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A net force can arise on objects which lie in systems with complex energy partitions,
even if the system is on average stationary. These forces are usually called fluctuation
forces, as they arise due to the objects modifying the character of the fluctuations within
the system. We continue the investigation of Spandan et al. [Sci. Adv. 6, eaba0461
(2020)], who found an attractive fluctuation force between two parallel square plates in
homogeneous isotropic turbulence (HIT). We conduct simulations which systematically
vary the plate size and Reynolds number. At Reλ = 100 small plates show a monotonic
force dependence, with a maximum force for the smallest plate separations, while medium
and large plates show a nonmonotonic behavior of the force with maximum attractive
force at intermediate separations. We find that energy-related statistics cannot explain the
dependence on plate separation of the force, but that statistics related to vorticity do show
qualitative variations around the plate separation corresponding to the maximum force.
This suggests that the role of plates in affecting intense vorticity structures is critical to
the behavior of the force. By decreasing Reλ, we show that removing vortex stretching
decreases the attractive force, but does not completely eliminate it, and find that the local
maximum at intermediate distances becomes a local minimum. This confirms that the
attractive force is related to vorticity, while suggesting that a second mechanism is present,
supporting the proposal for a twofold origin from earlier work: the plates both restrict the
presence of energy structures in the slit and pack intense vortical structures which stretch
each other causing the pressure to drop.

DOI: 10.1103/PhysRevFluids.8.094603

I. INTRODUCTION

Long-range forces can arise when fluctuating fields are contained between surfaces. The classical
Casimir force is the paradigmatic example of such forces [1]. This force arises when two metal plates
are placed in a vacuum a few micrometers apart. The two plates are found to attract each other, even
in the absence of electrical charges on the plates [2]. This is due to the quantum fluctuations of
the electromagnetic field present in a vacuum. A single plate does not affect these fluctuations, but
when two plates are placed near each other, many modes of fluctuation of the field are restricted.
The energy of the system then becomes a function of plate separation, and because of this there
must a force that arises that propels the plates to minimize the energy [1].

The classical Casimir force arises in a vacuum, but Casimir-like forces can arise in other
media [3]. For this to happen, it is essential that the underlying fluctuations have certain properties,
as otherwise no force would arise. The basic ingredient is that the fluctuating field results in a
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nontrivial spatial dependence of energy [4,5]. It is often a challenge to find these forces in Nature
as there are not many media where they appear, and when they do, they are often not easy to
measure. The first medium where they were postulated to exist was in binary mixtures close to
their critical point [3]. The long-range order which results from closeness to a critical point makes
the otherwise random thermal fluctuations into a fluctuating field, which satisfies the required
properties. Experimental observation of the force had to wait several decades, but the hypothesis was
eventually confirmed [6]. More recent experiments have uncovered Casimir-like forces in a wide
variety of systems, such as run-and-tumble particles [7,8] and colloidal spheres in mixtures [6,9,10].
In particular, using numerical simulations we showed in Ref. [11] the existence of an attractive
turbulent fluctuation force in homogeneous isotropic turbulence (HIT), an idealized turbulent state
which is numerically simulated using a triply-periodic computational domain [12]. The presence of
this force in two-dimensional HIT was later confirmed experimentally [13].

This finding becomes more relevant when one takes into account recent work that shows that a
large class of biological fluids comprising microbial suspensions exhibit striking analogies with
turbulent flows [14–18]. Other examples of active flows include artificial self-propelled parti-
cles [19,20], which also show fluctuation-force types of interaction [8]. However, coarse-grained
models of these types of flows contain a number of parameters and unknown quantities [14,21].
As a result, when fluctuation forces are found, they show very complicated behavior as a function
of plate distance [8]. In contrast, the fluctuation forces found in HIT have a simpler dependence on
plate distance [11], and in place of the complex and not fully understood energy transfer mechanisms
present in active flows or colloidal spheres, the energy transfer mechanisms in hydrodynamic
turbulence are well studied [22–24].

But beyond the fact that Casimir-like forces exist in HIT, not much more is known. In Ref. [11]
we proposed that the force arises due to a complex interaction between the energy-containing scales
and the dissipative scales which resulted in a force that behaves nonmonotonically depending on the
plate distance. When the distance between the plates was changed, the energy-containing structures
in HIT were modified affecting the overall pressure on the plates. In addition, at intermediate
plate distances, the intense vorticity structures (worms) are forced to interact in close vicinity
between the plates, affecting the pressure distributions in the slit and increasing the attractive force
between the plates. We proposed that the combination of these two effects caused a nonmonotonic
attractive force with a complex Reynolds number dependence. A somewhat similar mechanism
was experimentally found for two-dimensional turbulence, despite the fact that two-dimensional
HIT has a reverse energy cascade from small to large scales, and no vortex stretching, the effect
hypothesized to cause the drop in pressure, can be found. Reference [13] showed that the force
was generated by a restriction of the length scales coherent structures could take. This resulted in a
resonance phenomenon at the flow forcing scale which led to complex short-range interactions, an
energy partition, and the generation of the fluctuation force.

The fact that the force was found when vortices were not stretching each other at close distances
leaves open several questions which we intend to explore in this paper. The nonmonotonicity
of the force hints at the fact that two competing effects happen in the flow, and by exploring
a larger parameter space than in Ref. [11] we hope to fully reveal them. In Ref. [11] the plate
size was fixed, and the Reynolds number was varied. Due to the forcing method used, this in
effect meant that the ratio between the sizes of the energy containing eddies and the plates was
kept constant. Furthermore, all the simulated cases contained fully developed turbulence, where a
length-scale separation between the pressure sources and the energy-containing scales was present.
The question of the minimum scale separation required to produce a nonmonotonic force was also
left unanswered.

To answer these questions, we conduct two simulation campaigns. First, we vary the plate
sizes relative to the energy-containing structures, while keeping the Reynolds number (and hence
the smallest dissipative structures fixed). By doing this, we show that a minimum plate size is
needed for the force to show nonmonotonicity. By analyzing in detail the flow statistics related to
energy and vorticity, we show the link between nonmonotonicity and vortex stretching. Second,
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FIG. 1. Schematic showing the computational domain, and the three geometrical parameters. The dashed
gray lines indicate the boundaries of the periodic cube. The two plates lie within the periodic domain.

we progressively reduce the Reynolds number down to a point where there is no length-scale
separation between the energy containing structures and the dissipative structures to analyze what
is the minimum scale separation for the nonmonotonicity of the fluctuation force to arise. Through
this, we shed further light on the general behavior of the fluctuation force: we find that the increased
attraction at intermediate plate distances is due to the vortex stretching mechanism, which appears
once the Reynolds number is large enough. With these simulations, we give further evidence to
support many of the speculative statements in Ref. [11].

The paper is organized as follows: in Sec. II we discuss the numerical methods used. We present
detailed results and discussion for different plate sizes in Sec. III A and the results for varying
Reynolds number in Sec. III B. We finish by summarizing our findings and giving an outlook for
further research in Sec. IV.

II. METHODS

For all simulations, we directly simulate homogeneous isotropic turbulence using the incom-
pressible Navier-Stokes equations in a triply periodic cube with a periodic length L:

∂u
∂t

+ u · ∇u = −ρ−1∇p + ν∇2u + f, (1)

∇ · u = 0, (2)

where u is the velocity, t is time, ρ is the fluid density, ν is the fluid kinematic viscosity, and f is a
body force which is composed of the immersed boundary method (IBM) forcing used to simulate
the plates (fs) and a random forcing used to force the flow (f f ). Two rigid square plates of length lp

and zero thickness are placed inside the computational domain parallel to each other at a distance
of d . A schematic of the resulting system is shown in Fig. 1. We have chosen to limit ourselves to
the Navier-Stokes equations and do not consider any extensions similar to those used to study active
media [14]. The reasons for this choice are explained in the Appendix.

In the same manner as Ref. [11], the system of Eqs. (1)–(2) is solved using an energy-conserving
second-order centered finite difference scheme with fractional time stepping. An explicit low-
storage third-order Runge-Kutta scheme is used to discretize the nonlinear terms, while an implicit
Crank-Nicholson scheme is used for the viscous terms. As mentioned above, the flow is forced
through a large-scale force vector f f , which forces all modes whose wave number κ is smaller
than κ f . In practice this is taken as κ f /κ1 = 2.3 where κ1 = 2π/L is the base wave number in any
direction. The instantaneous magnitude and direction of this force is calculated based on random
processes which drive the time evolution of these selected modes based on a target energy flux

094603-3



DANIEL PUTT AND RODOLFO OSTILLA MÓNICO

TABLE I. Forcing parameters and the resulting flow statistics for all cases simulated.

κ f /κ1 ε∗L4/ν3 TLν/L2 Reλ ηK/L L/L

2.3 5.64 × 103 4.49 × 10−3 7.6 3.7 × 10−2 1.8 × 10−1

2.3 4.51 × 104 2.24 × 10−3 15 2.2 × 10−2 3.1 × 10−1

2.3 1.85 × 105 1.40 × 10−3 22 1.6 × 10−2 3.7 × 10−1

2.3 2.89 × 106 5.61 × 10−4 42 7.9 × 10−3 5.1 × 10−1

2.3 4.50 × 107 2.24 × 10−4 73 3.9 × 10−3 6.0 × 10−1

2.3 3.61 × 108 1.12 × 10−4 100 2.4 × 10−3 6.2 × 10−1

ε∗ and a force correlation time TL. Additional details on the forcing scheme and its corresponding
parameters can be found in the study by Eswaran and Pope [25] and the study by Chouippe and
Uhlmann [26]. We note that this method was chosen over other HIT forcing methods, such as a
forcing proportional to the existing velocity field, because it has been shown to avoid artifacts when
combined with the immersed boundary method [26]. Further confidence in our choice of forcing
was given by showing that the fluctuation forces persists over several eddy turnover times once the
forcing is turned off, dropping off as the fluid becomes less energized and fluctuations decrease [11],
even if we note that the energy injection will still be anisotropic due to the characteristics of the flow
between the plates and could still play a role.

Depending on the choice of ε∗ and TL, we obtain flow fields of varying turbulent intensities. To
characterize the turbulence, we conduct a simulation with no plates present to obtain the equivalent
Taylor-Reynolds number Reλ = u′λ/ν, where u′ is the root-mean-square velocity in one direction,
λ = u′√15ν/ε the Taylor microscale, and ε the actual time-averaged energy dissipation of the
flow. Table I shows the simulated (nondimensional) values of ε∗, κ f , and TL, and the resulting Reλ

for the simulations presented below. The table also includes the average Kolmogorov length scale
ηK = (ν3/ε)1/4 and the average integral, or decorrelation length scale L = k3/2/ε of the simulations,
where k is the flow kinetic energy k = 1

2ρ(u2
x + u2

y + u2
z ).

The spatial discretization of the domain is performed using a cubic uniform grid with 3603 points
for all Reλ considered in Table I. This resolution ensures that the flow is well resolved as κmaxηK >

2, where κmax is the maximum wavenumber in the flow in a single direction. Earlier simulations for
Reλ = 140 taken from Ref. [11] have a resolution of 4803. The time step is dynamically chosen so
that the maximum Courant-Friedrich-Lewy condition number is 1.2.

The influence of rigid plates on the surrounding fluid is simulated through the force fs, calculated
using an immersed boundary method (IBM) based on the moving least squares (MLS) approxima-
tion [27]. The IBM has the benefit of not needing to recreate or update the mesh, since there is
a translation operation between the Eulerian mesh and the immersed body. This method is also
useful due to the ease at which different objects can be placed in the domain. While we have
kept our objects rigid and in place for this paper, the MLS formulation of IBM also allows for
deformations in the object during simulations and avoids mesh regeneration. Furthermore, it allows
the simulation of objects of zero thickness as the ones used here. The immersed plates have been
discretized using ∼104 triangular computational elements with low skewness. The normal forces
acting on the immersed rigid plates are computed from the pressure interpolated on the individual
triangular elements on both sides.

After a start-up phase, consisting usually of two or three large-eddy turnover times (defined
as Te = u′2/ε), the forces on the plates and other statistics are computed and averaged. Unless
stated otherwise, temporal convergence of the forces and other statistics is assured by running the
simulations until the forces originating from the hydrodynamic pressure on both plates are equal
(but oppositely signed) to within 3%. We also check for statistical convergence by dividing the
force time series in two, and ensuring that the average values in both halves match within 5%. This
defines the magnitude of the error bars. In practice, this means a run time of Te ≈ 300.
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FIG. 2. Left: Instantaneous value of the nondimensional attractive force in the system (blue) as well as the
running average (orange dashed) for d/L = 0.1. Right: Probability distribution function for the feature-scaled
force coefficient on a single plate (blue) and on both plates (orange) for d/L = 0.1. The dashed black line
denotes a normal distribution.

III. RESULTS AND DISCUSSION

A. Mechanisms generating the attractive force

For the first set of simulations, we fix Reλ = 100, vary the plate size, and analyze how the
fluctuation force and other flow statistics change as a function of plate separation. We simulate
three plate sizes: lp/L = 0.1, lp/L = 0.175 and lp/L = 0.25. We also simulated a few cases with
lp/L = 0.4, but preliminary flow visualizations showed interference effects appearing due to the
periodic images. Therefore, we do not show these results here.

We begin by analyzing the instantaneous nondimensional force coefficient CF , defined as CF =
F/( 1

2ρu′2l2
p ), as a function of the nondimensional plate distance for the three plate sizes considered.

As per convention, F is the average normal force on both plates and is negative when attractive
and positive when repulsive [11]. In Fig. 2 we analyze the temporal behavior of CF for a sample
case with lp/L = 0.175 and d/L = 0.1. On the left panel, we show the time signal of CF (t ), as
well as the running average. The force can be seen to vary between negative and positive values
up to more than ten times its mean value (∼0.71). We can also see that we require a long running
time, of t/Te ≈ 300, to obtain an adequate value for the averaged CF . In the right panel, we show
a probability distribution function of the standardized CF (t ) on a single plate, and of the sum of
the force on the two plates. Both curves have a weak positive skew, with a skewness coefficient of
∼0.4, and have long tails, with a Fisher’s kurtosis of ∼1.1. We also note that the cross-correlation
coefficient between the force on the plates for this case is 0.32 and is generally between 0.25 and
0.35, depending on the plate separation.

Having established the statistical properties of the temporal behavior of the force, we now turn
to an instantaneous visualization of the flow in Fig. 3. For clarity, we show only an eighth of the
domain (a cube of side L/2 centered on the plates). The top row panels show the pressure source
term Q, defined as ∇2(p/ρ) = ( 1

2ω2 − σ 2) = 2Q, where ω is the fluid vorticity and σ is the fluid
strain [28], for the three plate sizes simulated at a plate separation of d/L = 0.1. The pressure source
term is commonly used to visualize vortices and highlights the presence of tubular high-vorticity
structures [29]. These have a radius which is usually estimated through the Kolmogorov length
scale ηK , and a length estimated as the integral length scale L. For Reλ = 100, these take the values
of ηK/L = 2.4 × 10−3 and L/L = 6.2 × 10−1, which approximately matches what is seen in the
visualizations.

In Ref. [11] it was hypothesized that the plates (of size lp/L = 0.25) packed the intense vortical
structures in the slit, forcing them to interact at close quarters. This interaction would cause a
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FIG. 3. Top row: Volume visualization of the pressure source term Q at Reλ = 100, d/L = 0.1 and three
plate sizes: lp/L = 0.1 (left), lp/L = 0.175 (middle), and lp/L = 0.25 (right). Regions of positive Q are shown
in green, and regions of zero or negative Q are left transparent. Bottom row: Volume visualization of the kinetic
energy k for the same cases. Regions of high k are shown in orange/brown, and regions of low k are left
transparent. For clarity only a section of the computational domain is shown.

pressure drop between the plates, and this was linked to an increase of the average attractive
fluctuation force at medium plate separations and hence to the force nonmonotonicity. In this
paper we intend to explore this link further. By visually comparing the proportions of vortical
structures and plates of varying lp, we can hypothesize that the small plates will have limited
packing capacities, due to to their reduced size. In contrast, we can expect that the largest plates pack
several structures in the slit, resulting in strong interactions between the vortices, as was observed
in Ref. [11]. The capacity of the medium sized plates to pack interacting vortical structures lies
somewhere between the small and large plates.

The other cause for the force hypothesized in Ref. [11] was the exclusion of energy structures.
To better visualize the effect of plate size on this phenomena, the bottom row of Fig. 3 shows the
kinetic energy k for the same simulation at the same time instant. The energy-containing structures
in HIT are much larger than their vortical counterparts, as they approximately extend a decorrelation
scale L in all directions, even if they show features at multiple length scales. Therefore, as hinted by
the visualizations, even the smallest plates will make a difference on the energy distribution of the
flow, as their presence would perturb the behavior of the energy-containing scales in the slit due to
the no-slip condition on their surfaces, which causes regions of low k to appear close to the plates.
These regions can be thought of as rough analogs to boundary layers, even if there is no mean flow.
Their effect will be explored later, when Reλ is varied.
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FIG. 4. Left: Nondimensionalized force coefficient as a function of nondimensional plate distance d/L.
Right: As in left, with distance rescaled using the plate length. Symbols: Blue circles are lp/L = 0.1, orange
triangles are lp/L = 0.175, and green squares are lp/L = 0.25.

Because the two hypothesized causes of the attractive force will behave rather differently with
plate size, by varying lp/L we can disentangle them and further support or falsify the explanations
brought forward in Ref. [11]. Moving to quantitative analysis, we plot the averaged nondimensional
force coefficient CF , in the left panel of Fig. 4. For the small plate (lp/L = 0.1), the force loses its
nonmonotonic character and is maximum for d/L = 0.05. We note that the computed force appears
to be slightly larger for d/L = 0.1 than for 0.075, but the differences between both data points
are well contained within error bars. Meanwhile, the force is nonmonotonic for both the medium
(lp/L = 0.175) and large (lp/L = 0.25) plates, with a maximum attractive force at d/L = 0.075,
consistent with the value obtained in Ref. [11]. The CF (d ) curves for the medium and large plates
also appear remarkably close to each other in the region d/L � 0.075.

These results hint that as long as the plates are large enough, changing the plate size does not
alter the underlying physical processes of energy exclusion and vortex interaction. We confirm this
by showing in the right panel the same CF data against the rescaled plate separation in terms of the
plate size d/lp. We can observe that when comparing left and right panels, the CF curves for the
medium and large plates show a much worse collapse. In the left panel, the force maximum in d/L
units is found for d/L = 0.075, consistent with Ref. [11], but it is located at different values of d/lp

in the right panel. This allows us to confirm that if the force is nonmonotonic, the location of the
force maximum does not depend on lp, i.e., the plate size does not introduce a length scale into the
problem.

To further examine the effect of plate size on the mechanisms at play, and to help us unravel the
causes behind the generation of the force, we can analyze the behavior of a series of flow quantities
around the plates. These quantities will be spatially averaged on squares of side 0.8lp cocentered
with the plates to avoid edge effects, and later symmetrized around the plane of symmetry of the
system.

We start with the behavior of both the mean and the fluctuations of pressure, shown in Fig. 5. We
can observe a qualitative difference between the mean pressure curves for the small plate, and for the
medium and large plates. For the small plates, the mean pressure has almost returned to the average
value at large plate separations and shows a flat region for the largest plate separations. Meanwhile,
for the medium and especially for the large plates, the mean pressure does not recover its average
value outside the plates even for the largest separations. The small plates behave as “individuals”
for much smaller values of plate separation, even if there is a net attractive force.

Turning to the pressure fluctuations, we observe that the level of fluctuations between the plates is
on average lower than the level outside at small plate separations. On the other hand, a local maxima
of fluctuations can be seen for some cases. For the smallest plate size, it is only really observed at
the smallest plate distance d/L = 0.05 and is absent from the other graphs. On the other hand,
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FIG. 5. Flow statistics for all cases simulated in this section with Reλ = 100. The two rows represent
mean pressure (top) and pressure fluctuations (bottom), and the three columns represent changing plate size:
lp/L = 0.1 (left) 0.175 (middle), and 0.25 (right). The lines are coded from light to dark blue depending on
plate separation.

a pressure fluctuation enhancement is present for the medium and for the large plate in the slit.
The effect of plate size is very apparent: the larger the plate, the larger the pressure fluctuations.
This increase in pressure fluctuations was already observed in Ref. [11] and was associated with
increased vortex activity and used to help explain why the attractive force is greater at larger plate
separations for the lp/L = 0.25 plate. Here we will attempt to find evidence to further support or
falsify this statement.

We now turn to the energy-based quantities of the flow. We first focus on the averaged kinetic
energy k, shown in the top row of Fig. 6. This quantity is of importance to the generation of a
fluctuation force, because as mentioned in the introduction, the primary mechanism in generating
fluctuation forces in nonequilibrium systems is the modification or exclusion of energy-containing
structures. In the top row of Fig. 6, we observe a similar behavior for all three plate sizes. As could be
expected, the presence of the plates causes the kinetic energy between the two plates to be reduced,
and as the plates are moved further apart, the energy increases until the collective effect of the plates
disappears, and they behave as “individuals.” In conventional fluid mechanics terms, the no-slip
condition on the plates is also a k = 0 boundary condition, and this causes a pseudoboundary layer
to be present in the flow where the value of k slowly increases to the free-stream value.

When approaching this from the existing statistical mechanics literature on fluctuation forces,
one could also say that the energy-containing structures do not “fit” between the plates, and this
causes the energy in the slit to be lower than outside. Once the plates behave as individuals, the
energy in the slit becomes approximately equal to the energy outside the slit, there is no significant
exclusion, and this coincides with the force becoming increasingly small. With this explanation, i.e.,
if the fluctuation force was due to the diminished energy alone, it could theoretically be derived by
analyzing how the energy in the slit changes as a function of plate distance. However, in a manner
consistent with Ref. [11], the k profiles for all plate sizes remain qualitatively similar, and there is
no change in the profiles of kinetic energy close to the maximum force for the medium and large
plates. This means that is no reason to expect the force to be nonmonotonic from analyzing the
kinetic energy profiles alone.

We extend our analysis of energy-based statistics by looking at the average dissipation ε, and the
average energy injection from the random force Fe = u · f f , shown in the middle and bottom rows
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FIG. 6. Flow statistics for all cases simulated in this section with Reλ = 100. The three rows represent
kinetic energy (top), energy dissipation (middle), and pressure fluctuations (bottom), and the three columns
represent changing plate size: lp/L = 0.1 (left) 0.175 (middle), and 0.25 (right). The lines are coded from light
to dark blue depending on plate separation.

of Fig. 6. We can observe that even if there is a peak of dissipation close to the plates, the average
energy dissipation in the slit increases quite rapidly to the value outside, varying significantly only
for the medium and large plates at the shortest plate separation. On the other hand, the energy
injected, shown in the bottom row of Fig. 6, shows no discernible patterns, even if it is clear that the
injected energy approaches the value of Fe outside the plates rather rapidly.

Taken together, these statistics imply that there is some sort of transport from the region outside
the plates to the slit. We can quantify this transport by using a balance of energy. Using Eadv for the
advection of energy from the outside the slit to the slit, one can say that in the statistically steady
state:

Eadv =
∫

�

ε dV −
∫

�

Fe dV = Eε − EF , (3)

where � is the domain between the plates, i.e., the slit. In Fig. 7 we show Eadv for all cases
considered, as well as Eε and EF , i.e., the average energies injected by the force and dissipated
by viscosity in the slit. We can see how there is a linear monotonic increase of the dissipation and of
the energy injected with plate size, something one could expect as the integration volume becomes
larger. We can see how on average these two tend to almost compensate, and the dependence of
Eadv on plate separation is not considerable. We can rationalize this by thinking that energy comes
in from the outside to compensate for the increased dissipation at the plates, which is relatively
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FIG. 7. Energy balance in the slit for all cases simulated in this section with Reλ = 100. The left panel
is the energy injected by the force in the slit, the middle panel is the energy dissipated in the slit, and the
third panel is the difference between both which indicates the additional energy advected to compensate for
dissipation. Symbols: blue circles are lp/L = 0.1, orange triangles are lp/L = 0.175, and green squares are
lp/L = 0.25.

independent of d , while the energy dissipation in the slit is relatively compensated by the force
injection.

From the discussion above, it is clear that looking at the energy statistics is not enough to explain
the origins of the fluctuation force and especially its nonmonotonic character. We now turn to
statistics related to the second mechanism for the generation of the force proposed in Ref. [11],
i.e., increased vortex stretching due to the packing of structures. In the top row of Fig. 8, we show
the behavior of the vorticity modulus for varying plate size and plate separation. We can observe
that the flow in the slit attains the same level of vorticity as the outside flow for plate separations of
around d/L = 0.1 for the small and medium plates, while for the large plate the outside vorticity
level is not reached for any plate separation. To explore why this is happening, we show in the middle
row of Fig. 8 the vorticity generation through vortex stretching, defined as Gω = ω · (ω · ∇u). Two
things can be appreciated: first, that for the small plate case and for small d , Gω is higher than the
average value in the slit, and it slowly drops to the baseline value as the separation increases, while
for large plates at small d , Gω is lower than the baseline value and slowly increases as the plate
separation increases. Second, we notice that there is a small local maximum in Gω for a selected
number of cases, and that these tend to coincide with the locations where CF (d ) also has a local
maximum.

This change of behavior seems to support the idea that vorticity is the crucial driver in the
generation of the force. To further examine this, we turn to the pressure source term Q, shown
in the bottom row of Fig. 8. In HIT the temporal averages of Q usually have a negative bias as
strain dominates vorticity [28,29]. Areas which have more positive values of Q indicate a greater
significance of structures where vorticity dominates strain rate [29]. Hence, in Ref. [11] we used
this variable to analyze the effect of packing worm-shaped intense vortex structures in the slit
between the plates, as in our case more positive values of Q would represent areas of stronger
vortex stretching, where the vortex worms were interacting in close proximity and would mutually
reinforce each other and decrease the pressure. Therefore, more positive values of Q can be used as
a proxy for measuring the strength of the flow mechanism that further drops the average pressure
between the plates and causes a nonmonotonic attractive force.

Returning to the data, we observe that the average value of Q for the small plate rapidly becomes
negative as plate distance increases, while it remains closer to zero for the medium plate, and can
even attain positive values for the large plate. Following the reasoning in the above paragraph,
this indicates the increasing significance of vortex stretching as the plates become larger. Increasing
plate size means the plates pack more vortical structures between them, aligning them in preferential
directions and forcing them to interact closely as hinted by the earlier visualizations. This generates
more vortex stretching, further vorticity enhancement, and larger pressure drops, which cause a
more pronounced maximum in the CF (d ) curve. This enhancement in vortex stretching was also
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FIG. 8. Flow statistics for all cases simulated in this section with Reλ = 100. The three rows represent
vorticity modulus (top), vortex stretching term Gω (middle), and pressure source term Q (bottom), and the
three columns represent changing plate size: lp/L = 0.1 (left) 0.175 (middle), and 0.25 (right). The lines are
coded from light to dark blue depending on plate separation.

reflected on the pressure fluctuations, shown in the bottom row of Fig. 5. In accordance with the
Q data, the p′ profiles show that the small plate affects the distribution of p′ much less than the
medium and large plates.

For completion, we also confirm that vorticity is preferentially aligned in directions parallel to
the plates by comparing the root-mean-squared value of ωx, i.e., the vorticity component normal to
the plate, to the total vorticity magnitude. If vorticity is isotropic, this ratio should approach 1/

√
3,

while if it is lower, it will indicate that vorticity has some preferential alignment. Indeed, this is what
the results shown in Fig. 9 show: vorticity is isotropic only for the largest plate separations, when
the plates behave as individuals.

The flow statistics shown here lend weight to the hypothesis that the fluctuation force is mainly
generated from interactions related to vorticity. However, we cannot totally rule out energy-related
mechanisms, which are similar to those present in other nonequilibrium systems. In the next section,
by progressively reducing the Reynolds number of the flow we explore what happens when vortex
stretching is removed from the picture.

B. The low Reynolds number limit

For the second set of simulations, we analyze the effect of the Reynolds number on the generation
of the fluctuation force. We start by fixing the plate size to be lp/L = 0.175, i.e., a medium plate size,
and set the plate separation at d/L = 0.1, around the force maximum. We vary Reλ, and examine
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FIG. 9. Vorticity anisotropy as a function of plate separation. The horizontal dashed line indicates the
asymptotic value 1/

√
3. Symbols: Blue circles are lp/L = 0.1, orange triangles are lp/L = 0.175, and green

squares are lp/L = 0.25.

the force coefficient and other flow statistics as the flow becomes less turbulent. To better understand
the changes in the flow as Reλ becomes small, Fig. 10 shows an instantaneous visualization of Q
and k for Reλ = 22. A drastically increased length scale for the Q structures can be observed, as
ηK is more than one order of magnitude larger at this Reλ when compared to the Reλ of Fig. 3.
On the other hand, the energy structures remain at similarly large sizes, even if they have lost their
small-scale features.

Turning to quantitative data, in the top left panel of Fig. 11, we show the results for the force
coefficient CF as a function of Reλ. As we could expect from Ref. [11], the force becomes smaller
and smaller as the Reynolds number decreases, reaching a minimum attractive force of around CF ≈
−0.2 at Reλ ≈ 15. For this Reynolds number, we expect no small and intense vortical structures, as
hinted by Fig. 10. Hence, vortex stretching will have been removed as a mechanism for generating
the fluctuation force.

We also note that for the lowest Reynolds number considered (Reλ = 7.6), the force appears to
increase again. However, the error bars on this are very large, even after collecting statistics for a
long period. With turbulence largely absent, other physical mechanisms or even the character of the
forcing could be responsible for this increase in the attractive force. We will not further speculate on
this phenomenon, as it is unclear whether it is dominated by the same mechanisms as the turbulent
fluctuation force due to the lack of turbulence at this Reλ.

FIG. 10. Volume visualization of the pressure source term Q (left) and the kinetic energy k (right) at Reλ =
22, d/L = 0.1, and lp/L = 0.175. Color code as in Fig. 3. For clarity only a section of the computational
domain is shown.
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FIG. 11. Top left: Nondimensionalized force coefficient as a function of Reλ for lp/L = 0.175 and d/L =
0.1. Top right: Spatial distribution of the averaged kinetic energy for varying Reλ with lp/L = 0.175 and
d/L = 0.1. The lines are coded from light to dark blue representing increasing Reλ as in Table I. Bottom left:
Same as top right for the pressure source term Q. Bottom right: Same as top right for the pressure fluctuations.

To further analyze the force generation, we show in the remaining panels of Fig. 11 the spatial
behavior of the time-averaged flow attributes analyzed in the previous section. The top right panel
shows the kinetic energy k, which has a relatively simple behavior which does not deviate from
expectations: for the lowest Reλ = 7.6, due to the effect of viscosity, the kinetic energy is very low
between the plates as the boundary layers from both plates protrude heavily into the flow. As Reλ

increases, the plate boundary layers become thinner, the ability of the plates to exclude the energy
structures becomes smaller, and the kinetic energy in the slit increases, until it almost reaches the
outside level for Reλ = 100.

The behavior of the pressure source term Q and the pressure fluctuations is more complex. In the
slit, Q is most positive for the lowest Reynolds number considered, indicating the important role of
vorticity. As Reλ increases, Q steadily drops, meaning strain becomes predominant over vorticity,
until a minimum is reached for Reλ = 42. Further increasing Reλ causes Q to become less negative,
indicating that vorticity is slowly recovering its importance in the slit. We can attribute this changing
behavior to the two different kinds of vorticity in the flow. At low Reynolds numbers, vorticity
originating from the no-slip condition at the plates will be dominant and cause more positive values
of Q. At high Reynolds number, vorticity will come from the small vortical structures (worms) that
pack the slit and interact with each other. At medium Reynolds numbers, both effects are reduced,
so Q detects that vorticity is unimportant.

The two origins of vorticity mean that their consequences on the flow will be different. This
is captured through the pressure fluctuations shown in the bottom right panel. For low Reynolds
number, the flow regions inside and outside of the slit behave in a similar manner, with a sharp
drop of fluctuations as the distance to the plate increases. However, at high Reynolds number, the
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FIG. 12. Top panels: Nondimensionalized force coefficient as a function of d/L for lp/L = 0.25 and Reλ =
15 (red left-facing triangle), Reλ = 65 (blue circle), Reλ = 100 (orange down-facing triangle), and Reλ = 140
(green square). Bottom panels: Spatial distribution of the averaged Kinetic energy (left), pressure source term
(middle), and pressure fluctuations (right) for varying d/L with lp/L = 0.25 and Reλ = 15. The lines are
coded from light to dark blue representing increasing plate separation.

pressure fluctuations do not drop sharply and can even attain a relatively flat spatial profile, similar
to what was seen in Fig. 5. This confirms the fact that the force increases seen at low Reynolds
number are caused by different mechanisms from the turbulent fluctuation force, and as such we
do not explore them further. In addition, these statistics also confirm that a main driver behind the
increased attractive force with increasing Reλ is the larger importance of the pressure drops due to
vortex stretching.

Finally, to further prove that the nonmonotonic behavior of the force is caused by the vortex
stretching, we run one additional set of simulations which set Reλ = 15, corresponding to the
minimum attractive force in Fig. 11, fix the plate size to lp/L = 0.25, so that data from Ref. [11]
can be used for comparison purposes, and vary d/L. In the top left panel of Fig. 12 we show the
behavior of CF as a function of plate distance for these simulation cases, as well as those cases
from Ref. [11]. We can observe that the force has lost its maximum at d/L = 0.075 and has even
inverted its nonmonotonic character. This is emphasized in the top right panel, where we show
the force coefficient normalized by the maximum attractive force at that Reλ. The position of the
maximum (now minimum) attractive force has also changed and is now located at d/L = 0.15, and
the attractive force drops to less than half its value at d/L = 0.05. As mentioned above, we attribute
this to the loss of vortex stretching, which is not present for Reλ = 15. However, an attractive force
remains due to the exclusion of energy-containing structures from the midgap.

To confirm this hypothesis, we show the flow statistics in the other three panels of Fig. 11. We
do not see any surprising behavior for the kinetic energy: it is lower in the slit than outside, and
the drop is much larger than in the cases with higher Reynolds number. As could be expected, the
kinetic energy in the slit also increases with plate separation. This difference in energy inside and
outside is the probable origin of the force at this Reλ. The pressure source term behaves according
to the earlier discussion: it is most positive in the slit for small separations, which is where the
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boundary layer dominates, and becomes more negative as the plate separation is increased. Finally,
the pressure fluctuations are reduced in the slit, and they do not show the characteristics present at
high Reλ shown in the earlier figures, which were due to vortex stretching. Instead, they show a
minimum at the midgap.

These results confirm that the packing of vortical structures is nonexistent at this Reλ. As this
Reλ does not show a sharp increase in the attractive force, this confirms that the mechanism behind
the increase in the attractive force at plate separations of the order d/L = 0.1 is the enhancement
of vortex stretching in the slit due to the packing of intense vortical structures. The reason for the
increase of the force for d/L > 0.1 is unclear and could be either due to the complex behavior of
the energy in the slit, or due to the character of the forcing at Reλ = 15. We wish to emphasize that
the forcing method was already ruled out as a possible driver of the force at Reλ = 100 in Ref. [11],
but the details of the forcing or its anisotropic energy injection could become more important at low
Re.

IV. CONCLUSIONS AND OUTLOOK

We have conducted a set of simulations to explore the origins of the turbulent fluctuation force.
Earlier work had hypothesized that there were two driving mechanisms: energy exclusion and vortex
packing [11]. The force was shown to be increasing with Reynolds number in the range Reλ ∈
(65, 140) and to robustly show a maximum at d/L = 0.075. However, in that study there was no
quantification of the effect of plate size, and the question of what happens when the flow becomes
less and less turbulent was left unanswered.

To answer these questions, we first set Reλ = 100 and varied the plate size and plate separation.
This showed that even if a fluctuation force was generated by placing the smallest plates in the flow,
a minimum plate size is required for the force to show nonmonotonicity. We find that the small
plates show different qualitative behavior in the statistics related to vorticity, which hints at the fact
that vorticity is the crucial driver of nonmonotonicity and even force generation. We also show that
the qualitative behavior of flow statistics related to energy statistics does not show any significant
dependence on plate size.

A second set of simulations probed the fluctuation force at progressively lower Reynolds
numbers. By doing this, we make one of the mechanisms hypothesized to generate the turbulent
fluctuation force disappear: the enhancement of vortex stretching through the packing of vorti-
cal structures. We found that if we hold the plate separation constant, as Reynolds number is
lowered the force tends to decrease, until a minimum was reached at Reλ = 15. The pressure
statistics confirm that vortex stretching is absent. Furthermore, by conducting simulations with
varying plate separation at this Reλ, we show that the force maximum at d/L disappears, and
instead a force minimum appears at intermediate plate distances. This further corroborates the
hypothesis of Ref. [11] that two mechanisms are generating the force: energy exclusion and vortex
packing.

The precise origins of the force at low Reynolds numbers was left unanswered, including the
question of why the force increases again at Reλ = 7.6 in Fig. 11(a), or why the force shows
a minimum instead of a maximum at Reλ = 15 for intermediate plate distances. There could be
several causes for this: for Reλ = 7.6, the result is still within error bars, or it could be due to the
increasing importance of the forcing and the way it injects energy in the midgap. The force minimum
could also be due to finite-plate size effects. We also note that other fluctuation forces have shown
complicated dependencies on the energy distribution [8].

Another question left unanswered is what happens in the limit Reλ → ∞. The data shown in this
paper and Ref. [11] which reached Reλ = 140 showed a force that continuously increased with Reλ.
While it appears reasonable to hypothesize that CF will eventually saturate, there is no clear answer
to the questions of at which Reλ this happens, what is the asymptotic value of CF , and why does
this saturation take place. Further simulations, or more importantly three-dimensional experiments,
could help address this gap.
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APPENDIX: ACTIVE FLOWS AND THE EXTENDED NAVIER-STOKES EQUATIONS

Active turbulence generated by microbial suspensions can be modeled using a Navier-Stokes
equation with higher order gradient terms in the stress tensor and a scaled nonlinear term [14,30].
These equations are also known as the extended Navier-Stokes equations (ENSE) and have been
found to reproduce some characteristics of microbial suspensions [30]. The ENSE show nontrivial
energy distributions so one could expect that Casimir forces can be found in these equations.
Furthermore, as these modified Navier-Stokes equations solve for the same variables, namely,
velocity and pressure, it appears simple to directly compare the forces in this situation to those
of hydrodynamic turbulence, building a bridge between hydrodynamic forces and active matter
fluctuation forces [8]. However, studying this proved beyond our means after some consideration.
In this Appendix we explain why.

The ENS originate from substituting the Navier-Stokes momentum equation (1) with an equa-
tion that originates from an extension of the Toner-Tu equations [31]. The Toner-Tu equations were
proposed as a continuum-model to understand the dynamics of large flocks of animals by general-
izing existing discrete models [32].

Following the formulation of Ref. [30], this equation reads

∂u
∂t

+ λ0u · ∇u = −∇p + λ1∇u2 − β(u2 − u2
0)u + �0∇2u + �2(∇2)2u, (A1)

where β, �0, �2, λ0, λ1, and u0 are parameters whose choice can be informed physically [30].
Equation (A1) reduces to the Navier-Stokes equation if λ0 = 1, β = λ1 = �2 = 0, and �0 > 0.

The second-order term �0∇2u can be identified with a viscous term, ν being equivalent to �0.
Flow forcing comes from two terms: the λ1∇u2 term, which represents an active pressure field,
and the fourth-order Swift-Hohenberg (SH) [33] term �2∇4u, which is designed to act as a forcing
mechanism and models the bacterial forcing at intermediate and small scales. Unlike the methods
usually used to force HIT, which predominantly force the large length scales in the flow, the SH
forcing steeply increases with decreasing wave number due to the presence of the fourth-order
gradient operator. The two forcing mechanisms should produce a very different flow from that
achieved by the random forcing used in this paper. However, both the active pressure field forcing,
proportional to gradients of the velocity squared, and the SH term, proportional to velocity gradients,
will interact with the immersed boundary method in ways we cannot adequately control. It is known
that forcing methods that force a flow with a magnitude that is proportional to velocity produce
artifacts when coupled with IBM methods [26]. Because we do not have experiments to compare
to, the introduction of these types of forcing in our problem would make it impossible to distinguish
what is a numerical artifact and what is a physical product of this active-type forcing.

This leaves for our consideration two more terms: the β(u2 − u2
0)u term, which is meant to

model the fact that if all bacteria would move in the same direction, they would achieve a collective
speed u0, which appears uninteresting for our purposes, and the scaled nonlinear term, λ0u · ∇u,
which is meant to account for the fact that organisms such as birds or bacteria are moving through
a resisting medium. The scaled nonlinear term appears to be interesting enough to warrant further
exploration, as in the active matter literature λ0 is understood to be an important parameter which
breaks the Galillean invariance of the equations representing the fact that bacteria need to spend
energy to move. If we limit our study of the ENS to just including a scaled nonlinear term in the
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Navier-Stokes equation, leaving the other terms as is, the momentum equation takes the form

∂u
∂t

+ λ0u · ∇u = −ρ−1∇p + ν∇2u + f . (A2)

However, no new physics is contained in this equation. Even if Eq. (A2) is not Galillean
invariant, the Navier-Stokes equation can be recovered by rescaling the length and time scales of
the equations. Under this rescaling, the effective viscosity is reduced if λ0 > 1, and it is increased
if λ0 < 1. Exploring the effect of λ0 on the fluctuation force by simulating Eq. (A2), where the only
modification is scaling the nonlinear term, is akin to studying the same flow at a different Re, and
this has been done in the paper.

Because of the reasons above, we have chosen to limit ourselves here to the study of the
“ordinary” Navier-Stokes equations.
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