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Fully compressible turbulent convection beyond the Oberbeck-Boussinesq limit and
anelastic regime is studied in three-dimensional numerical simulations. Superadiabaticity
€ and dissipation number D, which measures the strength of stratification of adiabatic
equilibria, cause two limits of compressible convection—nearly top-down-symmetric,
strongly superadiabatic convection and highly top-down-asymmetric, strongly stratified
convection. The highest turbulent Mach numbers M, follow for a symmetric blend of
these two limits, which we term the fully compressible case. Particularly, the strongly
stratified convection case leads to a fluctuation-reduced top layer in the convection zone, a
strongly reduced global heat transfer, and differing boundary layer dynamics between top
and bottom. We detect this asymmetry for growing dissipation number D also in the phase
plane, which is spanned by the turbulent Mach number M, and the dilatation parameter
8, which relates the dilatational velocity fluctuations to the solenoidal ones. A detailed
analysis of the different transport currents in the fully compressible energy budget relates
the low-D convection cases to the standard definition of the dimensionless Nusselt number
in the Oberbeck-Boussinesq limit.

DOI: 10.1103/PhysRevFluids.8.103505

I. INTRODUCTION

Buoyancy-driven turbulence significantly deviates, in most applications, from the thermal con-
vection paradigm of a Rayleigh-Bénard layer heated from below and cooled from above [1]. The
latter is characterized by small deviations from an (adiabatic) equilibrium state, incompressibility,
and constant material properties, thus leading to a perfect statistical top-down symmetry, termed
the Oberbeck-Boussinesq (OB) limit [2-5]. On the one hand, non-Oberbeck-Boussinesq (NOB)
effects are caused by additional physical processes, such as phase changes in the atmosphere [6,7]
which generate buoyancy reversals [8], or by strong dependencies of the material properties and
density on temperature and pressure [9-13], e.g., in technical fluids for nuclear engineering [14].
On the other hand, they are also caused by compressibility [15], such as in giant gas planets [16,17]
or the coupling of ocean mesoscale eddies to the surface wind stress fields of the lower atmo-
sphere [18,19]. The corresponding numerical models typically involve the anelastic (AE) limit of
the compressible flow case representing a small excess from the adiabatic equilibrium [20]. Other
examples require a fully compressible treatment. Strong radiative cooling drives solar convection
from the surface, causing downflows with characteristic velocity fluctuations reaching the speed of
sound, u’ ~ ¢ [21-24]. For supersonic convection (see, e.g., Refs. [25,26]) and for forced interstellar
gas cloud turbulence with the velocity fluctuations up to ' < 5c¢, see Ref. [27].

In this work, we investigate fully compressible turbulent convection solely driven by buoyancy
forces. The flow is characterized by the superadiabaticity, €, and a measure of the stratification
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of density or temperature, the dissipation number D. Both parameters are bounded and form a
triangular e—D parameter plane. Buoyancy-driven compressible convection can thus proceed in two
limits—the strongly superadiabatic (SAC) and the strongly stratified convection (SSC)—which lead
to subsonic root-mean-square (rms) velocity amplitudes u’. Their mixture, which we will term fully
compressible convection (FCC), is shown to result in the largest turbulent Mach numbers, M, =
u'/c. A first objective of the present work is consequently a systematic exploration of the e—-D
parameter plane.

Variable material properties such as the temperature and pressure dependence of dynamic
viscosity (T, p) and thermal conductivity k(7, p) can also lead to non-Oberbeck-Boussinesq
(NOB) behavior [4]. This is relevant in many astrophysical and geophysical systems, where we
have gaseous systems with a complicated equation of state involving nontrivial dependencies of
material properties on the thermodynamic state variables, T and p. They also differ from the usually
assumed Sutherland law for ideal gases [28]. In reality, these variable fluid properties can interact
with compressibility effects, which complicates a systematic analysis of the convection regimes.
This is outside the scope of the present study. Here, we try to disentangle and isolate genuine
compressibility effects from other possible routes to NOB convection [29] by keeping constant
material parameters, ©o and ko.

We also show that not every NOB flow will generate highly asymmetric mean vertical profiles of
central turbulence quantities across the layer, even though the detaching thermal plumes are found to
be asymmetric in all cases—thinner plumes detaching from the top in comparison to the ones from
the bottom. We will use the Kullback-Leibler (KL) divergence [30] between the local boundary
layer thickness distributions at top and bottom to access this asymmetry for all cases [31]. Finally,
we analyze in detail the energy equation budget, such that we can compare the different currents
with the diffusive and convective heat currents from the Rayleigh-Bénard convection case which is
the OB limit with ¢ — 0 and, subsequently, D — 0.

One motivation for the present study of the SSC is the interior of the Sun. In the upper layer,
the turbulent Mach number is of O(1) or partly even slightly larger at the surface to the coronal
vacuum, possible due to a moderate superadiabaticity and extreme drops of temperature and density.
The strong stratification, particularly in the upper convection zone, is in line with anomalously
weak velocity fluctuations, as observed by helioseismology measurements [32] for solar radii r 2
0.92Rs. By exploring the extreme limits of turbulent compressible convection, as done here in a
much simpler setting, our results might suggest new pathways to better explain these observations,
despite being orders of magnitude away from reality in terms of Rayleigh and Prandtl numbers. We
will come back to this point in the final discussion of the work.

II. GOVERNING EQUATIONS

Our study is based on three-dimensional direct numerical simulations (DNS) of the fully com-
pressible differential balance equations for mass, momentum, and internal energy densities, p, pu;,
and pe, by a compact finite-difference scheme [33-35] which is appropriate for subsonic flows [36].
The fully compressible Navier-Stokes equations along with the buoyancy term are given by

ad a(pu;
o M =0, (1a)

ot ox;

d(pui) | I(puu;) dp | i
— = —— 4+ —= — pgdi3, 1b
ot + an 0X; + 8Xj P83 (1b)
d(pe)  d(peu;) ou; 0 oT
=—p—+ —|k— i1Sii 1
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p=pRT where R=C,—C,, (1d)
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with i, j = x, y, z. These equations correspond to mass, momentum, and energy conservation laws
along with the ideal gas equation of state. Here, p, u;, p, pe, and T are the density, components of the
velocity field, pressure, internal energy density, and temperature, respectively. The specific internal
energy is defined as e = C,T. R is the gas constant. We used the Einstein summation convention.
The viscous stress tensor o;; and strain rate tensor S;; are defined as

ou; n ou; 25 ouy, and S 1/ 0u; . ou; 2)
Oij =M\ -— + - — 50— iji==\—+1
=My T 37 7= 2\ox; T

respectively. The dynamic viscosity is assumed to be constant in these simulations, & = . The
thermal conductivity & is related to the viscosity through the Prandtl number, kg = 11oC,/Pr. In all
our simulations, the Prandtl number is assumed to be Pr = 0.7. Here, g is the acceleration due to
gravity, and C, and C, correspond to specific heat at constant pressure and volume, respectively.
Their ratio, the adiabatic coefficient y = C,,/C, = 1.4, corresponds to a diatomic gas.

We have modified the code used in [37] for simulating channel flows. The space is discretized
using horizontally uniform grids in the x and y directions, along with periodic boundary conditions.
Along the wall normal direction, a nonuniform grid is used with clustering near the walls by using
a hyperbolic tangent stretching function. The spatial derivatives are calculated using sixth-order
compact finite differences for all points except near the walls. Fourth- and third-order compact
schemes are used at the last two grid points near the wall, respectively. No-slip boundary conditions
are used for the walls. The boundary condition for pressure is evaluated using the z-direction Navier-
Stokes equations at the wall,

3]7 _ aaiz
9z ox;
The variables are advanced in time using a low-storage third-order Runge-Kutta scheme. A

Courant-Friedrichs-Lewy (CFL) number of 0.5 is used for all our direct numerical simulations.
All the statistics are taken after the flow has reached the steady state.

- pg. 3)

III. COMPRESSIBLE CONVECTION REGIMES

The adiabatic equilibrium, for which the compressible convection layer is at rest, is given by
T (z) = Tyot(1 — Dz/H). The reference temperature is the adiabatic value at the bottom of the layer,
Thot = Thor. The first new dimensionless parameter D relates the dry adiabatic lapse rate g/Cy to
a characteristic temperature drop across the convection layer of height H and thus measures the
strength of stratification. It is termed the dissipation number [39] and is given by

_ gH _ Toor — Ttop
Cprot ’ant ’

Bars denote plane-time averages of the adiabatic profiles. The actual value at the top differs with
Tiop < Tiop(< Tpor) for convection to occur. The second new dimensionless parameter in compress-
ible convection is the superadiabaticity € [39], which is defined as

Eop - T;op
Tbot

Note that € — 0 corresponds to the anelastic limit, where the high-frequency acoustic motions
are filtered out of the system. This is possible due to the scale separation between convective and
acoustic motions at low €. However, at a finite €, acoustic motions can interact with the convective
physics, which can lead to NOB behavior.

For incompressible Rayleigh Bénard convection, the limits € — 0 and, subsequently, D — 0 are
taken [39]. Thus, NOB effects can be observed for finite magnitudes of both € and D. From Egs. (4)
and (5), it is also clear that both dimensionless parameters satisfy 0 < €, D < 1. Furthermore, we get
€ +D = AT [Tyot = (Toor — Tiop)/Toor- Thus, it follows immediately thate < 1 — D, which restricts

D “4)

€ =

®)
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FIG. 1. Different regimes of compressible turbulent convection. (a) Parameter plane spanned by dissipation
number D and superadiabaticity €. The exact Oberbeck-Boussinesq limit (OB) at the origin and the anelastic
(AE) regime are indicated together with the four different simulation cases. (b)—(e) Vertical slice cuts through
(b) instantaneous temperature 7Ty, at (¢, D) = (0.1, 0.1) near the OB limit, (c) in highly superadiabatic con-
vection (SAC) at (0.8, 0.1), (d) in fully compressible convection at (0.45, 0.5), and (e) in strongly stratified
convection (SSC) at (0.1, 0.8). The Rayleigh number is Ra ~ 10° and the Prandtl number Pr = 0.7 in all
cases.

the e—D parameter plane to a triangle, as shown in Fig. 1(a). In this paper, we are interested in
analyzing the limits of compressible convection in terms of both of the compressibility parameters.
They are found in the corners of the parameter plane. When defining the free-fall velocity by Uy =
/geH and the speed of sound by ¢, = \/y RTy, a free-fall Mach number My can be defined [39].
The parameter M is given by

U D
= 21 for e,Del0,1]. (6)
Cs )/—1

My

Equation (6) shows that M is bounded from above by 1. For this bound, we use y =7/5 = 1.4 of
an ideal gas and € < 1 — D. The maximum M;ﬁ = /5/8 ~ 0.79 is obtained for a symmetric blend,
D = € = 1/2. We can now identify different regimes of compressible thermal convection:

(1) Oberbeck-Boussinesq-like convection exists for € << 1 and D < 1 close to the exact OB
Rayleigh-Bénard convection case at (¢, D) = (0, 0). This regime will be denoted, for simplicity, as
OB or OB-like in this work. In this particular study, we take e = D = 0.1.

(2) Strongly stratified convection exists for € < 1 and D — 1 and will be denoted as SSC. It is
an extreme case of the AE limit that requires € < 1 only [39—41]. In this study, we take € = 0.1 and
D = 0.8, the latter of which is still somewhat smaller than the maximum D,,,x = 1 — € at fixed €.

(3) Fully compressible convection exists for € ~ D = 0.5 and will be denoted as FCC. It is the
range in which the free-fall Mach number is maximum. In this study, we take ¢ = 0.45and D = 0.5.

(4) Strongly superadiabatic convection exists for D < 1 and € — 1 and will be abbreviated as
SAC. In this study, we take D = 0.1 and € = 0.8, the latter of which is still somewhat smaller than
the maximum €., = 1 — D at fixed D.

These four regimes of compressible convection are marked in the triangular € — D phase plane
in Fig. 1(a). The temperature ratio Tyo/Tiop = 1/[1 — (€ + D)] varies from 1.25 to 20 in this study,
as listed in Table I, where further details on all simulations are given. For all simulations, T, is kept
constant. For the physics considered in this study, the absolute value of Ty, is not relevant.

It should be noted that My — 0 when either € or D go to zero. Our interest is in truly genuine
compressible behavior limits with non-negligible Mach number. Thus, we have chosen finite values
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TABLE 1. List of eight compressible direct numerical simulations (DNS) along with the data from two
incompressible RBC cases. The identifier, dissipation number D, superadiabaticity €, ratio of temperature
and density (adiabatic) at the bottom and top, maximum turbulent Mach number M;™®*, Rayleigh number
Ra, Prandtl number Pr, adiabatic coefficient y, grid dimensions, Reynolds number Re, Nusselt number Nu,
and number of horizontal grid planes inside the thermal boundary layers at the bottom and top are listed.
All simulations have an aspect ratio of I' = L/H = 4. The error bars for Re and Nu are obtained from the
difference of the corresponding values of the two halves of the snapshot series. We add two Rayleigh-Bénard
convection runs (subscript RBC) at the corresponding Rayleigh numbers which have been obtained by spectral
element simulations [38] at (D, €) = (0, 0) as references. Their grid resolution is given by the number of
spectral elements times the number of collocation points on each spectral element in all three space directions.

No. No.
No. Identifier D € Toot/Tiop  Poot/Prop M Ra  Pr y Ny x Ny X N Re Nu )»'}"‘ Af;’p
1rBC RBC 0 0 0 10° 0.7 14 256,000 x 53 94+03 43+£0.02 66 66
1 OB 0.1 0.1 1.25 1.3 0.12 10° 0.72 1.4 256 x256x 128 117+0.8 4.0+0.03 28 29
2 SAC 0.1 0.8 10 1.3 0.78 10° 0.72 14 256 x256x 128 175+2.1 5.1+£0.03 27 23
3 FCC 0.5 045 20 5.7 12 105 0.72 1.4 256 x256x 128 123403 4.04+0.06 21 34
4 SSC 0.8 0.1 10 55.9 039 10° 072 14 256x256x 128 102415 2.8+0.05 18 48
SrBC RBC 0 0 0 10° 07 14 256,000 x7° 296428 8.14006 58 58
5 OB 0.1 0.1 1.25 1.3 0.14 10° 0.72 14 512x512x256 424439 79+004 35 38
6 SAC 0.1 0.8 10 1.3 0.84 10° 0.72 14 512x512x256 582426 9.9+0.01 33 29
7 FCC 0.5 045 20 5.7 132 10° 0.72 1.4 S512x512x256 437439 804004 26 44
8 SSC 0.8 0.1 10 559 0.61 10° 0.72 1.4 512x512x256 351+3.1 43+£004 24 74

of € = 0.1 and D = 0.1 for the SSC and SAC cases, respectively. From Table 1, it is seen that the
obtained maximum turbulent Mach numbers are high enough such that approximations, including
the pseudo-incompressible approximation [42,43], the low Mach number approximation of [44], or
the anelastic [45] approximation, would not be valid. Indeed, finding out the ranges of validity
of these approximations in the € — D parameter plane and to study the transitions from these
approximations to the fully compressible regime would be interesting and important. However, this
is outside the scope of the present study; a brief discussion is included in the final discussion.

We furthermore note that the SAC and FCC regimes are relatively unexplored in the current
literature. This is different from the SSC regime, which has been studied frequently in the past, e.g.,
in Refs. [39,46]. The present study extends the range of stratification in the SSC. In Table I, we
provide the ratio of the background density stratification which is given by

oot — (1 - Dy Vo, @)

Prop

for all simulations. For the SSC case, this ratio is about 56 compared to about 20 and 11 in Verhoeven
et al. [39] and Cattaneo et al. [46], respectively. In Ref. [47], we showed a transition to the highly
stratified convection when the dissipation number exceeds D 2 0.65 (and pyot/ Prop = 13.8) for
fixed € ~ 0.1 at Ra = 10°. For the largest dissipation numbers, the pressure rather than the tempera-
ture fluctuations get synchronized with density fluctuations. Here, in our SSC case, D = 0.8 > Dit,
and thus our study will shed further light on the SSC limit case which includes a detailed analysis
of the differences between the top and bottom boundary layers.

IV. SET OF DIRECT NUMERICAL SIMULATIONS

A total of eight DNS were conducted at two different Rayleigh numbers of Ra ~ 10 and 10°
at Pr = 0.72 for each of the four regimes, with their operating points (¢, D); see, again, Table I. In
addition, we add two corresponding Rayleigh-Bénard convection runs for reference, i.e., runs lrpc
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FIG. 2. Resolution of the DNS. Ratio of the height-dependent Kolmogorov length scale to (a) the uniform
horizontal grid size and (b) the nonuniform wall-normal grid size. In both figures, the black dashed line
corresponds to the resolution criterion from Ref. [34] at a ratio of 0.5. Data are for Ra = 100.

and Sgpc. The dimensionless parameters Ra and Pr are given by

e{p)s C,gH? (&
—<p)v’t ré and Pr= Lttt ) P

Ra =
Moko ko

®)
The notation ()y, corresponds to a combined average with respect to full volume and time. For all
simulations, we use an aspect ratio I' = L/H = 4, where L is the horizontal length. Previous studies
in isotropic compressible turbulence [34] have shown that a (uniform) grid resolution of n/Ax > 0.5
is sufficient to resolve the small-scale statistics correctly, such as moments of vorticity and dilatation

up to fourth order. Here, 1 is the Kolmogorov length scale. In our case, the wall-normal grid spacing,
Az(z), and the Kolmogorov length scale, 1(z), are functions of depth z. The latter is given by

3 1/4
0
= 3 <, S 9 9
1) [p?ef@xef(zm,,} ©)

where prr(z) = (0(2))a,- The notation (-)4 , corresponds to a combined average over the horizontal
directions and time, which is given for a field X as

N, Ny N,
Dom=t1 2it1 ijl X(Xi, ¥j» 2o tm)
N(N,N, ’

(X (@)as = (10)

where N,, N,, and N, are the grid point numbers with respect to the x and y directions, and number
of snapshots, respectively.
The mean kinetic energy dissipation rate at height z is given by

(lf;_il<sijaij)A,t- (11

The horizontal and vertical resolutions, n/Ax and 1/ Az, with respect to depth, are shown for Ra ~
10° in Figs. 2(a) and 2(b), respectively. It is clear from both figures that for all cases, our simulations
are very well resolved, i.e., the minimum ratio is above the threshold. The grid resolution in the
wall-normal direction [Fig. 2(b)] is better than the one in the horizontal directions [Fig. 2(a)], due
to much finer grid in the z direction. In Table I, we provide the number of grid points inside the top
and bottom thermal boundary layers for all the simulations. The thermal boundary layer thicknesses

(€r(@as =
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at the bottom and top are therefore defined as

-1

9(Tza)
WP = (T (0, 1) — Ta(0.5))a, | —= (12)
z/H=0,1
Here, Ty, is the superadiabatic temperature, which is given by
Ta(x, 1) =T(x,1) = T (2). (13)

We can conclude that both boundary layers are very well resolved, which we also document in the
last two columns of Table I; see, also, Ref. [38]. The present simulations are thus better resolved
than those in [39].

V. SIMULATION RESULTS
A. Turbulent heat and momentum transfer—Nusselt and Reynolds number

The Nusselt and Reynolds numbers, Nu and Re, are the global responses of the system to the
parameters Ra, Pr, D, and €. They quantify the turbulent heat and momentum transfer. The Nusselt
number is defined on the basis of the superadiabatic temperature field and is given by

H  d(Ta)as H d(Ta)as

= AR . 14
A(T)a,  dz (19

Nu = — -
2=0,H €Ty dz | _opy

The reported Nusselt number is the mean of those calculated at the top and bottom boundaries.
The difference between both values was found to be negligible for all cases, with a range between
0.06% and 3%. This indicates that our simulations are well converged and statistically steady. The
Reynolds number is defined as

_ prefu,H
Ho

Re with o = \/<u§>v7t +(2),, +(2),, (15)
The Nusselt and Reynolds numbers for all cases are listed in Table I. For a given Ra, the SAC case
has the highest Nusselt and Reynolds numbers, whereas the SSC case has the lowest. The values
of the FCC cases are in between those of SAC and SSC. In fact, they are close to the OB case. In
general, heat and momentum transfer efficiencies of the fluid system are enhanced and decreased
by increasing € and D, respectively. As expected, the Nusselt number of both OB-like cases is close
to that of the corresponding incompressible Rayleigh-Bénard case. The slight difference between
the two can be accounted for by the fact that small, but non-negligible, compressibility effects are
expected even when € = D = 0.1.

B. Structure of the superadiabatic temperature field

Although the mean values of the Nusselt and Reynolds numbers of FCC and OB are comparable,
we observe significant differences in the contour plots of the superadiabatic temperature for all
cases including FCC and OB in Figs. 1(b)-1(e). Figure 1(b) displays the OB-like dynamics with
symmetric plume detachments from the boundary layers at top and bottom; the simulations of SAC
in Fig. 1(c) develop a top-down asymmetry between falling and rising plumes, which will still not
significantly alter the mean profiles across the layer, as we will see further below. Highly asymmetric
configurations follow for FCC at the operating point (¢, D) close to the Mach number maximum M7
in Fig. 1(d) and for SSC with D — 1 — € where turbulence is strongly suppressed at the top and a
clearly visible sublayer with reduced turbulence is formed; see Fig. 1(e). Except for the OB case,
thinner plumes emanate from the top compared to those rising from the bottom. This is a general
trait of compressibility regardless of the boundary layer thickness. Moreover, comparing the large
D (FCC and SSC) cases, the stratified layer at the top becomes prominent for SSC at D = 0.8
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FIG. 3. Mean vertical profiles of plane-time averaged quantities as a function of superadiabaticity and
dissipation number at Ra =~ 10° (runs 5-8). We show (a) the normalized mean of the superadiabatic temperature
T4 (z), (b) the turbulent Mach number M, (), (c) the dilatation parameter §(z), (d) the root-mean-square profiles
of u(z) and (e) u.(z), and, finally, (f) the mean of the pressure dilatation, p# = p(V - u). The color coding for
all plots corresponds to the legend in (a). Data are for Ra = 10°.

compared to FCC at D = 0.5. Also, the plumes which detach from the bottom in FCC get well
mixed compared to those in SSC due to higher €.

C. Vertical mean profiles and breakdown of top-down symmetry

The mean vertical profiles of the turbulence fields are summarized in Fig. 3. We recognize first
that for most statistics, the FCC profiles are enclosed by those of the limit cases, SAC and SSC,
which supports the idea of being a blend of these limits. Figure 3(a) shows the combined plane-time
averages of the superadiabatic temperature 7, renormalized by Ay, = (T5,(0))a; — (Tsa(1))a ., such
that all four profiles are comparable. The OB-like and SAC cases with D < 1 give nearly symmetric
profiles with a well-mixed bulk close to (T,)/As, = 0.5. In contrast, the cases FCC and SSC are
characterized by significant offsets from the symmetric OB value of (7, (z))4, = 0.5. However,
since € and D are finite and not zero in the OB-like case (and thus the compressibility effects are
present), we observe a small positive offset from a perfect top-down symmetry. In SAC, for which
the superadiabaticity gets very large while D remains unchanged, the cold falling thinner plumes
reach deeper into the bulk. This reverses the slight offset of the OB-like case into a negative one,
(Tza(2))ay < 0.5.

Mean vertical profiles of the turbulent Mach number M,, defined as

u'(z)
VYRT@)a,

are reported in Fig. 3(b). We again observe asymmetric curves for FCC and SSC, in agreement
with those for the velocity fluctuations that will be discussed afterwards. The largest turbulent Mach
numbers are found in FCC close to the top with values that remain consistently below the estimate,
max,[M,;(z)] < M]’Z, from (6). The smallest values of M, (z) are observed for the OB-like regime. The
estimate My < 1 1n (6) was based on the bottom temperature 7. A free-fall Mach number based
on the top plate temperature could alternatively be defined such that two free-fall Mach numbers are

M,(z) = (16)
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D Tt
M?O‘ =M, and M;f’p = € bot - (17)
’ ’ : ()/ -1 Ttop

For the FCC case, the free-fall Mach number with respect to the top is M =335, Thus, in
principle, supersonic conditions can exist at the top boundary; see, also, Ref. [25]. In Table I,
we list the maximum (pointwise) turbulent Mach number M™ = max ;) lu(x, ¢)|/[yRT (x, N2
obtained in our simulations for all cases. As expected, the highest maximum Mach number is for
the FCC case around 1.32 for Ra & 10°. Although supersonic, this is much lower than M'*™® = 3.35.
This apparent discrepancy is because, near the top boundary, the velocities are negligible and the
strongest velocity fluctuations are near the edge of the top boundary layer where the temperature,
in turn, is higher than Ti,p,. Indeed, we also see from Table I, for all cases, that M;" increases with
the Rayleigh number (even though only two Ra values are available). Additional studies at higher
Rayleigh numbers are thus required to understand the trend of compressibility effects with Rayleigh
number.

In compressible turbulence, M, alone cannot characterize the system. Donzis and Panickacheril
John [49] showed that by including a further parameter—the dilatation parameter S—along with M;,
universality for essential compressible statistics [50,51] was shown, and thus an easier systematic
analysis of a compressible turbulent system is possible. Similar to Nu and Re, the parameters
M, and § are the responses that show deviations from the Boussinesq regime, which are set by
superadiabaticity € and dissipation number D. In detail, the new parameter § is given by

obtained as a reference,

8:—/ with u =u, + uy, (18)
)

where the velocity field is subject to a Helmholtz decomposition into solenoidal and dilatational
parts. Such decomposition is less straightforward in an inhomogeneous flow and works via the
corresponding dissipation rates. We therefore assume the scaling of (e;)/(€,) o 8%, where (e;) =
4vy/3((V - w)?) and (€,) = v (a)l-z) are the mean dilatational and solenoidal kinetic energy dissipa-
tion rates [52], respectively. Here, w; is the vorticity vector field and vy = o/ pref 1S the kinematic
viscosity. For homogeneous flow, {(€r) = (€,) + (€4), but in our case, there will be inhomogeneous
contributions to (er). However, even for our cases, the ratio of (e;)/(e;) will give us a relative
estimate of the dilatational motions between the different cases that we are considering here. Thus,
we define

(€a@as 5 [{(V-w)?)a,

= e ~ 3@

(19)
s

In our context, §(z) can be interpreted as the relative strength of kinetic energy dissipation due to
shocklets or preshocks to that due to the vortical fluid motions. The higher §, the larger fractions of
acoustic motions in the flow field.

We show the variation of §(z) in Fig. 3(c). Once again, the asymmetry between the top and bottom
increases for growing D, with SSC being the case with dominant dilatational (or compressible)
motion at the top boundary followed by the FCC case. For smaller D (in SAC and OB), the
magnitude of the dilatational motions is more or less comparable at the top and bottom. Comparing
the cases OB and SAC, the effect of superadiabaticity is to increase the strength of dilatational
motions at both top and bottom in equal proportions. For high dissipation number D, i.e., the cases
FCC and SSC, the parameter § decreases monotonically from the top to the bottom in the bulk
region of the convection layer.

The normalized profiles of the root mean squares of two velocity components are shown in
Figs. 3(d) and 3(e). The profile of the horizontal component i« (z) in Fig. 3(d) is qualitatively similar
for all cases. The magnitude decreases with D, but increases with €. The profiles of the y component
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are similar and thus not shown. The vertical component u; (z) is shown in Fig. 3(e). While the mean
profiles are nearly symmetric for OB and SAC again, fluctuations are enhanced towards the top in
the other two cases, FCC and SSC.

For compressible turbulence, the entropy is the conserved quantity rather than Tg,. Apart from
temperature, there is an additional contribution to entropy from the pressure dilatation correlation,
pO, where 8(x) = V - u is the divergence of the velocity field. We plot (pf)4 , in Fig. 3(f). One finds
that this term is negligible for the OB and SSC cases, where € < 1. The pressure dilatation increases
with €, as seen for the FCC and SAC cases. However, significant variations are observed near the
boundaries only and remain negligible in the bulk. This bulk behavior is, in fact, consistent with
homogeneous isotropic compressible turbulence [53]. Although the magnitude of the instantaneous
pressure dilatation fluctuations is considerably high, due to its oscillatory nature, the net contribution
to the energy balance after averaging is negligibly small. The bulk behavior in convection is, to a
certain extent, comparable to isotropic turbulence. Jones et al. [41] estimate a positive offset of Tg,
in the bulk. However, empirical evidence from this study suggests that the offset of 7, in the bulk
remains small, as observed in Figs. 3(a) and 3(f).

D. Velocity field divergence

Figure 4(a) shows an instantaneous cut through 6(x) = V -u for SAC, which corresponds
to Fig. 1(c). Large regions of expansion (# > 0) are found near the bottom boundary, which
corresponds to rising plumes. The expansive regions near the top boundary also correspond to
falling plumes; however, they are surrounded by large regions of compression (6 < 0) from
the upward flow. The compression effect at the top is more pronounced since (0(z))a,; Zrows
strongly for z/H > 0.9; see Figs. 4(c) and 4(d), where we plot the mean vertical profiles of the
divergence 0(z) = (V - u)s, and the density (o(z))s,. Maxima and minima of 6(z) are present
in the bottom and top boundary layers, respectively. Moreover, since the directions x and y are
homogeneous, 68(z) = (V - u)a, = (0u;/9z)a,. Note, also, that due to conservation of mass in our

setup, fol 0(z)dz = 0; therefore, stronger compression at the top relative to expansion at the bottom
results in a thinner top boundary layer.

The SAC limit is consequently weakly top-down asymmetric only. The asymmetry of the SAC
case towards the top boundary [see Fig. 3(a)] can be partially explained as follows. Along with
constant dynamic viscosity (o and thermal conductivity kg, the high and low density at the top and
bottom results in low and high kinematic viscosity v = o/ and thermal diffusivity x = ko/(c,p),
respectively. Similar to incompressible convection, this can lead to a thinner boundary layer at the
top for the fluid with a higher density. However, in SAC, strong compressible mechanisms lead to
these strong density variations.

We conclude that the stronger asymmetry of boundary layers in the FCC case (see Fig. 3)—the
blend of SAC and SSC—have to be traced back mainly to the SSC limit, which is further detailed
in Fig. 4(b). In this regime, the mass balance can be simplified to the anelastic case for sufficiently
small €, V - (pu) ~ 0 [39]. (Strictly speaking, this relation is only valid for M, < 1, which is not
the case for the present SSC case near the top boundary. The specific implications of the high
compressibility for 0.9 < z/H < 1 were analyzed in [47] and will be briefly discussed in the final
section. For most of the convection domain, anelasticity can be assumed in the SSC case.) With a
monotonically decreasing adiabatic profile p(z), this leads to a pointwise relation of

du, _ |dp|u,

V-u=Vy, u,+ 9z a7

Generally, any up- and downwelling plume should expand and compress, respectively. Depending
on the sign of du,/dz, one gets structures which are different from the incompressible case. Close
to the bottom, SSC has u, > 0 in plume detachment zones and thus 6(x) > 0 by Eq. (20) since
p > 0. The horizontal velocity u;, which converges to these detachment regions, is weaker and thus
less strictly converging as in the incompressible case. This leads to broader regions with accelerated

(20)
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FIG. 4. Velocity divergence and mass density analysis. Instantaneous vertical cut of V - u for (a) strongly
superadiabatic case (SAC), which corresponds to the snapshot in Fig. 1(c), and (b) strongly stratified case
(SSC), which corresponds to Fig. 1(f). (c) Mean vertical profiles of 0(z) = (V - u)4,. The inset magnifies the
profiles close to the top wall, as indicated by the box in the main panel. (d) Mean vertical mass density profiles.
Again, Ra =~ 10° and Pr = 0.7 in all cases. Line styles in (c) and (d) are identical to Fig. 3.

upward flow, du,/9z > 0, compared to incompressible convection. It is clear from Fig. 4(b) that the
bottom boundary is dominated by expansions with 8(x) > 0 and u, > 0, which results in a positive
0(z) near the bottom. The figure also shows that a positive velocity field divergence fills nearly the
whole bulk, interrupted only by a negative one with a significantly higher magnitude in the narrow
downward plume regions. It can be expected that this contrast (which leads to a net zero mean, as
seen in the mean profiles) increases for D — 1 — ¢; see, also, a discussion in Spruit [48] in the solar
context. This is not clear in Fig. 4(c) since the magnitude of 8 (x) for SAC and FCC with their larger
€ is greater than in SSC. Qualitatively, the bottom boundary dynamics of SAC and SSC is similar.
At the top, following from Fig. 4(c) (see, also, the inset), we get 6(z) < 0 for 0.6 < z/H < 0.9,
except directly near the wall for z/H = 0.9. Here, 6(z) < 0 implies upward decelerating plumes
coming from the bottom, similar to SAC. This broadly upwelling fluid is increasingly compressed,
which leads to d{ps.)a/dz > 0 for 0.6 < z < 0.9 with p;, = p — p(2) (not shown). However, for
SSC with its strong stratification, the plumes can no longer reach the top boundary. From Figs. 4(b)
and 4(c), it is clear that the magnitudes of 6(z) and 6(x) in the layer 0.9 < z/H < 1.0 are smaller
than for 0.6 < z/H < 0.9. The near-wall layer corresponds to very weak fluid motion due to high
stratification. Here, thermal plumes detach from the top wall and get increasingly focused when
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shooting downwards deep into the bulk, in agreement with (20). As seen from Figs. 4(b) and 1(f),
these downward-directed plumes always correspond to a negative divergence. This is in contrast to
SAC, where the downwelling thermal plumes effectively expand even though they are compressed
in the horizontal directions.

Comparing Figs. 1(d) with 4(a) and Figs. 1(f) with 4(b) for SAC and SSC, respectively, we ob-
serve a one-to-one correspondence between thermal plumes from the top in 7, and high-magnitude
regions of 6. This suggests genuine compressibility effects on the top boundary.

For the SSC case in Fig. 4(d), the density near the bottom is large compared to the top, which
would imply a higher Rayleigh number near the bottom. However, we observe thinner plumes
from the top boundary due to compressibility. Thus, high compressibility plays a significant role
in plume formation and structure. The background stratification of density is observed in the bulk
region for all four cases; see Table I. This is, of course, most obvious for the cases with high
D, i.e., the SSC (D = 0.8) and FCC (D = 0.5) cases. The superadiabaticity € is a measure of
departure from the equilibrium adiabatic profile. Thus, for the OB and SSC cases, where € = 0.1,
the departure from the adiabatic profile is not apparent. A significant departure from the adiabatic
profile is seen for the SAC case at both of the boundaries with € = 0.8 and D = 0.1. Positive
and negative density gradients towards the wall are observed at the top and bottom boundaries
respectively. They correspond to unstable convective configurations. Thus, as expected, for the SAC
case, the high superadiabaticity of € = 0.8 easily overcomes the weak background stratification,
which corresponds to D = 0.1. Consistent with thinner plume structures seen in Figs. 1(c) and 4(a)
at the top boundary, high-density gradients are observed for the top boundary relative to the bottom
one. For the FCC case with D = 0.5, moderate stratification of the density is seen across the bulk.
The behavior near the top boundary is similar to the SAC case with a positive density gradient due to
moderate € = 0.45. However, it is not high enough to observe departures from the adiabatic profile
near the bottom boundary.

E. Local thermal boundary layer thickness.

The strong asymmetry between the boundary layer (BL) dynamics at the top and bottom and the
suppression of fluctuations in the SSC case is finally verified by the distribution of the local thermal
boundary layer thickness, which is given in dimensionless and renormalized form by [cf. [31] and
compare with Eq. (12)]

0T
)\.?Pt Jtop __ = [(T(0, 1) — ﬂa(O.S))Aﬂ —_—

2z 21

z/H=0,1

Figure 5 shows the probability density functions (PDFs) of the local thickness evaluated for the
four cases at Ra ~ 10°. It is seen that the distributions at the bottom plane collapse fairly well
in the core. Extended left tails are observed for FCC and SSC, which also generate the thinnest
local BL thicknesses. At the top, the differences between the runs are more significant. While both
distributions agree well for the OB-like case (and thus only the bottom PDF is shown), those of
the other cases deviate increasingly, most strongly for SSC. The latter distribution is characterized
by a small variance and peaked at large local thickness; see, also, Fig. 1(a). Quantitatively, the
discrepancy between the PDFs at the top and bottom can be determined by the Kullback-Leibler
(KL) divergence [30], which is given by

lop
KL || p = ZP“’" 1“( ) 22

with p'P = p(ktT(’p) and p*™' = p(AY*). The index i runs over the bins of both PDFs, and N, is the
total number of bins. The inset of Fig. 5(b) shows the KL divergence and detects an increasing
deviation of both PDFs, which is strongest for the SSC case.
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FIG. 5. Probability density functions of the local thermal boundary layer thickness at the (a) bottom and
(b) top. The inset in (b) displays the Kullback-Leibler divergence (KL) for the four runs at Ra &~ 10°.

VI. COMPRESSIBILITY IN THE MACH NUMBER-DILATATION PARAMETER PLANE

In compressible turbulence, it is well known that the system cannot be characterized by the
turbulent Mach number alone, but also depends on the external driving conditions. Recently, Donzis
and Panickacheril John [49] showed that by including the dilatation parameter § along with M;, for a
variety of driving conditions, at least for homogeneous compressible turbulence, the universality for
many statistical properties can be demonstrated in terms of these two parameters. Thus, the behavior
of compressible turbulence crucially depends on where the system is in the M;—§ phase plane.

Even though the extension of the ideas from Ref. [49] to inhomogeneous flows is not fully
understood or studied, recent investigations [37,54] demonstrate that the Mach number along
with the dilatation parameter are again required to characterize heat flux at the boundaries in
compressible turbulent channel flows for different thermal boundary conditions. We stress that we
assume (€4)/(€5) 82 with a proportionality constant O(1) to arrive at the definition of § in (19).
Consequently, we only get a relative estimate of the compressibility conditions across the layer
depth for the four different cases. Thus comparing our data in the M,—§ phase plane will give us a
first-order estimate of the compressibility conditions in the convection flows.

To this end, we combine the data from Figs. 3(b) and 3(c) in the new Fig. 6 to represent the
variation of 6(z) and M, (z) for all four cases in the phase plane. In all panels, the circles and squares
correspond to the location of the maximum M; near the top and bottom boundary, respectively. These
locations are considered to be the edge of the viscous or thermal boundary layer. The diamonds stand
for the midsection of the layer. The solid and dashed lines correspond to the points inside the bottom
and top boundary, respectively. The bulk region is considered to be between the circles and squares.

We see that M; ~ 0 very close to the wall for all cases. However, here we find that except
for the OB case in Fig. 6(a), § has a finite value near the boundaries. The black-dotted line in
all the figures is the equipartition line, foq = 8+/82 + 1/M, = 0.5, from Donzis and Panickacheril
John [49]. This line demarcates two different regimes of compressible turbulence in homogeneous
isotropic turbulence. Inthe foq < 0.5, the solenoidal or incompressible nature of pressure dominates
over the acoustic or dilatational nature. For f.q, > 0.5, the acoustic pressure starts to dominate over
the solenoidal pressure and it is called weak equipartition regime.

From Fig. 6(a), one observes that for the OB case, both the top and bottom boundaries almost
overlap each other perfectly in the phase plane, implying a nearly perfect top-down symmetry of
both boundary layer. For the SAC case Fig. 6(b), very close to the wall, unlike the OB case, the top
and bottom boundaries do not overlap, but are close to each other. This again is consistent with the
slight asymmetry seen for the SAC case in Fig. 5. Similar to Fig. 5, an increase of D is connected
with increasing differences in the phase plane, as visible for the cases FCC and SSC in Figs. 6(c)

103505-13



JOHN AND SCHUMACHER

@ o4 | | (b)

Sa0 04+
0.075 \‘\'l 20 i 03|
= 310) . =
= 0055 o ﬁi Z02)
= OB SAC FCC SSC ]
| 01l
0
1073

1078 1072 107" 100

FIG. 6. Compressible convection regimes in M,—8 phase plane for Ra ~ 10° (runs 5-8). The data for M, (z)
and §(z) are taken from Figs. 3(b) and 3(c), respectively. (a) Case OB, (b) case SAC, (c) case FCC, and (d) case
SSC. The hollow circles and squares for all cases correspond to the location of maximum M, near the top and
bottom boundaries. The diamonds correspond to the layer center. The region between the square and circle
is considered as the bulk and marked by crosses. The top boundary layer region between the top wall and the
circle is shown as a dashed line in each panel. Similarly, the solid line corresponds to the bottom boundary layer
region between the bottom boundary and the square. The dotted black and red lines in all figures correspond to
the equipartition line (foq = 84/82 + 1/M, = 0.5) and a skewness line (M, = 0.025), respectively [49]. The
inset of (a) shows the ratio A§/5(z = 0) near the regions between the top and bottom walls for the four cases.

and 6(d), respectively. For the SSC case, very near the wall, the difference between the curves for
the top and bottom boundary is strongest.

Moreover, we notice that if the estimate of f. for homogeneous flows is also valid for the present
inhomogeneous system, then the top and bottom boundary layers of SSC would be found in different
regimes of compressible turbulence. One can quantify the difference with the measure, A§/8(z =
0), where Aé = 6(z = H) — §(z = 0). We plot this measure as an inset in Fig. 6(a) for all four cases.
A striking similarity between Ad/5(z = 0) and the KL divergence is found. Clearly, this indicates
that the relative strength of the dilatational motions plays an important role in the boundary layer
dynamics of compressible convection. Finally, we notice that for the low-D cases SAC and OB, the
variability of compressibility conditions in the phase plane is very limited, implying homogeneity
across the bulk. In fact, for the SAC, this range is the most narrow one. The opposite trend is
observed as the dissipation number D increases, which indicates an inefficiency of the turbulent
mixing.

VII. DETAILED ENERGY BUDGET ANALYSIS

The energy balance equation (1c) can also be written as

(T dou;T) 9 d 9 ([ aT
Cp(p) (pu;,T) 0op  dp _ (k

c AL S B 23
TR A T PR Pl ax.,->+af J (232)
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Averaging over horizontal planes and time, along with the assumption of a statistically steady state,
we get

c {pu;T)a, _ M_E)_p _ d T
d At axj

k— i SiVar. 23b
8xj J a)Cj ij >A,t + (011 ]>A’l ( )

Since we have homogeneity in both horizontal directions, the equation can further be simplified to

d(,OMZT>A t 3P d dea
Vi Sl LAY o Rl 4 S VA 23
dz < Toxjf,, dz\" dz [y, (oSl (23¢)

Cp

Note that we have also replaced 7' with the superadiabatic temperature 75, since the adiabatic
temperature profile, 7'(z) = Tpot(1 — Dz), is a linear function of z. Finally, integrating from the
bottom wall to an arbitrary z, we get

dTSﬁ ¢ ap / ¢ / ’

Cplpu;T)a,(z) — (k (z) — uj—) dz’ — <O’,’jS,‘j>A’t(Z )dz = const. (23d)
dz At 0 axj At 0

For the OB Rayleigh-Bénard convection case, the contribution from the last two terms constituting

the compression work and energy dissipation, respectively, is negligible. After normalizing with

koAT /(CpprsH ), one would get the standard Nusselt number definition [4],

(u;T)a,(z) — cpkﬁ,_ef<d£a )A.z(Z)

_ko AT ’
Copret H

Nu(z) = (24)

which has to be constant for each horizontal plane 0 < z < H. Normalizing Eq. (23d) with
€Tyotk/H, one gets

C,H H z 0 H dT, H <
P ou,T)a, — / uj—p d7 — e / (07;Sij)a,dz
ke Toor keToor | Jo 0x; At €Thot dz At keThor | Jo

=Jc(2) =J,(2) =J,(2) =Jie)(2)

= const. (25)

Equation (25) contains the diffusive current J;(z) at the boundaries z = 0 and H; the other terms
vanish due to the no-slip boundary conditions for the velocity field. This confirms our definition of
the Nusselt number in (14). In Eq. (25), the terms J,.(2), J,(z), J4(2), and J(¢) (z) denote the convective
heat current, the current due to compression work, the diffusive heat current, and energy dissipation
current, respectively. We plot these fluxes and their partial and total sums as a function of depth z
for all four convection cases in Fig. 7 at Ra = 10°. The sum of all these terms is a constant, i.e.,

Nu(z) = Jiot(2) = Je(2) + Jp(2) + Ja(2) + Jie)(z) = Nu. (26)

See, again, Table I for the Nusselt number of all cases.

In Figs. 7(a) and 7(b), the compression work and dissipation terms perfectly cancel each other
over the entire domain, and thus the relation has to be very close to the exact Rayleigh-Bénard case,
J. + J; = Nu. For the SAC case, due to high superadiabaticity with € = 0.8, the magnitude of these
two canceling terms increases with height.

For the cases FCC and SSC in Figs. 7(c) and 7(d), significant differences are observed. The
sum J,(z) + Ji)(z) # 0 across the domain. Also, the magnitude of both terms is significantly
higher. Since the diffusive flux J; ~ 0 in the bulk, the difference between the J, and J; has to
be compensated by J.. Thus, unlike the incompressible Rayleigh-Bénard case, J. > Nu rather than
J. = Nu in the bulk. In other words, a fraction of the convective current in the bulk is used for
balancing between the compression work and dissipation contributions, which might explain the
decreased amount of transported heat for the higher-D cases.
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FIG. 7. Detailed energy budget vs layer height for all four convection cases. (a) Case OB, (b) case SAC,
(c) case FCC, and (d) case SSC. The definitions of the fluxes J., J4, J,, and J are given in Sec. VIL. We also
show Jiow = J. +J, +J; + Ji), and the partial sums Joy = Jo +Jy and J, ) = J, + Ji). All data are again
for Ra = 10°. Note that in (a) and (b), the flux J,; practically coincides with J., .

VIII. FINAL DISCUSSION

The central objective of this work was a systematic exploration of different regimes of fully
compressible convection which are determined by the superadiabaticity ¢ and the dissipation
number D. For sufficiently large amplitudes of both parameters, convection proceeds beyond the
Oberbeck-Boussinesq and anelastic limits. We focused on genuine compressibility effects and
excluded other non-Oberbeck-Boussinesq contributions which can arise from complicated depen-
dencies of the material parameters, such as of the dynamic viscosity or the thermal conductivity on
the thermodynamic state variables T and p. We identified three limiting cases in the three corners
of the triangular parameter plane, which is spanned by superadiabaticity and dissipation number.
These are the Oberbeck-Boussinnesq-like limit for € << 1 and D < 1, the strongly superadiabatic
convection case for € — 1 and D < 1, and the strongly stratified convection case for ¢ < 1 and
D — 1. A fourth regime maximizes the Mach number and can be considered as a blend of the latter
two regimes with e ~ D ~ 0.5.

We have systematically explored the mean profiles of central quantities, such as the temperature,
the velocity fluctuations, or the convective heat flux. A further aspect of the present study was to
transfer the analysis concepts from homogeneous, isotropic compressible turbulence to the present
flow with one inhomogeneous spatial direction, e.g., by monitoring the turbulent Mach number and
dilatation parameter in the phase plane; see Fig. 6.

The majority of convection problems are discussed either in the Oberbeck-Boussinesq or the
anelastic approximations. These approximations can be well described in terms of the asymptotic
limits of € and D. The Oberbeck-Boussinesq approximation corresponds to € — 0 and, subse-
quently, D — 0. The anelastic approximation stands ¢ — 0 and a finite D, such that the Mach
number My — 0. Other low-Mach-number approximations [42-44] have been proposed in the
literature. These approximations are less restrictive compared to the anelastic one. Unlike the
AE approximation, these models allow for large variations of density and temperature about their
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mean values. However, pressure fluctuations are neglected. Where would these low-Mach-number
approximations be found in the € — D phase plane? On the one hand, they should be valid in
the anelastic limit; on the other hand, they should be valid in the limit of vanishing D with
a finite superadiabaticity €. The finite € allows for large variations of density and temperature.
However, D — 0, and thus M — 0, implies that that the pressure variations are negligible. All our
simulations have a considerable Mach number near the top boundary; thus these approximations are
not valid.

Of particular interest from our point of view is the SSC case. Highly top-down-asymmetric
compressible convection is obtained for the strong stratification case, i.e., for D — 1 — €. In this
regime, we detect a sublayer with strongly reduced velocity, temperature fluctuations, and a reduced
convective heat flux. These properties are also documented by the resulting Nusselt and Reynolds
numbers in Table I. Out of this layer, self-focusing thermal plumes are ejected deep into the bulk
of the strongly stratified convection zone. A focusing effect in compressible turbulence has been
recently reported in laboratory experiments by Manzano et al. [55].

Even though our compressible convection simulations, which do not include magnetic fields
and radiation transfer, are certainly much simpler than stellar convection flows, they might provide
interesting new insights on how the heat is transported by nonlocal coherent downwelling plumes
that detach from the top boundary layer. As suggested in the review of Spruit [48], this might be
particularly important when strong density stratification exists and the level of turbulence is strongly
reduced in regions between the downwelling plumes. The latter point might be connected to the
solar conundrum in the upper solar convection zone, which reports anomalously weak velocity
fluctuations for depths z 2 0.92R, determined by helioseismology [32]. We thus think that our
present DNS, in particular those in the SSC regime, might provide an interesting testing bed for
the exploration of some basic processes and concepts in such flows, e.g., the formation of these
plumes and their turbulence production by shear instabilities. Indeed, estimated dissipation numbers
D would be significant when using data from model S of the solar interior [24,56]: (1) If we take
the surface layer with a depth of 0.01 Ry, which corresponds to H ~ 6900 km, we have Ty =~
4.6 x 10* K, g >~ 290 m/s?, ¢, >~ 4.7 x 10* J/(kg K). This results in D ~ 0.93. (2) If we would
take the lower half of the convection zone as a convection layer which corresponds to H ~ 10° km,
we have Tpor =~ 2.2 x 10° K, g =~ 430 m/s?, ¢, =~ 3.5 x 10* J/(kg K). This results in a much smaller
dissipation number of D & 0.56. Note that the values for g and c, have been estimated as geometric
means with three reference points for this coarse estimate.

Motivated by this discussion, we will continue to explore the highly stratified regime at higher
Rayleigh and lower Prandtl numbers in the future.
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