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The present study investigates the non-Oberbeck-Boussinesq (NOB) effects which arise
due to the temperature dependence of material properties in cryogenic helium experiments
of turbulent Rayleigh-Bénard convection. Here we quantify these effects solely by the
difference of the measured mean temperature at the center of the closed cell, Tc, from the
arithmetic mean temperature obtained from the prescribed fixed and uniform temperatures
at the top and bottom copper plates of the apparatus, Tm = (Tbot + Ttop )/2. To this end, the
material properties such as specific heat at constant pressure, dynamic viscosity, thermal
conductivity, the isobaric expansivity, and the mass density are expanded into power series
with respect to temperature up to the quadratic order with coefficients obtained from the
software package HEPAK. A subsequent nonlinear regression that uses deep convolutional
networks delivers a dependence of the strength of non-Oberbeck-Boussinesq effects in the
pressure-temperature parameter plane. Strength of the NOB effects is evaluated via the
deviation of the mean temperature profile ξNOB ≡ Tm − Tc from the top-bottom-symmetric
Oberbeck-Boussinesq case ξNOB = 0. Training data for the regression task are obtained
from 236 individual long-term laboratory measurements at different Rayleigh numbers
which span eight orders of magnitude.

DOI: 10.1103/PhysRevFluids.8.094606

I. INTRODUCTION

Controlled laboratory experiments of turbulent Rayleigh-Bénard convection (RBC) are one pillar
of turbulence research to obtain a deeper understanding of the physical transfer processes and
their coupling to statistical properties and structures, both in the bulk and the boundary layers of
buoyancy-driven flows [1–4]. The highest Rayleigh numbers Ra for fluid flows at Prandtl numbers
Pr � 1 are obtained in two gases, either compressed sulfur hexafluoride, SF6 [5,6], or cryogenic
helium, 4He, the latter of which is cooled down to a few Kelvin [7–14]. While the Rayleigh number
Ra quantifies the thermal driving of convective turbulence, the Prandtl number Pr is the ratio of
molecular momentum to temperature diffusion. Together with a third parameter, the aspect ratio of
the exclusively used cylindrical closed vessels � = D/H with cell diameter D and cell height H ,
these three dimensionless numbers determine the control parameters of the experiments and are sub-
sequently used to quantify the response. of the apparatus in the form of power laws of the turbulent
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momentum and heat transfer. The latter are quantified by the dimensionless Reynolds and Nusselt
numbers, Re and Nu [2,3]. The present study is focused to the experiments in cryogenic helium, 4He.

The Rayleigh-Bénard convection model incorporates the Oberbeck-Boussinesq (OB) approxi-
mation [3,4] which considers the working fluid as incompressible. In addition, the mass density
field of the fluid, ρ(x, t ) is taken as a linear function of the temperature field T (x, t ) and given by

ρ(x, t ) = ρref{1 − α[T (x, t ) − Tref ]} with α = − 1

ρ

∂ρ

∂T

∣∣∣∣
p

, (1)

with the isobaric thermal expansion coefficient or expansivity α. This dependence is incorporated in
the volume forces and thus couples the temperature field to the momentum balance. Quantities
ρref and Tref are reference magnitudes of density and temperature, respectively. One important
consequence of the OB approximation is that statistical properties, such as mean profiles, in the
lower and upper halves of the convection cell including the corresponding viscous and thermal
boundary layers, are symmetric with respect to the midplane at z = H/2. Consequently,

Tc :=
〈
T

(
z = H

2

)〉
= Tbot + Ttop

2
=: Tm, (2)

in laboratory experiments with the prescribed fixed and uniform temperatures at the top and bottom,
Ttop and Tbot.

Cryogenic RBC experiments at the highest Rayleigh numbers have to be operated close to the
critical point (CP) of He [8,11–13]. At this point, where the saturated vapor curve (SVC) represent-
ing the phase boundary between the gas and liquid state ends, the material properties of the working
fluid such as specific heat at constant pressure, Cp, dynamic viscosity μ, or thermal conductivity λ

fluctuate strongly. This is considered as one possible source of the deviations from the Boussinesq
limit, which are experimentally probed by a violation of (2). In other words, non-Boussinesq
(NOB) effects are detected as Tc �= Tm. It is exactly this deviation which we want to explore in
detail in the present work for cryogenic 4He. Therefore, we define the non-Oberbeck-Boussinesq
parameter,

ξNOB(pm, Tm, χk ) := Tm − Tc, (3)

where χk are for now a short-hand notation for material properties which will be specified further
below. Figure 1(a) summarizes the operating points within the p-T diagram for cryogenic experi-
ments conducted in the apparatus of the group in Brno (Czech Republic) [17]. We indicate the mean
temperature as well as the range of the applied outer temperature difference 	T = Tbot − Ttop > 0 at
the mean pressure p = pm. It is seen that a number of measurements are close to the phase boundary
(solid black curve) and a few even in the vicinity of the critical point (magenta star). In Fig. 1(b), the
measured values of ξNOB are plotted in the phase diagram of the two control parameters, Ra and Pr. It
is important to note that Ra and Pr are control parameters characterizing OB convection, thus ideally
ξNOB = 0 independent of Ra and Pr. The experimentally observed values ξNOB �= 0 unambiguously
indicate presence of NOB effects and must be captured introducing additional control parameters.
We define and discuss a suitable set below.

In this work, we will systematically investigate the non-Boussinesq effects in cryogenic helium
experiments at high Rayleigh numbers spanning a range of 107 � Ra � 1015 performed in Brno.
We quantify the deviation of the center temperature Tc from Tm in the p-T diagram by means of
nonlinear regression applying deep neural networks, i.e., determine ξNOB(pm, Tm). This regression
proceeds in three different levels of refinement, partly based on a perturbative expansion of the
temperature dependence of essential material parameters and state variables p, T as described in the
next section. Furthermore, we aim to identify which of the variations of the material parameters
are the most important ones for the magnitude of the NOB parameter. The complex material
dependencies including discontinuities at the phase boundary and the singularities at the critical
point are tabulated in the software package HEPAK written by V. Arp et al. [18] and retailed
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FIG. 1. Summary of the operating points (pm, Tm ) of the cryogenic Rayleigh-Bénard experiments. (a) The
mean temperatures Tm and the temperature range 	T = Tbot − Ttop at a mean pressure pm are provided in the
p-T parameter plane. The “error bars” stemming from the (pm, Tm) points denote the ranges of 	T between
the cold (blue) and hot (red) plate temperatures Tt , Tb, respectively. The solid line marks the saturated vapor
curve (SVC) and the star symbol in the center of the figure indicates the critical point (CP) with Tcri = 5.195 K,
pcri = 0.228 MPa. The different colors of experimental (pm, Tm) points correspond to new data (green), and
data published in Refs. [15] (black) and [16] (brown). (b) Color-coded non-Boussinesq parameter ξNOB at the
Ra, Pr control parameters for the experiments shown in panel (a), given in units of Kelvin.

by Horizon Technologies Inc. [19]. They allow us to quantify the prefactors of the polynomial
expansions of the material parameters and state variables at different orders. The starting point
is the set of fully compressible equations of motion which was outlined by Gray and Giorgini
[20]. Material parameter dependencies have been also systematically discussed for high-Rayleigh-
number experiments in compressed SF6 in Refs. [21–23].

We mention that other response parameters typically studied in RBC, such as the Nusselt number
Nu and the Reynolds number Re, may in contrast to ξNOB deviate from predictions of OB models
of RBC due to hydrodynamical effects. The latter can arise for example from the growing level of
fluctuations inside the boundary layers as discussed in Refs. [2,3]. They are thus not related to NOB
behavior. Also, we will show that compressibility effects, which add a further component to NOB
behavior, can be excluded for the present cell height and pressures. In this work, the NOB effects
will be solely quantified by ξNOB.

Our paper is organized as follows. Section II introduces the fully compressible equations of
motion and discusses the resulting polynomial expansions for the material properties. In Sec. III,
we explore the basic state and transport properties of 4He as a function of pressure p and temper-
ature T in connection with the (pm, Tm) operating points of all realized RBC experiments within
the respective 	T region. Here we also discuss the second mechanism to NOB convection, the
compressibility effects which are shown to be negligible in the present setup. In Sec. IV, we briefly
overview the essential features of the experimental set-up for cryogenic RBC. Section V discusses
the nonlinear regression results. In the last section, we give the conclusions and outlook. Technical
details of the deep neural networks and an error analysis of the machine learning procedures are
discussed in Appendices A and B.

II. PERTURBATIVE EXPANSION OF THE EQUATIONS OF MOTION

Convective motions in a fluid layer are described by the set of three balance equations involving
the continuity equation for the mass balance, the Navier-Stokes equations for the momentum

094606-3



MICHAL MACEK et al.

balance, and the energy balance equation. Following here the textbook by Batchelor [24] and the
seminal work by Gray and Giorgini [20], they are given by

Dρ

Dt
= −ρ

∂u j

∂x j
, (4)

ρ
Dui

Dt
= − ∂ p

∂xi
− ρgiαT + ∂

∂x j
(μ�i j ), (5)

ρCp
DT

Dt
− αT

Dp

Dt
= ∂

∂x j

(
λ

∂T

∂x j

)
+ μ
, (6)

where D • /Dt = ∂ • /∂t + u · ∇• is the material derivative and

�i j = ∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j (7)

is the rate of strain tensor in the compressible case. Furthermore,


 = 1

2
�i j

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (8)

is the dissipation function and gi = (0, 0,−g) the vector that contains the acceleration due to gravity
g in vertical direction. The bulk viscosity is set to zero.

A simplified form of the convection equations (4)–(6) is obtained in the form of the OB
approximation, once the dynamical viscosity μ, the thermal conductivity λ, the isobaric thermal
expansivity α, and the specific heat Cp at constant pressure are taken as constants. Furthermore,
the mass density is taken to be constant ρ = ρ0, such that the flow is basically incompressible, and
heating due to pressure variations remains subdominant, which results in

∂u j

∂x j
= 0, (9)

ρ0
Dui

Dt
= − ∂ p

∂xi
− ρ0giαT + μ

∂2ui

∂x2
j

, (10)

ρCp
DT

Dt
= λ

∂2T

∂x2
j

. (11)

This implies that the speed of sound is much larger than the typical convection velocity, the free-
fall velocity Uf = √

gα	T H for small α	T . In all expressions above we have used the Einstein
summation convention.

Our objective is to evaluate the importance of individual terms of the compressible equations (4)–
(6) beyond the OB limit systematically and analyze their effects on the mean temperature profiles
in the thermal convection experiments in cryogenic helium. We will therefore assume that all
material parameters are functions of the temperature only and that their pressure dependence is
much less significant for the present experimental conditions. They can then be approximated by
Taylor expansions with respect to T , which we will follow up to the quadratic expansion term. This
results to the following expressions:

ρ = ρ0(1 − α0δT + β0δT 2), (12)

μ = μ0(1 + m10δT + m20δT 2), (13)

Cp = Cp0(1 + c10δT + c20δT 2), (14)

λ = λ0(1 + l10δT + l20δT 2), (15)

α = α0(1 + a10δT + a20δT 2). (16)

094606-4



ASSESSING NON-OBERBECK-BOUSSINESQ EFFECTS OF …

where δT = T − Tm. The first index in coefficients defines the term number in Taylor series
decomposition, index 0 refers to the mean temperature Tm and the minus in (12) follows a convention
usual in fluid dynamics. All constants in the expansions (12)–(16) are determined from quadratic
interpolations of the respective material properties at three temperature values Ttop, Tm, and Tbot at a
given pressure value p using HEPAK [18].

The substitution of Eqs. (12)–(16) into the compressible fluid equations (4)–(6) and the sub-
sequent performance of a number of transformations leads to a set of a dimensionless convection
equations which include the NOB effects up to second order with respect to temperature. They are
given by

−ε1
Dθ

Dt
+ 2ε2θ

Dθ

Dt
= −(1 − ε1θ + ε2θ

2)
∂u j

∂x j
, (17)

(1 − ε1θ + ε2θ
2)

Dui

Dt
= − ∂ (p − ps)

∂xi
+

[
(θ − θs) − ε2

ε1

(
θ2 − θ2

s

)]
ki

+ 1

Re f
(1 + ε3θ + ε4θ

2)
∂�i j

∂x j
+ 1

Re f
(ε3 + 2ε4θ )�i j

∂θ

∂x j
, (18)

(1 − ε1θ + ε2θ
2)(1 + ε5θ + ε6θ

2)
Dθ

Dt
= D̃

Re f
(1 + ε3θ + ε4θ

2)
 + 1

Re f Pr
(1 + ε7θ + ε8θ

2)
∂2θ

∂x2
j

+ 1

Re f Pr
(ε7 + 2ε8θ )

(
∂θ

∂x j

)2

+ D̃(1 + ε9θ + ε10θ
2)

×
[
ε1

D(p − ps)

Dt
− (

1 − ε1θs + ε2θ
2
s

)
u3

]
(θ + T̃m).

(19)

Here

θ = δT

	T
= T − Tm

Tbot − Ttop
and T̃m = Tm

	T
= Tm

Tbot − Ttop
, (20)

and θs and ps are temperature and pressure equilibrium (static heat conduction) profiles, respectively.
Furthermore, we define in the energy balance a dimensionless parameter

D̃ = gα0H

Cp0
, (21)

which is denoted as the dissipation number [25]. This number relates the dry adiabatic lapse rate
g/Cp0 to the characteristic temperature drop α0H . The velocity was made nondimensional by Uf .
The Prandtl number reads Pr = ν0/κ0 with the temperature diffusivity κ0 = λ0/(ρ0Cp0), the free-fall
Reynolds number Re f = Uf H/ν0, and the unit vector in the momentum balance points into the
positive z direction, ki = (0, 0, 1). The free-fall Reynolds number follows to Re f = √

Ra/Pr where
Ra is the Rayleigh number

Ra = α0

ν0κ0
g	T H3. (22)

Finally, in Table I, we list all parameters εi which were used in Eqs. (17)–(19) for first- and
second-order expansions. Setting all these expansion parameters εi and D̃ to zero recovers the
OB equations (9)–(11) [2,3]. Expansion parameters with an odd-number index are for the linear
expansion while those with an even index are for the quadratic order. Notice that D̃, similar to the
OB control parameters Ra and Pr depends only on local values of the material properties at the
reference temperature Tm, and—like the Prandtl number Pr—is independent of 	T . In this sense
it differs from εi, which are “nonlocal” and depend on the temperature derivatives at Tm as well
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TABLE I. List of all Taylor expansion parameters εi for i = 1, . . . , 10.

Quantity First-order expansion Second-order expansion

Mass density, ρ ε1 = α0	T ε2 = β0	T 2

Dynamic viscosity, μ ε3 = m10	T ε4 = m20	T 2

Specific heat, Cp ε5 = c10	T ε6 = c20	T 2

Thermal conductivity, λ ε7 = l10	T ε8 = l20	T 2

Isobaric expansion coefficient, α ε9 = a10	T ε10 = a20	T 2

as 	T . The regression algorithms in Sec. V will proceed in incremental steps, i.e., consider linear
expansions only at first and incorporate second-order subsequently.

III. STATE AND TRANSPORT PROPERTIES OF CRYOGENIC 4He

Figure 2 shows the accurate values of the mass density ρ, the specific heat at constant pressure
Cp, the dynamic viscosity μ, and the thermal conductivity λ with respect to the p-T plane in a
region of gaseous helium phase including the regions near to the vapor liquid saturation curve

FIG. 2. Basic state quantities [(a) and (b)] and molecular transport properties [(c) and (d)] which charac-
terize the complex material properties of cryogenic helium 4He near its critical point (CP) of pCP = 227 kPa
and TCP = 5.2 K as a function of pressure p and temperature T . (a) The density ρ which thus corresponds
with the equation of state ρ(T, p). (b) The specific heat Cp, (c) the dynamical viscosity μ, and (d) the thermal
conductivity λ. The black bullets indicate the mean values pm and Tm for all experiments shown in Fig. 1. The
data are obtained from the HEPAK code [18].
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and the critical point. These surfaces are obtained from the HEPAK code [18], which is based
on high-order interpolation of all available and reliable measurements. The plots give us a first
guidance in the selection of the appropriate the functional form of the state and transport properties
in the equations beyond the OB approximation. All displayed quantities, ρ, Cp, λ, and μ develop
a discontinuity at the phase boundary in the pressure-temperature plane which corresponds to a
first-order gas-liquid phase transition. Furthermore, Cp and λ develop a divergence at the CP, which
is given by pCP = 227 kPa and TCP = 5.2 K. The precursors of this divergence are visible here.
Panel (a) displays in fact the equation of state ρ(T, p). In the vicinity of this point, most of the RBC
experiments in cryogenic helium have been performed as indicated by the black dots in all panels of
the figure. They indicate mean pressure and temperature (and a view from the top would reproduce
the points of Fig. 1). Notice that the density ρ and the specific heat Cp vary by several orders of
magnitude over the domain displayed, while the dynamic viscosity μ and the thermal conductivity
λ vary by a factor of smaller than 4 only.

Finally, in order to assess possible contribution of compressibility to the NOB effects, we evaluate
the Mach number M = Uf/c = √

gα	T H/c, with isobaric thermal expansivity α and the speed of
sound c obtained from HEPAK (not shown). The results show that for all experiments considered,
the Mach numbers are in the range M � 10−2 and guarantee that possible breaking of OB conditions
due to compressibility can be neglected. Thus the NOB effects in RBC experiments with cryogenic
helium stem solely from temperature dependencies of the fluid properties.

IV. EXPERIMENTS IN CRYOGENIC

4He Cryogenic helium 4He has been used to reach extreme turbulence intensity in “tabletop”
RBC experiments on one hand thanks to the peculiar material properties near the CP allow to reach
high Rayleigh numbers Ra, on the other hand, due to technical advantages, as heat leaks and many
other parasitic effects are naturally highly suppressed in cryogenic conditions. The first advantage
goes side by side with caveats of inevitably varying the Prandtl number Pr = ν/κ [8,11] as well
as NOB effects stemming from (21) and the dependencies (12)–(16). Here we reanalyze RBC data
obtained at the Brno cryogenic turbulence facility [17].

The Brno experiment comprises a cryostat with a helium cryogenic experimental cell with the
height H = 0.3 m and diameter d = 0.3 m (aspect ratio � = d/H = 1) with particular effort to
minimize the influence of the cell structure and materials on the observed convection. The cell
has been designed to withstand pressures of 3.5 bars to cover a range of Rayleigh numbers 107 �
Ra � 1015. Here we list the main features of the experimental cell only, including all crucial recent
upgrades. In an ideal RBC experiment, the top and bottom plates should maintain nonfluctuating
constant temperatures Ttop and Tbot and the cell sidewalls should be adiabatic. The top and bottom
plates of our cell are made of 28-mm-thick annealed OFHC copper of very high thermal conductivity
of at least λCu = 2 kW m−1 K−1 at 5 K. Parasitic heat fluxes from the sidewalls into the working
fluid are minimized by using very thin stainless steel sidewalls with thickness δ = 0.5 mm and a
thermal conductivity λw. A special design of the cell corners is used, see Fig. 4 in Ref. [17]. One
way to estimate the influence of the sidewall on the heat transport is via the wall parameter W =
4δλw/(λHeD); for our cell 0.22 > W > 0.15 depending on actual value of the thermal conductivity
for each data point. By correction, we mean a subtraction of the heat conducted by sidewalls from
the heat that passes through the working fluid by convection [26]. We also paid attention to employ
good thermal shielding and minimize other external parasitic heat flows into the cell which could
substantially influence the convection dynamics.

A temperature correction which needs to be addressed in cryogenic experiments is that due to
adiabatic gradient, g/Cp. It is given by 	Tad = gαHTm/Cp = D̃Tm, see also Eq. (21), which has to
be subtracted from the measured temperature difference 	T before evaluating Ra and comparing
to the results of DNS based on Eqs. (4)–(6), otherwise the experimental data points would be very
much off the expected Nu(Ra) dependencies. In typical large RBC cryogenic helium experiments,
including the experiments in Brno, 	Tad is of order 1 mK. In the largest RBC cell at Oregon, it
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was about 3 mK [8]. In contrast, in turbulent RBC in air at room temperature the adiabatic gradient
correction is not important, as g/Cp = 0.01 K/m; thus the scale height across which T drops by an
order of magnitude is 1 km.

Cryogenic helium does not absorb thermal radiation, which leaves the radiation corrections to
the Nusselt number negligibly small. We point to a straightforward evaluation in Ref. [27] and to
the discussion of an extreme case in Ref. [28].

The top and bottom plates of the cell are equipped with four germanium (Ge) thermometers,
calibrated at Physikalisch-Technische Bundesanstalt Berlin (Germany) up to the best currently
available precision of ±2 mK absolute accuracy over the entire temperature range of interest.
These Ge thermometers are embedded in the middle and on the sides of both plates. We see
no horizontal temperature gradients within Ge sensors accuracy of 2 mK in both copper plates.
Following the last upgrade, both copper plates contain a pair of fast response Lakeshore DT-670
silicon (Si) diode thermometers, allowing to resolve the plate temperature fluctuations, which
on one hand enable much better control of the temperature boundary conditions [16] compared
to previous experiments via proportional-integrative-derivative feedback loops and, on the other
hand, can be used to correlate dynamics of the turbulent large-scale circulation in the bulk with
temperature fluctuations affecting the boundary layers. An additional set of germanium sensors of
type TTR-G [29,30] is placed inside the bulk of the cell, as shown in Refs. [16,31]. Compared to the
sensors in the plates, these sensors have the shape of very small 250-µm-sidelength Ge cubes. They
have a minimal hydrodynamic impact on the flow and allow for a fast response. The sensors are
calibrated in situ by us against the primary four sensors in the plates. To evaluate ξNOB, the central
temperature Tc is determined from the time average of the resistance signals from TTR-G sensors
located symmetrically with respect to both the horizontal midplane and the vertical axis of the cell.
The resistance signals are recorded using the Lakeshore LS-350 temperature controller, with its
calibration curves refined in situ. The experiments start after the flow reaches a statistically steady
state and the duration of individual runs ranges typically between 30 min and 6 h. The signals are
sampled at a frequency of 1 to 5 Hz.

V. NONLINEAR REGRESSION OF NON-BOUSSINESQ PARAMETERS

A. Experimental data base and regression procedure

We are interested in the dependence of the NOB parameter on state vari-
ables and material properties, i.e., most generally this results to a function
ξ (pm, Tm,	T, α(T, p), λ(T, p), μ(T, p),Cp(T, p), ρ(T, p)). The perturbative expansion of Sec. II
has reduced this high-dimensional function to one of thirteen input parameters. These are the
mean pressure pm, the mean temperature Tm, the temperature difference between bottom and top
boundaries 	T , and the expansion parameters εi for i = 1, . . . , 10. The latter ones determine the
first and second temperature derivatives of the material properties and state variables as summarized
in Table I. The nonlinear regression proceeds in three levels of increasing complexity. We aim at
reconstructing the following functions:

ξ1 := ξNOB(pm, Tm,	T ), (23)

ξ2 := ξNOB(pm, Tm,	T, ε2k+1) for k = 0, . . . , 4, (24)

ξ3 := ξNOB(pm, Tm,	T, εk ) for k = 1, . . . , 10. (25)

In the first approach ξ1, no expansion parameter εi is used for the training of the neural network.
It is explored how the NOB parameter depends on mean pressure and temperature as well as
imposed temperature difference only. The result can serve as a baseline to forecast NOB effects on
the temperature profile asymmetry ξNOB(pm, Tm,	T ) in future experiments. In the more detailed
successive steps, we are interested in a finer resolution of the effects of individual fluid properties
on the temperature asymmetry. In the second (third) approach ξ2 (ξ3), sets of all linear-order (linear

094606-8



ASSESSING NON-OBERBECK-BOUSSINESQ EFFECTS OF …

TABLE II. Details of the deep neural network which is used for the first approach. The output shape
consists of the batch size and the number of weights.

Layer Output shape Number of parameters

Linear [16, 400] 1600
ReLU [16, 400] 1
BatchNorm-1d [16, 400] 800
Linear [16, 1] 401
BatchNorm-1d [16, 1] 2
Sigmoid [16, 1] 0
Total 2804

and quadratic-order) expansion coefficients ε2k+1 (ε2k) are taken together as input data for a slightly
deeper neural network architecture since the feature extraction proceeds in a higher-dimensional
feature space. In this case, before calculating the non-Boussinesq parameter, it was necessary to
perform preliminary calculations to determine εk at each point of the p-T space within the given 	T
by means of HEPAK. Values of the NOB parameters (23)–(25) are given in units of K throughout
the paper.

B. First reconstruction method without expansion parameters

In the first reconstruction method, there are three input parameters, the mean pressure pm and the
mean temperature Tm which define the operating point of a particular laboratory measurements.
The third input parameter is the applied temperature difference between the bottom and top
plates. The only output parameter is the difference between mean temperature Tm and temperature
Tc in the center of the layer, ξ1, as already defined in the last subsection, see Eq. (23). For details on
the network architecture, see Table II.

Figure 3 shows the reconstruction of ξ1(T, P) for four different outer temperature differences 	T
which are indicated in the title of Figs. 3(a), 3(b) 3(d), and 3(e). In Figs. 3(c) and 3(f), we display in
addition the root-mean-square error (RMSE) contour plots for two cases which arises when taking
the i = 1, . . . , Nrec = 100 individual reconstructions. It is defined as

RMSE(p, T ) =
√√√√ 1

Nrec

Nrec∑
i=1

|ξk (i, T, p) − ξ k (T, p)|2 for k = 1, 2, 3, (26)

where ξ k (T, p) the mean reconstructed surface. In Refs. 3(a), 3(b), 3(d), and 3(e), it can be seen that
the maximum value of the NOB parameter is always reached in the vicinity of the phase boundary
and at the critical point. As the temperature difference 	T increases, the NOB parameter also
increases. In Figs. 3(c) and 3(f), it is seen that the RMSE also increases for bigger 	T . One reason
is that there are less corresponding experimental data. The largest errors occur near the critical point
at the end of the phase boundary.

The non-Oberbeck-Boussinesq parameter ξ1 is also shown in Ra-Pr parameter space in Fig. 4
for three outer temperature differences 	T , cf. Fig. 1(a) for an analogous display of experimental
values. All branches for each 	T start at Pr = 0.7 for the smallest Rayleigh numbers. When the
Rayleigh number increases by eight orders of magnitude, the Prandtl number increases monotoni-
cally up to Pr � 15. The data points are color coded by ξ1. The NOB parameter also grows along
the curves up to its highest values at Pr � 2. With a further increase of the Prandtl number, the NOB
parameter ξ1 remains however nearly unchanged.
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FIG. 3. Contour plots of the reconstruction of the non-Boussinesq parameter ξ1(p, T ) for different 	T
is shown in panels (a), (b), (d), and (e). Panels (c) and (f) display the corresponding root-mean-square error
(RMSE) for two of the four cases. The RMSE is given by Eq. (26). Unit for the color code is Kelvin.

C. Second reconstruction method including linear-order ε parameters

For the next level, we reconstruct the parameter field ξ2 with the linear order expansion parame-
ters εi. Input parameters for the deep neural network are now mean pressure pm, mean temperature
Tm, outer temperature difference 	T (as in the last case) together with all ε2k+1 for k = 0, . . . , 4.
The output is now the NOB parameter ξ2 of Eq. (23). The neural network is detailed in Table III.

The results are shown in Fig. 5, in analogy with Fig. 3, for four different temperature differences.
Also, we add again two root-mean-square error plots in Figs. 5(c) and 5(f) for 	T = 0.1 and
0.4, respectively. It can be seen that the qualitative behavior is similar to the results of the first
reconstruction method. The difference between the reconstructions ξ1 and ξ2 is highlighted in
Fig. 6, showing the deviation |ξ1 − ξ2|. Maximum deviations are up to ξ � 0.005 K, observed for

FIG. 4. Plot of ξ1 in the Ra-Pr parameter space for three different outer temperature differences 	T . The
data points are color-coded by ξ1 as given by the legend to the right. Unit for the color code is Kelvin.
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FIG. 5. Contour plots of the reconstruction of the non-Boussinesq parameter ξ2(p, T ) for different 	T is
shown in (a), (b), (d), and (e). [(c) and (f)] The corresponding root-mean-square error (RMSE) for two of the
four cases. The RMSE is given by Eq. (26). The unit for the color code is Kelvin.

FIG. 6. Contour plots of the absolute difference |ξ1 − ξ2| between the first and second reconstruction
method in the p-T parameter plane for four different 	T values which correspond to those in panels (a),
(b), (d), and (e) of Figs. 3 and 5. The unit for the color code is Kelvin.
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TABLE III. Details of the deep neural network which is used for the second approach. The output shape
consists of the batch size and the number of weights for each network layer.

Reconstruction of ξ2 Evaluation of ε2i+1

Layer Output shape Number of parameters Output shape Number of parameters

Linear [16, 400] 3600 [16, 500] 2000
PReLU [16, 400] 1 [16, 500] 1
BatchNorm-1d [16, 400] 800 [16, 500] 1000
Linear [16, 1] 401 [16, 5] 2505
BatchNorm-1d [16, 1] 2 [16, 5] 10
Sigmoid [16, 1] 0 [16, 5] 0
Total 4804 5516

	T = 0.2 K near the critical point and for 	T = 0.4 K in the lower-T part near the saturation
curve (maximum relative value of |ξ1 − ξ2|/ξ1 ∼ 40%). The graphs show that the influence of linear
coefficients near the critical point grows as the temperature difference increases.

The Ra-Pr plots related to the |ξ1 − ξ2| differences are shown in Fig. 7 and display the largest
deviation near the critical point and at the saturation line when Pr � 2 and Ra varying from 1012 to
1014.

D. Third reconstruction method including quadratic-order ε parameters

The last reconstruction method includes 13 input parameters to obtain ξ3. This comprises linear
and quadratic expansions with respect to the temperature encoded by εi for i = 1, . . . , 10. Our
analysis shows that the absolute difference |ξ2 − ξ3| remains very small for all the pm, Tm, and
	T values considered. This can be seen in Fig. 8, which corresponds to four “sections” through
the p − T plane at Tm = 4.6, 4.91, 5.2, and 5.5 K showing the p dependencies of ξ1, ξ2, and ξ3.
Finally, we refer to Appendix B, where we have summarized further error analysis for all three
reconstruction methods. This analysis illustrates how strongly the 100 individual reconstructions of
ξk vary when selecting different subsets as training and test data, see Fig. 10.

FIG. 7. The absolute difference |ξ1 − ξ2| between the first and the second reconstruction method in the
Ra-Pr parameter space for three different outer temperature differences 	T (cf. Fig. 6). The unit for the color
code is Kelvin.
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FIG. 8. Comparison of individual reconstructions of the NOB parameter ξ1 (red), ξ2 (blue), and ξ3 (green)
plotted as functions of pressure p at four values of Tm = 4.6, 4.91, 5.2, and 5.5 K (see insets in panels) and
four values of 	T = 0.01, 0.1, 0.2, and 0.4 K (cf. Figs. 3 and 5). The vertical red dashed lines in panels with
Tm = 4.6 K and 4.91 K denote the p values at the SVC.

E. Discussion of the reconstruction methods

The results in Secs. V B–V D display a general trend for the magnitude of NOB effects in RBC
in cryogenic helium gas quantified by the response parameters ξi, i = 1, 2, 3. All of them grow
significantly as we increase pressure pm and decrease temperature Tm towards the phase boundary
at SVC and towards the CP. This is seen throughout Figs. 3 and 5 for different 	T values, chosen
here to cover the ranges of 	T taken in high-Ra turbulent RBC experiments. Figure 8 shows in
more detail the differences between individual reconstructions obtained by different neural network
architectures. We can observe that while the differences between ξ2 and ξ3 are practically negligible,
the reconstruction calculating ξ1, involving only the basic experimental parameters, namely pm, Tm,
and 	T , significantly differ from ξ2 and ξ3, which in addition take into account the linear and
quadratic terms in the expansion of the material properties of helium as a function of temperature,
expressed by the dimensionless NOB control parameters εi, i = 1, . . . , 10, given in Table I. In
particular, ξ2 and ξ3 show much more pronounced growth at the phase boundary near the SVC and
at the CP as a function of pressure than ξ1. Further, the ξ2 and ξ3 curves are on average markedly
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FIG. 9. Correlation of the reconstructed values of the NOB parameters ξ1 (a), ξ2 (b), and ξ3 (c) of Eqs. (23)–
(25) with the experimental values of ξNOB of Eq. (3). The gray line is the ideal fit for visual guidance. The red
and yellow curves at the bottom of each panel represent the standard deviation s and the sum of residuals |r|
for the ensembles of Nrec = 100 neural network runs to obtain each point, respectively; see Appendix B for
details.

more convex, while ξ1 often grows in a more concave fashion towards the SVC and/or CP, see, e.g.,
the most pronounced case for 	T = 0.2 K and Tm = 5.2 K (very close to the critical temperature
Tcri = 5.195 K). Note that the occurrence of crossings of the concave regions of ξ1 with convex parts
of ξ2 apparent in Fig. 8 explains appearance of tongue-shaped features (contours of |ξ1 − ξ2| = 0)
seen in Fig. 6.

In addition to the three reconstructions (23)–(25) detailed in Secs. V B–V D, we performed also
several four-parameter reconstructions taking individual εi, i = 1, . . . , 10 one by one in addition
to pm, Tm, and 	T within the appropriate neural network. Each of the results differed from the ξ1

surfaces shown in Fig. 3 by less then the experimental accuracy of 3 mK. Thus only the combination
of the linear expansion parameters, resulting in ξ2 of Eq. (24), can be considered significant.

In Fig. 9, we finally plot the ξNOB results obtained by the machine learning (y axis) in comparison
to the experimental data (x axis) for ξ1 (a), ξ2 (b), and ξ3 (c). Each point thus corresponds to an
experimental value and a value obtained from the neural network. In addition, a line y = x for an
ideal fit to the data is shown. The presented spread of points shows a fairly good reconstruction of
the non-Boussinesq parameters by the ML algorithm.

VI. CONCLUSION AND OUTLOOK

In this work, we investigated the non-Oberbeck-Boussinesq behavior in high-Rayleigh-number
laboratory experiments of turbulent Rayleigh-Bénard convection in cryogenic helium 4He. The
NOB effects in this experimental setup are shown to be caused by the temperature dependence
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FIG. 10. Reconstructions of ξi(T, p). Deviation from the mean of the 100 individual reconstructions. Points
are 〈ξi(i)〉p,T and the solid line is 〈ξi〉p,T .

of the material properties at the molecular level, while the compressibility effects can be neglected
with a Mach number of M � 10−2. The temperature Tc measured at the center of the RBC cell
is found to deviate from the arithmetic mean of the temperatures of the copper plates at the top
and bottom, Tm. This is an indicator of an asymmetry of the statistical properties between the top
and bottom in the cell, which unambiguously signifies breaking of the OB approximation. The
present study used this temperature deviation as the NOB indicator. These deviations have been
determined in a series of experiments which provide a sparse data set to reconstruct the function
ξNOB(p, T ) = Tm − Tc by a nonlinear regression. The experiments are characterized by the operating
point in the pressure–temperature plane, (pm, Tm), and the outer temperature difference, 	T . We
thus provide a smooth approximation (at different levels of accuracy) for the strength of the NOB
effects with respect to two state variables.

In detail, we performed reconstructions of the NOB parameter by deep neural networks in three
different ways. The first approach is based on the operating point pm, Tm, and 	T . The second
and third approaches incorporate the expansion coefficients up to the linear and quadratic orders of
the Taylor expansion with respect to δT = T − Tm of the material properties and mass density,
respectively. The comparison of the different methods can be summarized as follows: (i) The
inclusion of the linear-order temperature expansion alters the reconstruction results by up to 40%.
(ii) The inclusion of the second expansion order does not alter the magnitude of the NOB effects
significantly. Our study provides a first systematic reconstruction of the NOB effects in experiments
with cryogenic helium, and renders a set of maps for expected NOB effects in a wide area of the
pressure-temperature plane for different values of 	T in future experiments. A systematic analysis
of the impact of the expansions on the heat and momentum transfer could be a next step which
would require numerical investigations of the OB configuration for these parameters.
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APPENDIX A: DETAILS OF THE DEEP NEURAL NETWORKS FOR NONLINEAR REGRESSION

In the following, we will provide some technical details of the machine learning methods that
were used for the nonlinear regression analysis, see, e.g., Ref. [32]. In order to calculate all results,
we had to use network models with different input and output parameters. They are provided in the
following three tables together with some information. In the 1st model we trained a neural network
without any information about the perturbative expansion as explained in the main text. The model
consists of a total of six layers. These are (1) linear layers which apply a linear transformation
of the incoming data followed by (2) a rectified linear unit (ReLU) function which performs an
element-wise nonlinear activation. ReLU and the parametric ReLU (PReLU) are given by

ReLU(x) = max
x

(0, x) and PReLU(x) = max(0, x) + a min(0, x), (A1)

for input data x with parameter a > 0. Furthermore, (3) the BatchNorm1d function of the PyTorch
library is applied as a batch normalization to fix expectation value E and variance Var of the input
in order to accelerate the training. This function is given by

BatchNorm1d(x) = x − E [x]√
Var[x] + ε

, (A2)

for input data x in the form of a minibatch. Finally, (4) the sigmoid applies another element-wise
nonlinear activation which is given by

σ (x) = 1

1 + exp(−x)
. (A3)

This first neural network in Table II obtains ξ1 as the output resulting from three quantities at input,
see Eq. (23). For our nonlinear regression task, there are, however, only 236 data points available to
train the neural network. This is a small number for a full training of a deep neural network in the
considered pressure-temperature interval. It can lead to the fact that in the randomly chosen input
data for the training-testing procedure, no data point near the saturation line and the critical point is
chosen at all. This in turn can result in an incorrect approximation of the non-Boussinesq parameter
ξNOB. In order to remove this effect of an insufficient amount of experimental data, training and
testing were performed in a cycle of 100 runs at each of the three levels. Each run takes a randomly
chosen subsample of the RBC data and uses the rest for testing. The deviation of each calculation
from the mean is shown in Appendix B. In this way, we obtained more robust regression results for
a relatively small number of RBC experiments.

The second reconstruction method includes the parameters ε of the linear order expansion. These
parameters, however, cannot be obtained close to the phase boundary from HEPAK and were thus
reconstructed first by a neural network. The corresponding architecture is specified in the right
fraction of Table III. Input is again pm, Tm, and 	T . With these input parameters, we obtain five
outputs, namely ε1, ε3, ε5, ε7, and ε9. Subsequently, we add them as further input parameters, i.e.,
we have a total of eight inputs to calculate the contour plot of ξ2 in the p-T plane. The recursion
is now more complicated in comparison to the first approach because all property gradients in the
experimental data fluctuate strongly, particularly close to the phase boundary. Also, the model is
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TABLE IV. Details of the deep neural network which is used for the third approach. The output shape
consists of the batch size and the number of weights.

Reconstruction of ξ3 Evaluation of εi

Layer Output shape Number of parameters Output shape Number of parameters

Linear [16, 400] 5600 [16, 500] 2000
PReLU [16, 400] 1 [16, 500] 1
BatchNorm-1d [16, 400] 800 [16, 500] 1000
Linear [16, 1] 401 [16, 10] 5010
BatchNorm-1d [16, 1] 2 [16, 10] 20
Sigmoid [16, 1] 0 [16, 10] 0
Total 6804 8031

more complex since it includes more parameters. The architecture of the neural network is basically
the same for both substeps. The third reconstruction method is similar to the second. Now, we
use linear and quadratic orders, reconstruct the 10 expansion coefficients first, and obtain ξ3 from a
network with 13 inputs. The architecture is specified in Table IV. It is basically similar to the second
reconstruction approach.

APPENDIX B: ERROR ANALYSIS OF THE NONLINEAR REGRESSION

Figure 10 shows the deviations of the Nrec = 100 individual reconstructions, which are indexed
with i, of the non-Boussinesq parameter 〈ξk (i)〉p,T from the mean of all calculations for k = 1,

2, and 3. We therefore first average the reconstructed field ξk (T, P) over the p-T plane which is
indicated by 〈·〉p,T . The mean non-Boussinesq parameter is eventually obtained by

〈ξk〉p,T = 1

Nrec

Nrec∑
i=1

〈ξk (i)〉p,T for k = 1, 2, 3. (B1)
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