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Recently, Shete et al. [Phys. Rev. Fluids 7, 024601 (2022)] explored the characteristics
of passive scalars in the presence of a uniform mean gradient, mixed by stationary isotropic
turbulence. They concluded that at high Reynolds and Schmidt numbers, the presence
of both inertial-convective and viscous-convective ranges renders the statistics of the
scalar and velocity fluctuations to behave similarly. However, their data included Schmidt
numbers of 0.1, 0.7, 1.0, and 7.0, only the last of which can (at best) be regarded as mod-
erately high. Additionally, they do not consider already available data in the literature at
substantially higher Schmidt number of up to 512. By including these data, we demonstrate
here that the differences between velocity and scalar statistics show no vanishing trends
with increasing Reynolds and Schmidt numbers, and essential differences remain intact at
all Reynolds and Schmidt numbers.
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I. INTRODUCTION

In Ref. [1], Shete et al. investigate the mixing of a passive scalar θ (x, t ) in isotropic turbulence,
driven by a uniform mean gradient ∇� = (G, 0, 0):

∂θ/∂t + u · ∇θ = −u · ∇� + D∇2θ, (1)

where D is the scalar diffusivity and u(x, t ) is the underlying turbulent velocity field governed
by the incompressible Navier-Stokes equations. The mixing characteristics are governed by two
parameters: the Schmidt number Sc = ν/D, ν being the kinematic viscosity of the fluid and the
Taylor-scale Reynolds number Reλ = u′λ/ν, where u′ is the root-mean-square velocity fluctuation
and λ is the Taylor length scale. The data of Ref. [1], obtained from state-of-the-art direct numerical
simulations (DNS), correspond to Reλ = 633 and Sc = 0.1, 0.7, 1.0, 7.0. The Reynolds number is
high enough to display inertial range characteristics, but the Schmidt number range is very limited.
Given that turbulent mixing for Sc > 1 is fundamentally different from that for Sc < 1, the authors
essentially have a single data point at Sc = 7 in the Sc > 1 regime, making their inferences unsound.
Further, the authors did not include the data already available in the literature at much higher
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Schmidt numbers. Here, we include them as well and demonstrate that the conclusions in [1] are
not correct and need to be revised.

The analysis in Ref. [1] is built around the following three points: (i) the skewness of scalar
gradients; (ii) a comparison of the intermittency exponent of scalar dissipation rate to that of energy
dissipation rate; and (iii) a comparison between the probability density functions (PDFs) of scalar
and energy dissipation rates. Note that for an eddy of characteristic size r, inertial and inertial-
convective ranges are both defined by the condition ηK � r � L, where ηK is the Kolmogorov
length scale, marking the viscous cutoff, and L is the large scale at which the energy is injected; the
viscous convective range is defined by ηB � r � ηK , where ηB = ηK Sc−1/2 is the Batchelor length
scale. Evidently, a fully developed viscous convective range requires Sc � 1 (and unlikely to exist
at Sc = 7). Here, we assess each of the three points above and show that fundamental differences
remain between velocity and scalar statistics even at high Sc, essentially demonstrating—contrary
to the conclusion of Ref. [1]—that velocity and scalar statistics are never similar.

II. ANISOTROPY OF SCALAR GRADIENTS

It is now well known that local isotropy is violated for a passive scalar driven by a uniform mean
gradient [2–4]. Specifically, for the scalar gradient in the direction of the imposed mean gradient,
∇‖θ , the odd moments are nonzero of the order unity (whereas local isotropy requires them to be
zero). This violation of local isotropy can be traced to the existence of so-called ramp-cliff structures
[2,4,5], resulting from a direct influence of the imposed large-scale mean gradient on the small-scale
scalar field.1 Based on the specific ramp-cliff model of Ref. [4], Shete et al. reported the following
expression (Eq. (10) of Ref. [1]):

〈(∇‖θ )p〉
〈(∇‖θ )2〉p/2

∼ Sc−1/2Re(p−3)/2
λ , p = 3, 5, 7 . . . , (2)

which quantifies the scaling of odd-moments of ∇‖θ . Using only two data points for Sc = 1, 7 and
restricting the testing for p = 3 (see Fig. 7 of Ref. [1]), the authors concluded that Eq. (2) is valid.

We first note that the result in Eq. (2), implicitly given in Ref. [4], was explicitly derived in
[5], which Shete et al. did not recognize. Additionally, the authors also ignore that Eq. (2), along
with the underlying assumptions, was rigorously tested in Ref. [5] by using DNS data over a large
range of Schmidt numbers Sc = 1 − 512 (at Reλ = 140) and also for moment orders p = 3, 5 and 7.
Comprehensive details about the DNS and numerical methods are available in Refs. [6–8], whereas
the database along with simulation parameters is outlined in Refs. [5,9]. In Ref. [5], it was found
that the original ramp-cliff model required modifications and the scaling of odd moments of ∇‖θ is
better described by the following expression:

〈(∇‖θ )p〉
〈(∇‖θ )2〉p/2

∼ Sc−1/2+α Re(p−3)/2
λ , for p = 3, 5, 7. . . . (3)

where the new exponent on Sc, with α ≈ 0.05, represents a slightly weaker slope compared to −1/2
in Eq. (2). As shown in Ref. [5], this implies that a new scale ηD = ηBScα (α ≈ 0.05) marks the
true diffusive cutoff scale in the scalar field (instead of ηB). The difference between ηB and ηD arises
because the scalar dissipation anomaly does not hold for large Sc [9–11]. A similar idea was also
proposed in an independent study [12].

A reinspection of Fig. 7 of Ref. [1] shows that the data for Sc = 1, 7 noticeably depart from the
Sc−1/2 scaling but are consistent with the updated result in Eq. (3). For completeness, we combine
the data for p = 3 for various Reλ and Sc in Fig. 1 (including previously unreported data at Reλ =
390, which is also large enough for inertial-range scaling to exist [9]). Evidently, the data at Reλ =

1In fact, even in absence of a large-scale mean gradient, similar structures are observed in the scalar field
[27].
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FIG. 1. Skewness of ∇‖θ as a function of Sc, for various Reλ. The data for Reλ = 390 and 633 are,
respectively, adjusted by factors 1. 2, and 0.9 to account for a very weak Reλ dependence, but do not have
any bearing on trends with Sc.

140 are consistent with modified Sc scaling in Eq. (3) (with α = 0.05). Data at higher Reλ are also
in agreement with the trends at Reλ = 140, though significantly higher Sc would be required to see
if α has a Reλ dependence. However, Shete et al. did not examine the results for p = 5, 7, nor tested
the veracity of the length scale ηD, both of which are especially important given the lack of high-Sc
data in their work.

Notwithstanding the quantitative differences, it is clear that the odd moments decrease as Sc
increases, presumably approaching zero, i.e., local isotropy is restored at infinite Sc. Shete et al.
invoked this notion to conclude that due to increased scale separation at high Reλ and Sc, the scalar
statistics become universal and hence similar to velocity statistics. This conclusion is unjustified
because even though local isotropy of the scalar is restored at Sc → ∞, scalar dissipation anomaly is
also simultaneously violated [9], while the dissipation anomaly for energy dissipation rate continues
to hold. This is a fundamental difference between velocity and scalar statistics, which implies that
they can never be similar at any Reλ and Sc. Shete et al. assume that scalar dissipation anomaly is
valid based on just two data points Sc = 1, 7, but also note that this assumption would not hold at
higher Sc (implying that their assumption and conclusions are contradictory).

III. INTERMITTENCY EXPONENT OF SCALAR AND VELOCITY GRADIENTS

With respect to the second point, Shete et al. investigated the intermittency of local averages
(over scale r) of energy dissipation εr and scalar dissipation χr . Following Kolmogorov’s refined
hypothesis [13], it is expected that:

〈
ε2

r

〉 ∼ r−μ,
〈
χ2

r

〉 ∼ r−μθ , (4)

for r in the inertial range (and the inertial-convective range for the scalar). Here, μ is the well-
known intermittency exponent for the energy dissipation and μθ for the scalar dissipation. Previous
studies have shown that μ ≈ 0.25 and μθ ≈ 0.35 for scalars corresponding to Sc ∼ 1 [14–16]. In
Fig. 8 of Ref. [1], Shete et al. extract the intermittency exponents using some approximations and
find that, indeed, μ ≈ 0.25, and μθ > μ for Sc � 1, in essential agreement with previous studies
[14–16]. Additionally, they infer that μθ decreases to 0.25 when Sc = 7, and conclude once again
that velocity and scalar statistics are similar at high Sc.
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However, this conclusion is erroneous because the authors simply captured the slight decline of
μθ at one Sc. Indeed, had they used data from larger Sc, it would have been clear that the scalar
intermittency exponents μθ does not stay matched with μ for large Sc, but monotonically decreases,
seemingly to zero as Sc → ∞; see Fig. 5 of Ref. [17]. Such an approach to zero is consistent with
the violation of scalar dissipation anomaly at infinite Sc. Since μθ > μ at Sc = 1 and μθ → 0 at
Sc → ∞, it naturally follows that μθ = μ at some intermediate Sc, which is precisely what Shete
et al. find for Sc = 7. But this does not imply that velocity and scalar statistics become similar at
high Sc.

IV. PDF OF SCALAR AND ENERGY DISSIPATION

For the third point, Shete et al. consider the PDFs of energy dissipation rate ε and scalar
dissipation rate χ . Based on their Fig. 9, they conclude that as Sc increases, the PDFs of χ and
ε approach each other. First, it can be clearly seen from their Fig. 9 that the two PDFs do not
coincide: the discrepancy may appear to be small because the plot shows the PDFs of logarithms of
ε and χ . The differences between the PDFs of ε and χ would be far more conspicuous. Furthermore,
it is well known that PDFs of highly intermittent quantities, such as ε and χ for Sc ∼ 1 are close
to log normal. Thus, it is not a surprise that all the PDFs shown in Fig. 9 of Ref. [1] are close to
each other. However, with much higher range of Sc (albeit at lower Reλ), it has been demonstrated
previously [18] that PDF of χ becomes increasingly different from that of ε as Sc increases. Thus
the behavior observed by Shete et al. in Fig. 9 is also just transitory for one Sc.

It is worth mentioning that, for both the intermittency exponent and PDF, Shete et al. utilize the
energy dissipation to represent small-scale velocity field. However, energy dissipation is not the only
measure of velocity gradients statistics. Other measures, such as the enstrophy � are equally viable.
In this regard, it is well known that � is more intermittent than ε; for instance, the intermittency
exponent of � is larger than that of ε [17,19]. Moreover, the two PDFs are distinctly different
from each other, even at very high Reynolds numbers [20,21]. Additionally, there are numerous
other distinct differences between the fine scale structure of scalar and velocity gradients, especially
considering the latter are strongly influenced by the nonlocal pressure field [22–25]. Thus, simply
comparing scalar dissipation with energy dissipation does not attest to the similarity of scalar and
velocity statistics.

V. VELOCITY AND SCALAR STRUCTURE FUNCTIONS

In addition to the above three points, we consider an additional argument, which was not
considered by Shete et al., but clearly negates their conclusion. The differences between velocity
and scalar fields can also be demonstrated by comparing their respective structure functions. If we
represent the velocity and scalar increments over scale r by δru and δrθ , respectively, then in the
inertial range, the pth-order structure functions are expected to follow the power laws:

〈(δru)p〉 ∼ rζp, and 〈(δrθ )p〉 ∼ rξp . (5)

If the velocity and scalar statistics are indeed similar at high Reλ and Sc, we should obtain ζp =
ξp. Note, ζp = ξp = p/3 for the K41 phenomenology, but it is well known that both exponents
strongly depart from K41 due to intermittency, with scalar exponents ξp departing more strongly
[3,26]. While previous studies were mostly restricted to Sc ∼ 1, the effect of increasing Sc was
more recently studied in Ref. [9]; where it was found that with increasing Sc, the deviation of ξp

from the K41 result is even stronger. In the limit of Sc → ∞, it was observed that ξp behave similar
to Burgers’ turbulence [9]. Essentially, the discrepancy between ζp and ξp increases with Sc; again
demonstrating that velocity and scalar statistics cannot be similar.
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VI. SUMMARY AND CONCLUSION

To summarize, by considering the entire data available, we have demonstrated that the velocity
and scalar fields depart increasingly from each other as the Schmidt number increases. This is not
a surprising conclusion but seems important to set right in view of the erroneous conclusion of
Ref. [1], based on simulations at just one value of Sc > 1.
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