. From this
point on, Eq. (2) is referred to as the direct equation and Eq. (3) as the adjoint equation. The analysis
of the stability properties of the operators A and A� forms the core component of this paper.

2. Choice of inner product

The small-perturbation energy norm for compressible flows [53] is used throughout this study to
quantify the magnitude of the linear disturbance. Written in the variables (p, s, u), the energy E of
a fluid enclosed by a fixed volume V is

E = 1

2

∫
V

(
1

γ 2M2

p2

p̄
+ γ − 1

γ 2M2
p̄s2 + ρ̄‖u‖2

)
dV, (4)

with p̄ and ρ̄ denoting, respectively, the mean flow2 pressure and density.
On a discretized domain, the inner product is

〈w, v〉M = wH Mv, (5)

2The mean flow can be substituted for any field around which the linearization is taken, such as a steady base
flow or a flow snapshot.
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where the positive definite matrix M = diag (m0, m1, . . . , mn−1) is block diagonal with

mi = q

⎛
⎜⎜⎜⎜⎝

1
γ 2M2

1
p̄ 0 0 0

0 γ−1
γ 2M2 p̄ 0 0

0 0 ρ̄ 0

0 0 0 ρ̄

⎞
⎟⎟⎟⎟⎠

i

|x(ξ )i|�ξ�η, (6)

for i ∈ {0, 1, . . . , n − 1}, with n denoting the number of grid points in the field, and the determinant
|x(ξ )| describing the scaling between the Cartesian physical and curvilinear computational spaces.
With this choice of norm, the fundamental relation

〈A�w, v〉M = 〈w, Av〉M (7)

must be satisfied to machine precision, typically O(10−16) on modern computers. From this we can
also write the adjoint operator as A� = M−1AHM, so that we can perform all calculations with AH

before scaling this accordingly to obtain the desired properties of A�.3

For visualization purposes, the adjoint and wavemaker fields are divided by �ξ�η so that the
physical amplitudes displayed are independent of the number of grid points, since the discretized
form of the inner-product integral in Eqs. (5) and (6) is weighted to account for the integration over
the unit square or cube.

E. Integration in time

A general initial-value problem (IVP)
dq
dt

= F(q, t ), (8)

q(0) = q0 (9)

for some initial field q0, is integrated in one of two ways. If F is nonlinear, a low-storage
Runge-Kutta scheme [44] is used to march the solution forward in time at a CFL number of 0.8.
Alternatively, if F is linear, the time integration approximates the exact exponential solution to the
linear IVP by using an exponential Krylov timestepping scheme [54]. This scheme is used with a
Krylov subspace dimension between 16 and 32 vectors, and with a CFL number of 16.

III. SINGLE-PASSAGE DYNAMICS

A. Nonlinear flow field

We begin by performing a brief analysis of the nonlinear flow field, computed directly using
the nonlinear Navier-Stokes solver from Sec. II B. We follow the methodology of Sec. II C and
calculate an initial starting flow until T = 20, so that the transients arising from the initial conditions
are removed. We then continue to integrate in time for 40 additional units with snapshots saved
every �t = 0.02, resulting in 2000 samples. Positive frequencies4 up to fmax = 24.96, equivalent to
Im{λ}max ≈ 156.8, with a spectral resolution/bin size of � f = 0.024 are resolved with this sampling
rate when this field is processed with a fast Fourier transform (FFT). Our choice for the range of
frequencies was made by estimating the frequency of the vortex shedding at the separation bubble
and at the trailing edge. A snapshot of the nonlinear pressure and dilatation fields is shown in Fig. 2.

3It should be noted that this back-scaling is mandatory on nonuniform grids, since the inner product accounts
for the grid metric.

4All quantities here are given in nondimensional form in accordance with the nondimensionalization de-
scribed in [41].
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(a) (b)

FIG. 2. A snapshot of the (a) nonlinear pressure and (b) dilatation field, with vorticity contours, at t = 60.
Note the vortex shedding on the suction surface, and the acoustic waves propagating upstream.

These plots demonstrate that the flow unsteadiness at the separation bubble and, subsequently, at the
trailing edge results in strong acoustic radiation that is directed primarily upstream through the blade
passage and into the inlet portion of the domain. As a consequence, there exists a potential pathway
through which the acoustic field can couple and interact with (highly sensitive) regions upstream
where the flow first becomes convectively unstable. This feedback mechanism will be analyzed in
depth later on when we consider the adjoint and wavemaker fields.

At this point we should acknowledge that, in three-dimensional simulations of this flow, the
two-dimensional coherent structures, identified in Fig. 2, will likely break down before the trailing
edge. The resulting acoustic field would thus have a broadband spectrum, possibly augmented by the
presence of a number of peaks corresponding to the tonal acoustic modes. Despite this concession,
prior simulations, particularly in [37,38], indicate that the qualitative structure of the mean flow
prior to transition is captured remarkably well by the two-dimensional flow fields shown here, with
the laminar boundary layers and the reattaching separation bubble exhibiting qualitatively similar
dynamics. As a result, the conclusions made in this paper regarding the receptivity and sensitivities
of the laminar boundary layers are likely to be transferable to a three-dimensional setting, at least to
some degree. In situations where inlet turbulence or periodic wakes impinge on the blade surface,
the two-dimensional behavior may be masked further by more complex transition phenomena and
interaction effects, such as bypass transition. However, the two-dimensional analysis that follows
would constitute a comparison point against which these three-dimensional effects can be evaluated.

The high-resolution data set described above is used to determine the features of the acoustic
spectrum, with the pressure measurements taken at x = (−0.228, 0.138), which is sited upstream
of the blade’s leading edge and at the midpoint between the periodic boundaries, and is also
situated within the main “lobe” of the upstream-propagating acoustic field (see Fig. 4, where

FIG. 3. The fast Fourier transform (FFT) of the acoustic field upstream of the blade’s leading edge at
x = (−0.228, 0.138).
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this point is shown with a red cross). This spectrum is shown in Fig. 3. The observed spectrum
consists of a series of eleven discernible peaks that dominate the pressure field across a range
of frequencies from Im{λ} = 20.73 to 71.47, suggesting a certain low-dimensional aspect to this
problem. Above this, the acoustic spectrum falls away rapidly, as is to be expected since dominant
unsteady features involve the trailing-edge and separation bubble dynamics, which we observe are
predominantly intermediate-wavelength phenomena, between Im{λ} ∈ [20, 60]. Low-frequency dy-
namics, Im{λ} < 20, are largely absent from the spectrum. While very low-frequency phenomena,
such as the low-frequency breathing of the separation bubble, typically with Im{λ} < 1 (see, for
example, [12]), are expected to feature in the spectrum, these are observed to be acoustically silent
at the measurement location. Furthermore, in the context of the spectrum shown in Fig. 3, this
low-frequency region is resolved only by seven “bins,” and so much greater refinement of the
frequency space is necessary to capture these modes.

Further potential for low-frequency system responses (Im{λ} < 20) exist through resonance
pathways. Acoustic standing waves with wavelengths on the order of Lupstream or Ldownstream would
be associated with plane waves with frequencies on the order of Im{λ} = 2πn(Mu + a)/2L, which
leads to the fundamental mode being Im{λ} ≈ 1. These are effectively suppressed by the sponge
layers at both ends of the domain, that create essentially anechoic conditions. For modes propagating
vertically, the maximum wavelength that can be sustained by the periodic system is therefore
L = 0.6, for which the associated frequency is Im{λ} = Mv + a/L ≈ 10.5. Doubling this gives
Im{λ} ≈ 21, but verification with the field for peak [0]5 shows that this is not a resonant structure.

The net result of this is that the peaks observed in Fig. 3 can be associated with amplified,
self-excited instabilities rather than artifacts of the computational domain. Additionally, due to the
laminar nature of this two-dimensional solution, the flow field lacks the transition to turbulence that
characterizes the three-dimensional flow, and therefore the broadband component of the acoustics
is missing here. However, in this paper we are concerned primarily with establishing the mechanics
underlying the sensitivity analysis, and therefore we leave the extension to the fully physical, three-
dimensional case for later work.

Extending this calculation of the FFT to every point within the domain, we isolate the fields for
the observed peaks, which are plotted in Fig. 4. Here peaks [1] and [2] are associated with Kelvin-
Helmholtz (KH) instabilities originating from the laminar separation bubble (to be characterized in
Sec. III B) on the suction surface of the aerofoil, with the scattering of these coherent structures by
the blunt trailing edge resulting in upstream-propagating acoustic waves. These two modes are also
characterized by in- or out-of-phase dynamics, between the leading edge and the acoustic source
at the trailing edge, for modes [1] and [2], respectively. Similarly, peak [5] is a higher-frequency
shedding mode of the separation bubble, although the participation of the pressure surface, and the
associated interactions at the trailing edge, now result in a downstream pressure field. Finally, the
field for peak [7] illustrates the formation of a resonant structure forming within the blade passage.
But rather than being excited by the previous KH modes, the pressure field shows high-amplitude
fluctuations within the separated shear layer itself.

From these snapshots, it is clear that the flow is characterized by the interactions of the hydrody-
namic and acoustic fields arising as a result of shear-layer instabilities interacting with the dynamics
at the trailing edge. We therefore seek to establish the stability and sensitivity properties of these
modes in single and multiple passages in the remainder of this paper.

B. Properties of the mean flow

Having confirmed the separation bubble and trailing edge dynamics as the key contributing
sources to the acoustic spectrum, we briefly characterize these regions in the mean flow prior to
our modal and nonmodal analyses in the subsequent sections of this paper.

5Here [�] corresponds to the labeled peak in the spectrum shown in Fig. 3.
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(a) (b)

(c) (d)

FIG. 4. The snapshots of the pressure fields corresponding to the main peaks identified in the Fourier
transform of the nonlinear pressure field.

Inspecting Fig. 5(b), where we have parameterized the aerofoil surface as a function of arc-
length, s, inflection points in the mean suction-side boundary-layer velocity profiles appear at s ≈
0.35 due to the adverse pressure gradient experienced by the flow at this point. Inflectional profiles
are known to be a necessary condition for instability in the inviscid and incompressible limit, as
shown by [55].

Further along at s = 0.4, the flow separates, as seen in the reversed flow in the velocity
profiles in Fig. 5(b), and the streamlines of the separation bubble in Fig. 5(c), before reattaching
at s = 0.65. Our observations of the bubble are in agreement with previous experimental [36]
and three-dimensional laminar and turbulent numerical calculations [37,38]. Downstream of the
reattachment point, the vortex shedding from the separation bubble leads to a thickening of the
mean flow boundary layer. Although the velocity profiles here may suggest a propensity for the
formation of convective instabilities in the flow, we should remember that the nonlinear flow is
already highly unsteady, and we expect that this region of the mean flow serves more to support and
amplify the instabilities that have grown downstream at the separation bubble, rather than modeling
the growth of new instability mechanisms.

Fields along the pressure surface are similarly subject to adverse pressure gradients. However, the
combination of the concave geometry and the flow conditions results in a flow that, although close to
separating, remains attached at all points. This has two implications. First, the flow is again expected
to be highly sensitive to flow disturbances, and, as will be seen later in Sec. III D, will participate
in the global instability dynamics through receptivity mechanisms. Second, small changes in the
flow conditions, such as alterations to the stagger angle, lead to separation on the pressure side,
resulting in additional unsteadiness at the trailing edge as well as altered receptivity characteristics
that dramatically change the acoustic signature of the aerofoil.

Finally, the mean velocity at the trailing edge, shown in Fig. 5(d), consists of a low-energy
recirculating region immediately downstream of the trailing edge, with accelerated flow entering
from the pressure side. The flow then entrains the lower-velocity, separated boundary layer from
the suction surface downwards, with the resulting change in momentum deflecting the faster
flow upwards, around one trailing-edge diameter downstream of the trailing edge. This change in
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(a)

(b)

(c) (d)

FIG. 5. The mean flow around the aerofoil showing (a) the absolute velocity field, ‖u‖ superimposed with
an arc-length parametrization of the suction surface, and (b) the velocity profiles normal to the blade surface
identifying the separation and reattachment points of the laminar separation bubble on the suction surface.
Panels (c) and (d) visualize the local velocity field at the separation bubble and the trailing edge.

momentum may explain why the PS-SS vortex interaction at the trailing edge results in vortices
being deflected upwards even though the flow remains axial in the far field. We should note that,
while the mean flow does provide us with insights into the macroscopic features of the flow, in areas
where the flow field is highly unsteady the computed field may never be attained physically at any
point in the simulation. Furthermore, even though we have shown that the two-dimensional mean
flow captures the key properties of the experimental mean flows, how these features carry on into
the three-dimensional case should be the subject of a careful and detailed future study.

C. Impulse response analysis

We now turn our attention to the impulse response analysis of the linearized direct operator A
to analyze the transient growth phenomenon. It is an established fact that the linearized Navier-
Stokes operator is nonnormal, and the corresponding nonorthogonality of the eigenvectors results
in systems that may significantly amplify nonmodal perturbations over a finite time horizon, even in
the presence of stable spectra [2]. A transient response analysis is therefore a prudent step, since not
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FIG. 6. The mean flow showing the active region of the seminorm in color. The region is taken over
the whole height of the mesh and extends from x = −0.5 to x = 1.5. The inset axis shows the horizontal
component of the velocity, u, for the initial linear disturbance.

only does it identify nonmodal amplification mechanisms that are absent from a modal perspective,
but also identifies whether the global stability analysis of this system is an accurate description for
the evolution of infinitesimal flow perturbations.

We consider the initial-value problem (IVP) given by Eq. (2), with f = 0, and initial conditions
v(t = 0) = v0. The initial perturbation, with norm ||v0||M = 1, takes the form of a divergence-free
disturbance to the two velocity-field components. This is done so as to reduce the initial pressure
transients, which would otherwise contaminate the linear field as they reflect within the blade
passage and propagate through the periodic boundary in the upstream and downstream sections of
the computational domain. The exact form of the perturbation is

p0 = 0, s0 = 0, u0 = −2(y − y0 − hpα)

σ 2
e−r, v0 = 2(x − x0)

σ 2
e−r, (10)

with α ∈ {−2,−1, 0, 1, 2} to ensure that the initial condition is periodic, σ = 5 × 10−3 and

r = (x − x0)2 + (y − y0 − hpα)2

σ 2
, (11)

centered directly upstream of the leading edge at

(x0, y0) = (−0.02,−0.02 tan(37.5π/180)). (12)

In this way, the disturbance will be convected downstream and will interact with both the pressure
and suction surfaces during the initial transient response. The mean flow, initial condition and the
location of the seminorm used to measure the growth of this disturbance are shown in Fig. 6.

Equation (2) is integrated until t = 20 using an exponential Krylov time stepping algorithm, with
snapshots saved at intervals of �t = 0.02. Evaluating these snapshots and processing them using
our seminorm gives the temporal evolution shown in Fig. 7.

From this, two main stages of the evolution may be identified. The first of these is the initial
transient response, which we can define here to be between t = 0 and t = 5, which consists of
transient growth, of one order of magnitude between t = 0.4 until t = 0.75, followed by an overall
decay in the perturbation energy. Furthermore, for the first portion of this time window (until
approximately t = 2.5) the evolution of the pressure and entropy components of the norm are
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FIG. 7. Temporal evolution of the Chu seminorm for a divergence-free disturbance defined in Eq. (10).
Contributions of the state vector components are also shown. The unstable asymptotic growth is indicated with
a dashed line set to a growth rate of Re{λ} = 0.342.

closely correlated. This suggests that the system response is associated with the growth of boundary
layer instabilities, without corresponding noise generation. Between t = 2.5 and t = 5 the pressure
component increases, and acoustic radiation is observed from the trailing edge in the pressure field,
but despite this increase in the pressure, the two velocity components and the entropy largely remain
decaying. After t = 5 the system enters the phase of exponential growth punctuated by beating,
where the system acts as an amplifier, and all components of the norm increase exponentially with
the same growth rate of 0.342.

This breakdown into these two regimes not only highlights the nonnormality of the operator,
which was touched on above, but also the presence of feedback mechanisms that drive and sustain
the growth. In what follows, we will consider the two phases of evolution from a mechanistic
perspective, and in the process we will attempt to identify the flow structures corresponding to
features in Fig. 7.

1. Initial transients

Large-scale transient effects first appear when the perturbation interacts with the leading edge and
the resulting energy is scattered as pressure waves from this region into the far-field, corresponding
to the initial spike in the seminorm of Fig. 7 at t ≈ 0.1. In Fig. 8 the remaining convective component
of the disturbance subsequently splits into two vortices that are advected parallel to both boundary
layers of the aerofoil. Behind these, wave packets of Tollmien-Schlichting (TS) type are formed
through an energy transfer from the vortices to the boundary layers. Note that between t = 0.1 and
approximately t = 0.4 the system remains dissipative, and while the pressure-side TS wave packet
can be seen to grow, the suction side packet is highly damped as a result of the favorable pressure
gradients at that point.

The dynamics of the norm change, once the wave packet reaches the separation point of the
separation bubble, and enters the detached shear layer. Kelvin-Helmholtz instabilities amplify
the incoming disturbance here, with the amplified features sustained until they are convected past
the trailing edge, at which point they are scattered as pressure waves into the free stream.
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(a) (b)

(c) (d)

FIG. 8. Plots of the streamwise velocity component u showing the initial transient responses in the vicinity
of the leading edge. (a) t = 0, (b) t = 0.2, (c) t = 0.4, and (d) t = 0.6.

Meanwhile, within the separation bubble, tilted structures reminiscent of those of the Orr
mechanism are observed (see Fig. 9).

2. Establishing the feedback mechanism

Returning back to the pressure waves scattered at the trailing edge, we note that the acoustic
waves are propagated predominantly upstream, as seen in the earlier nonlinear solution. This
exposes the boundary layers to periodic forcing arising from the unsteady interactions between
the unstable shear layer, and in the process visibly generating TS waves on the pressure surface in
Fig. 10. These waves propagate downstream before arriving at the trailing edge to be scattered into
acoustic waves.

A similar receptivity mechanism is also observed upstream of the separation bubble in Fig. 10.
The process here is different to the one on the pressure side, however, since after the waves are
generated, they are amplified by the separation bubble before propagating downstream, in a manner
similar to that observed with the Orr mechanism in the section above. These amplified structures are
then convected downstream, and sustained by the detached shear layer before once again scattering
at the blunt trailing edge. It appears that this extraction of energy from the mean flow to the

(a) (b)

FIG. 9. Plots of the streamwise velocity component u showing tilted structures reminiscent of the Orr
mechanism highlighted on the suction surface of the aerofoil. (a) t = 0.7 and (b) t = 0.8.
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(a) (b)

FIG. 10. Plots of the streamwise velocity component u indicating the receptivity to acoustic forcing of the
upstream boundary layers on the pressure and suction surfaces, leading to the formation of TS waves. Note the
acoustic waves are less visible here since the u field is plotted to highlight the hydrodynamic wave packets.
(a) t = 1.5 and (b) t = 3.0.

perturbation through this feedback mechanism is the driver of the exponential growth seen in the
latter part of Fig. 7.

Amplification of structures on the pressure and suction surfaces is shown in Fig. 11, using the
entropy field to isolate the convective features. At the suction surface the reattachment of the flow
between s = 0.60 and s = 0.65 demonstrates amplification by a factor of k = 5.21, compared to
the amplification of k = 5.07 between s = 0.37 and s = 0.60. As a result, the processes within the
separation bubble act as efficient amplifiers, with an overall growth factor of k = 26.45 between
the origin point of the instability and the eventual structure that is convected past the trailing edge,
although nonlinear processes likely regulate this growth rate in the fully nonlinear flow. Following
our observation in Fig. 10, waves are similarly seen on the pressure side, although maximum
amplification of the flow now occurs in the vicinity of the midchord, with the probe at s = −0.56
recording a growth rate of k = 2.55 against the signal at s = −0.37. These waves then decay, and so
the relative growth rate between s = −0.37 and s = −0.76 is only k = 1.33. In the future, a further
resolvent analysis could be performed here to determine the transfer functions governing the growth
rates of harmonic disturbances introduced within the boundary layers.

3. Asymptotic behavior

From approximately t = 5 until the end of the simulation, the system enters a period of un-
bounded exponential growth, punctuated by a beating phenomenon occurring at time scales on the
order of the convection time for structures on both blade surfaces, which is also seen with the
formation of wave packets in Fig. 11. Having identified the asymptotic growth rate in Fig. 7 as
Re{λ} ≈ 0.342, we form ‖q(t )‖ exp −Re{λ}t to obtain Fig. 12. From this the beating is clearly seen
as a modulation of the pressure signal, with a time period of �t = 1.42, with an expected frequency
gap of �λi = 2π/�t ≈ 4.43 between two unstable modes.

Axial velocity fields, given in Fig. 13 for the respective “falling” (t = 6.0) and “rising” (t = 6.5)
parts of the norm. These show that the flow alternates between states of highly amplified hydrody-
namic features on the suction side, with low levels of acoustic radiation, and states of high acoustic
excitation when these features reach the trailing edge and are scattered.6

6The times of the snapshots are not the local maximum and minimum of the norm oscillation, as seen in
Fig. 12, because we want to visualize the modulation of the convective structures on the suction surface, and
there is a time lag between the formation of the structure and the response of the acoustic source registered in
the norm.
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FIG. 11. The amplification of disturbances within the pressure-side and suction-side boundary layers for
the time interval t = 0 → 10, as illustrated by the entropy signal at the locations shown in the uppermost panel.
Locations on the suction surface are indicated by the “inverted” triangles and the entropy traces shown in the
second graph, while the locations on the pressure surface are shown with “upright” triangles and the results
shown in the lower panel.

FIG. 12. Asymptotic evolution of the pressure component of the seminorm, showing the signal as well as
the amplitude envelope function. The average peak spacing is �t = 1.42.
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(a) (b)

FIG. 13. The “beating” phenomenon observed primarily on the suction side as the system enters the final
phase of exponential growth. Note the stronger acoustic shedding at (a) t = 6 and the amplified hydrodynamic
features on the suction surface at (b) t = 6.5.

4. Comparison to prior work

Similar7 impulse-response observations have also been made for isolated CD aerofoils [31],
where a 5◦-angle-of-attack case produced a spanwise-homogeneous mode that exhibited a rapid
decay in magnitude followed by a sustained growth alongside a beating. This was attributed to
the presence of aeroacoustic feedback mechanisms. The upstream-biased directivity of the acoustic
source at the trailing edge was also noted to be similar to the observations in this section, although
there also appears to be an absence of sustained hydrodynamic instabilities on the pressure surface,
unlike what is observed here. An increase of the angle of attack to 8◦ was shown to stabilize the
impulse response. This is attributed to the removal of the laminar separation bubble located near
the trailing edge on the suction side, and instead increasing the size of the reattaching separation
bubble near the suction-side leading edge, which, in nonlinear simulations, subsequently transitions
to turbulence along a large portion of the suction surface.

Impulse stability analyses of this kind are exceedingly rare for cascade configurations, however,
with one of the few being an analysis of a single-passage high-pressure turbine (HPT) cascade [56].
This analysis specifically considered trailing-edge blowing as a means to control the trailing-edge
source, by reducing the maximum velocity in the recirculation region downstream of the trailing
edge. Much like this study, the case with no trailing edge blowing exhibits a decay followed by an
exponential growth of the disturbance, punctuated by beating. The mode that is spanwise homoge-
neous also exhibits the highest growth rates. As the trailing-edge blowing is increased, the system
first transitions to a damped oscillatory mode and subsequently to a fully damped response, where
the disturbance decays exponentially. The conclusions drawn by the authors included a hypothesis
that the suppression of the acoustic source is associated with the removal of the recirculation
region at the trailing edge; however, this disagrees with the CD-aerofoil calculations [31], where
the presence of the laminar separation bubble was observed to be the primary factor in determining
the aeroacoustic feedback loops. This case is also interesting from the point of view of the present
study because the HPT cascade contains shocks that prevent the propagation of the acoustic waves
upstream. Instead, the interaction between the blades is facilitated by the propagation of waves from
the trailing-edge source to the suction-side boundary layer of the blade below. Therefore, unlike our
study, the interaction here is exclusively unidirectional, although the limitation to a single passage
restricts the observation of potential macroscopic behaviours that might exist here. By comparison,
it will be shown in part II [32], which relaxes the restriction of this analysis to a single passage,
that the subsonic linear CD cascade presented here exhibits feedback mechanisms that allow for
disturbances to propagate both upwards and downwards along the axis of the cascade.

7These impulse response analyses are conducted using the forced Navier-Stokes approach rather than using
a consistent linear-operator analysis, as is done here.
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FIG. 14. The direct global modes of the linear operator A with respect to the mean flow, with the inset
region below showing a magnified portion of the spectrum for Df = {λ : Im{λ} ∈ [20, 40]}. The eigenvalues
are colored by the L2 relative error of the eigenvalue-eigenvector pair with respect to the time-stepping operator
(see discussion). The 14 most unstable modes in Df are labeled M0 → M13.

D. Operator spectrum

The spectrum of the direct operator A is shown in Fig. 14. As expected from our earlier analysis
of the impulse response in Sec. III C, this spectrum is globally unstable with respect to the mean
flow. It consists of two eigenvalues in the unstable half-plane, corresponding to Kelvin-Helmholtz
modes on the suction surface, as well as a collection of marginally stable modes with nonzero
frequencies. For some of these marginally stable modes, the mode is present in association with
branchlike structures that are more heavily damped than the “root” mode located on Re{λ} = 0, with
the angle of the branch (i.e., frequency shift of the mode with respect to the damping) corresponding
to the physical location within the domain where the dynamics of the mode are represented. This
suggests [39] that this phenomenon arises as a result of weak resonance structures between the
blade and the domain boundaries.8 Note also that we have removed the modes with zero frequencies
here since these are poorly converged as a result of the time-stepping method used to compute the
spectrum. For the purpose of this work, however, this is not a significant concern, since our goal here
is to identify the key mechanisms responsible for the dominant features present in Fig. 3, which are
seen predominantly for Im{λ} ∈ [20, 90].

Temporal frequencies of the modes, and the relative errors between the modes and the frequen-
cies identified in the FFT (see Fig. 3) are calculated. The dominant peak in the FFT corresponds
to mode M1, with a relative frequency error of 1.82%, while modes M0, M2, and M3 all have
errors below 3%. Note, however, that the most unstable mode, M0, does not correspond to the
dominant peak in the FFT, suggesting that important nonlinear effects, that are not captured by a
modal analysis, play a role in selecting the frequency.

8In other words, if the acoustic component of the mode is located predominantly in the downstream, the
branch is shallower with respect to the real axis as a result of the lower velocity of the mean flow in that region.
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TABLE II. Eigenvalues of the selected modes. Modes attributable to peaks identified in the FFT are
compared to the FFT results in Fig. 3, and relative errors are given.

Mode Eigenvalue FFT frequency �Im{λ} FFT peak index

M0 0.3426 + 26.4230i 27.17 2.75% [1]
M1 0.2061 + 30.9954i 31.57 1.82% [2]
M2 −0.0063 + 33.5399i 33.30 0.72% [3]
M3 −0.0064 + 33.2027i 33.30 0.29% [3]
M4 −0.0069 + 66.9689i
M5 −0.0075 + 66.2931i
M6 −0.0087 + 22.4041i 20.73 8.08% [0]
M7 −0.0104 + 82.3487i
M8 −0.0105 + 49.8186i
M9 −0.0108 + 99.4057i
M10 −0.0143 + 74.6719i
M11 −0.0205 + 41.2794i
M12 −0.0211 + 25.0113i
M13 −0.0880 + 54.8335i

E. Structural, sensitivity, and receptivity analysis

Having obtained the operator spectrum in the previous section, we are now in a position to
analyze the structures within the eigenvectors. To do so, we restrict ourselves to modes in |Im{λ}| ∈
[20, 90], and, using the representative modes Mi, we are able to identify three main categories of
modes. These are (1) modes describing the coupling effects arising from the scattering of unsteady
features from the suction side at the trailing edge, (2) unamplified high-frequency modes from the
unsteady shear layer of the separation bubble, and (3) trapped modes demonstrating the possibility
of self-excited resonance.

1. Dominant modes: Bubble-TE coupling

a. Dominant structures. Modes M0, M1, M6, and M12 represent the most dominant structures
of this system and correspond to the largest peaks in the FFT of the upstream pressure field, as
established in Table II.

Figure 15 shows the normalized pressure and axial velocity for these modes. It is clear from
this figure that the modes all share a dipole-like structure at the trailing edge which propagates
acoustic waves upstream through the passage and into the far field, with minimal acoustic propaga-
tion downstream of the trailing edge. Instantaneous surface pressure distributions of these fields
suggest that the modes being selected are those that are able to support small-fraction rational
axial wavelengths, ranging from in-phase dynamics on each surface in M12 to M0 supporting two
wavelengths on its suction side and 3/2 wavelengths on the pressure side, for example. The wake
regions for all these cases are correspondingly similar, at least up to the spatial wave numbers of
the structures. What is clear, however, is the participation of the suction-side instability in these
dynamics, with the appearance of the convective structures, suggestive once again of an upstream
receptivity mechanism. This coupling appears to be strongest for M0 and M1, while M6 and M12

have lower pressure and velocity amplitudes on the suction surface, proposing that the dynamics of
these modes are related more to trailing edge processes than to the amplification at the separation
bubble. This is borne out in Fig. 16, where the pressure traces confirm that the pressure distributions
on the suction surface for the latter modes are amplified further downstream compared to the more
unstable structures, which experience the main amplification at the separation bubble.

Interestingly, the amplification of M1 in both the p and u fields is 1.31 and 1.59 times larger,
respectively, than for M0, and occurs marginally earlier on the suction surface for the latter mode,
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FIG. 15. The real part of the pressure and axial velocity for the modes M0, M1, M6, and M12 normalized
with respect to the near-wake maximum axial velocity.

but decays to a level smaller than M0 on both surfaces by the time it reaches the trailing edge.
Also, the near-wall flow on both the pressure and suction sides consists of a superposition of the
vortex dynamics and the upstream-propagating acoustics field, leading to nodes and antinodes in
the pressure field. The higher frequency (both spatial and temporal) of M1 may result in a node that
is located further upstream on the laminar separation bubble when compared to M0. This may be
the mechanism through which M1 is selected in the nonlinear field as the dominant acoustic source,
although a careful nonlinear analysis is required to determine this, which is outside the scope of this
study.

Pressure-side traces show that pressure signals are amplified in x > 0.5 for all modes except M6,
with M12 also experiencing amplification in the region x ∈ [0.1, 0.35], which is unlike the other
modes of this family. Spatial growth rates for M0 and M1 differ most following the onset of the
instability for x ∈ [0.2, 0.4], where the pressure amplitudes of M1 are below those of M0. However,
the M1 mode is strongly amplified from x = 0.35, attaining |p| = 0.013 although this growth is not
reflected in the amplitudes of the axial velocity u, for which all modes (except M12) have comparable
amplitudes of |u| ≈ 0.026.

b. Downstream modes. This Kelvin-Helmholtz instability is also responsible for the modes M2

and M3 that result in downstream propagating waves, as shown in Fig. 17. The differences between
these modes and the ones in Fig. 15 appear to be the modification of the trailing edge shedding, with
a high-pressure zone originating from the suction surface that is unmatched by a similar strength
feature originating from the pressure side.
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FIG. 16. Surface pressure and velocity dynamics for the modes M0, M1, M6, and M12.

Analysis of blade-surface pressure and velocity traces (not shown here) show peak pressure
amplitudes on the suction surface of ||p|| = 0.055, which is equivalent to the maximum amplitude
attained by M1, and similarly ||p|| = 0.024 on the pressure surface: double that of M1. However,
pressure-side velocity amplitudes for M2/3 have only a maximum of ||u|| = 0.022 compared to
M1, where the amplitude is ||u|| = 0.032. This indicates that, despite the additional forcing of the
boundary layer on the pressure surface, the response of this boundary layer is diminished, which
leads to this modification of the shedding at the trailing edge.

c. Adjoints and wavemakers. Adjoint structures corresponding to the dominant modes are shown
for the streamwise velocity component in Fig. 18(a), where they are normalized so that 〈w, v〉M = 1.

FIG. 17. The direct pressure component of M2, M3, the downstream modes. The red circles indicate a
modification of the vortex shedding at the trailing edge.
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(a)

(b)

FIG. 18. The adjoint horizontal velocity field of M0, M1, M6, and M12 in (a), with the surface traces in (b).

These show that M0, M1, M6, and M12 have compact supports for sensitivities in regions upstream of
the separation bubble as well as, on the pressure surface, in the vicinity of the leading edge with peak
sensitivities attained at x = 0.277 and x = 0.122 on the suction and pressure sides, respectively. This
is based on the adjoint traces at the blade surface in Fig. 18(b). M6 is found to be the most sensitive
of the modes, with M12 the least, which may help to explain why M12 does not appear as a peak in
Fig. 3. M0 and M1 have similar sensitivities, except for a (maximum) 13% relative increase (attained
at x = 0.30) in the sensitivity of M0 relative to M1 downstream of the separation point on the suction
side.

Before advancing this discussion, we first present the wavemaker regions that locate the origin
of the instability characterizing the mode. Figure 19 shows that the wavemamakers for M0, M1,
M6, and M12 share similar supports along both surfaces of the aerofoil: the overarching pattern here
being regions of sensitivity upstream of the laminar bubble on the suction surface and, perhaps more
surprisingly, a smaller, though similarly significant, region of sensitivity close to the leading edge on
the pressure side. Numerical simulations performed earlier for the self-noise problem on isolated
NACA-0012 aerofoils [13] have shown similar receptivity properties on both surfaces of the isolated
aerofoil, with the conclusion being made that, since the two surfaces are not convectively linked,9

this constitutes as direct evidence of the receptivity of the associated boundary layers to upstream-
propagating acoustic waves. Indeed we have seen in the impulse response, and from the modes in

9In other words, there is no pathway of purely convective structures forming on one of the surfaces to interact
at later times with the other surface without being scattered into acoustic waves.
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FIG. 19. The wavemakers for M0, M1, M6, and M12.

Fig. 15, that these two regions are responsible for the generation of the Tollmien-Schlichting waves
that are amplified and convected down to the trailing edge.

Application of control strategies for suppressing these dynamics would be most effective in these
wavemaker regions, and would result in the greatest change to the eigenvalue with the least amount
of control effort.

Unlike the earlier numerical experiments on isolated aerofoils, however, the pathways for the
interaction are more complex in the cascade configuration. The scattered acoustic waves are now
not only interacting with the blade through an upstream propagation, but also through interactions
between the suction side of the dipole and the pressure-side boundary layer and vice versa. What is
more, the acoustic waves can also be scattered by the leading edge and redirected onto the pressure
or suction surfaces. This introduces additional coupling effects, although we will postpone this
analysis until Part II, where the extra degrees of freedom from the N-periodic blade row will make
these processes clearer.

c. Relationship to the impulse response. It is instructive to recall that the superposition of two
sinusoidal waves can be written as

cos (Im{λ0}t ) + cos (Im{λ1}t ) (13)

= 2 cos

(
Im{λ0} + Im{λ1}

2
t

)
cos

(
Im{λ0} − Im{λ1}

2
t

)
, (14)

with the envelope function taking the form

fenvelope = 2 cos

(
�Im{λ}

2
t

)
. (15)

Though the pairwise frequency difference between many of the modes in Fig. 14 is similar, only
M0 and M1 are nondecaying and thus are the only ones able to sustain the beating for t > 15. From
Table II, �Im{λ} ≈ 4.43, which matches the difference in frequencies of M0 and M1: �Im{λ} ≈
4.57.
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FIG. 20. The high-frequency direct modes associated with shear layer instabilities at the separation bubble.

2. High-frequency modes: Bubble dynamics

In addition to the dynamics examined above, the direct model similarly identifies high-frequency
(Im{λ} > 50) structures associated with the shearing on the surface of the laminar bubble. These
modes are M4, M5, M7, M8, and M9, and are shown in Fig. 20.

The hydrodynamics of these modes are confined primarily to the free shear layer of the separation
bubble, with a peak for all modes at x = 0.51. The structures downstream have negative growth
rates, resulting in minimal interactions with the trailing edge, as evidenced by the u plots in Fig. 20.
Furthermore, the amplified structure on the separation bubble is approximately three wavelengths
in size before decaying in the streamwise direction. Despite this, the acoustic source nevertheless
produces waves in the downstream region, for M4 and M5, and in the upstream region for M7, M8,
and M9. The relationship between these two groups appears to be the inclusion of pressure-side
structures in the latter group, with amplified wave packets persisting between x = 0.25 and x = 0.6,
as seen in Fig. 21. The adjoint field (not shown) is sensitive once again at the separation point
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(a)

(b)

FIG. 21. The surface traces of the high-frequency modes for the (a) direct modes and (b) the wavemakers.

at x = 0.30, although now the direct mode is concentrated at x = 0.51. Hence the wavemaker in
Fig. 21(b) is now three orders of magnitude smaller than the wavemakers calculated for the dominant
modes, suggesting that these modes amount to robust instabilities that are intrinsic to the flow.

3. Confined modes

The final category of modes that have acoustic structures that are suggestive of acoustic res-
onances within the blade passage are shown in Fig. 22, alongside the adjoint and wavemaker
surface pressure traces. Though these modes are not trapped in the sense that they still “leak”
acoustic energy into the upstream far field, their structures contain regions of intensified pressure
that are nonetheless confined between the two aerofoil surfaces. Similar effects have been observed
in both experimental [57] and in industrial settings (see review in [58]), especially in multistage
compressors, and are highly sensitive to the particular flow conditions.

Although we will not be performing a parametric flow analysis for this case, we nevertheless note
that the form of the resonance in M11 and M13 are confined to a pitchwise orientation near the trailing
edge, and between the separation bubble, and near the leading edge on the pressure side in the case
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(a)

(b)

(c)

FIG. 22. The modes M11 and M13 show confined features between the pressure and suction surfaces. The
direct fields are shown in (a), with adjoint surface traces in (b) and wavemakers in (c).

of the former. On the other hand, from Fig. 22, M13 does not appear to be triggering any instabilities
on the pressure-side boundary layer and is otherwise insensitive, especially when compared to M11,
which is confirmed by the wavemakers in Fig. 22(c). This suggests that the mechanism behind the
structures described in this particular case is a combination of directivities of the acoustic source
aligning with acoustic rays that are perpendicular, or at least close to perpendicular, to both aerofoil
surfaces–and this combination traps a portion of the acoustic energy inside the blade passage

As a final observation in this section, note that unlike virtually all other modes considered
previously which exhibited either localized structures or had a coupling between the unsteadiness
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(a) (b)

FIG. 23. To the left, the modes selected for the phase and group velocity analysis are shown in color while
the rejected modes are represented as grey points. To the right, the interpolation contours along which the
wave number is computed. The middle vertical contour is placed at xc = −1 in the upstream and xc = 2 in the
downstream, with the neighboring contours placed either side at x± = xc ± 0.15, and extend to the full height
of the passage. The horizontal contours are similarly equispaced in y, with yc, the central contour, placed at the
midpoint of the central vertical contour. The total length of these is fixed at 0.6 and the midpoint adjusted so
that the entire contour fits into the single-passage flow domain.

at the blade surfaces and the full wakes, M13 exhibits localized effects in the near wake, and is
confined to instability waves within the separated shear layer that was identified at the trailing edge
in Sec. III B.

The relationship between the dominant linear direct modes and the FFT analysis of the nonlinear
field is clear to see, even through a cursory examination of the results above. For instance, the
fields of M0, M1, M2, M3, and M6 match within a maximum frequency error of 3% (see Table II),
and the overall structures of the modes are captured well. This suggests that, despite the action
of nonlinearities in the flow, the linear receptivity mechanisms that we have identified during the
course of our analysis remain mostly intact and sustain the structures even through to the nonlinear
regime, and even past the point of nonlinear saturation for the unstable modes. On the other hand,
while having accurately predicted the set of dominant modes, identifying the most dominant tonal
noise peak with frequency λi = 31.57 in Fig. 3 has proven to be a greater challenge with the field
corresponding to M1 rather than M0, which is otherwise suggested by a more positive real part of
the selected eigenvalue. With the tools presented in this paper, identifying the causes of this change
is difficult, and a more detailed analysis is required.

The linear and nonlinear models similarly agree on the compactness of the tonal-noise phe-
nomena with the leading modes confined to the interval | Im{λ}| ∈ [20, 80], which is precisely the
region seen in the nonlinear analysis in the frequency domain. Despite this, it would be unwise to
generalize this finding to arbitrary configurations, since the appearance of other small-scale features
(like separation bubbles near the leading edge) will create additional high-frequency sources that
must be captured with much finer meshes in order to resolve the corresponding instabilities.

F. Phase and group velocity analysis

One final question that we wish to address in this section is how the modes in Fig. 14 are related to
each other, and whether they superpose to form larger structures that dominate the global dynamics.
To this end, direct modes are first filtered by taking into account only those with convergence errors
E less than 1 × 10−3, which leaves 156 modes with nonzero frequencies, shown in Fig. 23(a).

The instantaneous wave number, k, of each mode is computed using a Pisarenko harmonic
decompositon (PHD), which is a super-resolution method for frequency calculation of signals
contaminated with noise. These calculations are performed by constructing a series of perpendicular
contours in the regions upstream and downstream of the blade, as shown in Fig. 23(b), onto
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(a) (b)

(c) (d)

FIG. 24. The dispersion relation for each type of contour. Modes are filtered according to the standard
deviation of the instantaneous wave number along the contour so that only the monochromatic modes with
nonzero k are registered, and the average k is computed. Coloring of these modes is by relative standard
deviation (RSD) of k.

which the acoustic field for the calculation is interpolated. To automate the process, the exact form
of each mode is not assumed a priori, and so two additional parallel contours are used at each point
in each direction to minimize the possibility that the contour falls into a node of the acoustic field
which would not correctly identify erroneous frequencies.

The contours are subdivided into 60 equispaced arc-length segments with a two-dimensional
piecewise cubic spline using the Clough-Tocher scheme (see scipy interpolate documentation
[59]) interpolating the grid data onto this new contour. As a result, the Nyquist frequency is
kn = 50. The PHD is applied to this equispaced contour with two complex exponentials. From
our earlier observations in Sec. III E 1 and in manual inspections of these modes, we observed
that the pressure field in the regions surrounding the contours tends to be relatively regular and
exhibits a dominant wave number in its structure. Consequently, we make the assumption that the
instantaneous frequency should be constant along each of the contours, and so for each mode and
contour we average to obtain the corresponding averaged wave number, along with the relative
standard deviation/coefficient of variance (RSD/CV), cv of the raw data. The resulting dispersion
relations are plotted below for each type of contour where cv < 0.1 in Fig. 24. For each of these
we observe two dominant features. First, groups of modes occur in tight clusters with similar phase
velocities, vp = ω/k, and, secondly, for almost all the modes there is a constant group velocity,
vg = dω/dk, confirming that these modes form a large structure under superposition that propagates
together.

Identification of modes with consistent phase velocities is performed using the density-based
clustering algorithm DBSCAN [60], which is able to identify clusters of modes based on the density
of the data as well as being robust to outlying points. Applying this to the contours in Fig. 24(a)
and Fig. 24(b), where the clustering of the modes is most visible, we obtain the following clusters,
in Fig. 25, from which it appears that M1, M2, and M3 (along with their axial resonant structures)
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FIG. 25. Illustration of the clustering of the modes obtained with DBSCAN, the corresponding modes and
detailed k − ω plots of the two main clusters identified in this analysis.

propagate as one, with the other modes superposing to form a large wave packet as a result of the
constant group velocity. It is important to remember, however, that the disparate growth rates of
the modes within this structure mean that most of the modes will decay quickly, leaving only the
superposition of M0 and M1, at least in the linear regime.

On the other hand, in the nonlinear case we have seen that the growth rates of the modes are not
necessarily a good way of predicting which modes are selected by the nonlinear processes. Instead,
those with the sensitive wavemakers are the ones that appear able to sustain the dynamics into the
nonlinear regime.

IV. CONCLUSION

This paper considered the modal and nonmodal aeroacoustic stability properties of a repre-
sentative linear compressor cascade at Re = 100 000 and M = 0.3. It used a controlled-diffusion
geometry that was adapted from earlier aeroelasticity experiments, and features an unstable suction-
side laminar separation bubble that sheds vortices downstream to the trailing edge.

In the first part of this paper, a mean-flow global stability analysis was performed on a single-
passage periodic domain. A transient response analysis highlighted regions of instability on the
suction side, as well as a convectively unstable region on the pressure surface. The linear system
was seen to be asymptotically unstable, and the mechanism for this instability was shown to manifest
itself through a feedback process that links the upstream-propagating acoustic waves, originating at
the trailing edge, to the sensitive boundary layers at the separation point of the laminar separation
bubble.

A global stability analysis was then carried out, following which it was determined that the
spectrum of the linear operator is unstable and characterized by two unstable and a sequence of 12
marginally stable modes, with the mode shapes and frequencies found to match very well with the
pressure spectrum obtained from the nonlinear solution using the fast Fourier transform (FFT). From
this it was also shown that the main peak in the pressure spectrum corresponds to the second-most
unstable mode.
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Through an analysis of the eigenvectors for these fourteen modes, three main groups of modes
were identified. These were the Kelvin-Helmholtz modes, that drive the dominant dynamics of
the system; high-frequency modes related to the separation bubble dynamics; and two degenerate
modes, which were found in association with acoustic resonances within the blade passage.

To augment this description, adjoint modes were calculated. These confirmed that for the most
unstable modes, the sensitivities were located upstream of the separation bubble, and also on the
pressure surface for the most unstable modes. Applying the wavemaker concept, the structural sen-
sitivities showed that the dominant dynamics of this system are determined by feedback processes
involving the separation bubble and, more interestingly, the convectively unstable pressure-side
region near the leading edge. This region is not linked convectively to the suction-side separation
bubble and so the feedback mechanism occurs through acoustic means.

In many ways the single-passage results here can be seen to mirror earlier studies with isolated
aerofoils. For example, much like the numerical studies [28,29] and the global stability analyses
conducted [12,13] for the NACA-0012 aerofoil, the linear cascade is shown to have similar
receptivity and sensitivity characteristics on the pressure and suction surfaces of the blade, with
aeroacoustic feedback mechanisms shown to exploit these sensitivities. The generated acoustics
field also shares considerable similarities and characteristics to the isolated CD aerofoil studies at
similar flow conditions [30,31], especially with respect to the characteristics of the acoustic source
and the upstream directivity of the propagating acoustic waves. Of course, the exact properties of the
flow change due to the presence of the cascade, with the separation bubble located approximately
midchord instead of near the leading or trailing edges, and the global instability to impulse perturba-
tions remains. Unlike earlier work with isolated aerofoils, however, this case also captures features
such as acoustic resonances in the blade passage and pressure-side instabilities. By making use of
the direct-adjoint methodology provided to us by this framework, we can also be more definitive
about the nature and origin of the processes that sustain the aeroacoustic feedback loop, compared
to purely numerical studies that have to infer the feedback mechanisms from nonlinear time-series
data. Furthermore, such global stability analyses have rarely been applied, with one of the few works
by [56] applying this analysis to high-pressure turbine flows, and so this work provides insight into
the cascade problem.

Despite the simplifications and modeling assumptions introduced to the flow configurations
considered here, this work nevertheless serves to demonstrate the very real shortcomings inherent
in local analyses used in many current turbomachinery design methodologies. Instead, it has been
shown here that these systems are dominated by networks of instabilities, where flow fluctuations
in one part of the domain drive other structures elsewhere, through interaction pathways that are
otherwise very difficult to separate by means of a purely local analysis. The change from this
two-dimensional model to the real machinery will introduce additional flow features that would
only increase the complexity of these networks, thereby magnifying the need of this kind of global
approach as part of the analysis at the design stage.
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APPENDIX A: NUMERICAL DETAILS—NEAR-WAKE NORMALIZATION
REGION FOR GLOBAL MODES

All direct global modes in this paper are normalized by the near-wake axial-velocity component,
u, of the state vector. This choice is made because, for most modes here, the dynamics of the mode
are driven by a self-excited instability that generates a wake that is convected downstream of the
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FIG. 26. The near-wake normalization region for the global modes.

trailing edge. By performing the normalization on these wake structures, and considering modes
describing similar dynamics, a comparative analysis of the mode structures can be performed.

Since the normalization procedure has to account for multiple-blade passages, the region in
which the normalization is performed is made compact, so that one blade wake is selected at a time.
To simplify the procedure, the closed downstream region, bounded by the grid lines ny = ±100,
nx = 1081 and nx = 1281, is selected, thereby avoiding interpolation and complex array slicing.
This yields a region with an initial height of �y ≈ 0.77 centered vertically on the trailing edge,
and extending for �x ≈ 1.35 before expanding as a trapezoid until x ≈ 1.87, with a final height of
�y ≈ 0.95. This is shown in Fig. 26.
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