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We present an experimental study of penetrative convection in gases, which allows
reaching a lower Prandtl number Pr = 0.7 than classical water experiments. A heavy gas
(SF6) fills the bottom of a meter-sized rectangular tank. Diffusion of SF6 in air establishes
a stratified vertical profile in part of the domain. Electric resistors heat the bottom plate
of the tank up to a chosen temperature while water circulation fixes the top plate temper-
ature at room temperature. After a short transient, the SF6-rich lower layer convects and
progressively invades the upper stably-stratified layer while exciting propagating internal
gravity waves. Density and particle image velocimetry (PIV) measurements are performed,
allowing us to follow the growth of the convective region as well as the characteristics of
the internal waves and convective fields. While mixing at the interface is often modeled
in classical penetrative convection with an eddy diffusivity, we find that the convective
layer growths here quadratically in time, which contradicts a stationary and homogeneous
turbulent diffusion. The analysis of the wave spectra in the stratified domain reveals a peak
frequency at the buoyancy frequency, with a clear cutoff above. Running PIV in both layers
simultaneously allows us to compute the kinetic energy transfer from the convective zone
into the stratified one, which amounts to about 4%. We also define a scaling law for the
erosion rate as a function of the Froude number.

DOI: 10.1103/PhysRevFluids.8.103501

I. INTRODUCTION

Penetrative convection generically stands for the interactions between a turbulent convecting
layer of fluid and an adjacent stably-stratified one. It is encountered in many geophysical flows
and plays a key role in the deepening of the upper-ocean mixed layer and in the thickening of the
layer of suspended sediments in the oceanic benthic boundary layer [1]. It is suspected to occur in
the Earth’s core and to affect the generation of its magnetic field [2]. Penetrative convection also
happens in the atmosphere: its lower part, the troposphere, convects and interacts with the upper
part, the stratosphere. This interaction generates waves in the stratosphere, including internal gravity
waves (IGWs), whose nonlinear interactions are at the origin of the Quasi-Biennial Oscillation in
the equatorial region [3]. In astrophysics, long-time evolution of stars is accessible only through
parameterized models that rely on correct physical modeling of small-scale, rapid processes (e.g.,
[4]). In particular, stars’ lifetimes depend on the mixing of their nuclear fuel at the interface between
their convective and stratified radiative zones, but stellar convection is strongly turbulent and its
interaction with stratified layers through penetrative convection is still difficult to model properly
[5]. Also, a full understanding of IGWs excitation and propagation is necessary to take the most of
asteroseismology data [6].

In all these examples, full three-dimensional direct numerical simulations are difficult to per-
form because of the large range of involved temporal and spatial scales. Therefore, submesh
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(a) (b)

FIG. 1. Sketches of the experimental setup: (a) global rendering (extracted from [14]) and (b) vertical cross
section.

parametrization is often used, casting doubts on the relevant quantification of crucial ingredients
that determine the long-term behavior of natural systems, such as the amount of energy that transits
between the convective and the stratified zones, the amount of mixing at the stratified interface
and the invasion speed of the front, etc. The goal of our experimental study is to contribute to
the effort of correctly modeling penetrative convection by quantifying the flow motions in the
interfacial region. In most experimental studies of penetrative convection to date, water is used as
the working fluid, meaning that the Prandtl number Pr = ν/κ , ratio between the fluid viscosity ν and
thermal diffusivity κ , is equal to 7 (e.g., [7–9]). Some experiments also use salty water to enhance
stratification, then leading to a Schmidt number Sc = 700, equivalent to the Prandtl number but
with thermal diffusivity replaced by mass diffusivity (e.g., [10–13]). Those previous experiments
are thus fully relevant for oceanic applications, but less relevant for other natural applications where
the Prandtl number is smaller than 1, including atmospheres (Pr = 0.7), planetary cores (Pr = 0.1),
and stellar interiors (Pr = 10−8). The uniqueness of our experimental setup is that it uses gases and
thus reaches Pr = 0.7 and Sc = 1.5. More specifically, we study penetrative convection of a dense
gas (sulfur hexafluoride, SF6) in the overlying air. We stress here that the challenge is to perform
quantitative measurements in particular PIV throughout the experiment.

The outline of this article is as follows. We first present in detail the experimental setup and
our measurement methods for both velocity and density. In the Results section, we investigate the
characteristics of the internal gravity waves produced, the energy transfer from the convective zone
into the stratified one, and the growth of the convective layer as well as the entrainment rate at the
interface. We finally conclude with the possible outlooks of this experiment.

II. MATERIALS AND METHODS

A. Experimental setup

Our setup is sketched in Fig. 1. The experiment is carried out in a rectangular tank of width
85 cm×85 cm and height 150 cm with 2 cm-thick glass walls. We slowly pour at the bottom a dense
gas to produce a stratification with air. We use SF6, which has a density ρSF6 = 6.04 kg/m3 �
5ρair at ambient temperature T = 298 K and pressure P = 1.013×105 Pa, with ρair the density of
pure air. A stainless steel plate is placed at the bottom. It is heated by nine silicone heating pads
fixed underneath. The temperature of these pads Tb is maintained constant by a control loop on
the pad power supply. The top temperature Tt is fixed at room temperature by an aluminium plate
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with internal circulation of a cooling fluid connected to a thermostated bath and isolated from the
ambient by a polystyrene plate. The working distance between the two plates is 110 cm. Above the
aluminium plate and below the steel one, mist makers are placed in order to produce water droplets
which are used as PIV tracers. A fan is placed below the steel plate to homogenize the droplet
distribution. The production of water droplets is detailed in Sec. II B 2.

In our setup, as the side walls are not insulated, heat losses through the sides are not negligible.
However, we do not expect them to play an important role in the described dynamics. Indeed,
the initial room and top aluminium plate temperatures are equal, so the temperature of the gas
above the stratified front remains mostly equal to its initial value until the arrival of the penetrative
convective bottom layer. Also, all stratified processes are largely dominated by the local SF6-air
composition, with negligible thermal contribution to the buoyancy: so IGWs dynamics do not
depend on the details of thermal boundary conditions. Heat losses are important only for the bottom
convective layer: in particular, lateral losses may shape a large-scale circulation within the tank,
with descending flows near the side boundaries and a rising plume in the vicinity of the tank center.
We expect the descending flows and associated temperature fluctuations to remain localized in very
thin boundary layers close to the walls, while turbulent fluctuations superimpose to the large-scale
circulation and efficiently mix the bulk fluid, in a similar way to classical vertical convection. These
points will be further discussed below, where appropriate.

For each of our experiments, the mist makers and the fan are first turned on until the concentration
of droplets suitable for PIV is reached. Both the mist makers and the fan are then turned off. Then
the bottom of the tank is filled with SF6. It diffuses upward, creating a vertical stable gradient of
density: the longer the diffusion time, the smaller the density gradient but the larger its vertical
extension. Once the expected profile is reached, the bottom plate heating is turned on and the gas
close to it starts to convect. Figure 1(b) represents the resulting structure. A layer of pure air often
remains at the top of the experiment. This layer might also convect, yet less vigorously than the
bottom one because both its density and temperature contrast are smaller (i.e., smaller Rayleigh
number): we will not further consider it. The bottom convective region mixes with the overlying
stratified one and grows with time. We have not observed any signature of double diffusive effects:
this makes sense because the Lewis number, the ratio of thermal to mass diffusivities, remains close
to 1 (i.e., tabulated value of 2 for a pure SF6 layer) while the density profile is strongly dominated by
the stable, mass contribution vs the unstable thermal one (see details for double diffusive convection
threshold in [15]). At the end of the experiment, all the gas in the tank is convecting and fully mixed.

With this setup, we have two main control parameters: the time allowed for mass diffusion before
starting the heating, which controls the strength of the stratification, and the amount of heating which
controls the strength of the convection. However, it is difficult to precisely explore a wide parameter
space. Indeed, the density gradient is only very indirectly controlled, and the accessible temperature
difference remains limited to about 30 ◦C, which nevertheless has the advantage of allowing us
to neglect compressibility effects and hence to use the Boussinesq approximation in our further
modeling.

B. Measurement techniques

1. Density measurements

Density is measured with a densimeter Northdome 2950 from AveniSense. This densimeter
slowly moves up and down in the tank, from the bottom steel plate to 71 cm above. The translation
speed is 3 mm/s, hence it takes about 4 min to perform a full profile. We record only the downward
profiles to minimize possible wake effects. The minimal interval between two profiles is then 8 min.
As SF6 already mixes with air during its initial injection when filling the tank, the density measured
at the bottom at the beginning of the experiment is at most 2.51 kg/m3. To validate the density
measurements, we performed a purely diffusion experiment: SF6 is injected at the bottom of the
tank and then diffuses upwards with no further perturbation (no convection in this case). Density
profiles recorded every 20 min are shown in Fig. 2. Since the molecular agitation energy is large
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FIG. 2. Density profiles measured with the densimeter Northdome 2950. In the upper right corner the
curves are rescaled using the self-similarity of the diffusion process.

enough to oppose the gravity potential energy, we can assume that the density evolution follows the
diffusion equation

∂ρ

∂t
= D

∂2ρ

∂z2
, (1)

where z is the height, t the time, and D the diffusion coefficient of SF6 in air, whose tabulated value
is D = 1×10−5 m2/s. Diffusion is a self-similar process. The corresponding self-similar variable
is z2/4D(t − t0), t0 being an adjustable variable to account for the finite duration of the injection
process. If we note ρmax(t ) the maximum density at time t (i.e., measured at z = 0), a self-similar
solution to the diffusion equation is

ρ(z, t ) = ρair + (ρmax(t ) − ρair ) exp

(
− z2

4D(t − t0)

)
. (2)

Then plotting z/2
√

D(t − t0) as a function of (ρ − ρair )/(ρmax − ρair ) should gather all the measured
profiles as one. All the curves indeed gather using t0 = −550 s. This is shown in Fig. 2, upper right.

The above result is independent of the value of the diffusion coefficient D. To confirm its value,
we model each density profile by an high-order polynomial fit, then we calculate the ratio of the
left-hand side and the right-hand side of the diffusion equation (1), leading to

D = ∂ρ/∂t

∂2ρ/∂z2
. (3)

As shown in Fig. 3, the histogram of these ratio values resembles a Gaussian centered around
D = (0.9 ± 0.2)×10−5 m2/s coherent with the tabulated value, hence validating our density mea-
surements.

2. Water droplets and PIV

Correct seeding to perform PIV in our setup is quite challenging. The idea is to use micrometric
water droplets produced by ultrasonic mist makers. Those droplets are small enough to follow
the flow without significant sedimentation, and they reflect well the green laser’s light. The major
problem of this technique is evaporation. Droplets of pure water have a lifetime smaller than 10 min
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FIG. 3. Histogram of the ratio (∂ρ/∂t )/(∂2ρ/∂z2) computed from the measured vertical density profiles.

while experiment duration is 1 hour and more. To prevent the droplets from evaporating, we add
to the water some UCON oil 75-H-90000, i.e., a miscible glyceryl oil of viscosity η = 44.0 Pa s
at T = 20 ◦C. The addition of UCON increases the droplets’ lifetime, but also diminishes the
quantity of droplets formed by the mist makers; hence there is a good balance to find for optimal
PIV measurements. To do so, several water solutions with different proportions of UCON were
prepared. A mist maker was immersed in the solution at the bottom of a small 20 cm×30 cm×20 cm
tank, illuminated by a vertical laser sheet. For each solution, the mist maker was turned on
during 10 s and a camera recorded the formation and evolution of the droplets with time. To
analyze the results quantitatively, we made space-time diagrams of a vertical line extracted from
the recorded movies, as shown in Fig. 4(a). The intense light at the bottom left corner of the

(a) (b)

FIG. 4. (a) Typical space-time diagram obtained, with the bottom left corner showing the initial mist
creation. The black rectangle shows the zone where the space-time diagrams visible on the systematics in
(b) are cropped, and over which the plotted integrated mean gray values of the corresponding grayscale images
are computed.
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FIG. 5. Average of ten frames acquired during a typical experiment. The convective zone appears with a
lighter color hence the interface is clearly visible. The corresponding movie is in the Supplemental Material
[17].

picture corresponds to the initial mist creation before the droplets homogenize in the tank. To avoid
initial perturbations we crop each space-time diagram in the box shown as a black rectangle, and
then calculate the averaged light intensity in the box as a proxy of the drop concentration and
persistence. Systematic results are shown in Fig. 4(b). The optimal proportion of UCON oil is
between 3.5 % and 4 % in mass. We chose to work with solutions composed of water and 3.5 % of
UCON in mass to minimize the quantity of UCON used. With this seeding technique, we managed
to perform velocity measurements during more than 3 hours in a row. Note that we do not have
direct measurements of our particle sizes, but we can rely on the recent study [16] for an order of
magnitude estimate: in the absence of UCON oil, size distribution for their mist maker follows a
Gamma distribution with a median droplet size of 5.6 µm. The corresponding typical Stokes falling
velocity is about 8.7×10−4 m/s, which is negligible compared to typical convective velocities,
but not compared to typical velocities recorded in the stratified layer (see below). Actually, as
illustrated in Fig. 5, it turns out that there is a strong sedimentation of the particles in the upper
layer, where only the smallest ones remain and are passively advected by the IGW field. More
and probably larger particles concentrate in the convective region, which allows us to clearly see
the interface.

For our PIV measurements, we use a camera of resolution 2048 px×1536 px, with a 25 mm lens.
The chosen frame rate is between 25 and 30 fps and the exposure time is 0.02 s, typical values
needed to capture the fast convective motions. The field of view is 15 cm×20 cm, which is rather
small compared to the scale of the experiment; but the droplets are quite small so the camera has
to be close to perform PIV. Processing is performed using the open software DPIVSoft 2010 [18].
Careful choice of parameters allows us to compute the PIV simultaneously in the stratified and
convective zones. Note that the experiment is transient so the interface crosses the field of view
through time.

C. Experiment characteristics

Table I gathers the important characteristics of the experiments presented in this article as well
as the figure numbers in which the data are used. The initial bottom density ρmax(t = 0) and the
initial depth of the stratified layer hstrat,init are defined from fitting the first density profile measured
at t = 0 (see, e.g., the dark blue curve in Fig. 2): ρ = ρair + (ρmax(t = 0) − ρair ) exp(−z2/h2

strat,init ).
The associated initial buoyancy (or Brunt-Väisälä) frequency is then computed from the Gaussian
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TABLE I. Characteristics of the experiments: top and bottom imposed temperatures, initial bottom density,
initial depth of the stratified layer, and associated initial buoyancy frequency.

Experiment Tt (◦C) Tb (◦C) ρmax(t = 0) (kg/m3) hstrat,init (m) Ninit (rad/s) Figure

1 26 45 1.91 0.18 4.1
2 24 50 2.01 0.14 4.5 8
3 31 40 2.51 0.19 5.0 6, 7, and 9–13

fit at the inflection point of the density profile, using the usual definition

N =
√

− g

ρ0

dρ

dz
, (4)

where g is the gravity and ρ0 a reference density, taken here equal to the air density.

III. RESULTS

A. Internal gravity waves in the stratified region

In this subsection we focus on the stratified zone only. All the presented data come from
analyzing images where only the stratified zone is visible.

1. Quantitative validation of the presence of IGWs

The dispersion relation of IGWs is

ω = N cos θ, (5)

where θ is the angle between the horizontal axis and the wave vector (see, e.g., [19]). This relation
gives to IGWs one of their most known unusual behaviours: as cos θ � 1, all the energy of the wave
field is contained at angular frequencies lower than N . This property can be verified in Fig. 6(a),
using data from experiment 3 (see Table I): it shows the periodogram of the vertical velocity v, i.e.,

(a) (b)

FIG. 6. (a) Periodogram of the vertical velocity v (experiment 3 in Table I). The origin of the height is taken
at the bottom steel plate, and the frequency is divided by the depth-averaged Brunt-Väisälä frequency fp,m at the
considered time. The black line represents fp = N/2π as a function of height. It appears to be constant in this
particular observation. The convective region is just below 0.2 m, and its height does not evolve significantly
during the range of times considered. (b) Power spectral density of the vertical displacement z, obtained by
integration in the Fourier space of the vertical velocity spectrum.
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FIG. 7. Theoretical polarization relation (in red) compared with the ratio of the power spectral densities of
the horizontal and vertical velocity signals (in blue). The data used here come from the same experiment and
same time range as Fig. 6 (experiment 3 in Table I). This comparison has no fitting parameter.

the horizontally averaged spectrum of the vertical velocity signal at each height. It is clear that over
the whole studied depth, the energy is contained at angular frequencies lower than N with a clear
cutoff, which is coherent with the presence of IGWs.

Ansong and Sutherland [12] studied internal gravity waves generated by a single plume. Using
axisymmetric synthetic Schlieren, i.e., a nonperturbative optical technique giving access to the
density gradient field, they found that the peak frequency of the vertical displacement spectra lay in a
narrow range (0.45 � ω/N � 0.85). In order to compare the wave field obtained in our experiment
with their results, we integrated the velocity spectrum in Fourier space and produced the power
spectral density shown in Fig. 6(b). In our case, the displacement spectrum is peaked around the
mean Brunt-Väisälä frequency fp,m. Discrepancy in the frequency selection between the two studies
probably comes from the difference in the wave excitation mechanism: indeed, wave energy at a
given depth is a function of both the energy initially put into that wave during its excitation and of
its further damping during its propagation, which depends on its wavelength and frequency.

Another way to confirm the presence of IGWs is the polarization relation, which is straight-
forwardly deduced from the dispersion relation coupled to the divergence-free equation for plane
waves (see, e.g., [19])

(
u

v

)2

= 1

2

[(
N

ω

)2

− 1

]
, (6)

where u is the horizontal velocity and the 1/2 prefactor comes from assuming isotropy in the
horizontal plane. This relation holds in Fourier space; then the ratio of the power spectral densities
of the horizontal and vertical velocities must follow the same equation. The comparison between
our data (averaged in space) and the theoretical polarization relation is presented in Fig. 7: the
agreement is striking for a large band of frequencies up to the cutoff buoyancy frequency, with no
fitting parameter. This proves that the energy of the flow in the stratified region is carried out almost
exclusively by internal gravity waves.
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FIG. 8. Snapshot of the filtered velocity signal (experiment 2, Table I). The black curve corresponds to
the Brunt-Väisälä frequency fp = N/2π (see the top scale) and is obtained from the vertical density profiles.
We consider the mode propagating at a frequency of ffiltered = 0.53 Hz to the right. The dashed lines point out
fp = ffiltered = 0.53 Hz and the corresponding height at which IGW reflects. The white line corresponds to an
illustrative ray path, computed as a line of constant angular frequency ω in the ambient varying stratification
following the dispersion relation (5). The corresponding movie is in the Supplemental Material [17].

2. Mode visualization

To visualize the IGW patterns we can filter the velocity signals. The idea is to filter out the mode
propagating at a chosen frequency in a certain direction. The Fourier transform (in both space and
time) of the signal is taken. Then we apply a Gaussian filter around the chosen frequency and keep
only the signal at ω×kx > 0 to select waves propagating with increasing x (see, e.g., [19]). Finally
we apply the inverse Fourier transform to the filtered signal.

Data from experiment 2 (Table I) are shown in Fig. 8. The signal is filtered around ffiltered =
0.53 Hz. This experiment is chosen because N varies greatly with height over the field of view
(contrary to experiment 3); hence results illustrate well the properties of internal gravity waves.
Figure 8 shows a clear pattern of IGW. As the wave angular frequency ω is constant and N changes
with height, the angle θ has to change with height too. The white line shows an example of a
ray path, whose normal depth-varying angle θ with the horizontal axis is defined by cos θ = ω/N .
Isophase lines of the velocity are well fitted by this line, as predicted by the dispersion relation
of IGW (5). At height z = 0.23 m where fp(0.23) = ffiltered = 0.53 Hz, the wave propagates nearly
with θ = 0. As the wave cannot propagate in regions where ω > N , it reflects at this height.

3. Energy transfer rate

It is now clear that IGWs propagate in the stratified region. Let us now study how much energy
is transferred from the convective zone into the wave field. To compute this quantity, the r.m.s.
velocity, computed over the horizontal direction and for 10 seconds, is calculated as a function of
height: it exhibits above the interface region a plateau as a function of depth, which we take as
the characteristic velocity in the stratified zone Vrms,strat; it also exhibits just below the interface a
maximum, which we take as the characteristic velocity in the convective zone Vrms,conv. The energy
transfer rate τ is then defined as

τ = ρstratV 2
rms,strat

ρconvV 2
rms,conv

. (7)

Results from experiment 3 (Table I) are shown in Fig. 9. We have positioned the camera in
three successive locations, making sure to have a significant part of the convective and stratified
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FIG. 9. Energy transfer rate as a function of time for experiment 3 (Table I).

zones in each field of view. The energy transfer rate initially grows with time, while energy
accumulates in the stratified region. Rapid changes in the measurements may come from strong
fluctuations in the chaotic fluid activity, both in the convective and in the IGW fields. Ansong and
Sutherland [12] studied internal gravity waves generated by convective plumes in salted water. Using
axisymmetric Schlieren, they studied the energy transferred by the plume into the wave field and
found approximately 4 %, which is in the range of observed values at the end of the measurement,
when the energy transfer seems to saturate.

B. Growth of the convective region

To quantify the growth of the convective region, the interface height has to be determined at
multiple times. The interface can be seen with the camera on the raw images and on the PIV fields,
but the field of view of the camera is small (∼20 cm as seen in Fig. 5) . The interface is also visible
on the density profiles, which cover a deeper zone (∼70 cm); hence the density profiles are used
to determine the interface height. An example is shown in Fig. 10, with results from experiment
3 (Table I). There is a clear mark of the interface on the density profiles, with a constant in depth
but time-decreasing density in the turbulent convective zone, and a quasiconstant density gradient
ahead. The interface height is defined as the crossing near the point of maximum curvature of the
two corresponding tangents. We can see here that diffusion of SF6 in air is the key to the evolution
of the density profile in the stratified region: the density at a given height (0.5 m for example) is
changing well before the convection zone reaches this height.

1. Comparison with the classical studies of penetrative convection

The evolution of the interface height with time is shown in Fig. 11. The data are fitted by a power
law with initial height, H = H0 + a×t c. The fit gives c = 2.0 ± 0.1, corresponding to an interface
speed linear in time. The same analysis made in experiment 1 (Table I), with only six density profiles
available, gives c = 1.7 ± 0.5, coherent with the first data set. One could worry that the acceleration
of the penetration rate with time is related to heat losses from the side; however, two-dimensional
numerical simulations in the Boussinesq approximation performed with the same parameters as the
experiments, but with no flux lateral boundary conditions, also systematically exhibit a significant
acceleration. This behavior is thus generic to our configuration. We focus here on the experiments
only, but the systematic numerical study will be the focus of a future work.

Our results do not agree with the historical experiment of Turner [20], who investigated the
evolution of a salty layer with linear density profile heated from below with a constant flux. In his
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FIG. 10. Vertical density profiles measured every 8 min. The data comes from experiment 3 (Table I). The
acquisition rate is 1 Hz, and the densimeter travels downwards at 3 mm/s.

experiment, the interface height grows as H ∝ t1/2. Fuentes and Cumming [21] did 2D numerical
simulations of penetrative convection at low Pr. They impose a constant cooling heat flux F0 at
the top of a domain initially linearly stably stratified, and they also find H ∝ t1/2. Note that stellar
evolution models often use a turbulent diffusivity to model the mixing at the interface, based on the
mixing length theory (see, e.g., [4]). The H ∝ t1/2 growth would correspond to a classical model of
eddy diffusivity with a diffusion coefficient constant in space and time.

To understand our specific behavior, we reinvestigate the work of Fernando [22] and Molemaker
and Dijkstra [23], who extended the model derived by Turner [20]. We first make the entrainment

FIG. 11. Growth of the convective zone height for experiment 3 (Table I). The data are fitted with a power
law with initial height, H = H0 + a×t c, with the best fit giving c = 2.0 ± 0.1.
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hypothesis, which supposes that a fraction of the injected thermal energy is converted into kinetic
energy, and that part of the kinetic energy of the flow is then transferred into potential energy by
mixing the two layers. Noting Ep the potential energy, V the typical convective velocity, ρc the
convective zone density and F0 the heat flux, we thus have

dEp

dt
∝ ρcV3 ∝ ρcF0H. (8)

Where we use the classical scaling for the r.m.s. convective speed V ∝ (F0H )1/3 [22].
In the classical case [20–23], the density profile in the stratified zone is fixed with a constant

buoyancy frequency N in the Boussinesq approximation

ρ(z) = ρ0 − N2 ρ0

g
z, (9)

and by mass conservation the density in the convective zone is

ρc = ρ0 − N2 ρ0

g

H

2
, (10)

which means that a density jump grows at the interface. Straightforward integration up to the
maximum height Hmax gives the potential energy of both the convective and the stratified zones

Ep = ρ0

(
g

H2
max

2
− N2 H3

max

3
+ N2 H3

12

)
. (11)

Then the energy conservation (8) implies

1

4
ρ0N2H2 dH

dt
∝ ρcF0H, (12)

which with the Boussinesq approximation can be simplified to

H
dH

dt
∝ F0. (13)

A constant flux leads to H ∝ t1/2 as observed previously [20–23]. In our case however, the initial
profile is not maintained, and diffusion plays a key role to rebuild the upfront profile and smooth out
any density jump. There we need a different model to understand the time evolution of the density
profiles.

2. Model for the density profiles

The hypotheses are the following:
(i) The system is made of two distinct zones: the convective one from z = 0 to z = H (t ) and the

stratified one from z = H (t ) to z = Hmax.
(ii) The convective zone has a uniform density ρc.
(iii) The density in the stratified zone is obtained by diffusion from the interface.
Mass conservation in a closed container leads to∫ Hmax

0
ρ(z) dz = const ⇒ d

dt

∫ Hmax

0
ρ(z) dz = 0 ⇒

∫ Hmax

0

∂ρ

∂t
dz = 0. (14)

The integral can be split between the two zones∫ H (t )

0

dρc

dt
dz +

∫ Hmax

H (t )

∂ρ

∂t
dz = 0 ⇒ H (t )

dρc

dt
+

∫ Hmax

H (t )
D

∂2ρ

∂z2
dz = 0, (15)
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FIG. 12. Comparison between selected experimental density profiles (full line) and the model (dotted line).

so

H (t )
dρc

dt
+ D

(
∂ρ

∂z

∣∣∣∣
Hmax

− ∂ρ

∂z

∣∣∣∣
H (t )

)
= 0. (16)

We suppose there is no mass flux in z = Hmax hence ∂ρ

∂z |Hmax = 0 and

dρc

dt
= D

H (t )

∂ρ

∂z

∣∣∣∣
H (t )

. (17)

The system of equations to solve is then

dρc

dt
= D

H (t )

∂ρ

∂z

∣∣∣∣
H (t )

and
∂ρ

∂t
= D

∂2ρ

∂z2
for z > H (t ). (18)

The problem is written out into a matrix formulation. At each time step the diffusion equation is
solved with a no-flux condition at the top and continuity of the density at the interface, H (t ) being
prescribed by experimental measurements. It is integrated in time with the ordinary differential
equation solver ode45 in Matlab. The initial condition is the first density profile measured, extrapo-
lated up to the top of the tank by a Gaussian fit.

The model results are compared to the density profiles of experiment 3 (Table I) in Fig. 12, taking
the measured value of H (t ) and the molecular value of the diffusion coefficient D = 1×10−5 m2/s
in the stratified zone. The agreement between the experimental data and the model predictions is
overall quite good.

3. Expanded model for the interface growth

The analysis in the previous section shows that the stratification upfront the interface is perma-
nently rebuilt by diffusion. Hence, coming back to the entrainment hypothesis, one can hypothesize
that the flux injected in the convective region is used to compensate the increase of potential energy
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in the convective region only, equal to

dEp

dt
= dρcgH2/2

dt
= ρcgH

dH

dt
+ 1

2
gH2 dρc

dt
. (19)

Note again that contrary to the classical model by Fernando [22], we take into account here only the
change of potential energy of the convective region. Using (18), the second term can be rewritten

1

2
gH2 dρc

dt
= 1

2
gH2 D

H

∂ρ

∂z

∣∣∣∣
H

� −ρ0

2
DHN2. (20)

We can then compare the order of magnitude of the two terms in the right-hand side of (19) using
typical experimental values for dH/dt and N , leading to

ρ0DN2/2

ρcgdH/dt
∼ 3.5%. (21)

Accordingly neglecting the second term of (19), the conservation equation (8) leads to

ρcgH
dH

dt
∝ ρcF0H, (22)

which implies

dH

dt
∝ F0. (23)

This is to be compared to the classical scaling (13), the change resulting from the large diffusivity
of gas which eradicates any density jump and rebuilds the density profile ahead of the front.

4. Convection scaling laws

Now, we must also consider that in our setup, the bottom temperature—and not the bottom heat
flux—is fixed: the next challenge is thus to relate F0 to H . Many studies have focused on defining
scaling laws for the Nusselt number Nu characterizing the heat flux and the Reynolds number Re as
a function of the Rayleigh number Ra characterizing the strength of the convection and the Prandtl
number Pr (see in particular [24,25]). Classically, those four relevant dimensionless numbers are
defined as

Nu = F0H

λ�T
, Re = VH

ν
, Ra = αg�T H3

κν
, Pr = ν

κ
, (24)

where λ is the fluid thermal conductivity, α the thermal expansion coefficient, and �T the applied
temperature difference. Here we assume that �T is constant during the experiment: indeed, the
bottom temperature is fixed, and as discussed before, since the initial, ambient, and top temperatures
are equal, the upfront temperature remains mostly equal to its initial value until the arrival of the
penetrative convective layer. Then a scaling law of the form Nu ∝ Raδ gives F0 ∝ H3δ−1. With
H ∝ t c, our relation (23) implies

c = 1

2 − 3δ
. (25)

1 � c � 2 as measured in our experiment is equivalent to 1/3 � δ � 1/2, i.e., to a Nusselt scaling
between the regimes IVu and IVl defined by Grossmann and Lohse [24]. Note that we interpret here
the dynamics of our penetrative convective layer with results coming from the classical Rayleigh-
Bénard configuration. We thus somehow assume that heat losses in our setup shape a large-scale
circulation on which turbulent fluctuations superimpose. These turbulent fluctuations are assumed
to be similar to the classical case and to be responsible for the vertical heat and momentum transfers.

Actually, Grossmann and Lohse [24] predict analytically all regimes of the Nu-Ra relation
depending on the values of Ra and Pr in the classical Rayleigh-Bénard setting. An estimation of
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the Rayleigh number in our setup gives 107 < Ra < 109 at intermediate times, with Pr = 0.7. For
these values, the relevant scaling in the classical Rayleigh-Bénard setting would be Nu ∝ Ra1/4

corresponding to regime Il . However, our setup differs significantly from the Rayleigh-Bénard
convection: in particular, the boundary close to the stratified interface is not rigid, nor even free-slip,
since it can freely move. Therefore, we might speculate that the flux through this free-moving
boundary is not controlled by the bottom diffusive boundary layer. We argue that dissipation there
might be dominated by bulk dissipation for both momentum and heat, as in regime IV of Grossmann
and Lohse. Furthermore, since in our case Pr < 1, the thermal boundary layer is thicker than the
viscous one. This would correspond to the regime IVl for which Nu ∝ Ra1/2.

It might seem surprising to observe this regime at not so high Rayleigh numbers reached in our
setup. Indeed, the 1/2 scaling between Nu and Ra corresponds to the so-called ultimate regime,
where the heat flux is independent of the diffusive processes (viscosity and thermal diffusivity). The
existence of the ultimate regime in Rayleigh-Bénard convection is still debated, even at much larger
Ra. Funfschilling et al. [26] searched this ultimate regime in a meter-sized tank filled with gas. Their
data are coherent with the work of Niemala et al. [27], and neither observed the transition to the
ultimate regime described by Chavanne et al. [28] close to Ra ∼ 1011. Yet this ultimate regime was
observed by Lohse and Toschi [29] in a numerical simulation of bulk turbulent convection, with
no boundaries. Then, the 1/2 scaling law between Nu and Ra is observed at Rayleigh numbers
as low as Ra ∼ 1×106. The 1/2 scaling law has also been experimentally observed by Lepot
et al. [30] at Rayleigh numbers comparable to ours, using an original setup where convection is
driven by radiative heating, so that the fluid is heated internally and boundary layers are bypassed.
This might also be the case in our setup. Additional data are necessary to definitely confirm our
conclusion. But considering the regime IVl scaling with δ = 1/2 leads to c = 2, i.e., an interface
growing quadratically in time, as observed in our best-quality measurements (see Fig. 11). Note,
however, that this best-quality measurements experiment is also our most extreme case, and that our
second, less precise determination from experiment 1 (see Table I) gives c = 1.7 corresponding to
δ = 0.47. Our main point here is that in all cases, the penetration rate in our setup increases with
time, which is well interpreted by any Nu-Ra scaling exponent between the classical 1/3 and the
limit 1/2. We do not claim here that we have proven that our flow satisfies the ultimate regime of
convection. Yet, a nonclassical exponent for the scaling law Nu(Ra) is indeed needed to explain the
convective front acceleration, a fact that we relate to the absence of a classical boundary layer at the
convective-stratified interface.

C. Entrainment rate and Froude number

Another way to evaluate the efficiency of penetrative convection is to quantify its entrainment
rate

E = dH/dt

V (26)

and relate it to the Froude number

Fr = V
Nl

. (27)

Here V is a typical convective velocity at a corresponding scale l . The variation of E with Fr has been
investigated in various situations with different momentum sources in two-layer, turbulent/stably
stratified systems: oscillating grids, jets, plumes, etc. The initial hope was to define a universal
scaling law relating E and Fr, independent of the source of turbulence. Fernando [1] in his review in
1991 concluded that after 50 years of research, there was no consensus on any scaling law. Shrinivas
and Hunt in 2014 [31] confirmed that this was still the case, as illustrated in Fig. 13 reproduced from
their work, where for the same Fr, measured entrainment rates from different groups and setups
differ by more than one order of magnitude.
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FIG. 13. Entrainment rate E as a function of the Froude number. This figure is reproduced from Fig. 1
of [31] and collects data from [10,33] using an axisymmetric turbulent plume impinging a density jump, and
from [11,34] using a turbulent fountain impinging a density jump. Blue triangles correspond to our data from
experiment 3 (Table I). The dotted line shows the 3/2 power law towards which our data converge, a trend also
visible on the data of [34] (plus symbols).

We assume first that the buoyancy flux in the convective region q0 = F0αg/ρcCp is actually equal
to the dissipation rate ε of the Kolomogorov turbulence, with Cp the gas heat capacity. Then q0 =
V3/l is a constant at each scale down to the mixing scale. Following the Kolmogorov-type approach
described in [32], mixing occurs when the local Péclet number is of order one. Noting Vm and lm the
typical speed and length at mixing scale,

Pel = Vmlm
D

= 1, with Vm = (q0lm)1/3. (28)

lm is referred to as the Obukhov-Corrsin scale in the literature. Then

lm = D3/4q−1/4
0 and Vm = D1/4q1/4

0 , (29)

and the Froude number at the mixing scale Frm is

Frm = Vm

Nlm
= q1/2

0

ND1/2
. (30)

Let us now suppose a mixing law of the form

E = Frβ
m, (31)

which corresponds to

dH

dt
= VmFrβ

m = N−βD1/4−β/2q1/4+β/2
0 . (32)

The model of interface growth from the previous section gives

H = a×t2 and q0 = αg

ρcp
F0 = αg

ρcp
3.4×10−3 λ�T

H
Ra1/2Pr1/2, (33)

where the numerical constant in the flux equation comes from the updated prefactors in [25] for the
ultimate regime IVl . Replacing in (32) gives β = 3/2, which is in the range of previously observed
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scaling exponents for the entrainment rate, typically 0 � β � 3 as shown in Fig. 13. We also show
our measurements taking the calculated Vm and lm at each time, which are respectively in the range
[5.1–7.7] mm/s and [1.9–1.3] mm. Dispersion in the results compiled in Fig. 13 comes from the
very different setups encompassing, e.g., various extensions of the turbulent source (local for jets
and plumes vs over the whole width for us) and various types of stratification (density jump vs
linear stratification). The search for a universal E -Fr scaling would require a uniform definition of
the relevant velocity and length scales for the mixing.

IV. CONCLUSION

In conclusion, we have studied experimentally the penetrative convection in gases, reaching a
Pr < 1 more relevant to atmospheric, planetary, and astrophysical flows. Flows in the stratified
region have been studied: the results found are coherent with the properties of internal gravity
waves. Their energy lies at frequencies ω < N only, the polarization relation is verified on a large
band of frequencies, and by filtering PIV signals we recover the geometric properties of IGW. The
convective zone transfers energy to the stratified one, which accumulated up to 4 % in proportion.
The height of the convective zone grows parabolically with time, in contradiction with the classically
observed evolution as a square root of time, which echoes a parametrization of mixing by some
turbulent diffusion. Different models are to be expected depending on the Prandtl number and
boundary conditions. Here an explanation of the measured squared-time evolution is proposed,
relying on an adapted version of the analytical model of Fernando [22] and on the convection
scaling laws of Grossmann and Lohse [24]. This model translates into a different scaling law for
the mixing efficiency, with a Fr3/2 dependency. All the results presented here rely on a limited set
of experimental data, because performing measurements in our unstationary setup in gas remains
very challenging, and because our configuration does not allow an easy and systematic exploration
of the parameter space. All experiments were also performed with non-negligible side heat losses.
Additional studies are thus necessary to confirm the trends proposed here, including improved exper-
iments and complementary numerical simulations, following, for instance, the recent work by [21].
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