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Secondary instabilities in the shear layer of a compressible jet
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The compressible jet over a convex wall is numerically studied using the delayed
detached-eddy simulation method based on the two-equation shear-stress transport model.
In particular, the current study focuses on the secondary instabilities in the shear layer.
The results show that the alternating high-speed and low-speed streaks in the shear layer
induced by the streamwise vortices exhibit secondary instabilities similar to those found in
other wall-bounded flows. The varicose mode secondary instability induces the thinning
and thickening motions of the low-speed regions, whereas the sinuous mode leads to
the side-to-side sway motions. The hairpin vortices and the counter-rotating roll-mode,
which are often associated with the symmetric (varicose-type) mode, are dominated in
the transient stage of the shear layer. However, as the shear layer evolves downstream,
there still appear one-sided roll-modes and quasistreamwise vortices with vorticity of
alternate sign produced by the spanwise overlapping of the hairpin vortex legs, which
are well known to be related to the antisymmetric (sinuous-type) mode. Further, the
dynamic mode decomposition analysis performed on the spanwise velocity fluctuation
of the instantaneous snapshots reveals the presence of both sinuous- and varicose-type
secondary instabilities, as well as their competitions, in the shear layer. Quantitatively,
from θ = 25◦ to θ = 45◦, the proportion of the varicose mode decreases from 84.4% to
50.6%, and accordingly, the sinuous mode increases from 15.6% to 49.4%. The analysis
of the turbulent kinetic energy production terms reveals that both varicose and sinuous
modes are influenced by the radial and spanwise shear components of the turbulent energy
production term, and they are in the same order of magnitude. Additionally, the mechanism
of the instability is due to the velocity fluctuations and Reynolds stress parallel to the local
mean flow gradient. The local inflection point instability caused by the mean flow gradient
is also the source of turbulent energy that sustains the instabilities.

DOI: 10.1103/PhysRevFluids.8.103901

I. INTRODUCTION

When a jet ejects tangentially over a convex wall, it remains attached due to the Coanda effect [1]
rather than instantly detaches from the convex wall. Coanda wall jet finds successful application in
aircraft design as circulation control devices to achieve the lift augmentation or roll control [2–12].
In such an application, the Coanda jet is used to inject momentum and entrain the external flow to
deflect with the jet, so the goal is to enable the mixing of high momentum Coanda jet. However, the
deployment of this technology to a full-size aircraft still faces several obstacles, particularly given
the low control effectiveness of supersonic jet with transonic freestream [13]. Thus, it requires a
thorough understanding of the fluid mechanics of the supersonic jet over a convex wall and the
turbulence field it generates.
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In the instabilities of the jet over a convex wall, the inner layer close to the wall exhibits
Tollmien-Schlichting viscous instability such as a Blasius boundary layer [14,15]. The outer part
exits an inflection point of. the velocity profile, which would grow and roll up spanwise vortices
through Kelvin-Helmholtz instability [16,17]. Apart from these instabilities above, another insta-
bility, centrifugal instability is also introduced in the outer part of the jet due to the addition of the
surface curvature [18–20]. This leads to the generation of the streamwise vortices according to the
observation of several centrifugally unstable flows, such as Taylor-Couette flow [21], curved channel
flow (Dean flow), [22] and concave boundary layer (Görtler flow) [23]. The streamwise vortices in
these flows create the spanwise and radial inflection points of the velocity profiles, which support
to trigger the secondary instabilities of the longitudinal streaks. There are two common types of
secondary instabilities, varicose and sinuous instability mode, which are identified by symmetric
and antisymmetric patterns appearing in the spanwise direction with respect to the low-speed streak
in the shear flow [24–27]. The development of the varicose instability results in the generation of
the hairpin vortex, while the sinuous instability leads to quasistreamwise vortices with vorticity of
alternate signs [28–30]. Studies have shown that inflection points in the spanwise and wall-normal
profiles are usually related to sinuous and varicose instabilities, respectively. Another secondary
instability, known as Eckhaus instability [31], causes the unsteadiness of the streamwise vortices
with merging and splitting tendency of the vortices [32]. In general, secondary instabilities in these
wall-bounded shear flows have been thoroughly researched, and they are now recognized as a key
component in the transition to turbulence.

The secondary instabilities mentioned above are also expected to be active in the jet over a
convex wall. For the incompressible convex wall jet, researchers have found that the growth rate and
turbulent fluctuations in the curved wall jet were much greater than those in the plane wall jet [33].
This enhancement was then confirmed to be caused by the centrifugal instability induced streamwise
vortices [16,34–36]. Later, these streamwise vortices were observed using flow visualization and
Particle Image Velocimetry, and they were found to be highly unsteady due to the wavy secondary
instability [37]. Recently, Pandey et al. [38] have confirmed the existence of the wavy secondary
instability in a forced jet over a convex wall by proper orthogonal decomposition [39] analysis of the
spanwise velocity fluctuation. Also, Pandey and Gregory [40] found the merging and splitting of the
streamwise vortices to match the scale of the spanwise wavelength and the local jet half-width in the
forced convex wall jet [34]. This spanwise wavelength selection is presumably a form of Eckhaus
instability. This instability, in conjunction with the wavy instability, is believed to play an important
role in the development of the incompressible convex wall jet. However, in compressible situations,
their characteristics are not well known. Our previous numerical study on the supersonic jet over
a convex wall observed the spanwise periodic high-speed and low-speed streaks in the shear layer,
which are attributed to the streamwise vortices induced by centrifugal instability. Their dynamic
mode decomposition (DMD) [41] analysis of the streamwise vorticity fields in the cross-stream
plane revealed a side-to-side sway motion of the streamwise vortices, which indicated the existence
of the secondary instability in the shear layer [42]. However, there is still a scarcity of in-depth and
quantitative research on the secondary instability in the shear layer of a convex wall jet. This is
particularly significant to understand the instability procedure of the shear layer in the compressible
convex wall jet.

This paper is a continuation of our previous work [42], aiming to understand the mechanism
of secondary instability in the shear layer. The most common method for studying secondary
instabilities is to employ symmetric or antisymmetric disturbances to induce a pure varicose or
sinuous instability [25,26,29]. Actually, there may be a combination and competition of all types
of instability modes in the actual flow [29,38], which makes the situation much more complicated.
Thus, the delayed detached-eddy simulation (DDES) method, which is the hybrid of the Reynolds-
averaged Navier-Stokes (RANS) and large-eddy simulation (LES), is employed to make a nonlinear
simulation of the convex wall jet. It could avoid the massive computational cost of direct numerical
simulation or LES with near wall resolution methods in the boundary layer [43]. By adding certain
conditions to the sorting or averaging process [44,45], we can quantitatively examine the secondary
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instability modes and gain a further insight into the instability mechanisms in the shear layer. The
organization of this paper is as follows: Section II describes the details of numerical methods. In
Sec. III, computational details are described. Numerical results and analysis are presented in Sec. IV.
The last section contains the main conclusions.

II. NUMERICAL METHODS

All numerical simulations in this study are conducted by an in-house three-dimensional cell-
centered finite volume solver developed by the authors. The solver has been successfully applied
to considerable numerical studies on subsonic flows [46], supersonic flows [47,48], hypersonic
flows [49,50], and supersonic Coanda flow [42,51]. For simplicity, the main algorithms of the solver
are represented as follows.

A. Delayed detached-eddy simulation

The basic governing equations are the RANS equations. For the additional Reynolds stress in the
RANS equations, researchers have constructed many turbulence models to solve it. The shear-stress
transport (SST) [52] turbulence model is adopted in this paper.

The two-equation SST DDES method is implemented by modifying the dissipation-rate term of
the turbulent kinetic energy transport equation as follows:

∂ (ρk)

∂t
+ ∂ (ρUik)

∂xi
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∂ω
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where k and ω represent the turbulent kinetic energy and specific dissipation rate, respectively. ρ

is the density, μ the viscosity, γ the specific heat ratio, σk and σω are diffusion coefficients of k
and ω, and P̃k the production term of turbulent kinetic energy. β is a constant, and the value of β is
recommended as 0.09 by Menter [52]. lhybrid is the length scale defined as:

lhybrid = min{lRANS, lLES}, (3)

lRANS = k1/2

βω
, lLES = CDES
 = CDESmax{
x,
y,
z}, (4)

in which lRANS and lLES are the length scales of the RANS turbulence model and LES method,
respectively. 
 is the grid scale, which is equal to the maximum grid spacing in x, y, and z
directions for the structured grid. CDES is an empirical constant that needs to be calibrated and
verified, reflecting the degree of dissipation in different CFD codes. As for the SST turbulence
model, CDES = (1 − F1)Couter

DES + F1Cinner
DES , where Couter

DES is equal to 0.61, the Cinner
DES is equal to 0.78,

and the F1 is the internal function [43] in the SST turbulence model.
However, the DES method exists the modeled-stress depletion which will produce the grid

induced separation. To overcome this problem, Spalart et al. [43] proposed a new method named
DDES by constructing a delayed function. The length scale of DDES can be expressed as follows:

lhybrid = lRANS − fd max{0, lRANS − lLES}
fd = 1 − tanh[(8rd )3]

rd = ν + νt√
ui, jui, jκ2d2

⎫⎪⎪⎬
⎪⎪⎭

, (5)

where the fd is the delayed function, νt is the kinematic eddy viscosity, ν is the molecular viscosity,
ui, j are the velocity gradients, κ is the Kármán constant of 0.41, and d is the distance to the wall. The
structure of the delay function and the meaning of the parameters are detailed in Ref. [43]. In case
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the fd tends to 0, the RANS calculation is used. And in case the fd tends to 1, the DDES method is
converted to the traditional DES method.

B. Numerical issues

Spatial discretization resolution is critical for a high-fidelity numerical simulation. To level down
the numerical dissipation, the inviscid fluxes are computed via a Roe flux-difference upwind scheme
with a fifth-order weighted essential nonoscillatory [53]. The viscous fluxes are discretized by a
fourth-order central differencing scheme. The fully implicit lower upper-symmetric Gauss-Seidel
time-marching scheme [54] with a second-order dual time-stepping method and Newton’s subitera-
tion for the inner loop is employed for time marching to achieve unsteady simulation.

In order to accelerate the formation of unsteady turbulent motions, all unsteady DDES simula-
tions were initialized with corresponding converged steady RANS solutions. The unsteady DDES
calculations are implemented with a fixed physical time-step size of 1.44 × 10−7 s. A maximum
of 10 subiterations per time step were used, resulting in a residual drop of at least two to three
orders. After the transient flow with 25 000 steps, the remaining 8000 steps are taken to obtain
sufficient unsteady flow data per 25 steps for statistical analysis. The total physical time of 8000
steps allows the fluid to flow over 2.5 times the arc length of the convex wall at the characteristic
velocity (sound speed) to ensure that the periodic motions of the typical coherent structures can be
effectively captured.

III. COMPUTATIONAL DETAILS

This paper is a continuation of our previous work. The computational details were described in
Wang et al. [42]. For brevity, we recall the main details here.

A. Model, flow conditions, and boundary conditions

The apparatus used in this study includes a convergent-divergent nozzle and a curved Coanda sur-
face. The convergent-divergent nozzle is designed using a quasi-one-dimensional method based on
isentropic flow theory without boundary layer corrections. The geometric tangency of the positions
(i.e., the throat, the connection between the nozzle exit and Coanda surface), where the area changes,
are ensured to eliminate the influence of geometric mutation on the flow. In addition, a symmetrical
shape is used in upper and lower nozzle surfaces. The nozzle exit height is 10 mm, and the design
point of the nozzle pressure ratio is 7 (NPRd = 7). The Coanda surface is a 90◦ circular arc with a
radius of 100 mm fixing the h/R ratio to 0.1. Experiments were conducted by Llopis-Pascual [55]
at the University of Manchester. They obtained the pressure coefficient distribution of the Coanda
surface and the Schlieren photograph of the jet. Unfortunately, no turbulence statistics of the jet
were measured. As the experiments were carried out in quiescent air, the test conditions were
pamb = 100 kPa, Tamb = 300 K.

The geometric characteristics of the device and the cylindrical coordinate axes employed in this
study are shown in Fig. 1. Azimuthal (θ ), radial (y), and spanwise (z) coordinates correspond to the
U , V , and W components of velocity, respectively. The jet half-width (y2), which is the wall-normal
location where the streamwise velocity is half (0.5Umax) of its maximum value, is used as a measure
of the jet thickness.

The detailed computational domain and boundary conditions were given in Wang et al. [42]. In
particular,the inlet of the jet plenum is set to be the pressure inlet, where the NPR (the ratio of the
nozzle total to static pressure) is specified (p/pamb = NPR, T/Tamb = 1.2).

B. Code validation and grid sensitivity

1. Code validation

A rectangular convergent-divergent nozzle flow [56] is presented for the solver validation. The
nozzle had inlet, throat, and nozzle exit heights of 25.0, 13.1, and 15.75 mm. The axial lengths of
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FIG. 1. Schematics of the coordinate system

the convergent-divergent are 56.6 and 55.78 mm, respectively. The nozzle width remains constant
at 91.6 mm. The nozzle exit lip thickness is chosen to be 1 mm. The throat hydraulic diameter
(Dh = 22.92 mm) is chosen as the reference length. The designed nozzle pressure ratio is 4
(NPRd = 4.0, using inviscid approximation without considering the losses and inlet boundary-layer
effects). Experiments were carried out in the High-Pressure Nozzle Test Facility at Loughborough
University [56].

The computational grid is similar to that of the LES simulation of Wang et al. [57] on the same
configuration. There are 201 × 56 × 101 points on the major and minor axes at the nozzle exit
in this study. The grid near the wall and the shear layer were refined to accurately solve flow
structures there. A total of 20 million cells were used. The operating condition is an overexpanded
NPR = 2.5. The converged steady RANS solution is used as the initial of unsteady DDES simula-
tion. A fixed time step of 7.2 × 10−7 s is used for the calculation, and ten subiterations are required
to reduce the residual at each physical time step at least two orders of magnitude. The first 10 000
time steps are employed to establish a statistically stationary state, and then statistics are gathered
for the additional 10 000 time steps (about 6 solution domain flow through times). Figure 2 shows
the schematics of the coordinate system and measured stations of Behrouzi et al.’s experiments [56].

Figure 3 shows that the predicted centreline axial velocity profile consistent with the measured
data, which indicates that the solver in this paper can accurately solve the potential core length and
the dissipation downstream. Figure 4 shows the comparison between the predicted and measured
axial velocity profile at three streamwise stations shown in Fig. 2. Further, the comparison of axes
velocity fluctuation rms is presented in Fig. 5. All mean velocity and turbulence data are normalized
by a reference velocity taken as the centreline axial velocity at nozzle inlet (Uref ). In the region
near the nozzle exit (x/Dh = 1.0, 2.0), both numerical velocity profiles and rms of the axes velocity
fluctuation agree well with the measured results. As the jet develops further downstream (x/Dh =
8.0), the difference between numerical and experimental results increases, especially in the core
region of the jet. This may be due to an increase in grid scale near the center of the jet. The large-
scale grid may not accurately capture small-scale fluctuations in this region. However, the solver
utilized in this study accurately predicted the peak values of velocity and turbulence fluctuations,
and the development of the jet shear layer.
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FIG. 2. Schematics of the coordinate system and measured stations of Behrouzi et al.’s experiments [56].

2. Grid sensitivity

The grid independence of the same apparatus and flow condition has finished in our published
work [42]. For the integrity of this paper, the main results are summarized as follows: (1) Two
mesh sizes were used to characterize the grid sensitivity of the solution. The coarse mesh contains
Nθ × Ny × Nz = 251 × 151 × 121 grids around the convex surface (resulting in a total of 6.6 million
grids), while the fine mesh has Nθ × Ny × Nz = 301 × 171 × 151 grids around the convex surface
(resulting in total 10.5 million grids). By comparing the Mach contours, streamwise velocity profiles
at various streamwise locations, development of the jet half-width, and vorticity thickness of the
shear layer, the two meshes showed excellent grid independence. (2) In addition, the grid indepen-
dence of the fine mesh was demonstrated by the following three aspects. First, for reliable DDES
simulations, the grid size has to be adequately small to resolve the desired turbulent structures.
The smallest Kolmogorov scale η = (ν3/ε)1/4 is estimated to be about 0.04 mm in the jet mixing

FIG. 3. Comparison between predicted and measured centreline axial velocity profile. Measured data of
Behrouzi et al. [56]: symbols; DDES: line.
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FIG. 4. Comparison between predicted and measured minor (top) and major (bottom) axes velocity profile.
Measured data of Behrouzi et al. [56]: symbols; DDES: line.

layer center for the present simulations, and here ν and ε are the kinematic viscosity (calculated
by Sutherland’s law) and turbulent kinetic energy dissipation rate (estimated by RNGk − ε model),
respectively. The grid spacings around the jet mixing layer in (θ, y, z) directions are specified as
(0.52, 0.05, 0.67) mm, which are about (12.5, 1.25, 17) times the Kolmogorov scale and are fine
enough to resolve the jet mixing layer. Second, the computation domain in the z direction should be
sufficiently wide to capture enough spanwise flow structures. The spanwise flow periodicity is well
captured. Finally, the numerical pressure coefficient distribution on the Coanda well agrees with
the experiment of Llopis-Pascual [55], which further proves the accuracy of the grid and solver in
the present study. Thus, the resolution of fine mesh is considered to be sufficient for the unsteady
numerical simulation and will be utilized in all the present investigations.

IV. RESULTS AND DISCUSSION

There are two important flow developing regions in the compressible jet over a convex wall,
including the inner boundary layer region near the curved surface and the outer shear layer region.
However, the overall purpose of this paper is to understand the secondary instabilities in the

FIG. 5. Comparison between predicted and measured major rms of axes velocity fluctuation. Measured
data of Behrouzi et al. [56]: symbols; DDES: line.
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FIG. 6. Instantaneous vortex structures using Q criteria (Q = 100, colored by the streamwise vorticity).

outer shear layer, where Kelvin-Helmholtz-type inflectional instability and Taylor-Görtler-type
centrifugal instability are dominant. The nozzle pressure ratio is specified as 3.0, resulting in a
nozzle exit Mach number of 1.33 and the corresponding convective Mach number of 0.66. This
is a moderately compressible condition according to the compression definition in the plane shear
layer [58–61]. It should be noted that the Mach number and corresponding convective Mach number
are characterized using the maximum value at the nozzle exit due to the flow nonuniformity.

A. Base flow

Figure 6 shows the instantaneous vortex structures using Q criteria, in which the iso-surface is
colored by the streamwise vorticity. In the transition stage of the shear layer, the large-scale spanwise
vortex tubes induced by the Kelvin-Helmholtz-type inflectional instability and the counter-rotating
streamwise vortex tubes caused by the Taylor-Görtler-type centrifugal instability can be obviously
observed. While in the fully developed region, the smaller-scale structures are dominant. In fact, our
previous work [42] on the same configuration and flow condition has revealed a rapid growth rate
of the shear layer in the transient region. Also, there is not only the self-similarity of the velocity
profiles normalized by the jet half-width and local maximum velocity as that has been found in
the incompressible jet over a convex wall by Neuendorf et al. [16] and Pandey et al. [38] but also
self-similarity of normalized turbulent stresses in the fully developed region.

The counter-rotating streamwise vortices entrain the momentum exchange between the high-
speed flow in the inner layer and the low-speed flow in the outer part of the shear layer. Figure 7
shows the ensemble averaged contours of the streamwise vorticity, streamwise velocity, and radial
velocity at cross-stream plane θ = 35◦. Under the action of the streamwise vortices, there are
spanwise periodic upwash and downwash regions. The streamwise extension of these regions
produces high-speed and low-speed streaks in the shear layer. In addition, the streamwise vortices
generate inflection points in the spanwise and radial directions, which would trigger the secondary
instabilities of streaks as those in other wall-bounded flows [24–27]. In fact, Pandey et al. [38] have
observed the secondary instabilities in an incompressible convex wall jet.
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FIG. 7. Ensemble averaged contours of cross-stream plane at θ = 35◦, (a) streamwise vorticity, (b) stream-
wise velocity, and (c) radial velocity.

Figure 8 shows the radial and spanwise gradient of the streamwise velocity at θ = 35◦. The radial
gradient has negative maximum in the downwash and upwash regions, which is associated with the
largest negative spanwise vorticity. The spanwise gradient has an alternating positive and negative
distribution, which is consistent with the streamwise vorticity shown in Fig. 7(a).

In order to further understand the scenario of the large coherent structures in the transient
region of the shear layer, Fig. 9 shows instantaneous vortex structures of two neighbor low-speed
streaks using Q criteria. It should be noted that the cylinder Coanda surface has been unfurled into
abscissa, that is, the x axis represents the streamwise direction and the corresponding coordinate
value is the azimuth angle of the cylindrical surface from the nozzle exit. Similarly, the ordinate in
the figure corresponds to the radial distance from the cylinder surface and has been normalized by
the nozzle exit height. It can be seen that the spanwise vortex tubes bend under the influence of
the streamwise vortices. The streamwise vortex tubes, that is, two legs of the hairpin vortex, lie on

FIG. 8. Contours of (a) radial and (b) spanwise gradient of streamwise velocity at θ = 35◦.
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FIG. 9. Instantaneous vortex structures using Q criteria (Q = 100, colored by the streamwise velocity). A
local view from the inner high-speed side.

the flanks of the low-speed streak and are connected by the spanwise vortex tube (the head of the
hairpin vortex) on the high and low-speed streaks. The consistency between the streamwise vorticity
[Fig. 7(a)] and the spanwise gradient of the streamwise velocity [Fig. 8(a)] distribution indicates that
the streamwise vortices are generated at the location with the largest spanwise gradient. The two legs
of the hairpin vortex are the results of the tilting action of the mean spanwise and radial shear on the
spanwise vortex.

The above analysis of the shear layer represents the Görtler instability and the associated span-
wise periodic streaks. Furthermore, the linear stability theory (LST) considered the compressible
and curvature effects, which is developed by S. Scott Collis [62], is employed to the compressible
jet over a convex wall in this paper. The method was described in detail in Ref. [62].

The code used in this study is validated using the spatially growing Tollmien-Schlichting waves
in the boundary layer. The base flow is computed from the compressible Falkner-Skan-Cooke equa-
tions (see Appendix C in Ref. [62]). The flow conditions are Ma = 0.3, Re = 1000, and Pr = 1.0
with the reference length scale of the displacement thickness. For two-dimensional disturbances of
frequency ω = 0.08, we predict the spatial wave number as α = 0.228050 − 0.0065090i, which
agrees well with the result of Collis [62], α = 0.228047 − 0.0065163i. The comparison of the
eigenfunction is shown in Fig. 10, which is consistent with Collis’s result [62] as well.

The shear layer develops downstream in space, so the spatial problem was considered in this
study. In the spatial problem, the frequency (ω) and the spanwise wave number (β) are specified
real values and the remaining wave number (α) is the eigenvalue. The growth rate is given by the
imaginary part of α, while the wave number is given by the real part of α. In order to obtain a
linear stability map, the mean velocity profile of the DDES simulation near the nozzle exit shown in
Fig. 11(a) was used to solve the stability equations. In this analysis, the reference velocity and length
are the ambient air sound speed a∞ and the nozzle exit height h, respectively. We are most interested
in the unstable mode of the shear layer, in which the eigenfunction of the disturbances should be
distributed in the shear layer. Figure 11(b) shows the eigenfunction profile of the streamwise velocity
disturbance for the unstable mode in the shear layer (ω = 0.1, β = 0).
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FIG. 10. Comparison of eigenfunction distribution of the streamwise velocity fluctuation, (a) real part, and
(b) imaginary part. Solid line: result of this paper; symbols: result of Collis [62].

The results of the stability theory are shown in Fig. 12. With increasing of frequency [Fig. 12(a)],
the growth rate of the unstable mode in the shear layer has a maximum value around ω = 2.0 for
both two-dimensional (β = 0) and three-dimensional (β > 0) disturbances. This indicates that there
is a selection mechanism of the frequency in the instability of the shear layer. The selected frequency
is around ω = 2.0, and the corresponding physical frequency is f = ωa∞

2πh ≈ 11 000 Hz. Figure 13
shows the schematic of the detection points P1 (early stage near the nozzle exit) and P2 (rapid
instability stage) in the shear layer and corresponding power spectral density analysis results of
the density fluctuations. There is a dominant frequency near f = 10 000 Hz at both positions. This
dominant frequency agrees well with the prediction of LST and the DMD results later in this paper.

Further insight into the Fig. 12(b), near the selected frequency ω = 2.0, there is a maxi-
mum growth rate at spanwise wave number β = 4.5. The corresponding spanwise wavelength
λz = 2πh

β
= 1.4h, which agrees well with the numerical result [seen in Fig. 7(a)] λz = 1.25h. To

FIG. 11. (a) Velocity profile for linear stability analysis and (b) eigenfunction distribution of the streamwise
velocity disturbance for the unstable mode in shear layer.
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FIG. 12. Curve of (a) growth rate with frequency and (b) growth rate with spanwise wave number.

summarize, it can be considered that the dominant frequency and spanwise wavelength of the
disturbances in the shear layer are selected by the nozzle exit condition.

B. Secondary instability

1. Roll-mode

In the ensemble averaged view, pairs of counter-rotating streamwise vortices are located on the
flanks of the low-speed streaks as shown in Fig. 7(a). This counter-rotating mode is known to be
associated with the symmetric (varicose) mode secondary instability of the streaks based on the un-
derstanding from boundary layer studies [25–27,35]. However, by employing conditional averaged
sorting technology, Kevin et al. [44,45] have found that the counter-rotating secondary roll-mode
accounts for only 15% of the instantaneous fields, while the one-sided patterns are 32%. Hence,
they concluded that caution should be applied when portraying or reconstructing instantaneous

FIG. 13. Schematic of detection points P1 and P2 and density fluctuations power spectral density analysis
results.
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FIG. 14. (a) Illustration of areas where the radial velocities are average to determine the common radial-
flow directions at θ = 45◦. (b) Conditionally averaged vectors when the averaged radial velocity is +, −,+,
which represents the counter-rotating mode. [(c) and (d)] Conditionally averaged vectors when the averaged
radial velocities are +, −, − and −,−, +, respectively, which represent one-sided patterns. [(e) and (f)]
Conditionally averaged vectors for the remaining patterns.

flow fields using a representative structure with enforced symmetry, since it may obscure certain
attributes that are of dynamical significance to the instantaneous turbulence structure.

Here, by using the similar sorting technology to Kevin et al. [44,45], we aim to evaluate how
the instantaneous streamwise vortices appear in the compressible shear layer of the jet over a
convex wall. This sorting method is based on the average of the instantaneous radial velocity
at the center of alternating high- and low-speed streaks in spanwise direction. The filtered radial
velocity is averaged within a spanwise length of 0.1λz as illustrated in Fig. 14(a) (hatched region)
to determine the instantaneous sign of the radial flow in these regions. Different roll-modes are then

103901-13



WANG, QU, WANG, SUN, AND BAI

TABLE I. Percentage of different roll-modes with various streamwise locations.

Locations Roll-modes

θ +, −, + +,−, − −, −, + +, +, + Others

θ = 25◦ 88.9% 0.0% 0.0% 11.1% 0.0%
θ = 35◦ 86.1% 0.6% 0.4% 12.5% 0.5%
θ = 45◦ 61.1% 7.8% 6.9% 13.4% 10.9%
θ = 65◦ 27.8% 10.8% 11.6% 18.3% 31.4%
θ = 75◦ 19.6% 11.3% 11.5% 20.7% 37.0%

sorted based on the sign of the low-speed streak and two neighbor high-speed streaks combination,
giving eight possibilities for each low-speed streak. It is applied to all eight low-speed streaks
and only two are shown in Fig. 14; the proportions of each mode in Figs. 14(b) to 14(f) are the
results of counting all eight low-speed streaks. For example, the illustration in Fig. 14(a) shows
a positive-negative-positive or (+,−,+) pattern, which represents a counter-rotating flow pattern.
For this, conditionally averaged view of the cross-flow vectors can be produced for this pattern as
shown in Fig. 14(b). The counter-rotating vortices appear as expected, and this pattern accounts
for 61.1% of all instantaneous flow fields, while the one-sided flow modes (−,−,+ and +,−,−)
shown in Figs. 14(c) and 14(d) present 14.7% at the streamwise location θ = 45◦. The remaining
patterns of (+,+,+) and others contain 24.4%.

The above conditional average analysis is then repeated at other several streamwise locations,
and the results are presented in Table I. In the initial stage, the counter-rotating mode( +,−,+)
dominates the development of the shear layer and accounts for more than 85%. There are few
one-sided patterns( −,−,+ and +,−,−) in the remaining modes. Following the evolution of the
shear layer downstream at θ = 45◦, the proportion of the counter-rotating mode decreases but still
dominates (accounting for 61.1%), and the influence of the one-sided patterns gradually appears
(accounting for 14.7%). Finally, in the self-similar region (θ > 60◦), the proportion of various roll-
modes tends to be equal, which indicates that turbulence in the shear layer is fully developed.

2. Secondary instability mode

The above analysis of the roll-modes has revealed that the counter-rotating mode is dominated in
the transient stage of the shear layer in this study. In addition, hairpin vortex has also been observed
in the instantaneous flow field shown in Fig. 9. Thus, it is expected that the secondary instability
here is dominated by the symmetric (varicose-type) mode based on the secondary instability studies
in the boundary layer [29,30].

In addition to the dominant counter-rotating mode, there are still one-sided patterns with the
evolution of the shear layer downstream (Table I). Moreover, the spanwise overlapping of the hairpin
vortex legs produces alternating sign change of the streamwise vorticity as shown in Fig. 15. These

FIG. 15. Streamwise vorticity contours at z/h = −1.2, which is located between the high-speed and low-
speed streaks.
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FIG. 16. DMD modes (a), eigenvalue distribution, and (b), energy as a function of frequency.

quasistreamwise vortices with vorticity of alternate signs are well known to be associated with the
antisymmetric (sinuous-type) secondary instability mode [29,30]. Therefore, it is expected that there
would be a combination and competition of both varicose and sinuous mode secondary instabilities.

Furthermore, a widely applicable data-driven modal decomposition method, DMD [41], is
performed on the spanwise velocity fluctuation of the instantaneous snapshots to investigate the
secondary instability in the shear layer. The eigenvalue distribution and the energy of the DMD
mode as a function of frequency are shown in Fig. 16. As expected, the modal energy decreases with
the increase of frequency (except in the small range of low frequencies) since higher frequencies
are always associated with smaller-scale coherent structures. The first two pairs of conjugate modes
with the highest energy are marked in Fig. 16. The eigenvalue distribution shows that all modes are
very close to the unit circle in the complex plane, meaning that the growth or decay rates are close to
zero. The spatial distributions of the marked modes are shown in Fig. 17. There are backward-tilted
alternating positive and negative spanwise velocity fluctuations regions in the streamwise direction,
which indicates that the streaks sway in the spanwise direction, that is, the secondary instabilities.
Moreover, the time evolutions of these modes at the cross-stream plane θ = 35◦ are shown in
Fig. 18 and Fig. 19. The positive and negative values of this mode are just opposite in half a period.
Focusing on the spatial distributions of the modes in Fig. 18, the spanwise fluctuations on the flanks
of the low-speed regions are the same signs, which could induce the side-to-side sway motion of the

FIG. 17. Spatial distributions of the DMD modes, isosurfaces show the positive (red) and the negative
(blue) spanwise velocity fluctuation.
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FIG. 18. Time evolution of the conjugate modes 1 and 2 at cross-stream plane θ = 35◦. The arrows point
to the spanwise velocity fluctuations with the same signs on the flank of low-speed streaks.

streaks. This indicates that the conjugate modes 1 and 2 are the sinuous-type secondary instability.
On the contrary, the low-speed streaks in Fig. 19 have opposite spanwise fluctuations on both sides,
which leads to periodic thickening and thinning motions of the low-speed streaks. This indicates that
the conjugate modes 3 and 4 are the varicose-type secondary instability. To summarize, there are
both sinuous- and varicose-type secondary instabilities in the shear layer, and competitions between
these modes would occur.

In order to quantitatively evaluate the proportion of the two secondary instability modes in the
low-speed streaks of the shear layer, the sorting method from Kevin et al. [44,45] is also employed
for the areas illustrated in Fig. 20. The areas are located on the flanks of the low-speed streaks to
determine the spanwise fluctuation directions. Different instability modes can be sorted by detecting
the averaged spanwise velocity fluctuation direction. For example, if the averaged spanwise velocity
fluctuation at the left-hand side (dash box) is positive, and the right-hand side (solid box) is negative,
then the corresponding low-speed region exhibits thinness motion. This positive-negative mode
(+,−), together with another negative-positive mode (−,+), is called the varicose mode. In such
an instability mode, the low-speed region exhibits alternating thinning and thickening motions.
Similarly, the negative-negative mode (−,−) and positive-positive mode (+,+) are referred to as
the sinuous mode, which makes the low-speed region sway side to side. Figures 21 and 22 depict
the conditionally averaged streamwise velocity contours of the varicose and sinuous secondary
instability mode, respectively. It can be observed that the low-speed regions thinning and thickening
motion caused by the varicose mode, and side-to-side sway motion induced by the sinuous mode.

The aforementioned conditional average analysis is repeated at various streamwise locations,
and the results for proportions of different secondary instability modes are shown in Table II. As the
shear layer evolves downstream from θ = 25◦ to 45◦, the proportion of the varicose mode decreases
from 84.4% to 50.6%, and, accordingly, the sinuous mode increases from 15.6% to 49.4%. This
indicates that the secondary instability of the shear layer is dominated by the varicose mode at the
initial stage, and then transits to a competition of these two modes. This result is consistent with the
previous conclusion on the roll-modes and the instantaneous large-scale coherent structures.

The change of secondary instability modes proportions can be explained from the following
two aspects. On the one hand, the initial stage of shear layer development is dominated by the
counter-rotating roll-mode and symmetric hairpin vortex, which is associated with the varicose-type

FIG. 19. Time evolution of the conjugate modes 3 and 4 at cross-stream plane θ = 35◦. The arrows point
to the spanwise velocity fluctuations with opposite signs on the flank of low-speed streaks.
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FIG. 20. Illustration of areas where the spanwise velocity fluctuations are averaged to determine the
common spanwise fluctuation directions at θ = 35◦ (solid and dash boxes). The color contours show the
spanwise velocity. The background lines display the underlying streak profile using streamwise velocity, and
levels vary from 0 to 1.0.

instability. Then the one-sided roll-mode appears, and the overlapping of the hairpin vortex legs in
the spanwise direction produces the quasistreamwise vortices with vorticity of alternate sign, which
means the prominence of the sinuous-type instability mode. On the other hand, experimental and
numerical studies on the near-wall low-speed streak by Swearingen et al. [29] and Asai et al. [30]
concluded that the sinuous modes are less affected by the diffusion of the streak mean shear and
are amplified for a longer streamwise distance. Also, Asai et al. [30] studied the influence of
streak width and found that, compared to the varicose mode, the sinuous instability is relatively
more important for the narrow streak. In terms of the low-speed streak in this study, the width
almost keeps a constant value in the instability region as shown in Fig. 23(a). While the thickness
of the shear layer increases exponentially in this region as shown in Fig. 23(b). The vorticity
thickness of the shear layer grows by nearly 2.5 times from a streamwise position of 25◦ to 45◦,
that is, the relative width of the low-speed streaks narrows. The sinuous-type instability mode
plays a more and more important role in the narrower streak based on the conclusion of Asai
et al. [30].

3. Instability mechanism and energy extraction from the mean flow

Figures 24(a) and 24(b) show the rms value distributions of the streamwise velocity fluctuations
in the cross-stream plane at θ = 35◦ for the conditional averaged varicose mode and sinuous mode,
respectively. For the varicose mode, the streamwise velocity fluctuations are largest in the downwash
region where the radial shear takes the maximum and on the flanks of the low-speed streak where
the spanwise shear is maximum. This distribution of the varicose mode is consistent with that in
the boundary layer secondary instability reported by Swearingen et al. [29] and Asai et al. [30].
For the sinuous mode, the largest fluctuations are distributed on the flanks of the low-speed streaks
but not in the region of the highest spanwise shear as in the boundary layer streak [25,29,30]. This
observation will be explained below.

In order to examine the instability mechanism and turbulent energy extraction from the mean
flow, the distribution of the turbulent kinetic energy production in the cross-stream (y, z) plane is
evaluated, where turbulent kinetic energy production term Pk = (−u′v′ ∂U

∂y ) + (−u′w′ ∂U
∂z ). The first

FIG. 21. Streamwise velocity contours of the varicose mode at θ = 35◦.
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FIG. 22. Streamwise velocity contours of the sinuous mode at θ = 35◦.

term Ty = −u′v′ ∂U
∂y , represents the Reynolds shear stress u′v′ act against the mean shear in the radial

direction ∂U
∂y , while the second term, Tz = −u′w′ ∂U

∂z , is associated with the work of the Reynolds

shear stress u′w′ on the spanwise shear ∂U
∂z . In fact, in centrifugally unstable flow, it is well known

that the varicose mode has been understood as an instability of the inflection points generated by
the wall-normal variation of streamwise velocity, whereas the spanwise shear is responsible for the
sinuous mode instability. However, Brandt et al. [30] have found that the turbulent energy production
associated with the wall-normal shear is one order of magnitude larger than that associated with its
spanwise counterpart in the sinuous mode instability. Therefore, they concluded that it is not always
correct to relate the sinuous instability to the streak spanwise shear and the varicose modes to the
streak wall-normal shear. Here Fig. 25 shows the distributions of turbulent energy production terms
associated with the radial and spanwise shear for the conditionally averaged varicose and sinuous
mode. By comparing with the streamwise velocity gradient in Fig. 14, the largest turbulent energy
productions are found to correspond with the maximum radial and spanwise shear. Moreover, it
is worth noting that both varicose and sinuous modes are affected by radial and spanwise shear
components of the turbulent energy production term, and they are in the same order of magnitude.
That is, as Brandt et al. [30] concluded, it is inappropriate to simply attribute the varicose modes to
the wall-normal shear and sinuous instability to the spanwise shear.

The turbulent energy production distributions in Fig. 25 seem to be wrapped around the boundary
of the low-speed streaks. Brandt et al. [30] proposed a local reference coordinate system to explain
this distribution. The local reference system is defined as (x, n, p), where x is the streamwise
direction, n is the direction parallel to the basic flow velocity gradient, defined by tan φ = ∂U/∂z

∂U/∂y ,
and b is the third orthogonal axis satisfying the right-hand rule. In this local system, the turbulent
energy production term Tp = −u′

xu′
p

∂U
∂ p = 0 according to the definition of this system. Thus, the

production of the turbulent energy is only owing to the shear stress u′
xu′

n act on the local mean
shear ∂U

∂n . The distributions of this term are shown in Fig. 26. It can be noted that they correspond
with the cross-stream distributions of the fluctuations in Fig. 24, which indicates that the mechanism
of the instability is due to the velocity fluctuations and Reynolds stress parallel to the local mean
flow gradient, whether in the varicose mode or sinuous mode. The local inflection point instability
caused by the mean flow gradient is also the source of turbulent energy that sustains the instabilities.

TABLE II. Percentage of different secondary instability modes with various streamwise locations.

Locations Varicose mode Sinuous mode

θ +, − −,+ −, − +, +
θ = 25◦ 45.20% 39.20% 7.20% 8.40%
θ = 35◦ 40.10% 26.20% 16.40% 17.30%
θ = 45◦ 23.60% 27.00% 24.60% 24.80%
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FIG. 23. (a) Mean streamwise velocity contours at y/h = 0.75, which shows the high- and low-speed steaks
in the shear layer. (b) Vorticity thickness development of the shear layer.

V. CONCLUDING REMARKS

In the present study, the secondary instabilities in the shear layer of the compressible jet over a
convex wall were investigated by using the DDES method based on the SST turbulence model. The
primary conclusions of this study are summarized as follows.

Taylor-Görtler-type centrifugal instability induces the generation of the streamwise vortices in
the shear layer of the convex wall jet. By the activity of the streamwise vortices, there are spanwise
periodic upwash and downwash regions, that is, alternating high-speed and low-speed streaks. The
streaks would exhibit secondary instabilities as those in other wall-bounded shear flows under the
influence of the inflection points in the spanwise and radial directions.

The LST method developed by S. Scott Collis [62] with consideration of the compressible and
curvature effects is employed to predict the dominant frequency and spanwise wavelength of the
disturbances in the shear layer. They agree well with the numerical results. This indicates that the
dominant frequency and spanwise wavelength of the disturbances in the shear layer are selected by
the nozzle exit condition. Moreover, it is worthwhile and meaningful to use other nonlinear analysis
methods, such as secondary instability theory, parabolic stability equations, and global instability
analysis to study the instability of the compressible jet over a convex wall.

The observation of the vortex structures has revealed that the hairpin vortices are the dominant
large coherent structures in the transient stage of the shear layer. Moreover, the roll-modes of the
streaks are quantitatively evaluated using a conditionally averaged sorting technology similar to
that in Kevin et al. [44,45]. The results demonstrate that the counter-rotating mode is dominated in
the transient stage of the shear layer. The hairpin vortices and the counter-rotating mode are often
associated with the symmetric (varicose-type) secondary instability mode. However, as the shear
layer evolves downstream, there still are one-sided roll patterns (accounting for 14.7% at θ = 45◦).
Also, the spanwise overlapping of the hairpin vortex legs produces quasistreamwise vortices with

FIG. 24. Streamwise fluctuation of the conditionally averaged (a) varicose mode and (b) sinuous mode
extracted at θ = 35◦.
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FIG. 25. Turbulent kinetic energy production of the conditionally averaged [(a) and (c)] varicose mode and
[(b) and (d)] sinuous mode extracted at θ = 35◦.

vorticity of alternate sign, which is well known to be related to the antisymmetric (sinuous-type)
secondary instability mode.

The DMD analysis of the spanwise velocity fluctuation has revealed that secondary instabilities
of both the sinuous- and varicose-types exist in the shear layer, and competitions between these
modes would occur. The conditionally averaged sorting method is also used to quantitatively
evaluate the competition of secondary instability modes. The sorting results observed the thinning
and thickening motions induced by the varicose mode, as well as the side-to-side sway motions
caused by the sinuous mode. As the shear layer evolves downstream from θ = 25◦ to 45◦, the
proportion of the varicose mode decreases from 84.4% to 50.6%, and, accordingly, the sinuous mode
increases from 15.6% to 49.4%. This is consistent with the previous conclusions from the roll-modes
and instantaneous large-scale coherent structures analyses. The variation in the proportions of the
secondary instability modes is caused by the diffusion of the streak mean shear, and the exponential
increase of the shear layer thickness, which results in a relatively narrower streak.

Based on the analysis of the turbulent kinetic energy production terms, the Reynolds shear
stresses u′v′ against the mean shear in the radial direction ∂U/∂y and u′w′ on the spanwise shear
∂U/∂z, which are of equal magnitude, are the causes of both the varicose and sinuous modes. Thus,
it is inappropriate to simply attribute the sinuous instability to the spanwise shear and the varicose
modes to the wall-normal shear. Further, according to a local reference coordinate system analysis,
the mechanism of the instability is due to the velocity fluctuations and Reynolds stress parallel to the

FIG. 26. Turbulent kinetic energy production of the conditionally averaged (a) varicose mode and (b) sin-
uous mode extracted at θ = 35◦.
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local mean flow gradient. The local inflection point instability induced by the mean flow gradient is
also the source of turbulent energy that sustains the instabilities.
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