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Although the mechanics of jumping on water dominated by surface tension are well
established, the understanding of water jumping dominated by drag force, as observed
in organisms like fishing spiders, remains incomplete despite its potential to achieve
high jumping velocity. Here, we demonstrate that simple elastic hoops can achieve drag-
dominated jump on water, and use this model system to construct a fundamental framework
to theoretically analyze jump dynamics propelled by form drag. In addition to numerically
solving the hoop trajectory while interacting with water, we show that the take-off velocity
scaled by the hoop’s free vibration velocity depends solely on the solid-fluid density ratio.
A comparison with hoop jumps on solid ground reveals that the hoop jumps on water
are delayed with a lower jumping efficiency. This work can not only contribute to the
development of efficient and easily constructible biomimetic robots but also provide a
foundation for understanding the optimal design principles and evolutionary pressures that
shape biological jumpers.

DOI: 10.1103/PhysRevFluids.8.100503

I. INTRODUCTION

Locomotions of biological creatures on the surface of water have been actively studied for
decades, whose examples include skating [1], meniscus climbing [2], and jumping [3–5] of semi-
aquatic arthropods, running of basilisk lizards [6], and walking of dolphins. In particular, arthropods
such as springtails [7,8], water striders [3], and fishing spiders [5] jump on water to escape predators
approaching from below the water surface. For an animal to jump on the water, upward momentum
provided by the water should be large enough to launch the creature in the air, a rare feat defying
our common notion that water is easily breakable. The forces from water generated as the reaction
to the driving stroke of jumping animals can come from surface tension, buoyancy, drag, and added
inertia.

It is now well established that small insects like springtails and water striders, whose leg stroke
speed is not high enough to induce significant hydrodynamic drag, rely on surface tension of
water to jump [3,4]. A robotic insect emulating the surface-tension-dominated jumping was also
demonstrated [9], exemplifying that biomimetic machines can help us to clearly understand the
physical principle at work in the biological world. It was recently suggested that the drag-dominated
jumpers can exhibit higher take-off velocity than surface-tension dominated ones owing to greater
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TABLE I. Mechanical properties and thickness of the hoops.

Material Density (kg/m3) Young’s modulus (GPa) Thickness (µm)

PI 1420 2.91 125
SUS 8000 190 50

momentum transferred to the water [10]. However, the detailed dynamics of the drag-dominated
water jumps of either biological creatures, e.g., fishing spiders and pygmy mole crickets [11], or
artificial robots [10] are still incomplete when compared to the level of our understanding on the
surface-tension dominated jumping.

Here, we investigate the jumps on water thrusted by hydrodynamic drag with an artificial model,
an elastic hoop, whose jump dynamics on the ground was elucidated previously [12]. Its simple ge-
ometry and kinematics allow us to grasp detailed understanding of the jumping dynamics including
the temporal evolution of wetted length and location of mass center, take-off velocity, and even the
jumping efficiency. Using a jumper that can also work on ground allows us to find the difference of
jump behavior on ground and water. Our artificial jumper not only can serve as an efficient yet easy-
to-build biomimetic robot, but also will help us to build a model to understand its biological coun-
terparts, whose optimal design principle and evolutionary pressure to shape them still await to be
discovered.

In the following, we start with describing the experimental procedure to measure the jump of
the artificial jumper. After clarifying the dominant force acting on the jumper and performing
dimensional analysis, we mathematically model the hoop dynamics and compare our theoretical
and experimental results. In addition to solving the differential equations, we discuss functional
dependence of the take-off velocity on various parameters using dimensional analysis and physical
arguments. We assess the jump efficiency of the elastic jumper based on our model, and conclude
with discussing the implications of this work.

II. EXPERIMENTAL

The hoops, our model jumper, are made of thin strips of either polyimide (PI) or stainless steel
(SUS 304) with 2 mm of width (b), which are bent and glued in circle with radius r0. The density
(ρs), Young’s modulus (E ), and the thickness (τ ) of PI and SUS strips are listed in Table I. The
outer surfaces of the hoops are treated with superhydrophobic coating (Ultra-Ever Dry), to have the
similar wetting condition as fishing spiders [13]. This super water repellency minimizes water-solid
adhesion [14] and prevents breaking of water surface that can cause significant water splash and
deterioration of jump efficiency. A cotton thread shorter than the hoop diameter deforms the circular
hoop as shown in Fig. 1(a). Upon floating a hoop on water, an infrared laser (IRCL-1W-1064,
CrystaLaser) burns the center of the thread to set the hoop into motion as its elastic strain energy is
released.

The hoop is initially in a peanut shape with the waist length of 2r0 − δ, but becomes elliptic
instantaneously upon release to assume a shape as shown in Fig. 1(b). We vary the hoop radius r0

from 10 to 18 mm and the initial deflection δ from 0.6r0 to r0. In Figs. 1(a) and 1(b), the height
of the center of mass from the unperturbed free surface is denoted by y, and the distance from the
lowest point on the vertical axis to the center of mass is denoted by l . We define h = l − y. We
denote the angle from the vertical axis to an edge of the wetted length by α. At an arbitrary point
on the wetted length with the angle from the vertical axis θ , the distance from the hoop center and
the unperturbed free surface is respectively s and d . The subsequent motion of the hoop and water
before and after takeoff, as shown in Fig. 1(c), are imaged by a high-speed camera (Fastcam SA-Z,
Photron) running at a frame rate up to 4000 s−1.
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FIG. 1. (a) A schematic of the initial configuration of an elastic hoop floating on water. (b) The hoop shape
during interaction with water. (c) Side view of the hoop. (d) Overlapped images of a SUS hoop of radius
r0 = 14 mm with the initial deformation δ = 14 mm, which is set into motion at t = 0 upon laser cutting the
thread and disengages from the water surface at t = 3.5 ms. The water images are also overlapped.

III. MODELING HOOP DYNAMICS ON WATER

We first consider the forces acting on the hoop before it disengages from the water in order
to identify the dominant reaction force provided by water. On a floating body, the weight, Fg,
buoyancy Fb and the surface tension force Fs act, whose magnitudes are respectively scaled as
Fg ∼ 2πr0τbρsg, Fb ∼ ρ f gbhlw, and Fs ∼ σ lw. Here, ρ f is the water density, g is the gravitational
acceleration, lw is the wetted length (∼r0), and σ is the surface tension coefficient of water. As the
hoop vibrates from the initially bent configuration, the wetted part experiences drag consisting of
form drag Fd and viscous drag Fv , which are scaled as Fd ∼ ρ f blwu2

v and Fv ∼ μuvlw. Here, uv is the
velocity of hoop bottom due to vibration and scaled as (δ/2)ωn, where ωn is the characteristic scale
of the natural frequency of vibration for an elastic hoop [15,16]: ωn = (E/ρs)1/2τ/r2

0 . In addition,
the acceleration of the wetted part of the hoop induces the acceleration of the surrounding fluid,
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requiring us to consider the added inertia, Fa ∼ ρ f bτ lwa with a being the acceleration scaled as
a ∼ (δ/2)ω2

n.
For the hoops used in our experiments, whose properties and dimensions are given above, we find

the force ratios relative to drag are such that Fg/Fd ∼ 10−2, Fb/Fd ∼ 10−2, Fs/Fd ∼ 10−2 − 10−1,
Fv/Fd ∼ 10−3, and Fa/Fd ∼ 10−2. It implies that the form drag dominates the reaction of water to
the hoop motion, and thus we neglect the other forces in our model. Then the take-off velocity of
a hoop from the water surface, ut , must be a function of the following variables: E , ρ f , ρs, Cd ,
τ , r0, and δ. Here, Cd is the drag coefficient of the hoop bottom defined as Cd = 2Fd/(ρ f blwu2

v ).
Dimensional analysis [17,18] reveals that the dimensionless take-off velocity ut/(E/ρs)1/2 depends
on the following dimensionless parameters: ρs/ρ f , Cd , τ/r0, and δ/r0.

Because the hoop moves upon release from its compressed state by vibration, the intrinsic
velocity scale in this problem is given by the characteristic vibration velocity: uv = (δ/2)ω. Here,
ω is the damped natural frequency of a floating hoop. Our experiments with various sizes of PI
and SUS hoops that float on water reveal that ω can be expressed as ω = γωn with γ = 0.55. We
now seek functional dependency of a scaled take-off velocity ut/uv = 2ut r2

0/[(E/ρs)1/2γ τδ] on
dimensionless parameters. Our dimensional analysis above now tells us that ut/uv depends only
on the solid-fluid density ratio ρs/ρ f as long as Cd is constant: ut/uv = f (ρs/ρ f ). To go beyond
these scaling estimates and analytically describe the hoop dynamics, we compute the location of the
hoop’s center of mass as a function of time and take-off velocity in the following.

We start from the equation of motion for a hoop of mass m that pushes the water surface over a
wet arc, −α < θ < α, to experience an external force due to form drag:

mÿ =
∫ α

−α

1

2
Cdρ f bru2dθ, (1)

where ÿ = d2y/dt2 with t being time and u(θ, t ) the local downward velocity of hoop pushing the
water surface. We assume r = r0 to simplify our evaluation of the arc length as the hoop vibrates.
For example, the initial wet length of a SUS hoop of r0 = δ = 14 mm was measured to be 27 mm
with α = 58◦, which is only 5.6% shorter than the circular arc length with the same r0 and α. We
estimate the value of Cd for the floating strip, which pushes water in the front while exposed to air in
the rear, using that of a fully submerged semicircular nose section, Cd = 1.16 [19]. It is because both
of them confront water in the frontal curved surface but experience insignificant pressure variation
in the rear.

To solve Eq. (1) for y, we need information of u as a function of θ and t , and α as a function of
t . The experimental images of a hoop starting its motion at t = 0 on the water surface, Fig. 2,
show that the hoop goes through vibration of the second mode (prolate-oblate shape change).
For a thin ring under such vibration, the radial and circumferential components of displacement
are respectively written as xr (θ, t ) = 2B cos 2θ cos(ωt + ε) and xθ (θ, t ) = −B sin 2θ cos(ωt + ε),
where B is the vibration amplitude and ε is the phase adjustment to match the initial condition
[20]. With xr (0, 0) = δ/2 and xr (θ, π/(2ω)) = 0, we obtain B = δ/2 and ε = 0. Thus, we write
xr (θ, t ) = (δ/2) cos 2θ cos ωt , xθ (θ, t ) = −(δ/4) sin 2θ cos ωt , and l = r0 − (δ/2) cos ωt . The dis-
tance of a point in the wetted region from the center of mass, s, as indicated in Fig. 1(b), is
s = (r0 − xr ) cos θ − xθ sin θ , and its distance from the unperturbed free surface d = s − y. As
the vertical component of the hoop velocity with respect to the center of mass is ṡ at θ , we get
u = ḋ = ṡ − ẏ. Then Eq. (1) is written as

ÿ = Cdρ f br0

2m

∫ α

−α

[
ωδ

2

(
cos 2θ cos θ − 1

2
sin 2θ sin θ

)
sin ωt − ẏ

]2

dθ. (2)

We can relate y to α because the value of s when θ = α corresponds to y:

y = r0 cos α − δ

2

(
cos 2α cos α − 1

2
sin 2α sin α

)
cos ωt . (3)
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FIG. 2. Interaction of the vibrating elastic hoop shown in Fig. 1(c) with the water surface. The initially
oblate hoop pushes the water surface by vibration, so that the hoop bottom moves downward initially. As the
center of mass of the hoop rises because of the upward thrust provided by the water drag, the hoop bottom
eventually stops descending but begins rising, corresponding to takeoff (t = 3.5 ms). The hoop then rises into
the air while continuing vibration.

Differentiating Eq. (3) with respect to t twice, we get the following differential equation:

ÿ + G1α̈ + G2α̇
2 + G3α̇ + G4 = 0, (4)

where

G1 = ω2

[
r0 sin α + δ

4
cos ωt (−4 sin α cos 2α − 5 cos α sin 2α)

]
, (5)

G2 = ω2

[
r0 cos α + δ

4
cos ωt (13 sin α sin 2α − 14 cos α cos 2α)

]
, (6)

G3 = ω2 δ

2
sin ωt (4 sin α cos 2α + 5 cos α sin 2α), (7)

G4 = ω2 δ

4
cos ωt (sin α sin 2α − 2 cos α cos 2α). (8)

Simultaneously solving the two second-order differential equations, Eqs. (2) and (4), with the
initial conditions of y(0) = yi, ẏ(0) = 0, α(0) = αi, and α̇(0) = 0, yields y and α as functions of
time. The initial values of yi = l (0) − h(0) and αi are a consequence of the balance of hoop weight
and hydrostatic force from buoyancy and surface tension. The characteristic depression of the water
surface, ĥ, because of the hoop weight can be scaled as ĥ ∼ (ρs/ρ f )τ using Keller’s theorem [21]
stating that the weight of the displaced water volume by the floating solid and deformed meniscus
(∼ρ f gĥr0b) is equal to the solid weight (2πρsgr0bτ ). In our experimental conditions, ĥ < r0/10,
and we use the experimentally measured values of l (0) and α(0) to get yi. We numerically calculate
y and α as time marches, and find the take-off velocity at the moment the hoop bottom no longer
descends but rises.

IV. RESULTS

Figures 3(a)–3(d) plot typical trajectories of a SUS hoop as a function of time before takeoff. We
see in Fig. 3(a) that the experimentally measured hoop bottom’s relative distance from the center of
mass follows the sinusoidal curve, l = r0 − (δ/2) cos ωt . While the hoop keeps extending vertically
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FIG. 3. (a) Hoop bottom’s relative distance along the vertical axis from the center of mass, l , versus time.
The solid line corresponds to l = r0 − (δ/2) cos ωt . (b) Hoop bottom’s depth from the unperturbed free surface,
h, versus time. (c) The half central angle of wetted portion of hoop, α, versus time. (d) The height of center
of mass from the unperturbed free surface, y, versus time. For (a)–(d), a SUS hoop of radius r0 = 18 mm with
the initial deformation δ = 11.2 mm was used. (e) Dimensionless height of the center of mass, y/r0, versus the
dimensionless time, ωt/π , for various hoops. (f) Theoretical take-off velocity of SUS hoops of r0 = 14 mm as
a function of the initial deflection δ.

to change from oblate to prolate configuration by vibration, the hoop bottom tends to push the water
surface down, as shown in the first row of Fig. 2 and the increasing depth of hoop bottom, h, in
Fig. 3(b). However, the half central angle of the wetted arc, α, in Fig. 3(c) shows that α decreases
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spond to experimental data and the solid lines are best fitting lines for each density ratio. (b) The translational
kinetic energy versus the elastic strain energy. The slopes of the best fitting lines of each hoop material
correspond to the jumping energy efficiency.

as the hoop grows more prolate with time. We only plot the computed results of h and α because
the optical blurriness below the free surface prevents exact evaluation of the wet edge of the hoop
through image analysis. Owing to the upward thrust provided by the water drag in reaction to the
downward pushing of the hoop’s wetted portion, the height of center of mass y keeps increasing, as
shown in Fig. 3(d). We see that our theoretical prediction of y, assuming drag as the dominant force
from water, match well with the experimental data.

We perform computation until the hoop bottom stops descending, or when ḣ = 0 in Fig. 3(b),
which corresponds to takeoff. We indicate the moments of takeoff as crosses in Fig. 3. It is
interesting to note in Fig. 3(c) that the hoop still touches the water surface over a finite angle until
take-off occurs, in contrast with the case where a hoop compressed on the solid ground jumps. In
such ground jumping, the hoop vibrating on the ground takes off when it becomes a perfect circle
and makes a point contact with the ground [12].

Figure 3(e) shows the dimensionless height of center of mass, y/r0, versus dimensionless
time, ωt/π , for different hoop conditions. In addition to favorable agreement of our theory and
experiment, we see that all the hoops take off when π/2 < ωt < (3/4)π . This is also in contrast
with the jumps on ground, where the hoops take off when ωt is exactly π/2 or when recovering a
perfect circular shape [12]. The delay of takeoff on water in comparison to that on ground is caused
by the fluidity of base that deforms and flows as the hoop’s wet portion pushes down, resulting in a
mismatch of oscillation frequencies of hoop and water, and the reduction of propulsive force. Thus,
the dimensionless take-off times on water differ depending on hoop conditions.

Figure 3(f) plots the experimentally measured take-off velocity, ut , of SUS hoops with a constant
radius as a function of initial deflection. We also plot the theoretical calculation results for the
corresponding conditions as solid lines. Both experiment and theory reveal that ut tends to increase
linearly with δ, with the maximum error of the simulation being 17% of the experimental data. The
relatively large discrepancies between theory and experiment for large δ are supposed to come from
geometric nonlinearity that falls beyond the hoop model of Love [20].

We now turn to the dimensional analysis, which has predicted above that the dimensionless take-
off velocity ut/uv depends only on ρs/ρ f , so that ut/uv = f (ρs/ρ f ). Here f (ρs/ρ f ) is a function of a
single variable ρs/ρ f , which can only be determined either by experiments or computations. Plotting
the experimentally measured take-off velocity ut of PI and SUS hoops versus the characteristic vi-
bration velocity uv = (δ/2)ω, in Fig. 4(a), we find ut of each hoop material to be indeed linearly de-
pendent on uv with different slopes depending on ρs/ρ f : f (ρs/ρ f ) = 0.32 for PI and 0.24 for SUS.
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The jumping hoop converts the elastic strain energy stored in the initially deflected configuration
into the kinetic energy associated with translational and vibrational motions. Here, we are interested
in the conversion efficiency of the bending strain energy Eb to the translational energy at takeoff, Et :
η = Et/Eb. It is known that the elastic strain energy of a hoop can be obtained by assuming the hoop
as a spring [12,20] with the spring constant of k = 0.56Ebτ 3/r3

0 : Eb = kδ2/2. As the translational
kinetic energy is given by Et = mu2

t /2, we find η = 3.39 f 2(ρs/ρ f ). Namely, the jumping efficiency
depends only on ρs/ρ f while being independent of E , and geometric parameters such as r0, τ , and
δ. We find ηP = 0.35 and ηS = 0.20 for PI and SUS hoops, respectively, regardless of their radius,
thickness, and initial deflection as long as the drag is a dominant reaction force to the hoop vibration
and Cd = 1.16. Figure 4(b) plots the experimental kinetic energy based on the measured take-off
velocity versus the initial strain energy. The empirical data of each material indeed tend to gather
on straight lines with the slopes ηP and ηS , as theory predicts.

The insensitiveness of the jump efficiency to the hoop’s elastic properties and dimensions is
because the take-off velocity is scaled as the elastic vibration velocity of hoop. We note that on the
rigid ground, the jump efficiency was found to be a constant of 0.57 for the absence of the effects
of the base [12]. The water jumping efficiency is lower than the jumping efficiency on ground,
implying significant energy loss due to energy transfer to water as well as to vibration. When the
liquid density is lower, which results in a higher ρs/ρ f , the form drag gets weaker, leading to a lower
jump efficiency. In addition, the jump efficiency decreases as the solid density increases because
much energy is required to set heavy hoops into motion.

We further note that the robotic insect’s jump on water dominated by surface tension exhibits
the same jumping efficiency as its jump on ground [9]. This implies that as long as the jumper uses
the water as a springboard without breaking the water surface and causing too much flow, the water
does not need to be considered as a mere damping medium. In the current drag-dominated jumps,
however, the pressure difference of the wet front and dry rear sides of the floating strip is supposed
to be a major source of reaction force, making the water as a damping medium. Although the jump
efficiency might be lower for drag-dominated jumps than for surface-tension-dominated jumps, the
jump height can be greater for drag-dominated jumps [10] because stronger momentum (thanks
to high actuation velocity) can be transferred to water without worrying about breaking the water
surface.

V. CONCLUSIONS

In summary, we have shown that centimetric elastic hoops simply made by bending and gluing
thin strips can jump on water as thrusted by form drag. These simple mechanical models convert the
initial strain energy into damped free vibration, so that a wetted portion pushes the water surface to
generate sufficient form drag to launch the hoop in the air. Without resorting to complicated design
and fabrication of light-weight actuators, the elastic hoops allow us to mimic drag-based jumping
of semi-aquatic arthropods like fishing spiders. The dynamic modeling of hoop motion based on the
hoop vibration equation and Newton’s second law of motion resulted in the temporal evolution of
the height of hoop center that is consistent with experimental measurements. Therefore, this work
presents a fundamental framework to mimic and understand drag-based water jumpers, which can
be extended to both natural and artificial jumpers with more delicate designs.

We conclude by discussing the advantages, limits, and implications of our experimental system
and theoretical model. Our jumpers, elastic hoops, are convenient to fabricate and model mainly
because the elastic strip can both store and release energy, or can act as both an energy storage
device and actuator. The hoop vibration resulting from the interconversion between strain and
kinetic energy can be modeled by theory of elasticity. The theory allows us to obtain the functional
dependency of the undamped natural frequency (ωn) on various parameters, but we need separate
experiments to find the damped natural frequency (ω), which determines how the hoop actuates.
This is equivalent to previous research describing the appendage motion with respect to the water
surface a priori in order to find the trajectory of water jumpers [3,4,9]. An intensive computational
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model for the floating elastic hoop’s motion accounting for the local fluid-structure interaction
(FSI) of the infinitesimal section of hoop with surrounding water flow may eliminate the need of
measuring ω, and allow the evaluation of energy transfer to water. However, here we employed
measured values of ω and used an integral approach, Eq. (1), so as to focus on the drag-dominant
jump principle and the hoop trajectory.

A comparison between hoop jumps on water using the form drag and on rigid ground has allowed
us to uncover the impact of a fluid medium on jump dynamics. Notably, the take-off is delayed,
and the jump efficiency is lower when jumping on water in comparison to jumps on solid ground.
Besides the evident effects of water, which deforms and flows in response to the hoop’s pushing
force, we found that the jump efficiency on water is influenced by the ratio of solid-fluid densities,
whereas it remains constant (0.57) on the ground. Lighter hoops exhibit higher jump efficiency on
water, leading to PI hoops outperforming SUS hoops despite PI’s low elastic modulus. This guides
us to speculate that weight reduction plays a more significant role for aquatic jumpers compared
to terrestrial jumpers, offering an intriguing perspective for understanding the biological design
principles of aquatic jumpers and for consideration in the design of jumping robots.

Now that we have models for the surface-tension-dominated jump [3,9] and the drag-dominated
jump on water, it is natural to proceed to consider a regime where both the surface tension and
the drag are important, i.e., when the Weber number, We = ρ f u2b/σ , is of the order of unity [22].
Experiments using our hoops with reduced initial deformation, elastic modulus, thickness, and width
may allow us to investigate the corresponding regime. Understanding of such jumps would require
us to take into account the deviation of meniscus shape from the static shape due to flow, beyond
mere superposition of capillary and drag forces, which presents a complicated but worthy topic of
further research.
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