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Hard-constrained neural networks for modeling nonlinear acoustics
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In this computational paper, we model acoustic dynamics in space and time from syn-
thetic sensor data. The tasks are (i) to predict and extrapolate the spatiotemporal dynamics
and (ii) to reconstruct the acoustic state from partial observations. To achieve this, we
develop acoustic neural networks. These are networks that learn from sensor data, while
being constrained by prior knowledge on acoustic and wave physics. The prior knowledge
is constrained as a soft constraint, which informs the training, and as a hard constraint
(Galerkin neural networks), which constrains parts of the network’s architecture as an
inductive bias. First, we show that standard feedforward neural networks are unable to
extrapolate in time, even in the simplest case of periodic oscillations. This motivates the
constraints on the prior knowledge. Second, we constrain the prior knowledge on acoustics
in increasingly effective ways by (i) employing periodic activations (periodically activated
neural networks), (ii) informing the training of the networks with a penalty term that favors
solutions that fulfill the governing equations (soft constrained), (iii) constraining the archi-
tecture in a physically motivated solution space (hard constrained), and (iv) a combination
of these. Third, we apply the networks on two test cases for two tasks in nonlinear regimes,
from periodic to chaotic oscillations. The first test case is a twin experiment, in which the
data are produced by a prototypical time-delayed model. In the second test case, the data
are generated by a higher-fidelity model with mean-flow effects and a kinematic model
for the flame source. We find that (i) constraining the physics in the architecture improves
interpolation while requiring smaller network sizes, (ii) extrapolation in time is achieved by
periodic activations, and (iii) velocity can be reconstructed accurately from only pressure
measurements with a combination of physics-based hard and soft constraints. In acoustics
and thermoacoustics, this works opens possibilities for physics-constrained data-driven
modeling. Beyond acoustics, this work opens strategies for constraining the physics in the
architecture, rather than the training.

DOI: 10.1103/PhysRevFluids.8.103201

I. INTRODUCTION

When modeling, reconstructing, and forecasting dynamics from data, constraining prior
knowledge into machine learning methods can significantly improve prediction, robustness, and
generalizability [e.g., 1–4]. On the one hand, constraints that are imposed in the loss function
as penalty terms, which act during training, are referred to as “soft constraints.” Soft constraints
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can include the governing partial differential equations (PDEs) derived from conservation laws
and initial and boundary conditions [5]. Deep feedforward neural networks with soft-constrained
physics information, coined as physics-informed neural networks (PINNs) [6], have been employed
to infer flow fields from synthetic data from prototypical flows [7,8], from puffing pool fires [9],
experimental data from a flow over an espresso cup [10], and clinical magnetic resonance imaging
data [11], to name only a few. Beyond PINNs, physics information has enabled superresolution tasks
without high-resolution labels in deep feedforward neural networks [12–14] and in convolutional
neural networks [15,16]. On the other hand, constraints that are imposed in the architecture (as
opposed to the training) are referred to as “hard constraints.” Hard constraints span the areas of
the function space in which physical solutions live; i.e., they create an inductive bias [17]. Known
PDEs [18–20], invariances [21], Dirichlet boundary conditions [5], and periodic boundary condi-
tions [16,22,23] have been incorporated in the architecture of neural networks as hard constraints.
In this paper, we design Galerkin neural networks, which hard-encode the solution structure into the
architecture. These networks are inspired by Galerkin projection, which is a common technique for
solving PDEs by projecting the equations onto a finite set of modes, which transforms the problem
into a set of ordinary differential equations [24]. The library of modes can be a generic basis such
as Fourier, or data driven such as proper orthogonal decomposition (POD) modes. In this paper, we
take advantage of a physical basis.

We focus on solutions from acoustics and thermoacoustics, which originate from nonlinear
wave equations. Thermoacoustic systems contain nonlinearities in the heat-release model, which,
when coupled with the acoustics in a positive feedback loop, can generate self-excited oscillations
and rich nonlinear behaviors via bifurcations (e.g., [25–29]). Because these oscillations can have
detrimental effects on the system’s structure and performance, their prediction and control are active
areas of research, for example, in gas turbines [30,31] and rocket engines [32]. Traditionally, the
prediction of thermoacoustics has been achieved with first principles. In the time domain, a direct
approach is the brute-force time integration of the governing equations following a discretization
scheme. High-fidelity models such as large-eddy simulations that model the acoustics and the
flame simultaneously on fine grids provide highly accurate solutions, but they are computationally
expensive [31]. Low-fidelity models reduce the computational effort at the expense of accuracy
while obtaining models that can be used for stability, bifurcation analysis, and parametric studies.
Generally, these approaches combine a linear acoustic solver with a heat-release model. In this
direction, nonlinear behavior of longitudinal and annular combustors has been investigated by
employing network models based on the traveling wave (e.g., [33–37]), Galerkin decomposition of
pressure and velocity using only a finite number of acoustic eigenmodes and projection of the PDEs
onto those modes (e.g., [38,39]), and numerical discretizations of the PDEs [40,41]. Predictions
with first principles only are either computationally expensive (e.g., large-eddy simulation), or as
good as the model assumptions. Because thermoacoustics is a multiphysics phenomenon, the model
assumptions made in low-order models are inevitably substantial. This motivates adding data into
the first-principles modeling of thermoacoustics, for which machine learning methods excel. The
data typically come from laboratory experiments that are conducted with setups consisting of a duct
with a heat source, which can be a flame or an electrically heated wire mesh (e.g., [42,43]). In
the experiments, the collected data are usually the acoustic pressure measured by microphones at
high sampling rates. In this direction, data assimilation techniques have been applied to improve
physics-based qualitatively accurate models of a prototypical thermoacoustic system, while esti-
mating model parameters. Novoa and Magri [44] combined a thermoacoustic low-order model with
an ensemble Kalman filter, and an echo-state network for real-time bias-aware data assimilation of
the acoustic state [45]. In other applications, neural networks have been developed for heat-release
models or flame response inference in thermoacoustic applications [46–48]. In [49], a physics-
informed feedforward neural network approach was developed for learning thermoacoustic limit
cycles by using periodic activation functions. Physics-informed neural networks were also shown to
be successful for the reconstruction of acoustic fields with nonideal boundary conditions [50].
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FIG. 1. Example of a standard feedforward neural network (FNN) (e.g., [52]) with two hidden layers.
This is the data-driven-only model, which has no prior knowledge embedded in the architecture. The trainable
parameters are the weights, W (.), and the biases, b(.).

The overarching goal of this paper is to generalize and develop acoustic neural networks to
embed the structure of the nonlinear wave solution into the architecture. The specific objective
of this paper is threefold: (i) to predict and extrapolate in time thermoacoustic oscillations, (ii) to
reconstruct pressure and velocity over the entire domain from pressure sensors only, and (iii) to
obtain a model that is robust to noise and generalizable to unseen scenarios. This paper is organized
as follows. In Sec. II, we provide the mathematical background for feedforward neural networks
and Galerkin decompositions. In Sec. III, we introduce Galerkin neural networks. In Sec. IV, we
discuss the application of Galerkin neural networks to acoustics and thermoacoustics. In Secs. V
and VI, we show results for twin experiments on synthetic data from a Rijke tube and on synthetic
data from a higher-fidelity model. The paper ends with a conclusion section.

II. BACKGROUND

A. Standard feedforward neural networks

Let y ∈ RNy represent some vector of physical quantities pertaining to a system that depends on
space, x ∈ RNd , where Nd is the dimension, and time, t ∈ R. Then, given full or partial observations
of y, our goal is to learn a model f that predicts an output vector ŷ ∈ RNy from an input vector
(x, t ) while minimizing an error metric, L. A feedforward neural network (FNN) is defined by a
composition of functions, f , which, when appropriately designed, can approximate any continuous
function in a specified range [51]:

f (x, t ) := f (L)( f (L−1)(· · · f (1)(x, t ))), (1a)

f (l )(z) := φ(l )(W(l )z + b(l ) ), (1b)

where f (l ) is the function that maps the layer l − 1 to the layer l , where l = 1, . . . , L and L is the
number of layers; W are the weight matrices and b are the biases, which are the trainable parameters;
and φ(l ) are the activation functions from the layer l − 1 to the layer l , which are applied to each
component of the argument. For regression, in the last layer, the activation φ(L) is linear. The neural
network offers an ansatz for a continuous function through linear operations and simple nonlinear
activations (please refer to [52] for a pedagogical and geometric explanation).

The FNN is a standard architecture that is fully data driven; i.e., no prior knowledge is embedded
in the network (Fig. 1). The network’s weights and biases, collectively grouped in a variable χ, are
optimized via gradient descent to minimize an error, which is provided by a loss function L

χ∗ = arg min
χ

L(χ). (2)
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When no physics constraint is imposed as in standard neural networks, the data-driven loss is
quantified by the mean-squared error (MSE) between the measured data and predictions of the
network. In the formulation of the data-driven loss, we also account for the cases of partial state
observations with a measurement matrix M ∈ RNy×Ny that indicates which states are measured:

Mi j =
{

1 when i = j and yi is measured

0 otherwise.
(3)

When full state measurements are available, then M is the identity matrix, INy×Ny . The loss is given
as

L ≡ LDD = 1

NNm

N∑
k=1

||Myk − Mŷk||22, (4)

where the subscript DD stands for data driven, Nm � Ny is the number of measured states, the
subscript 2 denotes the �2 norm, and the subscript k denotes the kth element in the data set of N
pairs of input and output vectors. In Sec. IV B, we tailor the neural networks to acoustic problems
by specifying the data, input vectors, task, activation functions, nonlinear maps, and loss functions.
The prior knowledge will be embedded in different ways in the neural networks.

B. Separation of variables and Galerkin methods

Separation of variables seeks to find solutions to partial differential equations in a special form
as the product of functions of the individual independent variables, e.g., time and single space
coordinates, which results in an eigenvalue problem [53]. Linear wave equations and wave solutions
can thus be represented in an acoustic eigenbasis, namely, Fourier modes, which is complete. On
the other hand, the thermoacoustic problem is governed by a wave equation with a nonlinearity
arising from the heat release (please refer to Sec. IV A for details). However, the nonlinearity will
only slightly change the frequency and mode coupling, which motivates the use of the acoustic
eigenspace as an expressive basis to represent the nonlinear solutions as well [38]. A weak solution
to the nonlinear problem is provided by the Galerkin method, which approximates the solution to
the PDE by projecting the equations onto a finite-dimensional subspace [24]. The solution is written
as a linear combination of the basis functions that span this subspace [24],

yi(x, t ) =
Ng∑
j=1

αi
j (t )� i

j (x), (5)

where y ∈ RNy is a vector of physical quantities (Sec. II A) and i = 1, 2, . . . , Ny denotes the ith
element of y, � i

j (x) are the basis functions, or Galerkin modes, Ng is the number of Galerkin modes,
and αi

j (t ) are the Galerkin amplitudes. The orthogonality of the Galerkin modes guarantees that
the approximation error is orthogonal to the space spanned by the finite number of modes retained.
This property makes the Galerkin method a suitable choice for the modeling of acoustic problems
because the low-frequency modes contain most of the energy and, thus, the truncation error can be
minimal.

III. GALERKIN NEURAL NETWORKS

FNNs are flexible and useful tools for function approximation; however, they can suffer from
under- or overfitting, especially in the case of scarce or noisy data. This requires a careful hy-
perparameter tuning, which becomes computationally expensive in proportion with the size of
network. Even then, the network may not be able to capture some features of the solution because
of missing data. In order to counteract these shortcomings, we exploit the physical knowledge
about the spatiotemporal basis of the system in question, and propose a network structure inspired
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FIG. 2. Galerkin neural network (GalNN). This network is composed of two branches: (a) a spatial branch
(hard constraint) and (b) a temporal branch, which learns the temporal behavior. The trainable parameters are
the weights, W (.), and the biases, b(.)

by the Galerkin decomposition of the system as motivated in Sec. II B. The chosen Galerkin
modes are a known nonlinear transformation of the spatial coordinates, which is introduced in the
network. Therefore, by design, this network can be configured to automatically satisfy the boundary
conditions. We will refer to this network architecture as the Galerkin neural network (GalNN).
The Galerkin network is composed of a spatial branch that transforms x into the a priori Galerkin
modes, �i(x) [Eq. (5)], and a temporal branch that is an FNN [Eq. (1a)] that takes only t as an input
and predicts the unknown Galerkin amplitudes, αi(t ) [Eq. (5)], as outputs. The final outputs, ŷ, are
computed by Eq. (5). Formally, the GalNN is defined as

fi(x, t ) =
iNg∑

(i−1)Ng+1

g j (x)h j (t ), (6)

where f is the map from (x, t ) to ŷ, i = 1, 2, . . . , Ny denotes the ith element of the output vector,
g(x) is the spatial branch given by g(x) = (�1(x),�2(x), . . . ,�Ny (x)), and h(t ) is the temporal
branch modeled as an FNN, the outputs of which are denoted as (α1(t ),α2(t ), . . . ,αNy (t )). The
data-driven loss is defined the same as the standard FNN case [Eq. (4)] over the prediction error
on y. The time evolution of the Galerkin amplitudes is thus obtained as an intermediary step. This
architecture is shown in Fig. 2.
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FIG. 3. Schematic of the thermoacoustic system. A straight duct with open ends and a heat source, q̇,
located at x f . The acoustic reflection coefficients at the inlet and outlet are Rin and Rout. The Rijke tube is
employed in Sec. V for twin experiments with the following assumptions: (i) zero Mach number, i.e., ū1 =
ū2 = 0; (ii) no change in the mean flow variables before and after the flame, e.g., ρ̄1 = ρ̄2 = 1; and (iii) ideal
boundary conditions, i.e., Rin = Rout = −1. A higher-fidelity model with a mean-flow and a kinematic model
for the flame is employed in Sec. VI for analyzing model generalization.

IV. APPLICATION TO ACOUSTICS AND THERMOACOUSTICS

In this paper, we develop a physics-constrained data-driven model of the acoustic variables as
a function of time and space. Given enough capacity by means of number of neurons and layers,
FNNs can fit the data within the training range. This can be considered as an interpolation problem,
by which we mean that the network predicts on data points that are within the bounds of the training
input range. When the prediction is performed for scenarios outside the training input range, we call
this an extrapolation problem. Thermoacoustic systems exhibit oscillations, which can be periodic,
quasiperiodic, or chaotic in time. First, given time-series data from a time window, our task is to
obtain a model that can extrapolate such oscillatory behavior. In experiments, full-state observations
may be unavailable or prohibitively expensive; e.g., in acoustics, only pressure data may be available
through measurements with microphones. Second, our task is to reconstruct the flow variables over
the entire spatial domain from full-state or partial noisy state observations, which poses a challenge
for purely data-driven models. Third, we seek a robust, generalizable, low-order model for acoustic
and thermoacoustic solutions using as few data as possible.

A. Background on thermoacoustics

We consider a thermoacoustic system composed of a straight duct of length L̃ with a compact
heat source located at x̃ = x̃ f , where ˜(·) denotes a dimensional variable (Fig. 3). We make the
following assumptions about the system: (i) the acoustics are one dimensional, i.e., the tube is
sufficiently longer than its diameter for the cut-on frequency to be large enough for longitudinal
acoustics only to propagate; (ii) the heat release from the flame acts as a pointwise monopole source
of sound (compact assumption); (iii) the mean flow is low Mach number and there is no entropy
wave convection; and (iv) effects of viscosity and heat conduction are negligible (e.g., [28]). The
reflection of the acoustic waves at the boundaries is given by the reflection coefficients Rin and Rout

for inlet and outlet, respectively, which determine the boundary conditions.
The dynamics are governed by the dimensional equations derived from mass, momentum, and

energy conservation. Modeling the heat source as a compact source results in two duct segments
related by jump conditions that are enforced at the heat source location. For brevity, the subscripts 1
and 2 denote conditions before and after the flame, i.e., x̃ = x̃ f ,1 and x̃ = x̃ f ,2, respectively. The jump
conditions are found from mass, momentum, and energy fluxes across the flame with the ideal gas
law (e.g., [54]). The governing equations and the jump conditions are linearized by assuming that
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TABLE I. Summary of the proposed neural networks. All the networks can be equipped with a soft
constraint, which penalizes nonphysical solutions in the loss function (see Sec. IV B 2). When the soft
constraint is present, the abbreviation will be prefixed with PI (physics informed). For example, a Galerkin
network with the soft constraint will be abbreviated as PI-GalNN.

Separation of time Can extrapolate
Network Abbreviation Constraint and space in time Section

Feedforward neural
network FNN No No No II A

Periodically activated Yes, via activation
feedforward neural network P-FNN No No function IV B 1

Galerkin neural network GalNN Hard Yes Yes IV B 3
Yes, for limit cycles

Periodic Galerkin it guarantees
neural network P-GalNN Hard Yes fundamental frequency IV B 4

the flow variables can be expressed as infinitesimal perturbations on top of a mean flow, i.e., ˜(·) =
˜̄(·) + ˜(·)′, where ¯(·) denotes the steady mean-flow variable and (·)′ denotes the unsteady infinitesimal

perturbations. Under the low-Mach-number assumption, the acoustics are governed by momentum
and energy equations (e.g., [28])

˜̄ρ
∂ ũ′

∂ t̃
+ ˜̄ρ ˜̄u

∂ ũ′

∂ x̃
+ ∂ p̃′

∂ x̃
= 0, (7a)

∂ p̃′

∂ t̃
+ ˜̄u

∂ p̃′

∂ x̃
+ γ ˜̄p

∂ ũ′

∂ x̃
− (γ − 1)

˜̇q′

Ã
δ(x̃ − x̃ f ) = 0, (7b)

where ρ̃ is the density, ũ is the velocity, p̃ is the pressure, ˜̇q is the heat-release rate, Ã is the cross-
section area of the duct, γ is the heat capacity ratio, and δ is the Dirac delta distribution. In Secs. V
and VI, the governing equations are employed with different simplifications to generate the synthetic
data for our study. We will impose the governing equations in their nondimensional PDE form,
denoted by omitting the symbol ˜(·), as soft constraints during the training of our neural networks.
This approach will be discussed in detail in Sec. IV B 2.

B. Acoustic neural networks

The dynamics of thermoacoustic oscillations are dominated by unstable eigenfunctions
(e.g., [28]), which are periodic oscillations in time. We propose neural networks that can naturally
infer acoustic dynamics, which are the basis functions of nonlinear thermoacoustic behaviors.
The proposed networks embed the prior knowledge through the activation functions (Sec. IV B 1),
through a penalization loss function in the training (soft constraint, Sec. IV B 2), and through the
architecture (hard constraint, Sec. IV B 3). For the thermoacoustic system described in Sec. IV A,
the input vector consists of the one-dimensional spatial coordinate, x, and time, t , and the output
vector consists of the acoustic pressure and velocity fluctuations, y = (p′, u′). In Sec. IV B 1, we
motivate employing periodic activation functions in the standard FNN for acoustic problems, the
eigenfunctions of which are periodic. Furthermore, in Sec. IV B 2, we include a physics-based
regularization term that penalizes solutions that violate the conservation laws governing the acoustic
dynamics. Finally, in Sec. IV B 3, we promote a hard-constrained architecture in the form of a
GalNN (Sec. III). Inspired by the physical remarks of Sec. II B, we design a neural network
architecture that spans the Hilbert space with the acoustic eigenfunctions as the Galerkin modes,
while having trainable parameters for inference and closure of the unknown physical terms. The
acoustic neural networks are summarized at the end of this section in Table I.
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1. Periodically activated feedforward neural networks (P-FNNs)

In order to augment the extrapolation capability, observe that nonlinear thermoacoustic dynamics
originate from the nonlinear coupling of acoustic eigenfunctions (e.g., [28]), which are Fourier
modes. From a data-driven perspective, this means that the weights and biases should be periodi-
cally activated. A straightforward strategy is to employ periodic activations in the acoustic neural
networks, i.e., φ(I ) = sin(z) in Eq. (1b) [49]. The physics of the system, namely, the periodic nature
of the solutions, is embedded in the network itself via the choice of activation function, which
provides an inductive bias on the function space of the network and improves extrapolation [55].
The weights of a layer l with the sine activation are initialized from a uniform distribution in the
range [−√

3/fanin,
√

3/fanin], where fanin is the number of neurons in the layer l − 1, nl−1 [55].

2. Soft constraints with physics-informed losses

Prior knowledge can be embedded as a penalization term in the loss function in Eq. (2) to
minimize during training (e.g., [5,6]). This approach improves the generalizability of the network,
while promoting physical outputs [3]. In thermoacoustics, neural network predictions should fulfill
the acoustic conservation laws; therefore, we penalize solutions that violate momentum and energy
equations in the loss function

L = λDDLDD + λMLM + λELE , (8)

where LDD is the data-driven loss [Eq. (4)] (Sec. II A), and LM and LE are the residual losses
from the conservation of momentum and energy equations, respectively. The non-negative scalars
λDD, λM , and λE are regularization hyperparameters. Obtaining momentum and energy losses, LM

and LE , requires the evaluation of the physical residuals of the network predictions. We denote
the partial differential operators that define the residual from momentum and energy equations as
FM (p′, u′) and FE (p′, u′), respectively. A given (p′, u′) is a solution of the system if the residuals are
zero, i.e., FM (p′, u′) = 0 and FE (p′, u′) = 0. We will exactly define these residuals separately for
the Rijke tube in Sec. V A and for the higher-fidelity model in Sec. VI A along with the modeling
assumptions and nondimensionalization of the original Eqs. (7). The physics-informed losses are
then computed as

LM = 1

N + Ns

N+Ns∑
k=1

FM ( p̂′
k, û′

k )2, (9)

LE = 1

N + Ns

N+Ns∑
k=1

FE ( p̂′
k, û′

k )2, (10)

where N is the number of training data points, i.e., {xk, tk}N
k=1, and Ns is the number of uniformly

sampled points over the whole training domain, as we can evaluate the physical loss at any location
in time and space. For this purpose, we employ automatic differentiation using tf.GradientTape
functionality from TensorFlow [56]. The automatic differentiation of the output variables with re-
spect to the input variables yields the Jacobian that contains the partial derivatives, ∂ p̂′

∂x ,
∂ p̂′
∂t , ∂ û′

∂x , ∂ û′
∂t .

These partial derivatives are plugged into the operators, FM and FE , to calculate the residual of the
network.

3. Hard constraints with Galerkin neural networks (GalNNs)

A suitable eigenbasis for the thermoacoustic problem is provided by the natural acoustic
eigenfunctions, because most of the energy of the solution is dominated by the first acoustic
modes, and effects of mean flow or nonlinearity only slightly change the frequency and the eigen-
shapes (Sec. II B). The core eigenfunctions of the thermoacoustic system with zero-Mach-number
case are similar to a low-Mach-number case, M � 0.1 [57]. Hence, to derive them, we assume
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a zero Mach number for simplification, whose dynamics are governed by the nondimensional
equations (e.g., [57])

ρ̄
∂u′

∂t
+ ∂ p′

∂x
= 0, (11a)

∂ p′

∂t
+ ∂u′

∂x
− q̇′δ(x − x f ) = 0, (11b)

where the density is modeled as ρ̄ = ρ̄1 when 0 � x < x f , and ρ̄ = ρ̄2 when x f < x � 1. The
dimensional variables have been scaled as x = x̃/L̃; t = t̃ ˜̄cref/L̃, where ˜̄cref is the mean speed of
sound; u = ũ/ ˜̄cref ; ρ = ρ̃/ ˜̄ρref ; p = p̃/( ˜̄ρref ˜̄c2

ref ); and q̇ = ˜̇q(γ − 1)/( ˜̄ρref ˜̄c3
ref ). A physically justified

method to solve the set of PDEs (11) is to decompose pressure and velocity as

p′(x, t ) =
Ng∑
j=1

{
μ j (t )
(1)

j (x), 0 � x < x f

μ j (t )
(2)
j (x), x f < x � 1,

(12a)

u′(x, t ) =
Ng∑
j=1

{
η j (t )ϒ (1)

j (x), 0 � x < x f

η j (t )ϒ (2)
j (x), x f < x � 1,

(12b)

and project the equations onto the acoustic eigenfunctions found as below in the case of ideal
boundary conditions, i.e., p′(x = 0) = p′(x = 1) = 0 [57],



(1)
j (x) = − sin(ω j

√
ρ̄1x), 


(2)
j (x) = −

(
sin γ j

sin β j

)
sin(ω j

√
ρ̄2(1 − x)), (13a)

ϒ
(1)
j (x) = 1√

ρ̄1
cos(ω j

√
ρ̄1x), ϒ

(2)
j (x) = − 1√

ρ̄2

(
sin γ j

sin β j

)
cos(ω j

√
ρ̄2(1 − x)), (13b)

where Ng is the number of Galerkin modes retained in the approximation, and γ j = ω j
√

ρ̄1x f ,
β j = ω j

√
ρ̄2(1 − x f ). The acoustic angular frequencies ω j are the solutions of the dispersion

relationship, sin β j cos γ j + cos β j sin γ j

√
ρ̄1

ρ̄2
= 0. In the limit of no jump in mean-flow density,

i.e., ρ̄1 = ρ̄2, ω j = jπ , which are the natural acoustic angular frequencies [57]. Motivated by the
Galerkin decomposition (12), we express the acoustic and thermoacoustic solutions as a GalNN
[Eq. (6)], where 


(1)
j , 


(2)
j [Eq. (13a)], and ϒ

(1)
j , ϒ

(2)
j [Eq. (13b)] are the Galerkin modes, and μ j

and η j are the Galerkin amplitudes. The pressure and velocity are determined from the predicted
Galerkin amplitudes using Eqs. (12). This architecture is shown in Figs. 4(a) and 4(b).

Whereas the acoustic pressure is continuous across the flame, the acoustic velocity undergoes
a discontinuity due to the dilation from the heat-release rate [28]. When such a discontinuity is
approximated with a finite Fourier series, such as the Galerkin modes we are using, the Gibbs
phenomenon manifests itself as high-frequency oscillations around the discontinuity [40,58], which
causes an unphysical behavior. To physically capture the discontinuity and eliminate unphysical
oscillations in the predictions, we add two step functions in the velocity modes,

ϒ
(1)
Ng+1(x) = 1, ϒ

(2)
Ng+1(x) = 0, (14a)

ϒ
(1)
Ng+2(x) = 0, ϒ

(2)
Ng+2(x) = 1, (14b)

such that the summation (12b) runs from 1 to Ng + 2. The modes ϒ
(.)
Ng+1 and ϒ

(.)
Ng+2 are weighted by

independent coefficients, ηNg+1 and ηNg+2, which allows them to capture a jump discontinuity at the
flame location.

The temporal branch of the GalNN should be capable of extrapolation in time of thermoacoustic
oscillations. These solutions bifurcate from limit-cycle oscillations, which are periodic, to quasiperi-
odic and chaotic oscillations. As they originate from periodic solutions, even the quasiperiodic and
chaotic solutions are in fact dominated by periodicity, which can also be observed in the frequency
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FIG. 4. The Galerkin neural network (GalNN) tailored for thermoacoustics. (a) Spatial branch, in which the
solution space is spanned by the acoustic eigenfunctions (13) (hard constraint). The spatial modes 


(1)
j , 


(2)
j ,

ϒ
(1)
j , and ϒ

(2)
j , where j = 1, 2, . . . , Ng, are collected in the vectors �(1), �(2), ϒ(1), and ϒ(2), respectively.

Step functions that model the discontinuity through the compact heat source (14) are shown at the bottom of
the spatial branch. (b) Temporal branch, which is a periodically activated feedforward neural network. The
outputs μ j and η j are stacked as vectors, which are projected onto the modes �(1), �(2), ϒ(1), and ϒ(2).
The outputs ηNg+1 and ηNg+2 are associated with the discontinuity modes (14). The trainable parameters are
the weights, W (·), and the biases, b(·). (c) Temporal branch of the periodic Galerkin neural network further
constrained for limit-cycle solutions. It is reconstructed such that the weights are integer multiples of only
one trainable fundamental angular frequency, θ . The trainable parameters are θ , the weights, W (2), and the
biases, b(2).

spectrum of the oscillations (later in Sec. V B 2). Therefore, we deploy a periodically activated FNN
(Sec. IV B 1) as the temporal branch of the GalNN.

4. Periodic Galerkin networks (P-GalNNs)

We enforce periodic activations (Sec. IV B 1) in the Galerkin neural network in order to achieve
extrapolation for limit-cycle, quasiperiodic, and chaotic solutions. For simplicity, if we consider a
single-layer periodically activated GalNN, then the outputs of the temporal branch of the network
are given as a sum of sinusoids, where the hidden layer weights represent the angular frequencies
and the biases represent the phases, i.e., sin(W(1)t + b(1) ). For a signal given as a sum of sinusoids,
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its angular frequency is the greatest common divisor of the angular frequencies of its components.
For a limit cycle, the greatest common divisor is its fundamental angular frequency, and the other
frequencies are its harmonics. This applies to a periodically activated neural network as well.
However, the weights of the neural network are initialized randomly and then trained on a finite
amount of data, so it is numerically unlikely for the learned weights to be exact integer multiples
of a fundamental frequency. To overcome this numerical challenge, we add a further constraint on
the GalNN to guarantee periodic behavior with the fundamental frequency of the limit cycle. We
create a hidden layer that takes time as input and outputs (sin(hθ ), cos(hθ )), h = (1, 2, . . . , Nh),
such that the weights in the periodic activations are integer multiples of one trainable variable, θ .
The variable θ is initialized to the nondimensional angular frequency of the acoustic system, π ,
which is an educated guess for the actual thermoacoustic frequency as from our physical knowledge
we know that the nonlinearity will only slightly change this. Hence, upon training, θ corresponds
to the angular frequency of the limit cycle, and the number of harmonics, Nh, can be regarded as a
hyperparameter. Because we have both sine and cosine activations for the same angular frequency,
the phase information is automatically captured; hence we do not require a bias term. The temporal
branch of the GalNN tailored for limit cycles is shown in Fig. 4(c).

V. EXTRAPOLATION AND STATE RECONSTRUCTION: TWIN EXPERIMENTS

A. Data set from the Rijke tube

We perform twin experiments on synthetic data generated from a prototypical thermoacoustic
system, the Rijke tube, to demonstrate how the acoustic neural networks developed in Sec. IV B
tackle extrapolation and state reconstruction. The Rijke tube (Fig. 3) captures the qualitative
nonlinear dynamics and bifurcations observed in real-life applications [39]. In this model, we further
assume that (i) the mean flow has a zero Mach number with uniform density, and (ii) the boundary
conditions are ideal, i.e., p′(x = 0, t ) = p′(x = 1, t ) = 0, hence Rin = Rout = −1. We solve the
associated PDEs (11) using the Galerkin decomposition [Eqs. (12) and (13)], with ρ̄1 = ρ̄2 = 1,
which implies that ω j = jπ [57]. By substituting the pressure and velocity variables in Eqs. (11)
with their Galerkin decompositions in Eqs. (12) and projecting the dynamics onto the Galerkin
modes, the dynamics of the Galerkin variables η j and μ j are described by a 2Ng-dimensional system
of ordinary differential equations [41]:

η̇ j − μ j jπ = 0, (15a)

μ̇ j + η j jπ + ζ jμ j + 2q̇′ sin( jπx f ) = 0. (15b)

In the models of Rijke tubes in literature (e.g., [59]), a modal damping term acting on the pressure,
ζ p′(x, t ), is added to the energy equation (11b) to account for the unmodeled effects of dissipation
at the boundaries, and at viscous and thermal boundary layers at the tube walls. This term lets
the higher modes be damped out. In the projected dynamics, the damping term is ζ jμ j , where
ζ j = c1 j2 + c2 j1/2 [60]. The heat-release rate is described by a modified King’s law,

q̇′ = β(
√|1 + u′(x f , t − τ )| − 1), (16)

where β and τ are the heat-release strength and the flame time delay, respectively [61]. The time-
delayed problem is transformed into an initial value problem via an advection function with the
dummy variable v so that it can be solved with a standard time-marching scheme [41]:

∂v

∂t
+ 1

τ

∂v

∂X
= 0, 0 � X � 1, v(X = 0, t ) = u′(x f , t ). (17)

The PDE (17) is discretized using a Chebyshev spectral method with Nc points [62].
The physics-informed loss of the Rijke tube system is calculated by evaluating the left-hand side

of PDEs (11); i.e., the momentum residual, FM , is defined as the left-hand side of Eq. (11a), and the
energy residual, FE , is defined as the left-hand side of Eq. (11b). When calculating the heat-release

103201-11



DEFNE E. OZAN AND LUCA MAGRI

x

0.0
0.5

1.0
t0

4

8

p̂′(x, t)

0

10

(a)

0 4 8
t

−4

0

4

8

p̂′(x = 0.25, t)p ( , )p ( , )

Train True Pred.

(b)

x

0.0
0.5

1.0
t0

4

8

p̂′(x, t)

−5
0
5

(c)

0 4 8
t

−4

0

4

8

p̂′(x = 0.25, t)p ( , )p ( , )

Train True Pred.

(d)

x

0.0
0.5

1.0
t0

4

8

p̂′(x, t)

−5
0
5

(e)

0 4 8
t

−4

0

4

8

p̂′(x = 0.25, t)p ( , )p ( , )

Train True Pred.

(f)

x

0.0
0.5

1.0
t0

4

8

p̂′(x, t)

−5
0
5
10

(g)

0 4 8
t

−4

0

4

8

p̂′(x = 0.25, t)p ( , )p ( , )

Train True Pred.

(h)

FIG. 5. Extrapolation in time of the acoustic pressure with standard neural networks. Effect of activation
functions: [(a), (b)] ReLU, [(c), (d)] tanh, [(e), (f)] sine in all hidden layers, and [(g), (h)] sine-ReLU (sine in the
first layer, ReLU for the rest of the hidden layers). Top row: Predictions in both time and space. Bottom row:
Predictions in time at x = 0.25, training data, and ground truth. Typical activation functions, such as ReLU
[(a), (b)] and tanh [(c), (d)], fail to extrapolate in time.

term (16) in the physics-informed loss, the time-delayed velocity at the flame can be predicted from
the network as û′(x f , tk − τ ) [for the GalNN û′(x f , tk − τ ) = ∑Ng

j=1 η̂ j (tk − τ ) cos( jπx f )], i.e., by
evaluating the network at (x = x f , t = tk − τ ). Therefore, since the model takes time as an input for
both FNN and GalNN architectures, there is no need to account for the time delay with a separate
dummy variable. The evaluation of the heat-release law requires the system parameters x f , β, and τ

to be known.
For the FNN, the implementation details concerning the calculation of heat release and modal

damping are provided in Appendix A. For the GalNN, as Galerkin amplitudes are available, the
physical residuals of the Rijke tube can be directly computed from the ODEs (15) in these twin
experiments.

B. Extrapolation in time

We simulate the Rijke tube system (11) with the parameters Ng = 10, Nc = 10, x f = 0.2, β =
5.7, τ = 0.2, c1 = 0.1, and c2 = 0.06. After a transient period, this system settles onto a limit cycle
with a period of ≈1.927 time units. The data set is composed of pressure and velocity measurements
from 13 sensor locations, which are uniformly distributed along the tube including the boundaries.
Before training, the inputs are standardized to have a zero mean and unit variance.

1. Standard feedforward neural networks

Figures 5(a) and 5(b) and Figs. 5(c) and 5(d) show the results of FNNs with rectified linear unit
(ReLU) and tanh activation functions when trained on this data set. The network hyperparameters
(number of layers, number of neurons, learning rate) have been tuned via a grid search, in which
we choose the architectures that resulted in the smallest validation losses. The network properties
are provided in Table II. The ReLU network is initialized with the method of He et al. [63], and
the tanh network with the method of Glorot and Bengio [64]. As illustrated in Figs. 5(a) and 5(b)
and Figs. 5(c) and 5(d), FNNs with conventional activation functions fail at extrapolating periodic
functions in time.
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TABLE II. Summary of neural network model properties trained on the Rijke tube data.

ReLU FNN tanh FNN sin FNN sin-ReLU FNN GalNN P-GalNN

Hidden layers 5 5 3 2 2 1
Activations ReLU tanh sine sine-ReLU sine harmonics
Neurons 96 96 32 64 16 40
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Optimizer Adam
Batch size 64

Figure 5(e) and 5(f) show the extrapolation capability of an FNN equipped with sine activation,
i.e., a periodically activated FNN (P-FNN) as introduced in Sec. IV B 1. (Note that when using the
sine activation, the inputs are not normalized before training.) The activation function is modified
to include a hyperparameter a such that it becomes

φ(z) = 1

a
sin(az). (18)

This hyperparameter is used to fine-tune the frequency content of the learned functions. For this data
set, it is determined as a = 10 with a grid search; the effect of varying a is shown in more detail in
Appendix B. Physically, since the weights are initialized as ∼Uni form(−1.22, 1.22) (Sec. IV B 1),
multiplying this by a = 10 provides a good initial guess on the order of magnitude of the angular
frequency for the training. Figures 5(g) and 5(h) show the case for the sine-ReLU configuration,
which can also extrapolate in time. Both sine and sine-ReLU networks can extrapolate also at
locations where no sensor measurements are available (result not shown). Deeper architectures
are required when training with purely ReLU or tanh networks compared to sine or sine-ReLU
networks. For example, in this case we use two layers of sine and sine-ReLU vs five layers of
ReLU and tanh, and even then the ultimate training and validation losses of sine and sine-ReLU
networks were one order of magnitude smaller. To conclude, using periodic activations produces
more physical and expressive neural network models for acoustics than the conventional activations,
which can also extrapolate in time, while speeding up training and hyperparameter search as a
consequence of the smaller network sizes required.

2. Physics-constrained networks and long-term extrapolation

We showed that networks equipped with periodic activations make accurate predictions on data
points chosen in a time range right after the training. Here, we analyze how the learned models
extrapolate in the long term. The ideal model of a periodic solution should capture the periodicity
that the system exhibits for all times. Network predictions over a long time period are plotted in
Figs. 6(a) and 6(b), for P-FNN and GalNN, respectively, when trained on data from approximately
two periods. Over a long time range, we observe a beatinglike phenomenon. In the frequency spectra
of the acoustic variables, the peaks are at the harmonics of the angular frequency of the limit cycle,
which we determined as θ∗ = 3.2605 by inspection of the frequency spectrum and autocorrelation
of the time series. After the training, this is captured by the weights in the first hidden layer as
discussed in Sec. IV B 4. These weights are multiplied with the time input before periodic activation,
i.e., sin(aW (1)

1 x + aW (1)
2 t + ab(1) ) for P-FNN, and sin(aW (1)t + ab(1) ) for GalNN, where a is a

hyperparameter of the sine activation [Eq. (18)]. The optimized weights are placed close to the
harmonics of the angular frequency of the limit cycle. Figure 7 shows the (sorted) weights of the
P-FNN and a GalNN. The harmonics of the angular frequency of the limit cycle are shown in
dashed horizontal lines. Although these weights are close to the harmonics of the frequency of the
limit cycle, they are not exact integer multiples of each other. Even the weights clustered around one
frequency slightly differ from each other. This can be observed in the power spectral density (PSD)

103201-13



DEFNE E. OZAN AND LUCA MAGRI

FIG. 6. Long-term extrapolation in time of periodic acoustic pressure time series with physics-constrained
neural networks. The training data are small and span the first four time units inside the red vertical line.
Predictions on the pressure time series with (a) periodically activated feedforward neural network (P-FNN),
(b) Galerkin neural network (GalNN), and (c) periodic Galerkin neural network (P-GalNN). Power spectral
density of true and predicted time series with (d) P-FNN, (e) GalNN, and (f) P-GalNN. Constraining prior
knowledge on periodicity is key to an accurate long-term prediction.
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FIG. 7. In reference to Fig. 6, trained weights of the first hidden layers of (a) a periodically activated
feedforward neural network (P-FNN), (b) a Galerkin neural network (GalNN), and (c) a periodic Galerkin
neural network (P-GalNN). These weights are multiplied with the time input before periodic activation, i.e.,
sin(aW (1)

1 x + aW (1)
2 t + ab(1) ) for P-FNN, sin(aW (1)t + ab(1) ) for GalNN, where a is a hyperparameter, and

sin(W (1)t ) for periodic GalNN.

103201-14



HARD-CONSTRAINED NEURAL NETWORKS FOR MODELING …

of the predicted time series as well, shown in Figs. 6(d) and 6(e). These observations align with the
beating behavior. We overcome this issue by using the GalNN tailored for this specific purpose as
described in Sec. IV B 4. The long-term predictions are shown in Fig. 6(c) and the power spectral
density of the predicted signal in Fig. 6(f). The estimated θ∗ by the periodic GalNN is 3.2615, which
aligns with the true signal. The trained weights, which are activated as (sin(W (1)t, cos(W (1)t )) in
the periodic GalNN, are shown in Fig. 7(c). Increasing the training time improves the extrapolation
ability for both P-FNN and GalNN. However, with the constrained structure of the GalNN, we
eliminate the beating behavior and achieve accurate long-term extrapolation without using more
training data. In addition to limit cycles, thermoacoustic systems can also exhibit quasiperiodic
and chaotic oscillations through bifurcations (e.g., [42]). With x f = 0.2 and τ = 0.2 and increasing
β, the system takes a Ruelle-Takens-Newhouse route to chaos; at β = 0.5, it bifurcates from a
fixed-point solution to a limit cycle, at β = 5.8 from a limit cycle to a quasiperiodic attractor, and at
β = 6.5 from a quasiperiodic attractor to chaos [41]. We collect quasiperiodic data from the β = 6
regime and chaotic data from the β = 7 regime. For the quasiperiodic system, we train a GalNN
with two sine layers of 96 neurons on data from the 80 time units long time series following a
hyperparameter tuning with a grid search. The predictions are shown in Figs. 8(a)–8(c) with the
PSD. The Galerkin network can capture the quasiperiodic behavior and the frequency spectrum
correctly. For the chaotic system, we train a GalNN with four sine layers of 256 neurons on data
from the 200 time units long time series. The predictions are shown in Figs. 8(d)–8(f) along with
the PSD. To train on chaotic data, we required a longer time series and a deeper and wider network
because the nonlinear dynamics is richer than the quasiperiodic solution. The network’s prediction
correctly captures the dominant frequencies and the amplitude of the true signal.

C. Learning from partial state measurements

Full-state measurements are difficult to perform in thermoacoustics; i.e., only pressure measure-
ments are taken with microphones. To emulate such a scenario, we perform the training using
only pressure data, discarding the velocity data. Therefore, in the formulation of the data-driven

loss [Eq. (4)], the measurement matrix becomes M =
[

1 0
0 0

]
. Our aim is to learn a model that

can also output velocity information without ever being exposed to measurements from it during
training. Figure 9 shows the predictions of the P-FNN and the GalNN trained with and without
physics information. When the loss is computed solely from the data, only the pressure can be
learned. On the other hand, velocity predictions are made possible by enforcing the physics via
the physics-informed loss term. For the purely data-driven networks, the output weights related to
velocity are not updated; hence the velocity predictions are made with the initial weight values
which are small. When both momentum and energy equations are imposed, both physics-informed
networks can accurately reconstruct the velocity.

VI. RESULTS ON HIGHER-FIDELITY DATA

A. Higher-fidelity data

In order to assess how well the GalNN approach generalizes to higher-fidelity data, which is
not generated by the Galerkin method, we employ a higher-fidelity model that includes the effects
of the mean flow and has a kinematic flame model for the flame [33] (Fig. 3). The solution of the
PDEs (7) can be obtained by a traveling-wave approach in conjunction with the jump conditions at
the flame. This model can also account for nonideal open boundary conditions via acoustic reflection
coefficients Rin and Rout at the inlet and outlet. We simulate a system with ideal boundary conditions,
i.e., Rin = Rout = −1, that results in limit-cycle oscillations using the mean-flow parameters for the
inlet velocity, ˜̄u1 = 4 m/s; for the inlet temperature, ˜̄T1 = 293 K; for the inlet and outlet pressure,
˜̄P1 = ˜̄P2 = 101 300 Pa; and for the heat-release rate, ˜̄Q = 2000 W. This is a low-Mach-number con-
figuration with M̄1 = 0.0117 and M̄2 = 0.0107. The cross-section area changes at the flame location
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FIG. 8. Extrapolation in time for nonperiodic solutions. [(a)–(c)] Quasiperiodic solution and [(d)–(f)]
chaotic solution. For the chaotic time series, the time axis is normalized by the Lyapunov time (LT) of the
system, where LT ≈ 8.33 time units in this case. Training data shown within the red vertical line [80 time units
for the quasiperiodic case, 200 time units (24 LT) for the chaotic case].

with a ratio of A1/A2 = 0.75. In the preprocessing of the data, we nondimensionalize the variables as
x = x̃/L̃, t = t̃ ˜̄cref/L̃, u = ũ/ ˜̄cref ; ρ = ρ̃/ ˜̄ρref ; p = p̃/( ˜̄ρref ˜̄c2

ref ); and q̇ = ˜̇q(γ − 1)/( ˜̄ρref ˜̄c3
ref ), where

˜̄(·)ref = (L̃1
˜̄(·)1 + L̃2

˜̄(·)2)/L̃ is chosen as the weighted average of the mean values of variable
(·) across the flame. The nondimensional flame location is at x f = 0.61, and the nondimen-
sional densities in the duct segments before and after the flame are ρ̄1 = 1.145 and ρ̄2 = 0.769.
These quantities will be used to determine the acoustic mode shapes for the Galerkin neural
network (13). While creating the training and validation sets, we consider two types of validation:
(i) validation of the interpolation capability and (ii) validation of the extrapolation capability, i.e.,
when the data are sampled from outside the time range of training. A good validation of the
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FIG. 9. Reconstruction of acoustic velocity from pressure measurements only. Predictions on acoustic
[(a), (b)] pressure and [(c), (d)] velocity from only 13 pressure observations with different physics-constrained
networks. Top row: Spatial shapes at t = 1.5. Bottom row: Time series at x = 0.25. The acoustic velocity
is accurately reconstructed from pressure measurements with the physics-informed periodic feedforward and
Galerkin neural networks.

interpolation loss prevents overfitting. Validation of extrapolation loss indicates how well the model
generalizes beyond the time range of training. After discarding a transient, we split the first four
nondimensional time units long time series (approximately two periods) of the limit cycle into
training and validation of the interpolation sets, assigning an 80% to 20% ratio between them. The
validation data for the extrapolation is then taken as the next four nondimensional time units. The
physics-informed loss of the higher-fidelity system is calculated by evaluating the left-hand side of
PDEs (7) after their being nondimensionalized as described above. The momentum residual, FM , is
defined as the left-hand side of Eq. (7a). In contrast to the twin experiments with the Rijke tube, for
the higher-fidelity data, we assume that we do not have access to the heat-release model. Hence, the
energy residual, FE , is defined as the left-hand side of Eq. (7b) excluding the heat-release term, q̇.
This is acceptable because the heat-release term only acts at the flame location due to the compact
assumption and the Dirac delta.

B. Comparison of networks performance for reconstruction

We analyze the performance of the different networks that we have built in Sec. IV B on the
reconstruction of the higher-fidelity data. We compare three configurations of the feedforward neural
network with (i) ReLU activations in all hidden layers, (ii) sine activation in all hidden layers, and
(iii) sine activation in the first layer, ReLU activation in the rest of the hidden layers, and three
configurations of the periodic Galerkin neural network with one hidden trainable frequency layer,
(i) with ω j = jπ as the acoustic angular frequencies as before, i.e., when ρ̄1 = ρ̄2 = 1, (ii) with ω j

determined from the dispersion relationship using the real mean-flow density values of the system,
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TABLE III. Summary of neural network model properties trained on higher-fidelity data. Feedforward
neural networks (FNNs) with different activations: ReLU, sine, and sine-ReLU (sine in the first layer, ReLU
in the rest). Periodic Galerkin neural networks (P-GalNNs) with different choices of spatial bases: (i) natural
acoustic modes (13) for ρ̄1 = ρ̄2 = 1, (ii) natural acoustic modes for ρ̄1 = 1.145 and ρ̄2 = 0.769, and (iii) case
(ii) with the addition of step functions in the velocity modes to handle the jump discontinuity (14).

ReLU FNN sin FNN sin-ReLU FNN P-GalNN (i) P-GalNN (ii) P-GalNN (iii)

No. hidden layers 6 3 4 1 1 1
No. Galerkin modes 20 20 20
Activations ReLU sine sine-ReLU harmonics harmonics harmonics
No. neurons 64 64 32 20 20 20
Learning rate 0.01 0.01 0.01 0.0004 0.0004 0.0004
Optimizer Adam
Batch size 32

i.e., when ρ̄1 = 1.145 and ρ̄2 = 0.769, and (iii) the Galerkin modes chosen as (ii) with the addition
of step functions in the velocity modes to handle the jump discontinuity (14).

For each configuration of activations, the hyperparameters of the architecture and training
(number of layers, number of neurons, and learning rate) have been tuned with a grid search, in
which we chose the set of hyperparameters that resulted in the smallest validation losses. These
properties are provided in Table III for each network. The training and validation loss histories of
all models are shown in Fig. 10. The ReLU network has higher training and interpolation losses,
cannot fit the data as well as the sine and sine-ReLU networks, and cannot extrapolate. For all
the other networks [sine FNN, sine-ReLU FNN, P-GalNN (i), P-GalNN (ii), and P-GalNN (iii)],
the validation losses are close to the training loss. The P-GalNN (iii) scores the lowest losses. The
periodic Galerkin networks can have similar or better prediction performance as the other deeper
feedforward neural networks even with one hidden layer following a physical choice of spatial basis.
Figure 11 visualizes the velocity predictions and their errors between the predictions and the true
data obtained with the networks. The P-GalNN (i) exhibits an error pattern that resembles an offset
from the true solution, which indicates a biased model. The prediction is also oscillatory and the
error is especially high at the boundaries. The more physically motivated choice of P-GalNN (ii)
eliminates these errors; however, the discontinuity jump still cannot be captured, which leads to
high-frequency oscillations in the prediction around the flame location. A similar phenomenon is
also observed for the sine-ReLU network, where the error is the highest at the flame location. This
problem is overcome by P-GalNN (iii), which results in the smallest training and validation errors
overall. This network finds the nondimensional dominant angular frequency as θ∗ = 3.3164 and,
thus, the period as T ∗ = 1.8946. From the power spectral density of the true pressure signal, we
read θ∗ = 3.3166 and T ∗ = 1.8945. The periodic Galerkin network successfully learns the correct
period.

C. Robustness to sparsity and noise

In this section, we demonstrate the robustness of the acoustic neural networks to sparsity and
noise in the training data. We select P-GalNN (iii) from the previous section because of its more
generalizable performance in comparison to the other architectures and investigate the regularization
methods that can be used in order to prevent overfitting in the case of corrupted or scarce data.
We compare a physics-based regularization, i.e., physics-informed loss, with �1- and �2-norm
regularizations, which act on the network weights as ||W ||1 and ||W ||2, respectively, in the loss
term. We add zero-mean Gaussian noise on the nondimensional training data with a standard
deviation equal to 10% of the standard deviation of the true solution function over the whole domain
(20 dB signal-to-noise ratio). Using the described regularization methods, we train networks with
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FIG. 10. Data from higher-fidelity model for a periodic acoustic solution. Loss-function histories. [(a), (b)]
Training, [(c), (d)] validation of interpolation, and [(e), (f)] validation of extrapolation. Feedforward neural
networks (FNNs) with different activations: ReLU, sine, and sine-ReLU (sine in the first layer, ReLU in the
rest). Period Galerkin neural networks (P-GalNNs) with different choices of spatial bases: (i) natural acoustic
modes (13) for ρ̄1 = ρ̄2 = 1, (ii) natural acoustic modes for ρ̄1 = 1.145 and ρ̄2 = 0.769, and (iii) case (ii) with
the addition of step functions in the velocity modes to handle the jump discontinuity (14).

ten Galerkin modes on this new data set, this time given only on a coarse grid. The comparison
of the obtained predictions when using (i) no regularization, (ii) �2-norm, (iii) �1-norm, and
(iv) physics-based regularization is shown in Fig. 12. We train multiple networks with varying values
of regularization coefficients and show only the results for those with the smallest validation losses.
Without regularization, the model can fit the training data perfectly; however, the interpolation
points show spikes, which is a clear demonstration of overfitting. This case of overfitting emerges
when there is a discrepancy between the number of sensors and the number of Galerkin modes
dictated by Nyquist-Shannon sampling theorem. The highest number of Galerkin modes is given as

N∗
g = arg max

j
{ j | ω j

√
ρ̄1 � kNyquist , ω j

√
ρ̄2 � kNyquist }, (19)

where kNyquist = π
�x with �x being the spacing between sensor locations. The physics information

significantly eliminates overfitting and outperforms �1- and �2-norm regularizations. The �2-norm
regularization does not work as well because the weights are not selectively regularized, i.e.,
dominant modes or frequencies will be regularized in the same way as nondominant ones. The
�1-norm regularization performs better since modes corresponding to higher wavenumbers are
discarded as the �1 norm promotes sparsity and in the physical basis, the energy is contained in the
low-frequency modes. We perform a quantitative study to investigate the robustness of the prediction
performance to sparsity and noise. First, we vary the number of sensors along the tube. Figure 13
shows the relative �2 error achieved by Galerkin networks with different number of modes when
trained on noise-free data given on spatial grids of 2, 5, 11, and 23 points. The relative �2 error is
calculated from the prediction on the fine grid of 49 points over the training range by dividing the
�2 norm of the error by the �2 norm of the ground truth. The networks are trained with and without
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û′(x, t = 1.5)

Train

True

Pred.

(c)

0.0 0.5 1.0
x

0.0

0.5

1.0

×10−3
u′(x, t = 1.5) − û′(x, t = 1.5)
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FIG. 11. Comparison of acoustic neural networks in terms of reconstruction performance from higher-
fidelity data. From left to right, [(a)–(d)] sine-ReLU feedforward neural network (FNN), i.e., sine in the
first layer, ReLU in the rest; [(e)–(h)] periodic Galerkin neural network (P-GalNN) (i) with natural acoustic
modes (13) for ρ̄1 = ρ̄2 = 1; [(i)–(l)] P-GalNN (ii) with natural acoustic modes for ρ̄1 = 1.145 and ρ̄2 = 0.769;
[(m)–(p)] P-GalNN (ii) with the addition of step functions in the velocity modes to handle the jump discontinu-
ity (14). From top to bottom, velocity prediction in time and space, error between ground truth and prediction
in time and space, velocity prediction and error at a fixed time instance, t = 1.5.

physics information in the loss function. We fix the weighting of the data-driven loss to λD = 1, and
the physics loss to λM = λE = 0.0001 for physics-informed and to zero otherwise. As discussed
above, a high number of Galerkin modes leads to overfitting for coarse grids, when the Nyquist
wavenumber is not sufficient to resolve the high wavenumbers, e.g., five sensors and ten Galerkin
modes. Furthermore, we observe large prediction error even when the Nyquist condition is satisfied,
e.g., five sensors and five Galerkin modes. We find that this type of error is mostly concentrated
at the boundaries of the velocity, as we have not provided any boundary data and, therefore, the
model overfits to the rest of the data, not generalizing well over the boundaries. For pressure, this
is not an issue, because the boundary conditions are Dirichlet and already encapsulated within the
provided Galerkin basis. On the other hand, the low number of Galerkin modes may not be enough
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û′(x, t)

−2

0

2
×10−2

(m)

x

0.0
0.5

1.0
t0

4

u′(x, t) − û′(x, t)
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FIG. 12. In reference to Fig. 11, effect of the regularization hyperparameter on periodic Galerkin neural net-
works (P-GalNNs) in the case of sparse and noisy measurements. From left to right, [(a)–(d)] no regularization,
[(e)–(h)] �2-norm regularization, [(i)–(l)] �1-norm regularization, and [(m)–(p)] physics-based regularization.
From top to bottom: acoustic velocity, error between ground truth and prediction, velocity prediction at a fixed
time instance, and error at a fixed time instance, t = 1.5.

to approximate the pressure and velocity shapes in fine detail, e.g., 11 sensors and 5 Galerkin modes.
The addition of the physics information shows a marked difference and helps in overcoming these
limitations. In Appendix E, we show the reconstruction errors associated with physics-informed
training with varying numbers of pressure sensors.

Next, we choose the network with ten modes and add increasing levels of noise to the data
from five sensor measurements. We take five different realizations of noise and show the prediction
relative �2 error as a box plot in Fig. 14 for noise levels of 5%, 10%, 20%, and 40% (26, 20, 14,
and 8 dB signal-to-noise ratios). Noting that, even in the noise-free case, the non-physics-informed
network performs poorly, we focus on physics-informed training with varying weightings of the
physics loss. As the noise level increases, the optimum weighting of the physics information
increases as well, since the data become less reliable. We obtain good predictions of pressure and
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FIG. 13. Effect of number of pressure sensors in data collection. Effect of number of modes in Galerkin
neural networks, with and without physics-based loss. (The regularization hyperparameter of the data-driven
loss is λD = 1.)

velocity over the entire domain, even though the data are sparse and noisy. The network is also
robust to different realizations of noise.

We conclude by demonstrating how the physics-informed training performs in the absence of
velocity data. The prediction results of a physics-informed periodic Galerkin neural network, PI-P-
GalNN, are compared with a sine-ReLU physics-informed feedforward neural network, PI-P-FNN,
in Fig. 15. For the PI-P-GalNN, we report the following relative �2 errors: 2.63% for pressure
and 2.75% for velocity in the training range (t = 0–4 time units), and 2.84% for pressure and
2.80% for velocity in the extrapolation range (t = 4–8 time units). In comparison, for the sine-
ReLU feedforward neural network, we report the following relative �2 errors: 4.81% for pressure
and 164.22% for velocity in the training range (t = 0–4 time units), and 9.77% for pressure and
160.57% for velocity in the extrapolation range (t = 4–8 time units). With the PI-P-GalNN, we can
reconstruct the velocity as well as pressure. The PI-P-FNN fits to the noisy data more compared to
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FIG. 14. Robustness to noise. Galerkin neural networks with different regularization hyperparameters for
physics-based losses with data corrupted with noise. (The regularization hyperparameter of the data-driven loss
is λD = 1.)
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FIG. 15. Reconstruction of acoustic velocity from noisy pressure measurements only. Predictions on
acoustic [(a), (b)] pressure and [(c), (d)] velocity from only five pressure observations with physics-based loss
using the periodically activated feedforward neural network (P-FNN) and periodic Galerkin neural network
(P-GalNN). Top row: Pressure and velocity shapes along the tube at a fixed time instance, t = 1.5. Bottom
row: Pressure and velocity time series at a fixed point in the tube, x = 0.33.

the PI-P-GalNN, and can only recover the velocity with an offset, completely discarding the velocity
jump. A constant offset of the velocity, û′(x, t ) = u′(x, t ) + c, satisfies the governing equations (7).
Because the partial derivatives of the constant offset will be zero, the residual of the governing
equations will not be affected. If the velocity fluctuations are known to have a zero mean, one
strategy could be to remove the mean of the predictions in the postprocessing, and a second strategy
could be to remove the biases from the output layer of the neural network. However, even when the
offset is removed, the PI-P-FNN cannot capture the jump of the velocity at the flame location.

D. Nonideal boundary conditions

So far, we have restricted ourselves to ideal boundary conditions. However, in real experiments,
we deal with nonideal conditions, in which the acoustic waves are not fully reflected at the tube
ends (e.g., [65]). As a result, in contrast to the ideal case and the acoustic modes we have obtained
under that assumption, the pressure fluctuations at the tube ends are not zero, i.e., p′(x = 0, t ) 	=
0, p′(x = 1, t ) 	= 0. In order to tackle nonideal boundary conditions, we add a linear term in the
pressure modes (13a),



(1)
Ng+1(x) = 


(2)
Ng+1(x) = x, (20a)



(1)
Ng+2(x) = 


(2)
Ng+2(x) = 1, (20b)

such that the summation (12a) runs from 1 to Ng + 2. The modes 
Ng+1 and 
Ng+2 are weighted
by independent coefficients, μNg+1 and μNg+2. This way, the linear term provides the offset to the
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FIG. 16. Prediction in the case of nonideal (Rin = Rout = −0.985) boundary conditions for a training case
of only five noise-free pressure sensors. Comparison of a standard physics-informed periodic Galerkin neural
(PI-P-GalNN I.), physics-informed periodic feedforward network (PI-P-FNN) with a PI-P-GalNN for nonideal
boundary conditions (PI-P-GalNN N.I.). (a) Pressure shape at a fixed time instance, t = 1.65, and [(b), (c)]
pressure fluctuations at x = 0 and x = 1, respectively. The linear term can capture the nonzero pressure
fluctuations at the boundaries, when they are close to ideal.

predicted pressure fluctuations at the tube ends, i.e., μNg+1(t )x + μNg+2(t ). Once trained, we expect
to estimate μNg+2(t ) = p′(x = 0, t ) and μNg+1(t ) = p′(x = 1, t ) − p′(x = 0, t ).

We consider three cases and generate data from the higher-fidelity model using the follow-
ing parameters: (1) close to ideal, ˜̄u1 = 8 m/s, ˜̄Q = 10 000 W, Rin = Rout = −0.985; (2) less

FIG. 17. Prediction in the case of nonideal (Rin = Rout = −0.85) boundary conditions for a training case
of only five noise-free pressure sensors. Comparison of a standard physics-informed periodic Galerkin neural
(PI-P-GalNN I.), physics-informed periodic feedforward network (PI-P-FNN) with a PI-P-GalNN for nonideal
boundary conditions (PI-P-GalNN N.I.). (a) Pressure shape at a fixed time instance, t = 1.90, and [(b), (c)]
pressure fluctuations at x = 0 and x = 1, respectively. The linear term can capture the nonzero pressure
fluctuations at the boundaries, when they are less close to ideal.
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FIG. 18. Prediction in the case of nonideal boundary conditions (Rin = −0.985, Rout = −0.85) for a train-
ing case of only five noise-free pressure sensors. Comparison of a standard physics-informed periodic Galerkin
neural (PI-P-GalNN I.), physics-informed periodic feedforward network (PI-P-FNN) with a PI-P-GalNN for
nonideal boundary conditions (PI-P-GalNN N.I.). (a) Pressure shape at a fixed time instance, t = 2.00, and [(b),
(c)] pressure fluctuations at x = 0 and x = 1, respectively. The linear term can capture the nonzero pressure
fluctuations at the boundaries, even when the reflection coefficients are different.

close to ideal, ˜̄u1 = 16 m/s, ˜̄Q = 60 000 W, Rin = Rout = −0.85; and (3) different at both ends,
˜̄u1 = 16 m/s, ˜̄Q = 40 000 W, Rin = −0.985, Rout = −0.85.

The nondimensional densities in the duct segments before and after the flame are, for case
(1), ρ̄1 = 1.269, ρ̄2 = 0.571, for case (2), ρ̄1 = 1.434, ρ̄2 = 0.307, and for case (3), ρ̄1 = 1.376,
ρ̄2 = 0.400.

Figures 16–18 compare the predictions of a PI-P-GalNN (15 Galerkin modes) with a linear term
against the standard PI-P-GalNN and the PI-P-FNN for the above cases, where the training data
consist of only five pressure sensors. With the addition of the linear term, the PI-P-GalNN is capable
of capturing the nonzero pressure fluctuations at the boundaries for near-ideal conditions even from
sparse measurements given at other locations. While PI-P-FNN is a flexible tool that can handle
various boundary conditions, it requires the boundary data [50], whereas the PI-P-GalNN does not.
(Training computational costs are provided in Appendix D.)

VII. CONCLUSIONS

In this work, we model acoustic and thermoacoustic pressure and velocity oscillations from
synthetic data. The synthetic data capture the rich nonlinear behavior of thermoacoustic oscillations
observed in propulsion and power generation. We develop acoustic neural networks to tackle the
tasks of (i) extrapolation in space and time and (ii) reconstruction of full acoustic state from partial
observations by exploiting prior knowledge on the physics of acoustics. The prior knowledge is
embedded in the network as both soft and hard constraints. First, as acoustic and thermoacoustic
systems are dominated by sinusoidal eigenfunctions, we promote a physically motivated choice
of sinusoidal activation functions. Unlike standard feedforward neural network architectures that
employ ReLU or tanh activations, periodically activated networks can extrapolate in time, and the
trained weights hold frequency information. This means that spatiotemporal patterns can be learned
more efficiently from fewer data because the network is more expressive as well as robust. Second,
we inform the training with the acoustic conservation laws with penalty terms in the loss function.
This term regularizes the predictions in the case of noisy and scarce data, and enables reconstruction
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of unobserved states. Typically, in thermoacoustics experiments, only pressure measurements are
available. Third, inspired by Galerkin decomposition, we design a neural network with temporal and
spatial branches (Galerkin neural network), which spans a physical function space via the choice of
acoustic eigenmodes as the spatial basis. In order to account for nonideal boundary conditions that
occur when the acoustic waves are not fully reflected at the boundaries, we add a linear mode in the
pressure modes, which captures the nonzero pressure fluctuations at the inlet and outlet for near-
ideal conditions without requiring data from the boundaries. We consider two test cases: (i) twin
experiments on synthetic data from a Rijke tube with a nonlinear, time-delayed heat-release model
with Galerkin discretization of the PDEs, and (ii) higher-fidelity data generated by a thermoacoustic
network model with a kinematic flame model that takes into account mean-flow effects. The first
case shows that the standard feedforward neural networks fail at extrapolation, while periodically
activated networks can extrapolate and reconstruct accurately from partial measurements. On this
test case, we also demonstrate the long-term extrapolation capability of Galerkin neural networks
on periodic and quasiperiodic solutions, while for chaotic solutions, we recover the dominant
components in the frequency spectrum. In the second test case, we show the generalizability and
robustness of the Galerkin neural networks to higher-fidelity data, which can be noisy and contain
only pressure measurements. Hard-constraining neural networks with prior knowledge reduce the
required network size, search space of hyperparameters, as well as the amount of data required
for training. This work opens up possibilities to learn the nonlinear dynamics of thermoacoustics
using physics-aware data-driven methods. Future research directions include testing the method for
geometries with cross-section changes, in which the predetermined spatial branch of the Galerkin
neural network can be extended with more trainable parameters.
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APPENDIX A: CALCULATION OF MODAL DAMPING AND HEAT-RELEASE TERMS
IN THE PHYSICS-INFORMED LOSS

1. Modal damping

The modal damping is defined as a multiplication in the frequency domain and a convolution in
the spatial domain with the pressure. Using an FNN, we predict the pressure at a given time in the
spatial domain. In order to compute the contribution of the damping in the physics-informed loss, at
each training step, we will transform the pressure predicted in the spatial domain to the frequency
domain via fast Fourier transform (FFT), compute the damping in the frequency domain, and then
transform the result back to the spatial domain. When sampling from signals, the distinct Fourier
frequencies are given as ωk = k 2π

KTs
, k = 0, 1, . . . , K/2, where K is total number of samples, Ts is

the sampling time, and KTs gives the length of the sampled signal. During simulation, we considered
Ng Galerkin modes. So, in our case, we set K � 2Ng. Notice that the spatial domain is [0,1], while
the wavenumbers of the Galerkin modes have a resolution of π , which is only half period in this
domain. Consequently, the resolution of the Fourier frequencies must be set to 2π

KTs
= π and, hence,

KTs = 2, which means that the FFT must be taken over a domain of [0,2], such that the samples are
at xk = k 2

K , k = 0, 1, . . . , K − 1, and we have one period of discrete samples. One could predict
the pressure over the [0,2] domain, but this could lead to errors as there are no training data in this
region. Instead, we first predict over the original [0,1] domain and then stack this prediction with
its negative symmetric with respect x = 1, since we know that pressure is given as a sum of sines,
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FIG. 19. Effect of hyperparameter a in the sine activation 1
a sin(az).

which is an odd function. So, we have

p̂′ =
{

p̂′(xk, t )

∣∣∣∣xk = k
2

K
, k = 0, 1, . . . , K − 1, K � 2Ng

}
, (A1)

and its Fourier transform F ( p̂′). Now, we take only the part of F ( p̂) that corresponds to the positive
frequencies and elementwise multiply it with the damping modes ζ ,

ξ j = F+
j ( p̂′)ζ j, j = 1, 2, . . . , Ng. (A2)

In the next step, we take the inverse Fourier transform of the convolution. As a matter of fact, the
training is done in batches, so the x locations we are interested in calculating the effect of damping
at may not necessarily collide with the spatial grid that we have previously constructed. So, we will
do the inverse Fourier transform for these locations in the training batch. Ultimately, the damping
term is found as

ζ p′(x) = 1

2K

Ng∑
j=1

ξ je
i jπx + ξ ∗

j e−i jπx, (A3)

where ξ ∗ denotes the complex conjugate of ξ . We use the contribution of damping in the residual of
the energy equation (11b) when computing the physics-informed loss (10).

2. Heat release

Although the heat-release term acts as a Dirac delta in the spatial domain, the solver implements
Galerkin decomposition, which projects this term onto a truncated set of modes. Plugging back the
decomposition (12) in the left-hand side of the energy equation (11b), the remaining heat-release
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TABLE IV. Computation time of twin experiments with 13 pressure sensors. Training with a batch size of
32 for 2000 epochs (on Intel Xeon(R) Gold 5218R CPU at 2.10 GHz × 80).

Network name Description Training time

PI-P-GalNN 10 Galerkin modes, 1 harmonic layer with 40 neurons 1 h, 50 min
PI-GalNN 10 Galerkin modes, 2 layers with 16 neurons 1 h, 50 min
PI-P-FNN 3 layers with 32 neurons 2 h, 40 min

term is equal to
∑Ng

j=1 2q̇′ sin( jπx f ) sin( jπx), which is the effective term in the simulations. As the
number of Galerkin modes approaches to infinity, this approaches the Dirac delta. However, from a
practical point of view, the number of modes in the simulation is finite, thus we use this expression
to find the contribution of heat release in the residual of the energy equation (11b) when computing
the physics-informed loss (10).

APPENDIX B: EFFECT OF HYPERPARAMETER IN THE SINE ACTIVATION

We observe that varying hyperparameter a in the sine activation formulated as 1
a sin(az) affects

the frequency of the learned functions. Hence, it is a hyperparameter that requires tuning. Figure 19
illustrates this effect for the Rijke tube data discussed in Sec. V B for a = 1, 10, 20. Low a, a = 1,
results in a low-frequency model, whereas high, a = 20, results in a high-frequency model, which
can especially be observed in the pressure and velocity shapes in the spatial domain. We found the
optimum value for this data set as a = 10. Since the sampling frequency of the training data is high
enough, we do not observe the effect of high a in the time domain. Ziyin et al. [55] reported similar
findings in their studies when using the 1 + sin2(z) activation.

APPENDIX C: TRAVELING-WAVE SOLUTION TO THE HIGHER FIDELITY MODEL

In this model, the pressure and velocity are expressed as functions of two acoustic traveling
waves, which propagate up- and downstream of the tube. These waves are derived by applying
the method of characteristics to the acoustic wave equation and defined as f and g, with propa-
gation velocities ˜̄c1 ± ˜̄u1 in the upstream region x̃ � x̃ f , and h and j, with propagation velocities
˜̄c2 ± ˜̄u2 in the downstream region x̃ � x̃ f . This model can also account for nonideal open boundary
conditions via reflection coefficients Rin and Rout at the inlet and outlet, f (t̃ ) = Ring(t̃ − τ̃u) and
j(t̃ ) = Routh(t̃ − τ̃d ), where τ̃u and τ̃d are the traveling times of the waves from the flame to the up-
and downstream boundaries, respectively. If the boundary conditions are ideal, i.e., fully reflective,
then Rin = Rout = −1. The full set of equations that describe the dynamics of the waves is given by

X

[
g(t̃ )

h(t̃ )

]
= Y

[
g(t̃ − τ̃u)

h(t̃ − τ̃d )

]
+

[
0

˜̇q− ˜̄̇q
Ã1 ˜̄c1

]
, (C1)

where the matrices X and Y are functions of the mean-flow variables and are obtained from the
jump conditions. We generate the data with the code implementation of the kinematic flame model
from [54] (code available at [66]).

TABLE V. Computation time of nonideal boundary condition higher-fidelity experiments with five pres-
sure sensors. Training with a batch size of 32 for 10 000 epochs (on Intel Core(TM) i7-9750H CPU at
2.60 GHz × 6).

Network name Description Training time

PI-P-GalNN 15 Galerkin modes, 1 harmonic layer with 10 neurons 20 min
PI-P-FNN 4 layers with 32 neurons 35 min
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FIG. 20. Reconstruction from only pressure measurements with physics-informed periodic GalNN. From
left to right: [(a)–(d)] 2 sensors, 5 Galerkin modes; [(e)–(h)] 5 sensors, 10 Galerkin modes; [(i)–(l)] 11 sensors,
20 Galerkin modes. From top to bottom: Acoustic pressure, error between ground truth and prediction, pressure
prediction at a fixed time instance, and error at a fixed time instance, t = 1.5.

APPENDIX D: TRAINING COSTS

The training costs associated with some of the characteristic cases are provided in Tables IV
and V.

APPENDIX E: RECONSTRUCTION FROM PARTIAL MEASUREMENTS
WITH VARYING NUMBER OF SENSORS

Reconstruction from only pressure measurements with physics-informed periodic GalNN is
shown in Figs. 20 and 21.
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−1
0
1

×10−4

(f)

0.0 0.5 1.0
x

−2.051

−0.997

0.057

1.111

2.165×10−2
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FIG. 21. Reconstruction from only pressure measurements with physics-informed periodic GalNN. From
left to right: [(a)–(d)] 2 sensors, 5 Galerkin modes; [(e)–(h)] 5 sensors, 10 Galerkin modes; [(i)–(l)] 11 sensors,
20 Galerkin modes. From top to bottom: Acoustic velocity, error between ground truth and prediction, velocity
prediction at a fixed time instance, and error at a fixed time instance, t = 1.5.
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