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Generation of laminar vortex rings by an impulsive body force
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It is shown that laminar vortex rings can be generated by impulsive body forces having
particular spatial and temporal characteristics. The method produces vortex rings in a fluid
initially at rest, and once generated, the flow field automatically satisfies the boundary
conditions and is divergence-free. Numerical simulations and analytical models show that
the strength of these rings can be accurately predicted by considering diffusion alone,
despite the nonlinear nature of the generation process. A particularly simple model, which
approximates the source of vorticity within vertical slabs, is proposed. This model predicts
the ring circulation almost as accurately as a model that uses the exact geometry of the
source of vorticity. It is found that when the duration of the force is less than a timescale
based on the force radius and fluid viscosity, the ring circulation can be predicted accurately
using an inviscid model.
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I. INTRODUCTION

The vortex ring represents a particularly intriguing fluid dynamical flow that has attracted atten-
tion not only for its fundamental role in understanding vortex dynamics, but also for its technological
applications [1]. The study of ring dynamics, however, requires that their generation be efficient,
well-controlled, and repeatable. The earliest experiments [2] used the simple method of allowing a
dyed water droplet to enter a water column, while modern methods [3–7] use well-controlled piston
driven systems.

These experimental efforts have been complemented with numerical simulations which were
used to study the dynamics of both laminar and turbulent vortex rings and related vortical structures
[8–12]. Dommermuth [8] used a numerical method based on a Helmholtz decomposition to study
vortex pair interactions with free surfaces. The initial conditions were that of a vortex pair with a
Gaussian vorticity distribution, which had to be chosen carefully to be consistent with the boundary
conditions and the numerical method. Shariff et al. used finite-difference methods to study the
three-dimensional instability of vortex rings based on previously developed methods [13], which
also required compatibility between initial conditions and boundary conditions. Bergdorf et al. [11]
used a vortex method to simulate the evolution and decay of turbulent vortex rings using a Gaussian
initial condition for the vorticity distribution, which was chosen to satisfy a divergence-free velocity
field. These investigations, using both grid-based and vortex methods, all require specification of
initial velocity and vorticity fields consistent with boundary conditions and overall conservation of
mass.
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Alternate methods of generating vortex rings were used by Swearingen et al. [10] and Smith et al.
[12], who used impulsive body forces to generate laminar vortex rings to study vortex-free surface
interactions. In addition, body forces were employed to enforce no-slip boundary conditions using
a feedback scheme [14]. However, in the work of Swearingen et al. and Smith et al., the details
of the vortex ring generation process were not explored. For example, we would like to know the
spatial and temporal structure of the impulsive force needed to produce a ring of a given strength.
The goal of the present work, which focuses on the generation of laminar vortex rings, is to explore
this issue using both analytical methods and direct numerical simulations using a pseudospectral
method. The use of impulsive body forces to generate coherent vortices such as rings has some
advantages compared with methods in which initial conditions are specified. One such advantage is
that by using an impulsive force, a vortex-ring may be initiated in a fluid initially at rest, and once
generated, the flow field automatically satisfies the boundary conditions and is divergence-free. This
may be closer, compared to other methods, to the way in which vortex rings are actually generated
in experiments, and therefore it allows for the study of the generation process. We will show that it
is possible to accurately predict the strength of the ring a priori based on the specific properties of
the body force. It is important to note that such body forces can be generated experimentally [15,16]
using Lorenz forces in a conducting fluid to control wall-bounded turbulence. Although the forces
generated in this way were not impulsive, there does not appear to be any reason why Lorenz forces
could not be generated in this manner.

The remainder of this paper is organized as follows: In Secs. II and III we describe the general
equations of motion, a description of the temporal and spatial properties of the impulsive body
force, and general equations for the evolution of the circulation and kinetic energy. The numerical
approach is presented in Sec. IV, and in Sec. V we present visualizations of the flow fields, as well
as results for the temporal evolution of the circulation, core radius, and kinetic energy. In Sec. VI
we describe analytical models that can be used to predict the circulation of a vortex ring produced
by an impulsive body force. Comparison of the models with numerical simulations shows that the
ring circulation can be accurately predicted by considering only the diffusion of vorticity, in spite
of the existence of nonlinearity in the development of the ring.

II. GOVERNING EQUATIONS AND DESCRIPTION OF THE FORCE FIELD

In this work, we consider the motion of an incompressible Newtonian fluid governed by the
momentum and continuity equations given by

DV
Dt

= −ρ−1∇p + ν∇2V + f (1)

and

∇ · V = 0, (2)

where D/Dt = ∂/∂t + V · ∇V is the material derivative, t is time, V = (u, v,w) = (u1, u2, u3) is
the fluid velocity with components in the x, y, z or x1, x2, x3 directions, p is the pressure, f is a
body force per unit mass, ρ is the density, and ν is the kinematic viscosity. The right-handed x, y, z
coordinate system will be used interchangeably with the terms streamwise, vertical or wall-normal,
and spanwise, respectively.

Here we are interested in a body force f = f (x, t ) = ( fx, fy, fz ) that has the following properties:
(i) it is impulsive in the sense that it acts for a short time compared to other flow timescales, (ii) it
must generate fluid torques, and (iii) it should act in a localized region of space. By localized we
mean a region whose size is small compared to the computational domain or, in the case of a physical
experiment, small compared to the experimental facility. Physical examples of body forces include
those due to gravity or electromagnetic fields (see Crawford and Karniadakis [15] and Breuer et al.
[16]) and those due to polymeric effects [17,18].
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FIG. 1. A cross-section in the y-z plane of the x-component of the body force used to generate vortex rings
is shown. The force exists in a cylindrical region as described by Eqs. (3)–(6). The color bar corresponds to
the x-component of the force, fx , made nondimensional by F0 [see Eq. (6)]. The arrow indicates that the force
acts in the positive x direction. The coordinates x, y, and z are given here in centimeters. The domain lengths
in the x and z directions are lx = 4π cm and lz = π cm, and in the y-direction the half-height is ly = 1 cm.
The domain size made nondimensional by ly is Lx = 4π, Ly = 2, and Lz = π . The force is computed using
128 × 65 × 128 grid nodes in the x, y, and z directions, respectively. In all simulations reported here, the
length and radius of the cylindrical region defining the force were l f = 2R = 0.5 cm, and the force was applied
such that its center corresponded to the center (x0, y0, z0) of the computational domain. In addition, the tapering
parameter used to define the body force was set to β = 15 cm−1, which gives a reasonably sharp edge to the
force field. The entire computational domain is shown in the image.

In Fig. 1 we show the vertical (y-z) plane of a force field that exists only in a cylindrical region
located at the center of the spatial domain. This field, which has the desired properties and which
we will use in this work, acts only in the x-direction such that f = f (x, t ) = ( fx, 0, 0). The spatial
distribution of the force is described by

fx = A(t )gr (r)gx(x), (3)

where

gr = 1
2 {1 + tanh (β[R − r])} (4)

and

gx = 1

2

{
1 + tanh

(
β

[
l f

2
− |x − x0|

])}
. (5)

In these expressions, the hyperbolic tangent function is used to smooth the force field at its edges
by using the tapering parameter β, R and l f define the nominal radius and length of the cylindrical

region, r =
√

(y − y0)2 + (z − z0)2, and x0, y0, and z0 define the location of the center of the force
field. In all cases described here, x0, y0, and z0 denote the center of the domain. The force is turned
on or off using the function A(t ), which is defined by

A(t ) =
{

F0, 0 � t � τ,

0, t > τ,
(6)
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FIG. 2. Schematic (not drawn to scale) showing the region in the x-z plane in which the cylindrical body
force, fx , acts. The center (y = 0) plane is shown. The length and radius of the cylindrical region are given,
respectively, by l f and R. The center of the box is located at the exact center (x0, y0, and z0) of the computational
domain. The rightward directed arrow indicates the direction in which the force acts, and red arrows indicate
the sense of rotation of the vortex ring. The y-coordinate is directed outward and perpendicular to the plane of
the paper.

where F0 is the time-independent force amplitude, and τ is the temporal duration of the force. In
Fig. 2, the geometry of the force field is shown schematically in a horizontal (x-z) plane. It will be
shown that the force field defined here can generate vortex rings that propagate in the x-direction.

III. DIMENSIONAL ANALYSIS AND THE EVOLUTION
OF THE CIRCULATION AND KINETIC ENERGY

A. Dimensional analysis

An overall description of the problem considered here can be gained by performing a dimensional
analysis. For this purpose, it is useful to divide the problem into two time periods: the generation
period (T1) for which 0 � t � τ , and the decay period (T2) for which t > τ . In T1 the body force
acts on the fluid generating the vortex ring, and in T2 the kinetic energy of the ring is dissipated.

In the following analysis, we will use the circulation, �, of the vortex ring as the dependent
variable, where � = ∮

V · dl is the line integral of the velocity taken around an appropriately
defined closed curve. The choice of the ring circulation as the dependent parameter follows from
the work of Glezer [3,4], who found that �/ν is important in characterizing the vortex ring strength,
and determining, for example, whether the ring remains laminar. It follows that an appropriate
description for the circulation of the vortex ring in T1 is given by

� = A(F0, l f , β, R, ν, t ). (7)

If we choose a velocity scale v∗ = √
F0l f and a timescale τ ∗ = l2

f

ν
, then Eq. (7) can be written in

the dimensionless form

�/ν = B

(
Re f , t∗,

R

l f
, βR

)
, (8)

where Re f = v∗l f

ν
is a Reynolds number based on the body force amplitude, and t∗ = tν

l2
f

is a

dimensionless time. We also note that �
ν

is sometimes referred to as the vortex ring Reynolds
number, Re� [11]. In T2 the temporal duration of the body force, τ , must be included in the analysis,
leading to

�/ν = B

(
Re f , t∗, tRo,

R

l f
, βR

)
, (9)

where tRo = τν

l2
f

, which is referred to as the Roshko number [19].
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FIG. 3. A cross-section in the y-z plane of the source of the vertical (y) vorticity is shown. The color-bar
corresponds to ∂ fx

∂z made nondimensional by F0
ly

. The source is seen to be composed of positive and negative
crescent-shaped regions which are derived from the cylindrical geometry of the force field.

B. Generation of vorticity and circulation

Some distinction should be made concerning the physical process by which a body force gener-
ates vorticity, and the way vorticity is typically generated experimentally. As previously mentioned,
vortex rings are generated experimentally by using a piston to drive fluid through a cylindrical tube.
The fluid motion within the tube generates vorticity at the inner surface of the cylinder, which is
incorporated within the vortex ring which exits the tube. In contrast, when a spatially compact body
force acts on the fluid, the vorticity that is generated diffuses immediately, at the time of its creation,
into the body of the fluid. This difference should be kept in mind in the descriptions that follow.

The manner in which a body force can be used to generated vorticity can be understood
by examining the equation for the evolution of the vorticity � = ∇ × V = (	x,	y,	z ) for an
incompressible fluid of constant density given by

D�

Dt
= (� · ∇)V + ν∇2� + ∇ × f, (10)

where the term on the left side is the material derivative of the vorticity, and on the right side
the first term represents stretching and tilting of vorticity by velocity gradients, the second term
represents diffusion of vorticity by viscosity, and the third term represents the generation of vorticity
by the body force per unit mass, f . Equation (10), together with the definition of the body force
Eqs. (3)–(6), can be used to determine expressions for the time rate of change of the vorticity at
time t = 0, assuming the fluid is initially at rest (see Appendix A). This results in

∂	y

∂t

∣∣∣∣
t=0

= ∂ fx

∂z
and

∂	z

∂t

∣∣∣∣
t=0

= −∂ fx

∂y
. (11)

This shows that the force field generates both spanwise (	z) and vertical (	y) vorticity. To
determine the circulation around the ring, it will be convenient to integrate the vertical component
of vorticity over a horizontal (x-z) plane. According to Eq. (11), the source of this component of
vorticity is ∂ fx

∂z , which is visualized in Fig. 3. We also note that since vortex lines cannot end in a
fluid, the generation of both vertical and spanwise components of vorticity must form circular vortex
lines characterizing a vortex ring.
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To define the circulation for our problem, we note that we are primarily interested in laminar
vortex rings which have symmetry with respect to the plane z = lz/2, as well as symmetry with
respect to the center plane, y = 0, where lx, 2ly, and lz are the domain lengths in the x, y, and z
directions, respectively, as shown in Fig. 1. These symmetries are imposed on the flow by the force
field. We also note that such vortex rings must retain these symmetries indefinitely unless they
become unstable. Such considerations lead to the following definition for the circulation, which
follows from Stokes’ theorem:

� = 	y(x, 0, z, t ) ≡
∫ lz/2

0

∫ lx

0
	y(x, 0, z, t )dx dz, (12)

where 	y(x, 0, z) is the vertical component of vorticity on the center plane, and an overbar is defined
as the integral over the half-plane given by the region 0 � z � lz/2 and 0 � x � lx. An equation for
the evolution for the circulation can be derived by first taking the curl of the momentum equation
written in rotation form, which results in the following equation for the vertical component of
vorticity:

∂	y

∂t
= ∂Hx

∂z
− ∂Hz

∂x
+ ν∇2	y + ∂ fx

∂z
, (13)

where Hx = v	z−w	y and Hz = u	y−v	x. We next apply the overbar operation to Eq. (10) using
all flow symmetries and taking into account the periodic boundary conditions in the (x-z) plane,
which are used in all simulations in this work. This results in an equation for the evolution of the
circulation (see Appendix B):

∂�

∂t
= D + L + ∂ fx(x, 0, z)

∂z
, (14)

where D = ν(	y)yy|y=0
represents the viscous diffusion of the vertical component of vorticity, and

L = ν
∫ lx

0 [ ∂	y

∂z |
z=Lz/2

− ∂	y

∂z |
z=0

]|
y=0

dx represents the net lateral flux of vertical vorticity.

It is important to note that when the fluid viscosity is zero and the tapering parameter β → ∞,
Eq. (14) can be integrated in space according to Eq. (12) and in time in the interval (0 � t � τ ) to
give

� = F0l f τ. (15)

The expression given by Eq. (15) represents the maximum possible circulation, which we call the
inviscid circulation limit. In this limit, the circulation will increase linearly in time while the force
is active. For a fluid with viscosity, since D and L are each expected to be negative, the circulation
should increase more slowly than indicated by Eq. (15). It follows that the vortex ring Reynolds
number can never exceed Re� = F0l f τ/ν.

C. Evolution of the volume-averaged kinetic energy

In addition to the circulation, the volume-averaged kinetic energy per unit mass given by
K = 1

V ∫ kdv ≡ 〈k〉, where k = uiui
2 and the integral is taken over the entire flow volume, V , is a

particularly useful measure of the flow dynamics since its evolution equation has a simple physical
interpretation. We will therefore use it to give an overall impression of the flow. The evolution
equation for k follows from Eq. (1) (see Appendix E):

∂k

∂t
= −∂ j (ku j ) + ρ−1∂ j (pu j ) + ν∂ j∂ jk − ν∂ jui∂ jui + f ju j . (16)
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Performing volume-averaging on Eq. (16) and using all boundary conditions gives the evolution
equation for K as follows:

∂K

∂t
= −ε + 〈 f ju j〉. (17)

where the dissipation of kinetic energy is given by ε = ν〈∂ jui∂ jui〉, and 〈 f ju j〉 can be identified as
the work done on the flow by the applied body force. According to Eq. (17), at the instant the body
force is turned off the kinetic energy must decay ( ∂K

∂t < 0) since the dissipation is strictly positive.

IV. NUMERICAL METHODS

To determine the extent to which impulsive body forces of the kind described above can generate
vortex rings with the desired characteristics, a series of direct numerical simulations were per-
formed. For this purpose, Eqs. (1) and (2) were solved using an in-house pseudospectral code [17,18]
in a channel geometry in which all field variables are expanded in Fourier modes in the horizontal
(x-z) plane and in Chebyshev modes in the vertical direction. Spectral methods exhibit exponential
convergence [20] and have been used with success in simulating fully developed turbulent flows
[21,22]. The computational domain lengths were Lx = 4π, Ly = 2, and Lz = π in the x, y, and
z directions, respectively, where these lengths have been made nondimensional by the channel
half-height, ly. In these simulations, vortex rings will travel in the positive x-direction since the
body force always acts in the positive direction as shown in Fig. 1. There were 128 × 65 × 128 grid
nodes in the x, y, and z directions, respectively. In terms of physical dimensions, the domain lengths
in the x and z directions were lx = 4π cm and lz = π cm, and in the y-direction, the half-height
was ly = 1 cm. The corresponding distances between grid nodes were �x = 9.82 × 10−4 m and
�z = 2.45 × 10−4 m, respectively. In the y-direction, the use of Chebyshev polynomials results in a
nonuniform grid. The smallest grid resolution occurs at the boundaries of the computational domain
where �y = 1.2 × 10−5 m, and at the center of the domain the resolution was �y = 4.91 × 10−4 m.
The grid resolution is therefore submillimeter in all three directions. In all simulations, the fluid was
initially at rest, V (x, t = 0) = 0. On the top and bottom walls of the channel, shear-free conditions,
∂u1
∂x2

= ∂u3
∂x2

= u2 = 0, were imposed on the velocity field, as well as ∂	2
∂x2

= 0 on the vertical vorticity.
In all simulations reported here, the length and radius of the cylindrical region defining the force
were l f = 2R = 0.5 cm, and the force was applied such that its center corresponded to the center
(x0, y0, z0) of the computational domain. In addition, the tapering parameter used to define the body
force was set to β = 15 cm−1, which gives a reasonably sharp edge to the force field (see Figs. 1–3).
In addition, the time step was �t = 10−4 s, the body force acted for τ = 0.2 s, and the duration of
each simulation was 2.0 s. All relevant symbols used in this paper are listed in Table I in Appendix C.

A series of 12 simulations were performed in which the force amplitude F0 and the kinematic
viscosity ν were varied. Three kinematic viscosities were chosen (ν = 10−2, 10−1, 100 in units of
cm2/s) so as to achieve a force-based Reynolds number, Re f , which spans two orders of magnitude
from 3.535 to 353.5. With this choice of parameters, for each choice of viscosity, the maximum
inviscid ring Reynolds number based on circulation was Re� = 103. The parameters for all runs are
given in Table II in Appendix D.

V. NUMERICAL SIMULATION RESULTS

One of the main objectives of this work is to develop models that can predict the circulation
around laminar vortex rings generated by an impulsive body force. The circulation can be used to
determine the ring Reynolds number, Re� , which in turn can be used to predict whether the ring
may ultimately become turbulent. Although there is no clearly defined Reynolds number at which
rings become turbulent, the data compiled by Glezer [4] indicate that turbulent rings form when
Re� � 104 or slightly below this. To motivate the development of such models, it is useful first to
examine the results of the direct simulations. To this end, we present two- and three-dimensional
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(a) (b)

(c) (d)

FIG. 4. Sequence of two-dimensional snapshots of the evolution of the vertical vorticity (red denotes
positive, blue denotes negative) for the case in which ν = 10−2 cm2/s and F0 = 99.95 cm/s2. Maximum
vertical vorticity in s−1; (a) 7.4 × 10−2, (b) 8.4 × 101, (c) 9.7 × 101, and (d) 6.1 × 101. It should be noted
that T1 ends at approximately t∗ = 8.0 × 10−3. The visualizations are shown in a zoomed-in region of the x-z
plane at the center of the domain (y = 0). A movie of the full sequence can be found in Ref. [25].

flow visualizations, the temporal evolution of the circulation and the flow kinetic energy, and the
evolution of the equivalent ring core radius.

A. Two- and three-dimensional flow visualizations

In Fig. 4, the evolution of the vertical vorticity in the x-z plane at the center of the domain
(y = 0) is shown for the case ν = 10−2 cm2 s−1 and F0 = 99.95 cm s−2. The images are shown
at four instants. Figures 4(a) and 4(b) are obtained from T1 in which the body force acts on the
fluid, and Figs. 4(c) and 4(d) are from T2 in which the force does not act. Figure 4(a) shows the
vertical vorticity field after one time step, where it should be recalled that the fluid was initially
at rest. Here it is evident that the vorticity is composed of two sheets which appear as positive
(red) and negative (blue) lines. The sheets (in the x-direction) are seen to have lengths l f , the linear
dimension of the cylindrical force field shown in Fig. 1, and each sheet is a distance R/2 from the
centerline at z = Lz/2. These vortex sheets are a natural consequence of the shear flow generated
by the action of the force field. In Fig. 4(b), the vortex sheet is seen to thicken laterally and the
vorticity becomes more concentrated with a shape more reminiscent of a ring. In Fig. 4(c), the
force has ceased to act on the fluid, and the vorticity becomes further concentrated into positive
and negative cores. Finally, in Fig. 4(d), although the cores are still evident, the vortex strength is
seen to have decreased relative to Fig. 4(c), and the vorticity field is obviously diffusing laterally.
A three-dimensional sequence of images obtained from Fig. 4 is given in Fig. 5. In each image, an
isosurface of the vorticity magnitude is shown together with selected velocity vectors. Since both y
and z components of vorticity are present, ring-shaped isosurfaces are formed.

B. Evolution of the circulation, equivalent core radius, and the kinetic energy

In Fig. 6 the entire temporal evolution of the ring circulation (regions T1 and T2) is shown. Each
curve corresponds to a different force amplitude. It is evident that during the time the force acts,
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(a) (b)

(c) (d)

FIG. 5. Sequence of three-dimensional snapshots of the vorticity magnitude and velocity vector fields for
the case shown in Fig. 4. Isosurface of vorticity magnitude in s−1; (a) 3.74 × 10−2, (b) 30, (c) 30, and (d) 30.
A movie of the full sequence can be found in Ref. [26].

the circulation increases approximately linearly in time and subsequently decays after removal of
the force. Furthermore, it appears that the maximum circulation increases approximately linearly
with F0. These results appear to be consistent with the inviscid result, � = F0l f t , indicating that the
viscosity is sufficiently low to allow such an approximation. Following Eq. (8), the inviscid result

FIG. 6. Circulation, �, in cm2/s vs time (s) for the case in which ν = 10−2 cm2/s, and for various F0 values
shown in the graph. The force acts in the time interval 0 � t � 0.2 s.
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(a) (b)

FIG. 7. Nondimensional circulation, �∗ = Re�Re−2
f , vs nondimensional time, t∗ = tν

l2
f
, in T1. (a) All cases,

(b) cases ν = 10−2 cm2/s and 10−1 cm2/s for all F0 values.

can be put in nondimensional form as follows:

�/ν = Re2
f t

∗, (18)

where Eq. (18) is assumed to be valid for short timescales in which the effects of viscosity are
negligible.

This suggests that in general �/ν = Re2
f T (t∗) should be valid for longer timescales and higher

fluid viscosities, and furthermore that �∗ = T (t∗), where �∗ = Re�Re−2
f . To determine the validity

of this scaling, we show in Fig. 7 the results of �∗ versus t∗ for all simulations. These results show
that, to a large extent, �∗ ∼ T (t∗), although some variation from this scaling at higher values of t∗
is evident. In this context, it is important to note that this scaling of the circulation and time gives
excellent data collapse despite a two orders of magnitude variation in Re f . It is also clear from Fig. 7
that �∗ does not vary according to Eq. (18) for large values of t∗, which indicates that a complete
model for the evolution of the vortex ring circulation must include the effects of viscosity.

To obtain an overall impression of the size of a vortex ring core, an equivalent core radius, Rc, is
defined as follows:

Rc =
√

�/(π	m), (19)

where � is the total flow circulation defined by Eq. (12), and 	m is the maximum vertical vorticity
in the x-z plane in which the circulation is determined. We will refer to this subsequently as the core
radius. This can be thought of as the radius of a circle which contains the total flow circulation but
with a uniform vorticity 	m. In Fig. 8(a), the evolution of the core radius is shown for the lowest
viscosity case and for the entire duration of the simulation. In general, the core radius is seen to
increase in time. However, near the end of region T1 (t ∼ 0.2 s), oscillations in the core radius are
observed, particularly for the highest force amplitudes. These oscillations appear to correspond to
the coalescence of the vorticity and the instability of the shear layer (see Fig. 4) in the early stages of
the formation of each vortex ring. In Fig. 8(b), the core radius normalized by the radius of the body
force, R∗ = Rc/R, versus t∗ is shown for the region T1 for three different viscosities. Of particular
note is the time at which the core radius is approximately equal to the radius of the body force,
R∗ ∼ 1. We can see from these results that as the fluid viscosity increases, the time at which this
occurs also increases. This observation will be of importance in developing a model that can account
for viscous diffusion.

In Fig. 9(a) the temporal history of the volume-averaged kinetic energy, K , is shown. The rate
of change of K is seen to change from positive to negative at the instant the body force is turned
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(a) (b)

FIG. 8. (a) Equivalent core radius Rc (in cm) vs time in seconds for the cases shown in the graph. T1 and
T2 are shown. The force turns off at t = 0.2 s. (b) Nondimensional equivalent core radius (R∗ = Rc

R ) vs t∗ for
all cases shown in the graph for T1.

off at t = 0.2 s. This is consistent with the prediction of Eq. (17). Although only two cases are
shown, this was found to be true in all cases. To obtain a rough idea of the nature of the velocity

distribution in the flow, the evolution of a nondimensional velocity, K∗ =
√

K/F0l f
, is shown in

Fig. 9(b) for typical cases in T1. For these typical cases, K∗ � 8 × 10−2, which shows that the flow
kinetic energy is concentrated in a small region associated with the vortex ring since

√
K gives an

estimate of the average magnitude of the flow velocity in the entire domain, and
√

F0l f estimates
the maximum flow velocity near the ring.

VI. MODELS FOR THE CIRCULATION OF LAMINAR VORTEX RINGS GENERATED BY AN
IMPULSIVE BODY FORCE AND COMPARISON WITH NUMERICAL SIMULATIONS

A. Model problem for the vorticity

An objective of this work is to develop a model that can be used to estimate the circulation
of laminar vortex rings generated by an impulsive force. The simplest model would be one that
takes into account viscous diffusion as described by Eq. (14) and neglects nonlinearity. The extent

(a) (b)

FIG. 9. (a) Kinetic energy per unit mass (K in cm2/s2) vs time in seconds for the cases shown in the graph

for T1 and T2. (b) Nondimensional velocity K∗ =
√

K
F0 l f

vs t∗ for three cases in T1.
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to which this approximation is accurate will be determined by comparing the result of such a
model with the DNS. To this end, we consider the following model equation for a scalar, ϕ, which
represents the vertical vorticity in our problem:

∂ϕ

∂t
= ν∇2ϕ + S, (20)

where the source S represents the rate at which vorticity is generated by body forces. Further
simplification is obtained by applying boundary conditions limx,y,z→±∞ ϕ = 0, and the initial
condition ϕ(t = 0) = 0. The exact solution to Eq. (20) with the prescribed boundary and initial
conditions can be obtained by using Fourier transform methods [23] as follows:

ϕ =
∫ t

0

∫∫ ∫ +∞

−∞
(πσ )−3/2 S(ε, η, γ )e

−(x−ε)2

σ e
−(y−η)2

σ e
−(z−γ )2

σ dε dη dγ dt̄, (21)

where σ = 4ν(t−t̄ ), and S(ε, η, γ ) does not depend on time during T1, consistent with the source
used in the numerical simulations. The solution given by Eq. (21) should therefore be valid only for
the time period in which the force acts.

In Sec. II the actual force field was described. Based on that description, a reasonable approxi-
mation for S for which exact integrals can be obtained is as follows:

S = X (ε)Y (η)Z (γ ), (22)

where X (ε), and Y (η) are zero except in the region −l f /2 � ε � −l f /2, −R � η � R in which
X (ε) = Y (η) = 1. The function Z (γ ) is given by

Z (γ ) = F0[δ(γ − R) − δ(γ + R)], (23)

where the δ functions arise from the differentiation of a discontinuous force-field model. This would
arise, for example, in the limit of an unbounded tapering parameter, β → ∞. We refer to this model
as a slab model, in the sense that the source of the vertical component of vorticity exists only in a
rectangular region, or slab. This is an approximation for the actual source of vorticity (see Fig. 3),
which is somewhat more complex than suggested by the slab model since the force itself exists
in a cylindrical region. Nevertheless, its use will be shown to predict the vortex ring circulation in
reasonable agreement with results obtained from the actual source.

B. Solution for the vorticity and the circulation obtained from the slab model

Here we are interested in the vertical vorticity on the center plane, ϕ0 = ϕ(y = 0), since this will
determine the circulation according to Eq. (12). This is obtained by substituting Eqs. (22) and (23)
for the source into Eq. (21) and performing the appropriate integrals. This leads to the following
result for ϕ0:

ϕ0 = F0

∫ t

0
(πσ )−3/2 f (x) h(σ )g(z) dt̄, (24)

where

f (x) =
√

πσ

2

[
erf

(
x + l f /2√

σ

)
− erf

(
x − l f /2√

σ

)]
, (25)

g(z) = e
−(z−R)2

σ − e
−(z+R)2

σ , (26)

and

h(σ ) = √
πσerf

(
R√
σ

)
. (27)
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The circulation, �, is obtained as follows:

� =
∫ ∞

0

∫ ∞

−∞
ϕ0dx dz. (28)

Substituting Eq. (24) into Eq. (28) and carrying out the integrals gives

� = F0l f

∫ t

0

(
erf

(
R√
σ

))2

dt̄ . (29)

The integral in Eq. (29) cannot be obtained in terms of known functions. Nevertheless, some
understanding of the nature of the circulation can be achieved by considering the argument of
the error function, R/

√
σ , which can be interpreted as the ratio of the force radius to a viscous

layer thickness, δv ∼ √
4νt . It follows that due to the asymptotic behavior of the error function,

limζ→∞ erf (ζ ) = 1,

lim
R�δv

� = F0l f t . (30)

This shows that when the viscous layer has not grown to a sufficient extent, the circulation grows
linearly in time, in agreement with the inviscid result given by Eq. (15). In this case, the magnitude
of the circulation depends only on the product of the force amplitude and the longitudinal (x) extent
of the force. In the next section, we compare the results of the direct simulations to the inviscid
result and the slab model. Comparisons will also be made with spectrally accurate solutions of the
diffusion equation (20) using the exact source of vorticity, ∂ fx

∂z , where fx is defined by Eqs. (3)–(5).

C. Comparison of the inviscid, slab, and diffusion models with direct numerical simulations

In Fig. 10 the results of the direct numerical simulations (DNSs) for the temporal evolution
in T1 of the vortex ring Reynolds number, Re� , are compared with the inviscid, slab, and diffusion
models for three viscosities. The results for the slab model were obtained by numerically integrating
Eq. (29). The results for the diffusion model are obtained from a spectrally accurate solution of the
linear diffusion equation [Eq. (20)] for a passive scalar, ϕ, with the same source, S, used to generate
the vortex ring. In this model, the no-flux condition, ∂ϕ/∂x2

= 0, is applied to the top and bottom
walls of the computational domain, which is the same domain used to simulate vortex rings. Note
that this condition is consistent with the boundary condition applied to the vertical vorticity for ring
simulations, but for the diffusion model there was no flow.

It should be emphasized that the direct numerical simulations include the full nonlinear equations
of motion, which naturally include vortex stretching, tilting, and advection of vorticity as embodied
in Eq. (10). Furthermore, it is important to reiterate that the inviscid model should be accurate
only when t 
 R2/4ν or in nondimensional form as t∗ 
 R2/4l2

f . However, we can obtain a more
accurate estimate of the time at which viscous diffusion begins to affect the circulation by using the
slab model [Eq. (29)] as a guide. This can be done by setting erf2(q) = 0.95 from which we obtain
t∗
inv = R2/4q2l2

f = 2.5 × 10−2, which we call the inviscid time.
For the lowest viscosity case shown in Fig. 10(a), it is clear that all three models agree well with

the DNS. In fact, all models predict essentially inviscid behavior since the maximum time in this
case is much less than t∗

inv. For the intermediate viscosity shown in Fig. 10(b), the diffusion model
shows excellent agreement with the DNS throughout the entire time interval. The slab model clearly
exhibits the effects of viscous diffusion, and shows reasonable agreement with the DNS, while
the inviscid model shows the greatest deviation from the numerical simulations. For the highest
viscosity shown in Fig. 10(c), the diffusion and slab models again show good agreement with the
DNS. In summary, we note that in all cases when t∗ < t∗

inv, the inviscid model agrees well with the
DNS. Furthermore, we find that the effects of viscous diffusion become evident when t∗ > t∗

inv for
slab and diffusion models, as well as for the direct numerical simulations.
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(a)

(c)

(b)

FIG. 10. The vortex ring Reynolds number, Re� = �/ν, vs t∗ for the direct numerical simulation, inviscid
model, slab model, and diffusion model in T1. (a) ν = 10−2 cm2/s and F0 = 99.95 cm/s2. (b) ν = 10−1 cm2/s
and F0 = 999.95 cm/s2. (c) ν = 1.0 cm2/s and F0 = 9999.5 cm/s2. Note that when t∗ < t∗

inv, where t∗
inv =

2.5 × 10−2, the effects of viscous diffusion are negligible for slab and diffusion models, as well as the direct
numerical simulations.

The excellent agreement between the diffusion model and the DNS indicates that viscous
diffusion alone can account for the evolution of laminar vortex rings generated by an impulsive
body force for the range of Reynolds numbers, Re f , investigated in this work. Furthermore, the slab
model, though not as accurate as the diffusion model, can also be used to predict the ring circulation
with a reasonable degree of accuracy. The fact that a pure diffusion model alone can accurately
predict the evolution of the circulation requires further explanation. Consider, for example, a
purely two-dimensional vortex such as the Lamb-Oseen vortex [24]. In this case, since the flow
is two-dimensional and there is no source of vorticity, the circulation remains constant in time,
although vorticity does diffuse in the plane of the vortex. However, in the simulations of laminar
vortex rings performed in this work, lateral and vertical diffusion cannot be neglected because of
the three-dimensional geometry of the vortex ring. In fact, the slab model predicts that for t∗ > t∗

inv,
viscous diffusion is important in predicting the evolution of the circulation. Moreover, these results
imply that as far as the circulation is concerned, nonlinearity associated with vortex stretching and
tilting is apparently negligible since they are not accounted for in the diffusion model.

D. Schematic representation of the lateral diffusion of vorticity

We have shown that models based on the diffusion of vorticity can be used to accurately predict
the evolution of the circulation for short as well as long timescales. These models account for both
vertical as well as lateral diffusion. To obtain a qualitative understanding of this, it is useful to
consider the effects of lateral diffusion alone, from which we can gain insight into the physical
significance of the ratio R/δv , the ratio of the force radius to the viscous diffusion length scale. To
this end, we show in Fig. 11 a schematic illustrating the temporal evolution of the lateral (z) diffusion
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(a)

(c)

(b)

FIG. 11. Schematic representation of the lateral diffusion of vertical vorticity in T1. (a) Representation of
the positive (red) and negative (blue) vertical vorticity layers immediately after the force acts on the fluid.
This corresponds to the vorticity field shown in Fig. 4(a). (b) The vorticity is shown at a later time where it
is seen to diffuse in the positive and negative z-direction from the red region. The viscous layer thickness is
δv . (c) The vorticity is shown at a time t ∼ R2/4ν. Here the vorticity is shown diffusing from the red layer in
the positive z-direction. The viscous layer thickness has reached the symmetry plane such that its thickness
is approximately equal to the force radius, δv ∼ R. The circulation is determined by integrating the vertical
vorticity over the region of integration shown.

of vertical vorticity in the time period T1. In Fig. 11(a), regions of positive (red) and negative (blue)
vertical vorticity are shown as they appear immediately after the initiation of the body force. At
this time, the viscous diffusion length scale is negligibly small compared to R. An image virtually
identical to this appears in the simulations as shown in Fig. 4(a). At an intermediate time shown
in Fig. 11(b), the diffusion length scale becomes evident as vorticity is seen to diffuse from both
positive (red) and negative (blue) regions. Here we note that positive vorticity is seen to diffuse
in both positive and negative z directions, and this is also true the region of negative vorticity. In
Fig. 11(c) the vorticity is seen to have diffused to a scale δv ∼ R at a time t ∼ R2/4ν. At this time,
the upper half-plane, which is the region over which circulation is obtained, is seen to lose positive
vorticity and gain negative vorticity. This net negative flux of vorticity across the symmetry plane
results in a reduction of the rate of increase of circulation as predicted by the slab model. It should
also be kept in mind that vertical diffusion of vorticity, not depicted here, also contributes to the
decreased rate of increase of circulation.

VII. SUMMARY AND DISCUSSION

Vortex rings can be generated by a variety of experimental methods, the most recent of which
involves the use of a piston-driven system [3]. In contrast to these experimental methods, we explore
the possibility of generating rings using impulsive body forces. Our main objective is to develop a
physical understanding of the ring generation process and thereby to develop models that can be
used to predict the strength of laminar vortex rings generated in this way. We find, through direct
numerical simulations, that laminar vortex rings can be easily generated by a force whose amplitude,
duration, and geometry are appropriately chosen. In particular, a force that exists in a cylindrical
region, similar to the piston geometry used in experiments, produces vortex rings of the desired
shape and strength. Furthermore, by comparing the results of simulations with analytical models,
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we show that it is possible to accurately predict the strength of laminar rings by considering only
the diffusion of vorticity, in spite of the importance of nonlinearity in the development of the ring.

The main result of this work can be summarized by Re� = Re2
f T (t∗), which states that for

laminar vortex rings generated by an impulsive body force, the vortex ring Reynolds number is
the product of the square of the force-based Reynolds number and a function of a viscosity-based
nondimensional time. Simulations show that this result is accurate over a range of two orders of
magnitude in Re f . Moreover, this also agrees with both an analytical model (slab model), based
on an approximation of the source of vorticity, and spectrally accurate solutions of the diffusion
equation using the exact source. Models and simulations also show that when t∗ 
 R2/4l2

f , which
states that the force acts for a time short enough for the diffusion of vorticity to be negligible,
�/ν = Re2

f t
∗. We also emphasize the idea that since a vortex ring is manifestly a three-dimensional

vortical structure, both lateral and vertical diffusion of vorticity must be taken into account in order
to accurately predict the ring circulation when t∗ > t∗

inv, where t∗
inv = R2/4q2l2

f . This differs from
the case of two-dimensional vortices.

It is also important to reiterate that the use of impulsive body forces to generate coherent vortices,
such as rings, may have advantages compared with other methods. Flows generated in this way in
a fluid initially at rest will automatically satisfy boundary conditions and will be divergence-free.
Furthermore, although this work has focused on laminar rings, we expect that the same methods can
be used to generate turbulent rings [11]. The simplest way to achieve this would be to generate a ring
within the inviscid regime such that the force acts for a time τ ∼ R2/4ν. This will produce a freely
propagating ring with a large enough Reynolds number Re� ∼ F0l f τ/ν to produce a turbulent ring
by choosing an appropriate force amplitude. Finally, this work leaves open the question of whether
impulsive body forces can be generated experimentally, for example by using Lorenz forces. This
would allow further verification of the results presented in this work.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX A: INITIAL TIME-RATE-OF-CHANGE OF THE VORTICITY

Here we give further details regarding the derivation of Eq. (11), which relates the initial time-
rate-of-change of vorticity to spatial gradients of the body force field. Refer to the text or Table I
in Appendix C for the definitions of all symbols not explicitly defined in this appendix. Here it is
assumed that the fluid is initially at rest (V = 0 at time t = 0) and therefore the vorticity � = ∇ × V
is also zero at t = 0.

For convenience, we rewrite the evolution equation for the vorticity:

D�

Dt
= (� · ∇)V + ν∇2� + ∇ × f . (A1)

The first term on the left-hand side of Eq. (A1), which represents the material derivative of the
vorticity, can be written, using index notation in Cartesian coordinates, as follows:

D	m

Dt
= ∂	m

∂t
+ Vi∂i	m, (A2)
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where ∂i = ∂/∂xi, and repeated indices imply summation. Evaluation of Eq. (A2) at t = 0 and using
assumption (1) above gives

D 	m

Dt

∣∣∣∣
t=0

= ∂ 	m

∂t

∣∣∣∣
t=0

. (A3)

The second term on the right-hand side of Eq. (A2) vanishes since the fluid is initially at rest, and
for the same reason the first and second terms on the right-hand side of Eq. (A1) also vanish. As a
result, Eq. (A1) reduces to

∂	m

∂t
= ∂ f j

∂xi
εmi j (A4)

at t = 0. However, since the force field we consider has only one nonzero component such that
f = f (x, t ) = ( f1, 0, 0), Eq. (A4) becomes

∂	2

∂t
= ∂ f1

∂x3
and

∂	3

∂t
= −∂ f1

∂x2
(A5)

at t = 0. This corresponds exactly to Eq. (11) since subscripts 1, 2, and 3 correspond to the
coordinates x, y, and z, respectively. We note that Eq. (A5) states that although the initial vorticity
is zero, the initial time-rate-of-change of vorticity is not zero due to the action of the body force.

APPENDIX B: EVOLUTION EQUATION FOR THE CIRCULATION

Here we give further details regarding the derivation of Eq. (14), the evolution equation for the
circulation around a laminar vortex ring. The vertical vorticity, 	y, is governed by

∂	y

∂t
= ∂Hx

∂z
− ∂Hz

∂x
+ ν∇2	y + ∂ fx

∂z
, (B1)

where Hx = v	z−w	y and Hz = u	y−v	x. To obtain the desired evolution equation for the
circulation defined by

� = 	y(x, 0, z) ≡
∫ lz/2

0

∫ lx

0
	y(x, 0, z, t )dx dz, (B2)

where 	y(x, 0, z) is the vertical component of vorticity on the center plane, we apply the overbar
operation to Eq. (B1), which gives

∂�

∂t
= ∂Hx

∂z

∣∣∣∣∣
y=0

− ∂Hz

∂x

∣∣∣∣∣
y=0

+ ν

⎡
⎣ ∂2	y

∂x2

∣∣∣∣∣
y=0

+ ∂2	y

∂y2

∣∣∣∣∣
y=0

+ ∂2	y

∂z2

∣∣∣∣∣
y=0

⎤
⎦ + ∂ fx(x, 0, z, t )

∂z
. (B3)

In our simulations, all field variables are expanded in Fourier modes in the horizontal (x-z) and
therefore satisfy periodic boundary conditions in these two directions. This immediately gives

∂Hz

∂x

∣∣∣∣∣
y=0

= ∂2	y

∂x2

∣∣∣∣∣
y=0

= 0. (B4)

Furthermore, the first term on the right-hand side of Eq. (B3) can be written

∂Hx

∂z

∣∣∣∣∣
y=0

=
∫ lx

0

[
v

(
x, 0,

lz
2

)
	z

(
x, 0,

lz
2

)
− w

(
x, 0,

lz
2

)
	y

(
x, 0,

lz
2

)

−v(x, 0, 0)	z(x, 0, 0) + w(x, 0, 0)	y(x, 0, 0)

]
dx. (B5)
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However, since the symmetry of the body force imposes symmetry on the laminar vortex rings,
the vertical and spanwise components of velocity, v(x, 0,

lz
2 ), w(x, 0,

lz
2 ), v(x, 0, 0),w(x, 0, 0), are

all zero, and it follows that that ∂Hx
∂z |

y=0
= 0. Applying the overbar operation to the remaining

viscous terms gives D = ν(	y)yy|y=0
, which represents the vertical (y) diffusion of vertical vor-

ticity, and L = ν
∫ lx

0 [ ∂	y

∂z |
z=Lz/2

− ∂	y

∂z |
z=0

] |
y=0

dx, which represents the net lateral flux of vertical

vorticity. This results in an equation for the evolution of the circulation given by

∂�

∂t
= D + L + ∂ fx(x, 0, z, t )

∂z
. (B6)

Equation (B6) corresponds to Eq. (14). It is important to note that terms D and L in Eq. (B6) do
not contain the circulation �, but instead contain the vertical vorticity and its derivatives. Therefore,
in spite of the linear appearance of Eq. (B6), nonlinearity can enter the evolution equation for the
circulation through the nonlinear evolution equation for the vertical vorticity given by Eq. (B1).

The third term on the right-hand side of Eq. (B6) is the source of the circulation. To get an idea
of the nature of this term, we find that

∫ lz/2
0

∫ lx
0

∂ fx

∂z dx dz = 0.4994 using a 128 × 65 × 128 grid, a
tapering parameter β = 15 cm−1, l f = 2R = 0.5 cm, and F0 = 1 cm/s2. This is virtually identical to
the result we would get had the force been described by fx = 1 for −l f /2 � x � −l f /2 and − R �
z � R, and 0 otherwise. This implies that the force field is accurately modeled as one that has sharp
spatial cutoffs (e.g., it is either 0 or 1). The force, fx, and its spanwise derivative, ∂ fx

∂z , are shown in
Figs. 1 and 3.

APPENDIX C: TABLE OF SYMBOLS

Table I contains all of the relevant symbols used in this work.

TABLE I. This table lists all relevant symbols used in this work. For each symbol, a definition is given
followed by a designation of the symbol as dimensional (e.g., centimeters, seconds) or dimensionless.

Symbol Definition Units

x, y, z Coordinates: the vortex ring travels in the
x-direction, z is perpendicular to this direction,
and y is the vertical direction (see Fig. 1)

Dimensional

x1, x2, x3 Scripted coordinates corresponding to x, y, z Dimensional
x Position vector Dimensional
lx, ly, lz Lengths of the computational domain in the x, y,

and z directions. ly is the half-height of the
computational domain in the y-direction

Dimensional

Lx, Ly, Lz Computational domain lengths made
dimensionless using ly. Note that this definition
leads to Ly = 2.

Dimensionless

t Time Dimensional
V ,Vi Velocity and components of the velocity Dimensional
�, 	i Vorticity and components of the vorticity Dimensional
u, v, w Components of the velocity in the x, y, and z

directions
Dimensional

u1, u2, u3 Scripted components of the velocity Dimensional
	x, 	y, 	z Components of the vorticity in the x, y, and z

directions
Dimensional
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TABLE I. (Continued.)

Symbol Definition Units

� Circulation Dimensional
p Pressure Dimensional
ρ Density Dimensional
f Body force Dimensional
fx, fy, fz Components of the body force in the x, y, and z

directions
Dimensional

f1, f2, f3 Scripted components of the body force Dimensional
F0 Magnitude of the body force Dimensional
τ Temporal duration of the body force Dimensional
x0, y0, z0 Coordinates of the center of the domain and also

coordinates of the center of the body force
Dimensional

A(t ) Function used to define the temporal evolution of
the body force

Dimensional

r Radial coordinate used to define the body force Dimensional
gr, gx Spatial functions used to describe the body force Dimensional
R Body force radius Dimensional
l f Body force length Dimensional
β Tapering parameter Dimensional
Hx, Hz Nonlinear terms in the evolution equation for the

vertical vorticity
Dimensional

D, L Viscous diffusion terms in the evolution equation
for the circulation

Dimensionless

ϕ Scalar field Dimensional
ϕ0 Scalar field on the center plane in the slab model Dimensional
S Source of the scalar field Dimensional
σ Viscous decay function in diffusion model Dimensional
ν Kinematic viscosity Dimensional
Re f Force-based Reynolds number Nondimensional
t∗ Viscous-based timescale Nondimensional
t∗
inv Inviscid timescale Nondimensional

Re� Vortex ring Reynolds number Nondimensional
tRo Roshko number Nondimensional
k Kinetic energy per unit mass Dimensional
K Volume average kinetic energy per unit mass Dimensional
K∗ Nondimensional velocity scale Nondimensional
R∗ Nondimensional equivalent vortex core radius Nondimensional
Rc Equivalent core radius Dimensional
ε Volume-averaged dissipation of kinetic energy Dimensional
�x, �y, �z Computational grid resolution Dimensional
	m Maximum vertical vorticity in the horizontal

plane
Dimensional

δv Viscous layer thickness Dimensional
�∗ Dimensionless circulation Nondimensional
ε, η, γ Variables of integration Dimensional
f , g, h Functions used in slab model Dimensional

APPENDIX D: SIMULATION PARAMETERS

Table II lists the parameters used in all the simulations.
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TABLE II. This table lists the parameters used in all simulations. For each run, the force amplitude, F0,

kinematic viscosity, ν, and force-based Reynolds number, Re f = v∗ l f

ν
, are listed. Here v∗ = √

F0l f , and l f is
the length of the cylindrical region occupied by the body force.

Run number F0 (cm/s2) ν (cm2/s) Re f

Run 1 0.9995 0.01 35.346
Run 2 9.995 0.01 111.775
Run 3 49.975 0.01 249.937
Run 4 99.95 0.01 353.465
Run 5 9.995 0.1 11.1775
Run 6 99.95 0.1 35.346
Run 7 499.75 0.1 79.037
Run 8 999.5 0.1 111.775
Run 9 99.95 1.0 3.5346
Run 10 999.5 1.0 11.1775
Run 11 4997.5 1.0 24.9937
Run 12 9995 1.0 35.3465

APPENDIX E: EVOLUTION EQUATION FOR THE KINETIC ENERGY

The equation for the evolution of the volume-averaged kinetic energy given in Eq. (17) is derived
below. Taking the dot product of the velocity V with Eq. (1) and using incompressibility, ∇ · V = 0,
gives

∂k

∂t
= −∂ j (ku j ) + ρ−1∂ j (pu j ) + ν∂ j∂ jk − ν∂ jui∂ jui + f ju j, (E1)

where k = uiui
2 . Averaging Eq. (E1) over the entire flow volume, V, gives

∂K

∂t
= −〈∂ j (ku j )〉 + ρ−1〈∂ j (pu j )〉 + ν〈∂ j∂ jk〉 − ε + 〈 f ju j〉, (E2)

where the volume-averaged kinetic energy per unit mass is K = 〈k〉 and the dissipation is ε =
ν〈∂ jui∂ jui〉. The application of periodic boundary conditions in the horizontal (x-z) plane and shear
free conditions on the upper and lower domain boundaries leads to the elimination of the first three
terms on the right-hand side of Eq. (E2). The final equation for the volume-averaged kinetic energy,
K , is therefore

∂K

∂t
= −ε + 〈 f ju j〉, (E3)

which is Eq. (17) in the main text.
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