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Coupled laboratory-numerical experiments of Rayleigh-Bénard convection in liquid
gallium subject to a vertical magnetic field are presented. The experiments are carried
out in two cylindrical containers with diameter-to-height aspect ratio � = 1.0 and 2.0 at
varying thermal forcing (Rayleigh numbers 105 � Ra � 108) and magnetic field strength
(Chandrasekhar numbers 0 � Ch � 3 × 105). Laboratory measurements and numerical
simulations confirm that magnetoconvection in our finite cylindrical tanks onsets via
nondrifting wall-attached modes, in good agreement with asymptotic predictions for a
semi-infinite domain. With increasing supercriticality, the experimental and numerical
thermal measurements and the numerical velocity data reveal transitions between wall
mode states with different azimuthal mode numbers and between wall-dominated con-
vection to wall and interior multimodality. These transitions are also reflected in the heat
transfer data, which combined with previous studies connect onset to supercritical turbulent
behaviors in liquid metal magnetoconvection over a large parameter space. The gross heat
transfer behaviors between magnetoconvection and rotating convection in liquid metals are
compared and discussed.
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I. INTRODUCTION

Convection influenced by ambient magnetic fields is called magnetoconvection (MC), which
arises in many areas of fluid dynamics. In geophysics and planetary physics, motions of turbulent
convective flows in planetary liquid metal outer cores generate planetary-scale magnetic fields via
dynamo processes. Studying the effects of magnetic fields in MC is essential to understand these
processes (e.g., [1–4]). In astrophysics, MC is associated with the sunspot umbra on the outer layer
of the Sun and other stars (e.g., [5–7]). Furthermore, MC has an essential role in numerous industrial
and engineering applications including but not limited to liquid metal batteries [8,9], crystal growth
[10,11], nuclear fusion liquid-metal cooling blanket designs [12–14], and induction heating and
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casting [15,16]. These systems have drastically different ratios between electromagnetic and inertial
forces. Therefore, it is crucial to investigate the effects of a wide range of magnetic forces in MC
systems.

The canonical model of MC is a convection system with an electrically conducting fluid layer
heated from below, cooled from above, and in the presence of an external vertical magnetic field
[17,18]. It is most fundamentally understood in an extended plane layer geometry (e.g., [17–19]).
But there is an increasing interest in MC systems with defined sidewall boundaries because of their
many experimental and industrial applications. Various numerical and laboratory studies have been
carried out in rectangular [6,20] and cylindrical geometries [21–24].

In weakly supercritical, near-onset regimes, MC systems tend to develop steady wall modes
in the sidewall Shercliff boundary layer [20,22,24–26] while the bulk remains quiescent. As the
magnetoconvective supercriticality increases, convective flows self-organize into multicellular bulk
flow structures [18,24]. Eventually, at very large supercriticalities, the buoyancy forces dominate
and magnetic field effects become subdominant. Large-scale circulations (LSCs) then form and the
heat and momentum transfer asymptote to that of turbulent RBC (e.g., [24,27–29]).

The pathway from the onset of convection to fully developed turbulence in liquid metal MC is
not well characterized. To address this deficit, we present a suite of laboratory-numerical coupled
MC experiments in liquid gallium to investigate how MC transitions from near-onset wall modes to
turbulent multimodality in cylindrical cells. The paper is organized as follows. Section II introduces
control parameters and reviews established onset predictions for the magnetoconvection system.
Section III presents our experimental setup, numerical schemes, diagnostics, and the physical
properties of liquid gallium. Section IV compares different theoretical onsets and observations of
the transition to multimodality in a survey with fixed magnetic field strength and varying convective
vigor. Section V shows heat transfer results combining previous studies of MC and compares the
gross heat transfer behaviors between liquid metal magnetoconvection and liquid metal rotating
convection systems.

II. CONTROL PARAMETERS AND LINEAR PREDICTION

Laboratory-scale liquid metal magnetoconvection usually has a negligible induced magnetic field
b with respect to the external applied magnetic field B0, so that |b| � |B0|. Moreover, any induced
field is considered temporally invariant, ∂t b ≈ 0. The magnetic Reynolds number, defined as Rm =
UH/η [22,30–32], is well below unity, where U and H are the characteristic velocity and length
scales, respectively, and η is the magnetic diffusivity. This parameter represents the ratio between
induction and diffusion of the magnetic field. Thus, the so-called low-Rm quasistatic approximation
is valid in most liquid metal experimental and industrial applications [21,32–34]. In the quasistatic
limit, Rm and magnetic Prandtl number Pm formally drop out of the problem, so it is not necessary
to solve the magnetic induction equation explicitly, and the system is greatly simplified. In addition,
the Oberbeck-Boussinesq approximation is commonly applied in the governing equations for liquid
metal MC systems (e.g., [18,20,21,28,35]).

Four nondimensional control parameters govern quasistatic Oberbeck-Boussinesq magnetocon-
vection [18,20,28]. The Prandtl number Pr describes the thermo-mechanical properties of the fluid,

Pr = ν

κ
, (1)

where ν is the kinematic viscosity and κ is the thermal diffusivity. In this study, Pr ≈ 0.027 for
liquid gallium. The Rayleigh number Ra characterizes the buoyancy forcing with respect to thermo-
viscous diffusion and is defined as

Ra = αg�T H3

κν
. (2)
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FIG. 1. (a) Different prediction of critical Rayleigh number (Racrit) as a function of the Chandrasekhar
number. The black dashed curve shows the Racrit . For an infinite plane MC system with free-slip boundaries
at the top and bottom, Racrit = Ra∞

FS [17], as shown by the black dashed curve; for an infinite plane MC
system with no-slip boundaries, Racrit = Ra∞

NS [38], as shown by the blue curve. Note that both Ra∞
FS and

Ra∞
NS asymptote to π 2Ch as Ch → ∞; the grayish-blue curve shows that RaW is the asymptotic Racrit for the

wall-mode onset in a half-infinite plane with a vertical boundary [26]; the purple curve and the purple dotted
curve are the predicted Racrit of Houchens et al. [25], namely, Racyl, �=2 and Racyl, �=1, for MC in cylindrical
containers with aspect ratio 1 and 2, respectively. (b) The zoom-in view of the region circumscribed by the
black rectangular box in (a). The colored vertical dashed lines correspond to the five Ch numbers employed in
our study.

Here α is the thermal expansion coefficient, g is the magnitude of the vertically oriented (êz)
gravitational acceleration, �T is the bottom-to-top vertical temperature difference across the fluid
layer, and the characteristic length scale is the layer height H . The Chandrasekhar number Ch
denotes the ratio of quasistatic Lorentz forces and viscous forces,

Ch = σB2
0H2

ρ0ν
, (3)

where σ is the electric conductivity of the fluid, B0 is the magnitude of the applied vertical
magnetic field, and ρ0 is the mean density of the fluid. The Chandrasekhar number is the square
of the Hartmann number, Ch = Ha2 (e.g., [10,32,36]). Additionally, the cylindrical container has a
diameter-to-height aspect ratio

� = D

H
, (4)

where D is the diameter of the container. Here � is fixed to 1.0 and 2.0, respectively.
The onset of convection is controlled by the critical Rayleigh denoted as Racrit, which charac-

terizes the buoyancy forcing needed for a particular convective mode in the system [37]. Figure 1
shows different Racrit predictions. Linear analysis has shown that the convection driven by buoyancy
forces must balance the viscous and Joule dissipation [17]. Thus, in general, the magnetic field
inhibits the onset of the convection. Chandrasekhar [17] derived the onset for the bulk stationary
magnetoconvection in an infinite plane layer (∞). With free-slip (FS) boundaries on both ends, the
dispersion relation expresses the marginal Rayleigh number RaM as

RaM = π2 + a2

a2
[(π2 + a2)2 + π2Ch], (5)
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where a is the characteristic cell aspect ratio [32], defined as a ≡ πH/L, where H is the height of
the fluid layer, and 2L is the horizontal wavelength of the convection flow, assuming the form of
two-dimensional rolls with each roll having diameter L. By minimizing Eq. (5), setting ∂Ra/∂a = 0,
we obtain the critical Rayleigh number for the bulk stationary magnetoconvection in an infinite
layer with free-slip boundaries on both ends, Ra∞

FS, and its critical mode number aFS. In the limit of
Ch → ∞, we have Ra∞

FS → π2Ch, and aFS → (π4Ch/2)1/6 [17,32].
Magnetoconvection with no-slip (NS) rigid horizontal boundaries has a dispersion relation [38]

RaM = (π2 + a2)[(π2 + a2)2 + π2Ch]

a2
[
1 − 4π2δ

(
q2

1 − q2
2

)
/
(
π2 + q2

1

)(
π2 + q2

2

)] , (6)

where

q1 = 1

2
(
√

Ch + 4a2 +
√

Ch), q2 = 1

2
(
√

Ch + 4a2 −
√

Ch) (7)

and

δ = [q1 tanh(q1/2) − q2 tanh(q2/2)]−1. (8)

By assuming a single structure in the vertical direction and minimizing Ra in (6), we obtain the first
approximation of critical Ra of magnetoconvection with two rigid boundaries [38]. Equation (6) also
predicts that Ra∞

NS → π2Ch and aNS → (π4Ch/2)1/6 with Ch → ∞. Thus, both critical Rayleigh
numbers with free-slip boundaries Ra∞

FS and no-slip boundaries Ra∞
NS asymptote to π2Ch above

Ch � 104, as shown in Fig. 1(a). These asymptotic bulk onset predictions agree with previous
experimental results [18,19,21,24].

Busse [26] theoretically analyzed the side wall modes in MC and derived an asymptotic solution
along a straight vertical sidewall in a semi-infinite domain with free-slip top-bottom boundaries.
The critical Rayleigh number RaW for these so-called magnetowall modes is

RaW = 3π2
√

3π/2(1 + 3Ch−1/4
√

3π/2)Ch3/4. (9)

The asymptotic onset of the wall modes is generally lower than the onset in the bulk fluid at large
Ch, since Ch3/4 � Ch as Ch → ∞. These magnetowall modes are nondrifting and extend into the
fluid bulk with a distance that scales as the magnetic boundary layer thickness, which scales with the
Shercliff boundary layer thickness δSh ∼ Ch−1/4 [20,39]. The stationary wall modes of MC differ
from those found in rotating convection, where wall modes drift in azimuth [40–42].

Houchens et al. [25] performed a hybrid linear stability analysis combining the analytical solution
for the δHa ∼ Ch−1/2 Hartmann layers [43] at top-bottom boundaries and numerical solutions for the
rest of the domain in � = 1 and 2 cylindrical geometries. They also presented a linear asymptotic
analysis for large Ch. Their asymptotic solutions for critical Ra for � = 1 and 2 are, respectively,

Racyl,�=1 = 8.302Ch3/4, Racyl,�=2 = 67.748Ch3/4. (10)

Figure 1 summarizes all the critical Rayleigh predictions mentioned above. The Racyl,�=1 values of
Houchens et al. [25] (marked by the purple dashed line) are approximately an order of magnitude
lower than the rest of the onset predictions that are not aspect-ratio dependent. To test the validity
of these predictions, we combine laboratory experiments and direct numerical simulations (DNS) to
investigate the five different Ch numbers shown by the vertical dashed lines in Fig. 1(b). The values
of these five Ch numbers and their corresponding critical Ra are summarized in Table I.

III. METHODS

Our experiments are conducted using UCLA’s RoMag device [28,29,35,44,45]. Figure 2 shows
schematics of the diagnostics and the apparatus. The container consists of two copper end blocks
and a stainless steel sidewall. Two sets of sidewalls, � = 1.0 and 2.0, have been used in this study to
investigate MC heat transfer from 105 � Ra � 108. An external solenoid generates a steady vertical
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TABLE I. Values of different predicted critical Ra at Ch = {104, 4 × 104, 105, 3 × 105, 106}, which have
been examined experimentally

Ch Ra∞
FS Ra∞

NS RaW Racyl,�=1 Racyl,�=2

1 × 104 1.20 × 105 1.25 × 105 1.06 × 105 8.30 × 103 6.77 × 104

4 × 104 4.46 × 105 4.54 × 105 2.66 × 105 2.35 × 104 1.92 × 105

1 × 105 1.08 × 106 1.09 × 106 4.94 × 105 4.67 × 104 3.81 × 105

3 × 105 3.15 × 106 3.17 × 106 1.05 × 106 1.06 × 105 8.68 × 105

1 × 106 1.03 × 107 1.03 × 107 2.45 × 106 2.63 × 105 2.14 × 106

magnetic field, 0 < |B0| < 800 Gauss, with a vertical component that varies within ±0.5% over the
field volume [46]. The tank is placed at the center of the solenoid’s bore. A noninductively wound
electrical resistance pad heats the bottom of the lower copper end block at a constant rate, 0 < P �

FIG. 2. (a) Thermometry schematic for the � = 2R/H = 2.0 tank (R = 98.6 mm): there are six thermistors
in the top lid at 0.71R, six thermistors at the midplane sidewall, and six thermistors in the bottom lid at 0.71R.
These thermistors at different heights align with each other azimuthally. The thermometry is in a similar layout
on the aspect ratio one tank (� = 1.0). (b) Photo of the convection cell of the RoMag device. (c) Schematics
of the convection cell of the RoMag device. For further device details, see Xu et al. [28].
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2000 W, and a thermostated water-cooled heat exchanger maintains a constant temperature at the
top of the upper copper end block. This setup can reach up to Ra ≈ 109 and Ch = 3 × 105 in the
� = 1.0 tank.

Twelve thermistors are placed inside the top and bottom boundaries about 28.9 mm radially
inwards from the sidewall, as shown in Fig. 2(a). These end-block thermistors are used to measure
the heat transfer efficiency of the system, characterized by the Nusselt number,

Nu = qH

λ�T
, (11)

where q = 4P/(πD2) is the heat flux, P is the heating power, and λ = 31.4 W/(m K) is the thermal
conductivity of gallium [47]. The Nusselt number describes the total to conductive heat transfer ratio
across the fluid layer, and Nu = 1 corresponds to the conductive state. The vertical temperature
difference across the fluid layer, �T , is indirectly controlled by the constant basal heat flux. Six
thermistors are attached to the sidewall midplane to detect wall modes and any thermal imprints of
the bulk fluid structures at the sidewall.

We have also conducted direct numerical simulations (DNS) using the finite volume code GOLD-

FISH [42,48–53]. The nondimensional equations governing quasistatic, Oberbeck-Boussinesq
[54,55] magnetoconvection are

∇ · ũ = 0, (12)

Dt̃ ũ = −∇ p̃ +
√

Pr

Ra
∇2ũ +

√
Pr

Ra Ek2
ũ × êz +

√
Ch2Pr

Ra
j̃ × êz + T̃ êz, (13)

Dt̃ T̃ =
√

1

RaPr
∇2T̃ , (14)

∇ · j̃ = 0

j̃ = −∇�̃ + (̃u × êz)

}
∇2�̃ = ∇ · (̃u × êz), (15)

where ũ denotes nondimensional velocity, T̃ the temperature, p̃ the pressure, j̃ the current density,
and �̃ the electrostatic potential. The scales used for the nondimensionalization are the free-fall
speed Uf f = √

αg�T H [56], the temperature difference between top and bottom �T , the reference
pressure ρ0U 2

f f , the reference current density σB0Uf f , and the reference potential B0HUf f .
Our nonlinear DNS solves these equations in a cylindrical domain (r, φ, z) with � = 2.0. The

sidewall is assumed to be perfectly thermally insulating, ∂rT |r=R = 0, and the top and bottom plates
are isothermal with Tt = −0.5 and Tb = 0.5, respectively. All boundaries are assumed to be imper-
meable and no-slip, u|wall = 0, and electrically insulating, j|wall = 0, i.e., the current forms closed
loops inside the domain. The DNS control parameters are set to Pr = 0.027, Ch = 4.0 × 104, and
Ra = {1.5 × 105, 2.0 × 105, 3.0 × 105, 4.0 × 105, 7.0 × 105, 1.0 × 106, 1.5 × 106, 4.0 × 106}.
The numerical mesh resolution is Nr × Nφ × Nz = 240 × 256 × 240. This choice of mesh was
verified by running simulations at twice the resolution for the highest Ra for a shorter time,
indicating the grid independence of the solution.

IV. RESULTS

A. Comparing onset predictions

The validity and accuracy of the onset predictions discussed in Sec. II are tested here using both
laboratory and DNS data at 105 � Ra � 108, 0 � Ch � 3 × 105, and in � = 1.0 and 2.0 cylindrical
cells.

Figure 3(a) shows measurements of heat transfer efficiency, Nu, as a function of the buoyancy
forcing Ra. (All the detailed measurement data are provided in Tables II, III, IV, VIII in the
Appendix.) Vertical error bars based on heat loss and accuracy of the thermometry are shown in
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FIG. 3. (a) Nu-Ra survey with various Ch from current study and one set of Ch = 106 data from King and
Aurnou [46]. Different colors correspond to different Ch values. Different shapes correspond to different aspect
ratios and sets of experiments, marked in the legend of (b). Error bars are shown on the experimental data from
the current study. The dashed line is the heat transfer scaling acquired from nonmagnetic Rayleigh-Bénard
convection data in the � = 1.0 tank, marked by dark blue circles. See Eq. (18). Panels (b)–(d) show ratios
of convective heat transfer to conduction (Nu − 1) vs the reduced bifurcation parameter [42,57] using three
different predicted critical Rayleigh numbers: (b) infinite-plane stress-free critical Ra defined in Chandrasekhar
[17]; (c) magnetowall mode critical Ra from Busse [26]; and (d) the critical Ra of Houchens et al. [25] for
magnetowall modes in two different aspect ratios, � = 1 and 2. The linear fit in (c) and (d) uses data close to
onset at ε � 4. The � = 1.0 data in (d) are shown in the smaller subplot, which appears only at ε � 25.

the laboratory data from this study. We also include the Ch = 106 data (red stars) of King and
Aurnou [46] made in the same � = 1.0 experimental setup used in this study. Figures 3(b)–3(d)
show convective heat transfer data (Nu − 1) as a function of supercriticality of the convection, as
described by the reduced bifurcation parameter ε = (Ra − Racrit )/Racrit, following the convention
of [40,42,57]. Three different Racrit are examined in Figs. 3(b) to 3(d): for convection in an infinite
plane layer with two rigid boundaries, Ra∞

NS (6), wall-attached convection, Ra∞
W (9), and convection

in a cylinder with aspect ratio 1 and 2, Racyl (10). If the Racrit prediction is accurate, the onset of
convection occurs at ε = 0, and Nu follows an approximate linear scaling for sufficiently small ε.

Figure 3(b) presents the convective heat transfer data, Nu − 1, as a function of the reduced
bifurcation parameter εNS = (Ra − Ra∞

NS)/Ra∞
NS calculated using Eq. (6). The laboratory-numerical

Nu − 1 data exceed 0 at εNS < 0. This implies that the Ra∞
NS predictions do not capture the onset

of MC in our system. Moreover, the increased scatter and variation in Nu for different Ch as εNS

increases suggest a low correlation between the data and the expected linear εNS scaling. As the
infinite-plane Racrit is associated with the bulk onset of convection, our heat transfer data implies
that the MC flow does not initiate in the fluid bulk.

Figure 3(c) tests the asymptotic onset predictions of Busse [26] for magnetowall modes as a
function of εW = (Ra − RaW )/RaW calculated using (9). The nonzero Nu − 1 data start approxi-
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mately at the origin of the graph, being only slightly below εW = 0, and show a good data collapse
up to moderately high supercriticalities of εW ∼ 4. Thus, our data provide evidence that in our
system, the onset of convection occurs in the form of wall-attached modes. This is further quantified
by two different linear least-square fits for the nonzero Nu − 1 data for εW � 4 in solid lines.
The extension of the fits are plotted in dotted lines. In Fig. 3(c) the “fit1” (blue line) makes no
assumptions on the onset and yields Nu − 1 = 0.445 εW + 0.469. The “fit2” (red line) is forced
to pass through the origin, i.e., it assumes the onset prediction εW = (Ra − RaW )/RaW is exact and
yields Nu − 1 = 0.642 εW . As shown in Fig. 3(d), we find similar parameters for the supercriticality
fit via the � = 2 prediction of Houchens et al. [25]. Thus, our MC onset data are consistent with
the wall mode predictions, in agreement with the observation of Zürner et al. [24]. Furthermore,
both linear fits hold well up to ε ∼ 4, suggesting that the dynamics and the heat transfer in our
system are largely controlled by linear magnetowall modes within this supercriticality range (cf.
[40,42,57,58]).

Figure 3(d) tests the hybrid theoretical-numerical predictions of Houchens et al. [25] for
magnetowall modes in cylindrical geometries by plotting Nu − 1 versus εcyl = (Ra − Racyl )/Racyl

calculated using (10). The underlying assumptions for these predictions best match the experimental
and numerical setup. Therefore, they should best capture the measured onset of convection. The
� = 2.0 data in Fig. 3(d) (green and yellow hues) show a better agreement with the onset prediction
of Houchens et al. [25] than the same � = 2.0 data to that of Busse [26] in Fig. 3(c). In particular,
the onset data (Nu = 1) normalized by the prediction of Houchens et al. [25] are closer to zero in
supercriticality, or |εcyl| < |εW | at Nu = 1.

However, our � = 1.0 data (inset, red and orange hues) do not have a low enough supercriticality
(εcyl > 28) to reliably test the exact Racyl value. Thus, we are currently unable to disambiguate
which magnetowall mode onset prediction is more accurate, even though the prediction of Houchens
et al. [25] � = 1.0 differs from that of Busse [26] by nearly an order of magnitude. For clarity, we
employ the onset prediction of Busse [26] for normalization and for defining supercriticality. This
choice is made due to the aspect ratio independence of the prediction of Busse [26] and its good
agreement with our experimental data.

B. Transition to multimodality

We analyzed temperature and velocity field data to elucidate both the wall modes and the
transition to multimodal flow at higher supercriticality. Figure 4 shows temperature and velocity
fields of five laboratory numerical cases with Ch 	 4 × 104 in the � = 2.0 tank. Each column
represents the laboratory case (top row) and its corresponding numerical case (middle and bottom
rows) at a similar Ra. The detailed parameters are given in Tables II and III in the Appendix. The
top rows show nondimensional temperature (T − T )/�T Hovmöller diagrams, a time evolution of
the sidewall midplane temperature field. The temperature fields T are interpolated by the midplane
thermistor data taken 60◦ apart in azimuth. The mean temperature T is measured by averaging the
top and bottom boundaries’ temperature; the vertical temperature difference across the fluid layer
is denoted as �T . The second and third rows of Fig. 4 show snapshots of numerical 3D isosurfaces
of the dimensionless temperature fields T̃ = (T − 〈T 〉)/�T and corresponding vertical velocity
fields ũz at the same instant in the time. The mean temperature 〈T 〉 is calculated by averaging the
temperature fields over the entire domain.

The velocity and temperature fields in Fig. 4 all show magnetowall modes, manifesting as
azimuthally alternating upwelling warm and downwelling cold patches located close to the sidewall.
The snapshots of the DNS velocity fields in Figs. 4(a) and 4(b) further reveal that the magnetowall
modes have a two-layer, “noselike” flow pattern attached to the sidewall with alternating ±ũz. Liu
et al. [20] observed similar structures in their simulations in a rectangular box at Ra = 107, Ch =
4 × 106. They found that these noses scale approximately with a Shercliff boundary layer thickness
δSh ∝ Ch−1/4 [20].
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FIG. 4. Temperature and velocity fields from � = 2.0 laboratory experiments at Ch = 4.0 × 104. The ver-
tical columns show cases at (a) Ra = 2.0 × 105, (b) Ra = 4.0 × 105, (c) Ra = 7.0 × 105, (d) Ra = 1.5 × 106,
and (e) Ra = 4.0 × 106, respectively. (Ra is only approximate for the laboratory cases; their exact values
are given in Tables II and III.) The first row shows the azimuthal-temporal temperature contours at the
midplane interpolated by laboratory data over five thermal diffusion times, τκ = H 2/κ . The color represents
the dimensionless temperature, (T − T )/�T , where T is the mean temperature obtained by averaging the top
and bottom temperatures. The second row consists of snapshots of the normalized DNS temperature field T̃ ,
and the third row presents snapshots of normalized DNS vertical velocity fields ũz at the same moment in time
as the temperature field. The vertical black dashed line between (b) and (c) separates between cases below bulk
onset (based on Ra∞

NS) to the left and above bulk onset to the right. The vertical green dash-dotted line between
(c) and (d) indicates the transition from an azimuthal mode number of m = 3 to m � 2 seen in the laboratory
cases.

Figures 4(a) and 4(b) show that these noses also grow gradually towards the interior as the
supercriticality increases, while the interior remains otherwise quiescent. This “Pinocchio effect”
persist until Ra � Ra∞

NS, when the bulk fluid starts convecting from the top and bottom boundaries
and then interacts with the inward-extended wall modes.

Figure 4(c) shows this extending nose behavior for Ra = 7 × 105, which is just above the bulk
onset Ra > Ra∞

NS. The DNS velocity field visualizes how two noses with positive or negative uz

(pink or blue) connect across the entire diameter of the tank via the convecting upwelling or
downwelling fluid in the interior. The laboratory and numerical temperature field on the sidewall
agree perfectly and show that close to the sidewall the wall modes are virtually unaffected by this
interior dynamics. In total, there are six alternating cold and hot patches along the sidewall azimuth,
i.e., the azimuthal mode number is m = 3. The magnetowall mode number m is defined as the
number of repeating azimuthal structures along the lateral surface.

Figures 4(d) and 4(e) show that these nonlinear interactions become more complicated and
chaotic as Ra increases further. The noselike structures interact and impinge on each other. The
nonlinear behavior also affects the flow close to the sidewall as visible in the temperature Hovmöller
diagram from sidewall thermometry in Fig. 4(d) for Ra = 1.5 × 106 and even more so in Fig. 4(e)
for Ra = 4.0 × 106.

For Ra = 4.0 × 106 [Fig. 4(e)], the experimental temperature Hovmöller diagram shows that the
magnetowall modes are transient between m = 1 and m = 2 in a chaotic sequence. The velocity
field of the DNS further demonstrates that the bulk flow dominates the dynamics, and hence the
flow for Ra = 4.0 × 106 significantly differs from the ones at lower Ra shown in Figs. 4(a)–4(d).
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FIG. 5. (a) Azimuthal mode number m as a function of Ra at the Ch = 4 × 104, � = 2.0 case for both
laboratory (green triangles) and numerical data (red triangles). (b) Nusselt number Nu as a function of Ra
for both laboratory experimental and numerical data. (c) Nu-Ra data plotted on detrended curves. Ñu is Nu
normalized by the linear fits (16) and (17) of each respective data set in (b). In parallel to Fig. 4, the black
dashed line indicates the predicted Ra∞

NS, whereas the green dash-dotted line marks the average Ra between two
adjacent laboratory data with m = 3 and m = 2. The kinks in Nu-Ra data in (b) are shown as the fluctuations
around Ñu = 1 in the Ñu-Ra trend, likely associated with mode switching.

There is, however, a small discrepancy between the number of azimuthal structures between the
laboratory and DNS data, being m = 2 and m = 3, respectively, for Ra = 1.5 × 106 [Fig. 4(d)].
This may be because m is sensitive to small changes in Ra and �, and there are slight differences
in parameters between the laboratory and the DNS, or because of the sidewall boundary conditions
which are not perfectly adiabiatic in the experiment. It is also possible that the DNS snapshots do
not capture fully equilibrated flow patterns while the laboratory experiments revealed more averaged
dynamics of MC, as, unlike the DNS, they can be run for many thermal diffusion times.

Figure 5(a) shows how the time-averaged azimuthal mode numbers m observed in the laboratory
experiment and the DNS velocity fields depend on the Rayleigh number Ra. The m values generally
decrease with increasing Ra, which qualitatively agrees with previous studies [20,22,24]. For Ra <

4 × 105, we present only DNS data in this plot and no laboratory data due to a combination of
both precision and spatial aliasing issues of the sidewall thermistor array. The temperature variation
between each wall mode structure near the midplane is �0.2 K, which is too small to be resolved
by our thermometers. Additionally, with only six thermistors evenly spaced at the azimuth, we can
resolve only up to m = 3 according to the Nyquist-Shannon sampling theorem. Thus, even though
the first-row temperature contour in Fig. 4(b) shows an m = 3 structure, it was omitted in Fig. 5(a)
and only the m = 4 from the velocity field from the DNS is shown.

The changes in mode number also affect the global heat transport. Figure 5(b) shows that Nu
increases monotonically with Ra, but not at a constant rate. Instead, kinks exist in the Nu-Ra
trends in both laboratory experiments and DNS for Ch = 4 × 104 [and Ch = 105; see Fig. 3(a)],
a phenomenon which has not been reported in previous MC experiments [21,24]. To further inves-
tigate this behavior, we normalized Nu by power laws obtained by separate fits to the Ch = 4 × 104

laboratory and DNS Nu-Ra data sets. For the laboratory data, the best fit is

Ñu = Nu/(0.0029Ra0.493), (16)

whereas for the DNS, it is found that

Ñu = Nu/(0.0014Ra0.541). (17)

Figure 5(c) shows the normalized Ñu. The nonmonotonicity of the trend manifests as fluctuations
around Ñu ≈ 1 with an amplitude of approximately 0.05. The increase after the first local minimum
in the experimental Ñu data curve coincides with the bulk onset, Ra = Ra∞

NS, and is marked by the
vertical black dashed line. This suggests that bulk convection enhances heat transfer efficiency. The
decrease after the first local maximum in the experimental Ñu data curve coincides with the change
of mode numbers from m = 3 to m = 2 observed in the laboratory cases (cf. Fig. 4) and is marked
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by the green dash-dotted line. The transition to a smaller mode number appears to suppress the heat
transfer efficiency temporarily. A similar behavior was observed in the liquid metal Rayleigh-Bénard
convection experiments of Horanyi et al. [59]. The second enhancement in Ñu after the second
local minimum happens when the highly nonlinear flow structures in the bulk fluid start to dominate
the convective dynamics. This corresponds to flow behaviors somewhere between Ra = 1.5 × 106

[Fig. 4(d)] and Ra = 4 × 106 [Fig. 4(e)]. The DNS data in Fig. 5(c) match the first enhancement
near Ra = Ra∞

NS. Because no mode switch from m = 3 to m = 2 was found in the DNS, no kink
appears in the Nu-Ra trend in the DNS data at this point.

V. DISCUSSION

A. Wall modes stability and the cellular flow regime

In our laboratory-numerical experiments, the magnetowall modes are stationary and do not drift
over dynamically long timescales (� 5τκ ), in contrast to the drifting wall modes in rotating con-
vection systems (e.g., [40]). This is because the quasistatic Lorentz force ( fL ∝ B2

0) does not break
the system’s azimuthal symmetry, unlike the Coriolis force [40]). The stationarity of magnetowall
modes has been confirmed in both numerical simulations [20] and laboratory experiments [24].
Furthermore, Liu et al. [20] showed that the magnetowall modes can inject jets into the bulk. This
phenomenon was also found in the numerical MC simulations of Akhmedagaev et al. [22], where
strong, axially invariant wall mode injections were accompanied by a net azimuthal drift of the
flow field with random orientations. We believe that the collisional interaction of the jets in a small
aspect ratio cylinder (� = 1.0), rather than any innate azimuthal motion of magnetowall modes, is
responsible for the drifting motions observed by Akhmedagaev et al. [22].

The fully three-dimensional flow fields from our DNS facilitated the investigation of the bulk
flow patterns in this study. Thus, we are also able to compare multiple cases at similar parameters
with Zürner et al. [24] who inferred the interior structure solely from linewise ultrasonic Doppler
velocimetry (UDV) and pointwise temperature measurements along the sidewalls and within the top
and bottom plate. Our identified flow structures and corresponding flow changes match well with
their observations. Specifically, what they denoted as the “cellular regime” corresponds to our case
with extended wall mode noses with interior bulk modes. Our Ra = 7 × 105 and Ra = 1.5 × 106

cases [Figs. 4(c) and 4(d)] resemble the inferred “three-cell” and “four-cell” patterns of Fig. 3 in
Zürner et al. [24]. Our Ra = 1.5 × 106, m = 2 thermal data in Fig. 4(d) also agrees with their
“two-cell” pattern on the sidewall. Moreover, the transition range from the “cellular regime” to the
nonrotating LSC regime in their experiment occurred approximately at Ra � 4 × 106 for Ch = 4 ≈
104, which is consistent with our observation of a more chaotic interior and unsteady and irregular
wall mode behavior, as shown in Fig. 4(e).

B. The Nu vs Ra MC party

Figure 6 presents a broad compilation of laboratory MC heat transfer measurements in different
aspect ratios and geometries, all in the presence of an external vertical magnetic field. Cioni et al.
[21] (open circles) studied liquid mercury in a � = 1.0 cylindrical cell up to Ch ≈ 4 × 106 and
Ra ≈ 3 × 109. Aurnou and Olson [60] (open triangles pointing right) carried out near onset liquid
gallium experiments in a � = 8 rectangular cell. Burr and Müller [61] (open triangles pointing left)
investigated sodium-potassium alloy in a 20:10:1 rectangular cell. King and Aurnou [46] studied
liquid gallium MC in a � = 1.0 cylinder on the same device (RoMag) as this study. Zürner et al.
[24] studied both heat and momentum transfer behaviors of liquid GaInSn in a � = 1 cylinder. The
results from our current � = {1.0, 2.0} cylindrical liquid gallium experiments and simulations are
demarcated by the filled symbols. All data shown here are listed in the Tables II–IX in the appendix.
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FIG. 6. Collection of Nu-Ra data from this study and previous MC laboratory experiments in liquid metal
[17,21,24,46,60,61]. Color represents Ch. The filled symbols mark the data in this study. The five-pointed stars
at Nu = 1 mark the RaW (9) for all different Ch > 0. The two asterisk symbols from left to right mark Ra∞

NS

for Ch = 2 × 106 and 4 × 106, respectively, and corresponding to the two Ch data set of Cioni et al. [21]. The
nonfilled color symbols are selected heat transfer data from prior liquid metal laboratory experiments. All data
displayed here are included in Tables II–IX in the Appendix.

In addition, we have included the Nusselt number data for Ch = 0, i.e., pure Rayleigh-Bénard
convection (RBC). Best fits to the RBC cases yield

Nu0 ≈ (0.191 ± 0.088)Ra0.248±0.025 for � = 1.0, (18a)

Nu0 ≈ (0.176 ± 0.081)Ra0.246±0.028 for � = 2.0, (18b)

which are in good agreement with previous studies on the same device (RoMag) [35,46,47,62]. The
differences between these two scaling laws lie within their error bars but may be due to the different
tank aspect ratios [35,47,63].

As discussed in Sec. IV, our data show that the onset of MC in a cylinder occurs via wall
modes. The five-point stars at Nu = 1 mark the magnetowall mode onset prediction RaW (9) for
the different Ch. Our near-onset data at Ch = 105 (yellow triangles) are in good agreement with the
onset prediction by Busse [26] (yellow star). However, the heat transfer data of Cioni et al. [21] at
Ch = 2 × 106 and Ch = 4 × 106 have Racrit ≈ 3RaW . The lowest Nu data from Cioni et al. [21],
Ch = 2 × 106 and Ch = 4 × 106, align well with the bulk onset prediction, Ra∞

NS. Zürner et al. [24]
have analyzed the Nu-Ra trends and also found a large deviation between the experimental results
of Cioni et al. [21] and King and Aurnou [46]. This discrepancy is likely due to the thermometry
setup of Cioni et al. [21], which used a single thermistor at the center of each top and bottom
boundary to measure �T . This setup was not designed to characterize wall modes and could detect
only the convective heat transfer occurring near the center of the tank. Thus, top and bottom end
wall temperature measurements nearer to the sidewall are required in order to detect the onset of
wall modes and to measure their contributions to the total heat transfer (cf. [22,24,29]).
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FIG. 7. (a) Normalized Nusselt number (Nu/Nu0) vs magnetic Rossby number (Rom) for MC laboratory
data in � = 1.0 and 2.0 tanks. Nu0 are the best-fit power laws in (18) and Rom is the inverse of interaction
parameter N , as defined in (19). Symbols in thick black outlines represent � = 2.0 data, and those in thin gray
outlines are � = 1.0 data. Color of the symbols indicates log10(Ch). The white symbols are subcritical cases
according to wall mode onset (Ra < RaW ). The symbol shapes do not contain information but help differentiate
different Ch. (b) Rotating convective heat transfer data adapted from the � = 1.0 liquid gallium experiments
of King and Aurnou [63]. The color indicates log10(Ek−1). The vertical axis shows a reduced Nusselt number
Nu/Nu0 = Nu/(0.185Ra0.25), following [63]. The horizontal axis is convective Rossby number Roc, as defined
in (19).

C. Comparison between magnetoconvection and rotating convection in liquid metal

The goal of this work is to provide a better understanding of the pathway from convective
onset to multimodal turbulence in liquid metal magnetoconvection. Thus far, we have compared
our laboratory-numerical data with the results of other MC studies. Here we expand on this by
comparing our MC data against rotating convection data. Although the Lorentz and Coriolis forces
both act to constrain the convection in these systems [64], their data are rarely closely compared
since the vast majority of rotating convection (RC) studies are carried out in moderate to high
Prandtl fluids (nonmetals), whereas MC studies are nearly always made using low Pr liquid metals
(cf. [65]).

Figure 7 shows a side-by-side comparison of the convective heat transfer efficiency Nu/Nu0 as a
function of the normalized buoyancy forcing in [Fig. 7(a)] our present liquid gallium � = 1.0 and
2.0 MC experiments and [Fig. 7(b)] the liquid gallium � = 1.0 rotating convection data from King
and Aurnou [63]. The thicker outlined symbols in Fig. 7(a) demarcate the � = 2.0 MC cases. The
liquid gallium convection data in Fig. 7 were all obtained using the same experimental apparatus
and setup. The fill color in Fig. 7(a) denotes log10(Ch), whereas it denotes log10(Ek−1) in Fig. 7(b).
The Ekman number, Ek = ν/2�H2, is the ratio of viscous and Coriolis forces in rotating systems
and � is the RC system’s angular rotation rate.

The best co-collapse of the Nu/Nu0 data sets was found when the buoyancy force was normalized
by the appropriate constraining force, that being Lorentz in MC and Coriolis forces in RC. In MC,
this nondimensional ratio is called the magnetic Rossby number, Rom, which formally describes the
ratio of convective inertia and the Lorentz force:

Rom = Inertia

Lorentz
= Re f f Ch−1 =

√
RaCh−2

Pr
, (19)

where Re f f = Uf f H/ν. In the MHD literature, the reciprocal of this ratio, which is called the
interaction parameter N = Ro−1

m is often employed (e.g., [28]). In RC, this nondimensional ratio
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is called the convective Rossby number, Roc,

Roc = Inertia

Coriolis
= Re f f Ek =

√
RaEk2

Pr
, (20)

which shows up as a collapse parameter in a broad array of rotating convection problems (e.g.,
[56,66,67]). Lorentz forces dominate in MC when Rom = 1/N is small; Coriolis forces dominate in
RC when Roc is small. When these Rossby numbers exceed unity, buoyancy-driven inertial forces
should be dominant, and the convection is expected to be effectively unconstrained on all available
length scales in the system.

Comparing Figs. 7(a) and 7(b), it is clear that the liquid metal MC and RC data have similar gross
morphologies. The Nu/Nu0 is near unity and effectively flat for both Rom � 1 and Roc � 1. Thus,
when the constraining Lorentz or Coriolis forces become subdominant to inertia in either system,
the heat transfer is similar to that found in unconstrained RBC experiments.

The basic structures of MC and RC data are also similar at Rom � 1 and Roc � 1: the normalized
heat transfer trends relatively sharply downwards with decreasing Rossby number. However, the
detailed structures of the low Rom and low Roc data differ substantively. The data fall off more
steeply with Rossby in the rotating case, then it greatly flattens out in the lowest Nu/Nu0 RC cases.
The differences in slope may be due to the difference in Ekman pumping (EP) effects in both systems
[68], although heat transfer enhancement by EP is typically weak in metals since it is hard to modify
the thermal boundary layers in low Pr flows.

Alternatively, these differences may be caused by the differences in critical Ra values and their
scalings. For instance, in the parameter ranges explored in Fig. 7, oscillatory bulk convection
first onsets in RC [47], whereas it is the wall modes that develop first in MC. Further, the bulk
magnetoconvective onset scales asymptotically as Racrit ∼ Ch1 whereas bulk oscillatory convective
onset asymptotically scales as Racrit ∼ Ek−4/3. This 1/3 difference in the scaling exponents may
imply that the available range of Nu/Nu0 will be larger in the RC cases. Further, the flat tail in the
lowest Nu/Nu0 RC data is likely due to the low convective heat transfer efficiency of oscillatory
rotating convection.

Thus, the gross structures of the two data compilations are similar in Fig. 7. We hypothesize
that their differences in our current data are likely due to the various modal onset phenomena, as
are clearly present in Fig. 5, that alter the low Rossby branches of each figure panel. However, it
may be that differences in MC and RC supercritical dynamics better explain these data (cf. [18,69]).
Regardless of the root cause, these low Rossby differences have thus far thwarted our attempts to
create a unified plot in which all the Nu/Nu0 data are simultaneously collapsed (cf. [70]).

D. Summary

We have conducted a suite of laboratory thermal measurements of liquid gallium magnetocon-
vection in cylindrical containers of aspect ratios � = 1.0 and 2.0. Our data allow us to characterize
liquid metal MC from wall mode onset to multimodality. We performed a fixed Ch = 4 × 104

survey of direct numerical simulation for the same system in a � = 2.0 cylindrical geometry. Both
laboratory and numerical methods obtained similar heat transfer behaviors, with possible subtle
differences in flow morphology. Together with previous studies, our liquid metal heat transfer data
comprise a convective heat transfer survey over six orders of magnitude in both Ra and Ch (Fig. 6).

The asymptotic solutions of Busse [26] for magnetowall modes best collapse all our MC heat
transfer data, whereas the hybrid theoretical-numerical solutions by Houchens et al. [25] captures
the exact onset for � = 1.0, but the onset for � = 2.0 remains unverified. Better theoretical onset
prediction are needed for liquid metal MC in a cylindrical cell as a function of �. This differs from
liquid metal rotating convection where accurate theoretical predictions currently exist for low-Pr
fluids in cylindrical geometries [71,72].

The MC flow morphology was characterized experimentally using a sidewall thermistor array as
well as the DNS temperature and velocity fields. The onset of convection was verified to occur in the
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form of stationary (nondrifting) magnetowall modes. These magnetowall modes develop noselike
protuberances that extend into the fluid bulk with increasing supercriticality. At Rayleigh numbers
beyond the critical value for steady bulk convection, the noses interact with the interior bulk modes,
likely resulting in the apparent cell-like flow patterns observed by Zürner et al. [24]. Our data show
that MC convective heat transport is sensitive to the flow morphology, with the Nusselt number
Nu-Ra data containing distinct kinks at these points where the dominant convection mode appears
to change.

Finally, liquid metal heat transfer trends in magnetoconvection were compared with rotating con-
vection. The gross behavior of the heat transfer is controlled by the magnetic and convective Rossby
numbers, Rom and Roc, in the respective systems, with the normalized heat transport Nu/Nu0

approaching the RBC scaling as Rom and Roc approach unity from below. The detailed trends at
Rossby values less than unity show clear differences between MC and RC. We have not yet deduced
a scheme by which it is possible to collapse all the liquid metal MC and RC data in a unified way.
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APPENDIX

All the heat transfer data (Ch, Ra, Nu) from this study and other liquid metal MC laboratory
experiments summarized in Fig. 6 are listed in the appendix here.

TABLE II. Current study. Liquid gallium. Pr = 0.027, � = 2.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

0 1.93 × 106 6.13 1.00 × 104 5.64 × 105 3.41 3.98 × 104 1.93 × 106 3.52
0 1.02 × 106 5.16 1.01 × 104 6.87 × 105 3.74 4.00 × 104 2.79 × 106 4.48
0 4.86 × 105 4.27 1.00 × 104 9.30 × 105 4.16 4.02 × 104 4.03 × 106 5.33
0 2.70 × 105 3.75 1.02 × 104 1.39 × 106 4.89 4.15 × 104 5.40 × 106 6.06
0 1.52 × 105 3.37 1.03 × 104 2.15 × 106 5.79 9.40 × 104 1.65 × 105 1.20
0 1.06 × 105 3.16 1.04 × 104 2.58 × 106 6.23 9.40 × 104 2.10 × 105 1.15
0 3.81 × 104 3.24 1.04 × 104 3.23 × 106 6.62 9.42 × 104 3.39 × 105 1.07
0 5.69 × 104 3.99 1.06 × 104 4.37 × 106 7.42 9.44 × 104 5.81 × 105 1.28
0 5.26 × 106 8.31 1.05 × 104 5.40 × 106 8.11 9.49 × 104 8.26 × 105 1.52
1.06 × 104 9.98 × 104 1.70 1.09 × 104 6.01 × 106 8.28 9.47 × 104 1.09 × 106 1.75
1.06 × 104 1.29 × 105 1.89 3.87 × 104 9.24 × 104 1.47 9.48 × 104 1.28 × 106 2.00
1.01 × 104 1.51 × 105 2.01 3.72 × 104 1.56 × 105 1.27 9.70 × 104 1.63 × 106 2.36
1.00 × 104 1.64 × 105 2.25 3.88 × 104 1.96 × 105 1.24 9.73 × 104 1.79 × 106 2.47
1.01 × 104 1.70 × 105 2.17 3.89 × 104 2.87 × 105 1.38 9.76 × 104 1.92 × 106 2.59
1.01 × 104 2.17 × 105 2.10 3.89 × 104 4.48 × 105 1.67 9.76 × 104 1.99 × 106 2.63
1.01 × 104 2.13 × 105 2.14 3.91 × 104 6.07 × 105 2.09 9.81 × 104 2.35 × 106 2.89
1.01 × 104 2.30 × 105 2.19 3.92 × 104 7.86 × 105 2.45 9.91 × 104 3.51 × 106 3.57
1.01 × 104 2.50 × 105 2.33 3.91 × 104 9.43 × 105 2.72 1.01 × 105 4.96 × 106 4.37
1.01 × 104 2.52 × 105 2.32 3.92 × 104 1.33 × 106 2.90 1.04 × 105 6.61 × 106 5.03
1.01 × 104 2.96 × 105 2.53 3.93 × 104 1.33 × 106 2.90 1.05 × 105 8.08 × 106 5.52
1.01 × 104 4.23 × 105 3.00 3.97 × 104 1.95 × 106 3.49
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TABLE III. Current study. DNS. Pr = 0.025, � = 2.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

4.00 × 104 1.5 × 105 1.000 4.00 × 104 4.0 × 105 1.477 4.00 × 104 1.50 × 106 3.302
4.00 × 104 2.0 × 105 1.004 4.01 × 104 7.0 × 105 2.165 4.00 × 104 4.0 × 106 5.202
4.00 × 104 3.0 × 105 1.241 4.00 × 104 1.0 × 106 2.635

TABLE IV. Current study. Liquid gallium. Pr = 0.027, � = 1.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

0 1.76 × 106 6.95 1.11 × 104 5.45 × 107 16.40 4.43 × 104 5.45 × 107 16.40
0 1.78 × 106 6.83 3.83 × 104 1.88 × 106 4.53 9.13 × 104 4.63 × 106 4.61
0 2.28 × 106 7.17 3.84 × 104 2.92 × 106 5.28 9.13 × 104 4.60 × 106 4.61
0 4.86 × 106 8.61 3.86 × 104 3.83 × 106 6.03 9.17 × 104 5.98 × 106 5.16
0 8.61 × 106 9.98 3.86 × 104 4.69 × 106 6.57 9.21 × 104 7.07 × 106 5.54
0 1.33 × 107 11.37 3.89 × 104 5.53 × 106 7.07 9.15 × 104 8.40 × 106 5.95
0 2.06 × 107 13.10 3.85 × 104 6.55 × 106 7.61 9.10 × 104 9.55 × 106 6.29
9.55 × 103 1.11 × 106 5.66 3.86 × 104 7.46 × 106 8.04 9.12 × 104 1.10 × 107 6.69
9.35 × 103 1.40 × 106 6.10 3.86 × 104 8.43 × 106 8.48 9.19 × 104 1.24 × 107 7.06
9.60 × 103 2.84 × 106 7.53 3.91 × 104 9.74 × 106 8.99 9.53 × 104 1.86 × 107 8.53
9.65 × 103 3.76 × 106 8.21 3.86 × 104 9.79 × 106 8.92 9.44 × 104 2.03 × 107 8.83
9.61 × 103 4.53 × 106 8.66 3.87 × 104 1.05 × 107 9.19 9.55 × 104 2.40 × 107 9.46
9.60 × 103 5.52 × 106 9.04 3.88 × 104 1.19 × 107 9.59 9.62 × 104 2.74 × 107 9.99
9.55 × 103 6.39 × 106 9.37 3.89 × 104 1.26 × 107 9.80 9.65 × 104 3.05 × 107 10.45
9.58 × 103 7.57 × 106 9.70 3.88 × 104 1.36 × 107 10.09 9.82 × 104 3.38 × 107 10.99
9.62 × 103 8.67 × 106 10.04 3.92 × 104 1.41 × 107 10.31 9.89 × 104 3.67 × 107 11.41
9.75 × 103 1.09 × 107 10.52 3.90 × 104 1.49 × 107 10.40 1.02 × 105 4.57 × 107 12.60
9.77 × 103 1.15 × 107 10.68 3.93 × 104 1.64 × 107 10.83 2.88 × 105 5.98 × 106 3.43
9.94 × 103 1.16 × 107 10.88 3.95 × 104 1.66 × 107 10.75 2.75 × 105 9.07 × 106 4.13
9.78 × 103 1.32 × 107 11.07 3.97 × 104 1.82 × 107 11.10 2.88 × 105 1.24 × 107 4.67
9.92 × 103 1.55 × 107 11.49 3.95 × 104 1.80 × 107 11.22 2.90 × 105 1.56 × 107 5.38
1.00 × 104 1.88 × 107 12.04 3.96 × 104 1.94 × 107 11.58 2.90 × 105 2.07 × 107 6.24
1.01 × 104 2.18 × 107 12.53 3.98 × 104 2.24 × 107 12.19 2.90 × 105 2.31 × 107 6.61
1.03 × 104 2.78 × 107 13.31 4.09 × 104 2.81 × 107 13.24 2.89 × 105 2.52 × 107 6.84
1.03 × 104 3.05 × 107 13.68 4.13 × 104 3.07 × 107 13.69 2.96 × 105 2.96 × 107 7.34
1.07 × 104 3.91 × 107 14.67 4.26 × 104 3.90 × 107 14.82 2.97 × 105 3.34 × 107 7.83
1.09 × 104 4.68 × 107 15.53 4.31 × 104 4.67 × 107 15.55 2.88 × 105 2.51 × 107 6.86
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TABLE V. Cioni et al. [21]. Liquid mercury. Pr = 0.025, � = 1.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

0 8.06 × 106 8.676 0 2.53 × 109 48.527 2.00 × 106 4.99 × 108 15.051
0 1.27 × 107 9.620 0 2.67 × 109 51.986 2.00 × 106 6.77 × 108 17.400
0 1.82 × 107 10.667 7.22 × 105 2.97 × 107 4.103 2.00 × 106 1.10 × 109 21.055
0 2.35 × 107 11.930 7.22 × 105 5.06 × 107 5.545 2.00 × 106 1.57 × 109 24.800
0 3.71 × 107 13.228 7.22 × 105 7.22 × 107 6.936 2.00 × 106 1.83 × 109 26.111
0 3.81 × 107 12.562 7.22 × 105 9.08 × 107 8.382 2.00 × 106 2.07 × 109 27.000
0 5.30 × 107 14.542 7.22 × 105 1.14 × 108 9.703 3.93 × 106 3.76 × 107 1.000
0 6.83 × 107 15.986 7.22 × 105 1.67 × 108 12.033 3.93 × 106 4.97 × 107 1.578
0 1.08 × 108 17.879 7.22 × 105 2.21 × 108 14.050 3.93 × 106 6.41 × 107 1.940
0 1.54 × 108 18.989 7.22 × 105 2.85 × 108 15.578 3.93 × 106 6.74 × 107 1.875
0 2.09 × 108 21.055 7.22 × 105 4.17 × 108 18.989 3.93 × 106 9.37 × 107 2.930
0 2.44 × 108 21.055 7.22 × 105 5.81 × 108 20.696 3.93 × 106 1.24 × 108 3.998
0 2.77 × 108 22.556 7.22 × 105 9.66 × 108 25.445 3.93 × 106 1.24 × 108 4.000
0 3.40 × 108 23.347 7.22 × 105 1.34 × 109 29.455 3.93 × 106 1.55 × 108 5.001
0 4.98 × 108 25.011 2.00 × 106 1.80 × 107 1.120 3.93 × 106 1.86 × 108 5.940
0 5.11 × 108 25.665 2.00 × 106 2.14 × 107 1.448 3.93 × 106 2.58 × 108 7.691
0 5.80 × 108 26.564 2.00 × 106 2.62 × 107 1.970 3.93 × 106 3.33 × 108 9.290
0 6.59 × 108 27.259 2.00 × 106 4.14 × 107 2.958 3.93 × 106 4.18 × 108 10.667
0 7.67 × 108 27.972 2.00 × 106 6.06 × 107 3.960 3.93 × 106 5.53 × 108 13.800
0 8.72 × 108 28.458 2.00 × 106 9.34 × 107 5.358 3.93 × 106 5.97 × 108 13.228
0 9.90 × 108 28.952 2.00 × 106 9.58 × 107 5.180 3.93 × 106 7.90 × 108 15.400
0 1.28 × 109 31.284 2.00 × 106 1.17 × 108 6.419 3.93 × 106 1.22 × 109 19.319
0 1.57 × 109 32.103 2.00 × 106 1.47 × 108 7.490 3.93 × 106 1.69 × 109 22.600
0 1.87 × 109 35.904 2.00 × 106 2.10 × 108 9.375 3.93 × 106 1.97 × 109 23.147
0 2.29 × 109 36.843 2.00 × 106 2.78 × 108 11.000 3.93 × 106 2.24 × 109 24.600
0 2.35 × 109 40.155 2.00 × 106 3.50 × 108 12.455 3.93 × 106 2.54 × 109 25.887
0 2.41 × 109 43.764 2.00 × 106 4.99 × 108 15.600

TABLE VI. Aurnou and Olson [60]. Liquid gallium. Pr = 0.023, � = 6.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

0 7.21 × 102 1.00 0 5.76 × 103 1.27 670 1.52 × 103 1.00
0 8.18 × 102 1.01 0 6.13 × 103 1.34 670 2.74 × 103 1.01
0 1.12 × 103 1.01 0 7.09 × 103 1.38 670 4.24 × 103 1.00
0 1.30 × 103 1.01 0 6.57 × 103 1.40 670 6.00 × 103 1.01
0 1.46 × 103 1.02 0 8.49 × 103 1.44 670 7.04 × 103 1.01
0 1.86 × 103 1.03 0 9.10 × 103 1.48 670 9.17 × 103 1.01
0 2.12 × 103 1.03 0 1.05 × 104 1.49 670 8.26 × 103 1.01
0 2.27 × 103 1.04 0 1.07 × 104 1.54 670 1.16 × 104 1.03
0 2.50 × 103 1.05 0 1.11 × 104 1.55 670 1.03 × 104 1.02
0 3.35 × 103 1.11 0 1.31 × 104 1.61 670 1.25 × 104 1.03
0 3.52 × 103 1.14 0 1.12 × 104 1.63 670 1.34 × 104 1.04
0 3.77 × 103 1.16 0 1.20 × 104 1.64 670 1.37 × 104 1.05
0 4.15 × 103 1.20 0 1.30 × 104 1.68 670 1.44 × 104 1.05
0 4.71 × 103 1.23 0 1.32 × 104 1.71 670 1.48 × 104 1.06
0 4.55 × 103 1.25 0 1.48 × 104 1.71 670 1.53 × 104 1.08
0 5.22 × 103 1.25
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TABLE VII. Burr and Müller [61]. Liquid Na-K alloy. 0.017 < Pr < 0.021, rectangular box 20:10:1.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

0 1.74 × 103 1.05 0 2.65 × 104 1.80 400 4.92 × 104 1.48
0 2.29 × 103 1.06 0 3.64 × 104 1.95 400 6.13 × 104 1.60
0 3.08 × 103 1.10 0 4.59 × 104 2.08 400 7.39 × 104 1.69
0 4.72 × 103 1.23 0 5.58 × 104 2.19 400 8.46 × 104 1.78
0 6.92 × 103 1.35 400 9.27 × 103 1.00 1600 3.22 × 104 1.01
0 9.19 × 103 1.39 400 1.49 × 104 1.05 1600 4.56 × 104 1.07
0 1.07 × 104 1.45 400 2.11 × 104 1.12 1600 6.22 × 104 1.18
0 1.49 × 104 1.59 400 2.68 × 104 1.20 1600 7.60 × 104 1.29
0 1.92 × 104 1.67 400 3.65 × 104 1.30 1600 9.10 × 104 1.40

TABLE VIII. King and Aurnou [46]. Liquid gallium. Pr = 0.025, � = 1.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

9.46 × 103 2.37 × 106 7.23 4.74 × 104 8.44 × 106 8.40 2.85 × 105 1.09 × 107 4.89
9.50 × 103 3.30 × 106 7.78 9.35 × 104 3.81 × 106 4.50 2.85 × 105 1.34 × 107 5.29
9.54 × 103 4.32 × 106 8.31 9.39 × 104 5.02 × 106 5.11 9.35 × 105 7.39 × 106 2.31
9.60 × 103 5.95 × 106 8.94 9.43 × 104 6.33 × 106 5.67 9.40 × 105 9.80 × 106 2.61
9.58 × 103 7.53 × 106 9.42 9.49 × 104 8.25 × 106 6.46 9.46 × 105 1.23 × 107 2.91
9.58 × 103 1.06 × 107 10.20 9.48 × 104 1.01 × 107 7.05 9.54 × 105 1.59 × 107 3.37
9.74 × 103 2.80 × 107 13.00 9.47 × 104 1.33 × 107 8.11 9.54 × 105 1.90 × 107 3.76
1.01 × 104 5.08 × 107 15.00 9.53 × 104 1.89 × 107 9.56 9.57 × 105 2.53 × 107 4.29
4.68 × 104 3.10 × 106 5.52 9.96 × 104 5.40 × 107 14.10 9.67 × 105 3.48 × 107 5.25
4.70 × 104 4.11 × 106 6.24 2.80 × 105 5.23 × 106 3.27 1.02 × 106 8.85 × 107 8.84
4.72 × 104 5.13 × 106 6.99 2.81 × 105 6.70 × 106 3.83 1.24 × 106 1.70 × 108 11.90
4.75 × 104 6.81 × 106 7.81 2.83 × 105 8.37 × 106 4.28

TABLE IX. Zürner et al. [24]. Liquid GaInSn. Pr = 0.029, � = 1.

Ch Ra Nu Ch Ra Nu Ch Ra Nu

1.73 × 102 4.18 × 106 7.59 1.73 × 104 2.51 × 107 11.80 2.12 × 105 3.34 × 107 8.84
1.73 × 102 6.27 × 106 8.10 1.73 × 104 3.34 × 107 12.30 2.12 × 105 5.85 × 107 12.00
1.73 × 102 1.05 × 107 9.19 1.74 × 104 5.78 × 107 15.50 4.32 × 105 1.05 × 107 3.18
1.73 × 102 1.67 × 107 11.00 1.74 × 104 5.82 × 107 15.50 4.32 × 105 1.05 × 107 3.67
1.72 × 102 3.34 × 107 12.50 1.73 × 104 5.84 × 107 15.00 4.32 × 105 1.05 × 107 3.18
1.74 × 102 5.82 × 107 15.70 3.89 × 104 1.05 × 107 7.67 4.32 × 105 1.05 × 107 3.41
1.78 × 102 5.91 × 107 15.70 6.92 × 104 6.26 × 106 5.48 4.32 × 105 1.67 × 107 4.98
4.32 × 103 4.18 × 106 7.49 6.92 × 104 1.05 × 107 6.62 4.33 × 105 3.34 × 107 7.20
4.32 × 103 6.27 × 106 7.71 6.92 × 104 1.67 × 107 8.55 4.33 × 105 5.86 × 107 10.10
4.32 × 103 1.05 × 107 9.23 6.92 × 104 2.51 × 107 9.77 7.31 × 105 1.67 × 107 3.63
4.33 × 103 1.67 × 107 10.90 6.93 × 104 3.34 × 107 11.00 7.31 × 105 3.34 × 107 5.90
4.33 × 103 2.51 × 107 11.60 6.93 × 104 3.34 × 107 10.80 7.32 × 105 5.86 × 107 8.89
4.33 × 103 3.34 × 107 12.30 6.94 × 104 5.84 × 107 14.40 1.11 × 106 1.67 × 107 2.97
4.34 × 103 5.81 × 107 15.20 6.94 × 104 5.85 × 107 14.00 1.11 × 106 3.34 × 107 4.75
1.73 × 104 4.18 × 106 5.99 6.94 × 104 5.85 × 107 14.40 1.11 × 106 3.34 × 107 5.12
1.73 × 104 6.27 × 106 7.28 6.94 × 104 5.86 × 107 14.30 1.11 × 106 3.34 × 107 4.88
1.73 × 104 1.05 × 107 9.07 2.12 × 105 1.05 × 107 5.05 1.11 × 106 5.85 × 107 7.63
1.73 × 104 1.67 × 107 10.90 2.12 × 105 1.67 × 107 6.75
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