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We report experiments of fingering asymmetry in Rayleigh-Taylor (RT) mixing at an ex-
tremely large viscosity ratio (M ≈ 5 × 105) and Rayleigh numbers [Ra ∼ 105–(3 × 106)].
Our experiments confirm the asymmetric growth of RT instabilities across an upward-
moving interface with strong downward fingering. As the Ra increases, the downward
fingers reach the bottom boundary faster, resulting in a lower dispersion at the early time.
However, this dynamic is not persistent since the system undergoes vigorous mixing after
the elongated fingers reach the bottom boundary. A one-dimensional dispersion model is
developed to simulate the RT mixing, which predicts the upward-moving front and mixing
across the interface.
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I. INTRODUCTION

When a heavier fluid lies on top of a lighter one, the density difference between the two fluids
leads to a buoyancy-driven mixing known as the Rayleigh-Taylor (RT) instability [1]. In addition,
the two fluids often have different viscosities and are partially or fully miscible, resulting in a
concentration dependency of the mixture density and viscosity. Hence, the interplay of density and
viscosity contrast manifests a complex mixing dynamic of critical importance in various physics,
such as thermohaline convection [2], inertial confinement fusion [3–5], liquid films [6], astrophysi-
cal flows [7,8], planetary mantle convection [9,10], extreme weather events [11], geophysical flows
[12], ocean currents [13], and many more.

The RT instability in porous media (or equivalently in a Hele-Shaw cell) [14] has received
significant attention and is generally characterized by the Rayleigh number, Ra = k�ρgH/φμD,
where k is the permeability, �ρ the maximum density difference, g the gravitational acceleration,
H height, φ porosity, D the effective diffusion coefficient, and μ the fluid viscosity. The buoyancy-
driven convection evolves when Ra exceeds a critical value (Rac) [15,16]. In the absence of viscosity
contrast (i.e., fluid pairs with identical viscosities), the theory suggests a Rac of 4π2 [15,16].
However, when the mixture viscosity varies with the concentration, Rac is shown to be different
[17,18].

In a gravitational field, the coupled effect of double diffusion and unfavorable density gradients
may lead to convective instabilities [19]. These phenomena are particularly relevant in reactive and
nonreactive multicomponent systems involving various solutes with different diffusion coefficients.
Chemical reactions can influence or even initiate hydrodynamic instabilities by altering density,
viscosity, and permeability profiles [20].

*hhassanz@ucalgary.ca

2469-990X/2023/8(10)/103504(13) 103504-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6394-2167
https://orcid.org/0000-0001-6208-0585
https://orcid.org/0000-0001-5229-6761
https://orcid.org/0000-0002-3029-6530
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.103504&domain=pdf&date_stamp=2023-10-30
https://doi.org/10.1103/PhysRevFluids.8.103504


MOHAMMADI, KHALIFI, SABET, AND HASSANZADEH

The evolution of Rayleigh-Taylor instability can generally be divided into several distinct
regimes. Initially, a diffusive boundary layer forms due to the lighter fluid’s diffusivity into the
upper layer. This initial phase is called the diffusive regime, where the flux and mixing length scale
with

√
t . As the diffusive boundary layer becomes denser over time, the system turns unstable

and transitions into a convection-dominated regime where the mass flux is primarily driven by
convection. Although mass transfer in this regime is mainly governed by convection, diffusion
remains significant, leading to various mixing processes [21]. The convection-dominated vigorous
mixing continues until the fingers contact the top or bottom boundary, marking the entry into the
shutdown regime. During the shutdown period, the dissolution flux rapidly decreases with time, and
diffusion once again becomes the dominant mechanism of mass transfer [22,23].

The effect of viscosity on the onset of buoyancy-driven flows has been widely studied [18,24,25].
However, the dynamics of RT mixing beyond the onset of instabilities at large viscosity ratios
(M > 3 × 103) has not been studied. Systems with large M and Ra are ubiquitous and often difficult
to mimic experimentally in the lab or simulate numerically. Numerical simulations revealed that, in a
gravitationally unstable flow, even though the symmetry of the up-down fingers across an interface
is preserved up to Mc ≈ 20, the viscosity contrast may delay the onset of nonlinear instabilities
[12,19]. A maximum viscosity ratio of M ≈ 40 was previously reported in experimental studies of
RT instability [26]. In a recent simulation study for viscosity ratios up to M ≈ 3 × 103 [27], a critical
mobility ratio of Mc ≈ 20 was identified, beyond which a symmetry-breaking phenomenon is
observed. Beyond the critical mobility ratio, the upward rate slows significantly while the downward
rate remains unaffected. Mokrys and Butler [28–30] pioneered the study of the gravity drainage of
an extremely viscous fluid by a solvent and observed the associated fingering. Nonetheless, their
observation remained unexplained in the context of RT instabilities. In addition, there is currently a
lack of a reduced order model that would allow for the prediction of the mixing interface location,
interface velocity, and mass transfer across the interface at extreme viscosity ratios. Furthermore, a
detailed experimental characterization of fingering asymmetry in RT instability at extreme viscosity
ratios (M > 3 × 103) has not been thoroughly explored in the past.

High-resolution numerical simulations of RT instabilities at large viscosity ratios (M ∼ 105)
and large Rayleigh numbers (Ra > 105) are computationally expensive, if not impossible. In this
work, we report RT mixing in a Hele-Shaw cell at a remarkably large viscosity ratio (M ≈ 5 × 105)
and Ra ∼ 105–(3 × 106) and study the evolution of asymmetry in the growth of the fingers. We
also develop a one-dimensional (1D) model to study RT mixing and quantify the mixing process
by predicting the dissolution interface location, interface velocity, and mass transfer across the
interface. The 1D reduced order model overcomes the demanding computational challenge and
predicts the behavior of RT mixing at extreme viscosity ratios.

II. 1D MATHEMATICAL MODEL

Figure 1(a) shows the schematic of the problem studied. The origin is chosen at the upward-
moving interface [s(t )]. We assume Boussinesq approximation and an isothermal system. Diffusion
of the lighter fluid into the initially immobile heavy one mobilizes the latter. The mobilization of
the heavy fluid leads to complex fingering instabilities where an upward dissolution moving front
evolves.

We use the height of the cell (H ), diffusion time (H2/D), diffusion (D), and the interface con-
centration (ci ) to scale length, time, dispersion, and concentration, respectively. The dimensionless
form of the cross-sectional average of the heavy fluid concentration (c) below the interface based
on Taylor’s assumptions is [31,32]

∂c

∂t
= [1 + K (t )]

∂2c

∂z2
, (1)

where c(z, t ) is the horizontal cross-sectional average of heavy fluid concentration, and K(t) is
the dimensionless time-dependent mixing. The 1D horizontal cross-sectional average is considered
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FIG. 1. (a) Schematic of the proposed model. hbi and hsi are the initial height of heavy and light fluids in
the cell, respectively. ρH and ρL are the density of heavy and light fluids, respectively, and μH and μL are the
viscosity of heavy and light fluids, respectively. (b) The Hele-Shaw cell apparatus, along with the main parts
of the setup, includes the camera, illumination system, and injection valves. (c) The domain of study captured
during one of the experiments shows the flow evolution qualitatively for the present physical configuration.
The reference frame (x, z), along with the height (H = 17 cm) and length (L = 17 cm) of the domain, are
indicated.

to be sufficient based on our experimental observation of uniform concentration profiles at any
vertical depth and previous theories on natural convection [31,33]. A time-dependent dispersion is
considered based on the experimental observation of convective mixing in a closed system where
vigorous mixing is followed by a shutdown period. The same approach has been previously used
to model convective dissolution in the absence of viscosity contrast [31]. The initial concentration
of heavy fluid below the interface is zero; thus the initial condition (IC) is c(z, t = 0) = 0. The
domain below the interface can be considered semi-infinite at the early time, where it is bounded
from the top by a moving interface. Hence, the boundary conditions (BCs) can be written as
c[z = s(t ) � 0, t] = 1 and c(z → +∞, t ) = 0.

The following approach is applied to obtain the Stefan boundary condition [34] at the interface
of heavy and light fluids. Equation (1) is integrated from s(t ) to +∞:∫ +∞

s(t )

∂c

∂t
dz = (1 + K )

∫ +∞

s(t )

∂2c

∂z2
dz. (2)

By applying the Leibniz integration rule, we have

∂

∂t

[∫ +∞

s(t )
cdz

]
+ ds

dt
= (1 + K )

∫ +∞

s(t )

∂2c

∂z2
dz. (3)

The right-hand side of Eq. (3) can be integrated as

∂

∂t

[∫ +∞

s(t )
cdz

]
+ ds

dt
= (1 + K )

[
∂c

∂z

]+∞

s(t )

= −(1 + K )

(
∂c

∂z

)
z=s(t )

. (4)

The mass of light fluid below the interface remains constant since the system is closed, and there
is no mass loss. Hence ∫ +∞

s(t )
ρA[1 − (cci )]dz = c0, (5)

where c0 is a constant, ci = 0.5 is the average mass fraction of heavy fluid at the interface, and A
is the cross-sectional area of the Hele-Shaw cell (A = Lb; L is the cell width and b is the cell gap
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thickness). Equation (5) can be further simplified as∫ +∞

s(t )

(
1

ci
− c

)
dz = c′, (6)

where c′ = c0/ρA. Furthermore, Eq. (4) can be rewritten as

∂

∂t

[
−

∫ +∞

s(t )

(
1

ci
− c

)
dz + 1

ci

∫ +∞

s(t )
dz

]
+ ds

dt
= −(1 + K )

(
∂c

∂z

)
z=s(t )

. (7)

Inserting Eq. (6) into Eq. (7), the final form of the upward-moving front of the heavy-light fluid
interface equation will be

ds

dt
= (1 + K )

ci

(1 − ci )

∂c

∂z

∣∣∣∣
z=s(t )

, (8)

where the initial condition for the upward-moving front of the heavy-light fluid interface is s(0) = 0.
The heat integral method [34] is applied to Eqs. (1) and (8) using c(z, t ) = A1z3 + B1z2 + C1z +

D1 subject to the given IC and BCs to obtain the final form of the solutions. The IC, auxiliary, and
main BCs can be written as

c[s(t ) < z < δ(t ), t = 0] = 0, (9)

c[z = s(t ), t > 0] = 1, (10)

c[z = δ(t ), t > 0] = 0, (11)

∂c/∂z[z = δ(t ), t > 0] = 0, (12)

∂2c/∂z2[z = δ(t ), t > 0] = 0, (13)

where δ(t ) is the penetration depth of concentration [35]. Applying the IC and BCs results in A1 =
(s−δ)−3, B1 = −3δ(s−δ)−3, C1 = 3δ2(s−δ)−3, and D1 = −δ3(s−δ)−3. Therefore, the final form of
the concentration profile is

c(z, t ) =
[

z − δ

s − δ

]3

. (14)

Replacing ∂c/∂z|z=s(t ) = 3(z−δ)2(s−δ)−3 into Eq. (8) results in

ds

dt
= (1 + K )

(
ci

1 − ci

)(
3

s − δ

)
. (15)

Penetration depth can be obtained by inserting c from Eq. (14) into Eq. (2) and applying the
Leibniz rule from s to δ, giving

∂

∂t

∫ δ

s

[
z − δ

s − δ

]3

dz = (1 + K )
∫ δ

s

∂

∂z

(
∂c

∂z

)
dz. (16)

The integration gives

∂

∂t

[
s − δ

4

]
= (1 + K )

[
3

s − δ

]
. (17)

Applying the chain rule to Eq. (17) results in

ds

dt
− dδ

dt
= 12(1 + K )

s − δ
. (18)
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Substituting ∂s/∂t from Eq. (15) gives the penetration depth relation as

dδ

dt
= 3(1 + K )

δ − s

[
4 − ci

1 − ci

]
, (19)

where Eqs. (15) and (19) should be solved numerically using the Adam-Bashforth-Moulton methods
[36].

The transient mixing [K (t )] can be represented by a two-parameter Weibull function [K =
β(t/θ )β−1e−(t/θ )β /θ ] [37], where β > 0 and θ > 0 are the shape and scale parameters, respectively.
A greater value of β signifies a more pronounced dispersion peak and a reduced mixing time.
Conversely, when θ is larger, it indicates a diminished dispersion peak and an extended mixing
duration. In other words, as β increases, the concentration of solute within the mixture is dispersed at
a quicker rate, resulting in a shorter time required for thorough mixing. Conversely, a higher θ value
signifies a slower dispersion, resulting in a less pronounced dispersion peak and a longer duration
needed to achieve complete mixing. These parameters are determined using the experimental data
through a Monte Carlo (MC) parameter estimation technique (see the Appendix).

The average concentration below the interface can be calculated by integrating the downward
flux at the interface, ∂ c̄(t )/∂t = uc|z=s(t ) + (1 + K )(∂c/∂z)z=s(t ), where u = ds/dt , c|z=s(t ) = 1, and
∂c/∂z|z=s(t ) = 3/(δ−s); then c̄(t ) is

c̄(t ) = |s(t )| + 3
∫ t

o

1 + K

δ − s
dt . (20)

The pure diffusion rate can be calculated as qdiff = −∂c/∂z|z=s = exp(s2/4t )/[
√

πterfc(λ)]
where s = 2|λ|√t is the corresponding interface location and λ is the root of the transcendental
equation:

√
πλeλ2

erfc(λ) + ci/(1 − ci ) = 0 [38]. The Sherwood number (Sh = qconv/qdiff ),
a measure of convective to diffusive mass flux, can be evaluated as Sh = [u + 3(1 + K )/
(δ−s)]

√
πterfc(λ) exp(s2/4t ). The model described here will be used later to simulate the RT

experiments.

III. EXPERIMENTAL SETUP AND MATERIALS

Experiments were performed in a Hele-Shaw cell consisting of two borosilicate glass plates
which enabled visualization of RT instabilities. Stainless steel shims, cut with a high-precision
computer numerical control (CNC) machine at varying thicknesses (0.0508 < b < 0.254 mm),
were used between glass plates to attain the desired permeability. The cell was then sealed with
high-quality, impermeable rubber. The cell was illuminated from the backside by a dimmable system
of several LED lamps. A CCD camera was used to capture the flow evolution at high resolution.
The three-dimensional (3D) sketch of the apparatus with all included parts is shown in Fig. 1(b).
The apparatus was placed on a vibration-free table and covered by a black tent to eliminate external
errors.

A. Working fluids

Bitumen (highly viscous and heavy) and toluene (less viscous, light, and fully miscible with
bitumen) were used in the experiments. Bitumen has a viscosity on the order of ∼ 3 × 105 mPa s
at room conditions and is used to create a high viscosity contrast. This pair makes a perfect choice
to create a high-viscosity ratio of M ≈ 5 × 105, �ρ = 142.78 kg m−3, and D = 7.5 × 10−10 m2 s−1

[39]. The density of mixtures of toluene and bitumen at a temperature of 20 ◦C is measured using
an Anton Paar densitometer (DMA 5001), and the results are depicted in Fig. 2(a). The viscosity
of mixtures of toluene and bitumen at a temperature of 20 ◦C is measured using a Hydramotion
viscometer (XL7-HT), and the results are depicted in Fig. 2(b).
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FIG. 2. (a) Density of mixtures of bitumen and toluene versus bitumen concentration (c). The experimental
data (black squares) are fitted using the mixing rule (solid red line) 1/ρmix = c/ρH + (1−c)ρL . Bitumen and
toluene densities are ρH = 1009.684 and ρL = 866.9 ± 0.5 kg m−3, respectively. (b) Viscosity of mixtures of
bitumen and toluene versus bitumen concentration (c). The experimental data (black squares) are fitted properly
using the power-law mixing rule (solid red line), μ(c) = μL[c(enR − 1) + 1]1/n, where n = −0.2275. Bitumen
and toluene viscosities are μH = 3.08 × 105 ± 104 and μL = 0.6 ± 0.02 mPa s, respectively. (c) Calibration
curve for the gap thickness of b = 0.0508 mm at a given illumination condition against the normalized intensity
In(In = I/I0). I0 is the intensity of pure toluene. An exponential function, c = a0 + a1 exp(b1In) + a2 exp(b2In),
(solid red line) could fit the experimental measurements (black squares with error bar).

B. Experimental procedure

Bitumen is immobile under room conditions. Hence, the Hele-Shaw cell was placed in an air
bath oven, and the bitumen was injected at 80 ◦C using a Quizix pump at a rate of 0.05 ml/min
to avoid any air bubbles trapping inside the cell until the fluid level has reached the middle of the
cell. The cell was then left at room temperature for 24 h to cool down. The Hele-Shaw cell was
subsequently placed on the vibration-free table. The illumination system and camera were set, and
the whole setup was covered by the black tent. Toluene was injected gently from one side, and the
air was pushed out from another side. The illumination system and camera were activated, and the
experiment was started. The CCD camera (Canon EOS 1300D, 5184 × 3456 pixels, a lens with
the specification of Canon EF-S 18–135mm f /3.5–5.6 IS STM) was set to capture images of the
Hele-Shaw cell buoyancy-driven fingering every 5 s.

C. Image processing

The captured images represent the time-dependent two-dimensional (2D) concentration field of
bitumen leached and drained into the toluene. The procedure of making a calibration curve that
associates the light intensity with the bitumen concentration is described in the following section.
The red channel of the RGB images, because it is brighter and has less noise, is utilized in the
concentration field reconstruction process throughout this work.

D. Calibration

The construction of the calibration curve for different Hele-Shaw gaps and illumination con-
ditions is a crucial step. Employing a single calibration curve for all cell gap values results in a
significant error in the experimental flux calculations [40,41]. Therefore, several solution samples
at various concentrations were utilized to construct the calibration curves, which enabled us to
estimate the mixture concentration for each gap value. To do this, for a single gap, the cell was filled
with a solution of a particular concentration and several pictures were captured for the sample. Then
the mean intensity of the entire domain was obtained and reported as the final value. This procedure
was repeated for the entire range of concentration. An example of the calibration curve for the gap
thickness of b = 0.0508 mm is illustrated in Fig. 2(c). As shown, the normalized intensity does
not vary significantly in the concentration range above 0.35, which could introduce errors in image
processing and construction of the calibration curves.
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FIG. 3. [(a)–(d)] The snapshots of the experiments at different times for Ra = 1.18 × 105 and Ra = 2.94 ×
106. Each row is for one Ra at different times. (e) Snapshot of asymmetrical growth of the fingers and high-
wavelength upward fingers for Ra = 4.7 × 105; the dashed red line shows the initial interface position. (f) Tip
splitting of the downward fingers for Ra = 1.44 × 106. (g) Mushroom-type baby fingers are observed within
the upward fingers for Ra = 4.7 × 105.

IV. RESULTS AND DISCUSSION

Figures 3(a)–3(d) show the experimental time evolution of the mixing process for Ra = 1.18 ×
105 and Ra = 2.94 × 106. It was observed that, first, toluene diffuses into the bitumen through a
short-lived diffusive regime, which leads to the formation of a diffusive boundary layer [Fig. 3(a)].
This layer, then, turns gravitationally unstable, leading to the evolution of bitumen-rich fingers
penetrating downward [Fig. 3(b)]. As the mixing enters the dominant convective regime, the fingers
continue moving downward and reach the bottom boundary, whereas the upward fingers have not
yet formed [Figs. 3(c) and 3(d)]. An important observation was the asymmetrical growth of the
upward and downward fingers where the fingers extend preferably downward [Fig. 3(e)]. This
observation is in contrast with fingering behavior at low M, where a symmetric downward and
upward fingering has been observed [42–44]. Moreover, the initial wavelength of the bitumen
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FIG. 4. (a) The interface location, (b) flux, and (c) average concentration of the dissolved bitumen in
toluene below the interface, all versus time for different Ra [Ra = (1.18 × 105) − (2.94 × 106)]. The markers
are the experimental data, and the lines show model prediction from Eqs. (15) and (20). The shadows indicate
standard deviations from the experimental measurements.

fingers is very small [Fig. 3(b)]. However, due to the significant interaction of neighboring fingers
and subsequent merging (see Movie S1 in the Supplemental Material [45]), the wavelength increases
over time [Figs. 3(a)–3(c)]. It was observed that the bulk of bitumen remains immobile, and the mass
transfer occurs solely at the interface through the leaching of viscous bitumen by toluene. It was
also observed that the fingering remains downward for a significant period, and high-wavelength
upward fingers are observed once the downward fingers touch the bottom boundary [Fig. 3(d)].
Furthermore, a significant tip splitting (Fig. 3(f); see Movie S2 in the Supplemental Material
[45]) was observed where downward fingers of bitumen-rich fluid cleaved into multiple fingers.
An interesting observation was the growth of an unstable boundary layer at the leading edge of
the upward fingers, which eventually led to the formation of mushroom-type baby fingers (see
Fig. 3(g) and Movie S3 in the Supplemental Material [45]). Ultimately, these small secondary
fingers spread laterally and merged with the larger descending fingers. The upward growth of fingers
persists during convective dissolution, ultimately reaching the upper boundary upon the arrival of
the leaching interface. Upon reaching this stage, the process transitions to the shutdown regime with
diminishing convection. A complete demonstration of one experiment conducted at Ra = 4.7 × 105

is presented in Movie S4 of the Supplemental Material [45]. The nearly uniform concentration in a
horizontal plane shown in Movie S4 confirms that a 1D reduced order model is sufficient to simulate
the RT mixing.

The measured interface height, flux, and average concentration of the dissolved bitumen in
toluene below the interface versus time for various Ra numbers are shown in Figs. 4(a)–4(c),
respectively, and the results are compared with predictions obtained from the 1D model [Eqs. (15)
and (20)]. The interface height, flux, and average concentration of the heavy fluid below the interface
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FIG. 5. (a) The dispersion coefficient versus time obtained using the experimental data through the MC
approach; the inset plot shows the period before the fingers reach the bottom boundary. The dispersion
parameters against Ra [Ra = (1.18 × 105) − (2.94 × 106)]. (b) the shape parameter (β ) and (c) the scale
parameter (θ ).

were obtained using image processing. The measured interface height [Fig. 4(a)] is compared with
the pure diffusion case [38]. It is inferred that the interface velocity is significantly faster during the
RT mixing (t0.67–0.85) compared to the pure diffusion case (t0.5). The model parameters (β and θ )
are estimated using the experimental data through an MC parameter estimation approach (see the
Appendix). The shaded area around the curves indicates standard deviations from the experimental
measurements. As shown, the interface moved upward faster at higher Ra. As the system transitions
to a convection regime, the mixing process is influenced by the formation of small fingers, which
are then merged with neighboring fingers, resulting in a period of nearly constant flux [Fig. 4(b)].
At larger Ra numbers, the model predictions slightly deviate from the experiments. This deviation is
due to the opaque nature of the toluene-bitumen mixture at high bitumen concentrations [Fig. 3(f)].
The calibration curve for each Hele-Shaw gap thickness is employed to reconstruct the concentration
field. However, the image processing of the fingering patterns remained challenging due to their
opaque nature. Therefore, the deviation between the experiments and the model is attributed to
calibration accuracy.

A two-parameter Weibull function was found sufficient to represent the behavior of transient
dispersion. The experimental data used in parameter estimation include the time evolution of the
interface location and the average concentration of bitumen below the interface recorded during the
experiments. A total realization of N = 106 was used to estimate the dispersion parameters and was
found adequate when compared with N = 104 and N = 105.

Figure 5 shows the dispersion coefficient versus time obtained using the MC parameter estima-
tion. As seen, the dispersion increases with Ra and grows over time until it reaches its maximum,
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FIG. 6. (a) Sherwood number versus time at different Ra numbers [Ra = (1.18 × 105) − (2.94 × 106)],
and (b) maximum Sherwood number versus Ra.

after which it rapidly declines. This behavior mimics the evolution of convective dissolution during
the experiment, where mixing accelerates until the leaching interface arrives at the top of the cell.
This is followed by a shutdown period, where the convective dissolution diminishes gradually.
The inset plot in Fig. 5(a) highlights the dispersion behavior for different Ra numbers before the
downward fingers reach the bottom boundary. The system shows higher dispersion at lower Ra
numbers during the early stages before the fingers reach the bottom. This observation is because
the fingers take longer to reach the bottom at lower Ra, resulting in a stronger convective mixing
than higher Ra cases. However, this dynamic is short lived and not persistent, and once the fingers
reach the bottom, a system with higher Ra leads to more vigorous mixing. In Fig. 5(a), a vertical
dashed line indicates the time (t ∼ 6.4 × 10−5) at which the fingers had already reached the bottom
for all cases. The peaks in the dispersion curves indicate the time the upward-moving fingers
reach the top. This is followed by a shutdown period and a subsequent decline in the dispersion
coefficient. Figures 5(b) and 5(c) show the dispersion shape (β) and scale (θ ) parameters versus
Ra. A higher β suggests a higher dispersion peak but a shorter mixing time. In contrast, a larger θ

indicates a lower dispersion peak and a prolonged mixing time. The shape parameter greater than
1 confirms the ascent and descent of convective mixing or the bell-shaped nature of the dispersion.
The shape parameter increases linearly with Ra, implying more vigorous mixing at higher Ra. The
scale parameter is an exponentially decreasing function of Ra, indicating a slower and prolonged
mixing period at lower Ra.

The transient Sherwood number is shown in Fig. 6(a), which demonstrates a time-dependent
evolution characterized by an initial increase, followed by a peak and subsequent decline, ultimately
leading to a diminishing state. The maximum Sherwood signifies the time at which the upward
fingers hit the top boundary and the onset of the shutdown period, during which the convective
mixing gradually fades away. As expected, the Sherwood follows the same trend as the dispersion
coefficient. The results indicate that the maximum Sherwood [Fig. 6(b)] increases linearly, suggest-
ing more vigorous mixing at higher Ra. The inset plot in Fig. 6(a) illustrates the period before the
downward fingers reach the bottom, during which the Sherwood is observed to be higher at lower
Ra. This is because, at higher Ra, fingers reach the bottom faster than at lower Ra. Nevertheless,
this dynamic is evanescent since the subsequent dynamic is dominated by the internal mixing for all
Rayleigh numbers.

V. CONCLUSIONS

In closing, the maximum viscosity ratios reported in previous experimental and numerical
simulation studies of RT instability have been M ≈ 40 and M ≈ 3000, respectively. In this work,
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we reported RT mixing experiments and reduced order modeling with a large viscosity ratio (M ≈
5 × 105) and high Rayleigh numbers (Ra ∼ 105–3 × 106). The interface location between the two
fluids and the average concentration below the interface were obtained from the high-resolution im-
ages. The experimental observations confirmed the fingering asymmetry phenomenon. Our findings
reveal a short-lived diffusion period followed by a vigorous and nearly one-sided convective mixing
when an extremely viscous fluid was placed above a less viscous and lighter fluid. High-wavelength
upward fingers are observed when the downward fingers have already reached the bottom boundary.
The downward fingers were found to grow vigorously and noticeably asymmetrically due to the
large viscosity contrast between the two fluids during the dominant convective mixing. Furthermore,
a significant merging of small fingers at the early period of the convection regime and tip splitting
of the descending fingers are observed. The growth of secondary mushroom-type baby fingers at the
leaching interface is confirmed. These secondary fingers eventually extend and merge with the larger
descending fingers. The convection eventually enters a shutdown period when the leaching interface
reaches the upper boundary. A 1D moving boundary problem with time-dependent dispersion is
proposed to model the interface location and the overall mass transfer across the interface. The
transient dispersion parameters are obtained using experimental data of interface location and
overall mixing through an MC parameter estimation approach and are characterized using Ra. The
results for all Ra reveal that the dispersion coefficient and Sherwood number follow a bell-shaped
behavior where they grow with time, reach a peak, and decline rapidly.
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APPENDIX: MONTE CARLO TECHNIQUE

The Monte Carlo simulation technique has been successfully used in several nonlinear and
complex problems as a tool for parameter estimation [46]. Thus we used this technique to obtain
the parameter values β and θ . The procedure of this technique is shown below.

(1) Set the number of realization or Monte Carlo sampling (N).
(2) Perform a random sampling for each parameter and generate input parameters for realization

i using βi = βmin + (βmax − βmin)ζi and θi = θmin + (θmax − θmin)ζi, where ζi ∈ [0, 1] is a random
number.

(3) Obtain the dimensionless dispersion (K), using K = β(t/θ )β−1e−(t/θ )β /θ .
(4) Solve Eqs. (15) and (19) simultaneously to obtain s and δ.
(5) Obtain the average concentration (c̄) using Eq. (20).
(6) Evaluate the objective function for realization i using εi = ∑n

k=1(|sexpt
k − sm

k |/sexpt
k

+ |c̄expt
k − c̄m

k |/c̄expt
k ), where n is the number of time events; subscripts expt and m denote the

experimental and model values, respectively.
(7) Repeat steps 2–6 for the specified number of realizations, N .
(8) Select a realization that results in minimum error εi and record the associated parameters, βi

and θi.
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